sl@0
|
1 |
// Copyright (c) 2000-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
//
|
sl@0
|
15 |
|
sl@0
|
16 |
#include "basicop.h"
|
sl@0
|
17 |
|
sl@0
|
18 |
/*
|
sl@0
|
19 |
** int2 add( int2 var1, int2 var2 )
|
sl@0
|
20 |
**
|
sl@0
|
21 |
** Function performs the addition (var1+var2) with overflow control
|
sl@0
|
22 |
** and saturation; the result is set at +32767 when overflow occurs
|
sl@0
|
23 |
** or at -32768 when underflow occurs
|
sl@0
|
24 |
**
|
sl@0
|
25 |
** Input:
|
sl@0
|
26 |
** var1, var2
|
sl@0
|
27 |
** 16-bit variables to be summed
|
sl@0
|
28 |
**
|
sl@0
|
29 |
** Output:
|
sl@0
|
30 |
** Sum of var and var2, see description above
|
sl@0
|
31 |
**
|
sl@0
|
32 |
** Return value:
|
sl@0
|
33 |
** See above
|
sl@0
|
34 |
*/
|
sl@0
|
35 |
/*
|
sl@0
|
36 |
** One way to implement saturation control to add and sub is to
|
sl@0
|
37 |
** use temporary result that has enough bits to make overflow
|
sl@0
|
38 |
** impossible and the limit the final result
|
sl@0
|
39 |
*/
|
sl@0
|
40 |
int2 add( int2 var1, int2 var2 )
|
sl@0
|
41 |
{
|
sl@0
|
42 |
int4 L_temp;
|
sl@0
|
43 |
|
sl@0
|
44 |
L_temp = (int4) var1 + var2;
|
sl@0
|
45 |
|
sl@0
|
46 |
if ( L_temp < MININT2 )
|
sl@0
|
47 |
return MININT2;
|
sl@0
|
48 |
else if ( L_temp > MAXINT2 )
|
sl@0
|
49 |
return MAXINT2;
|
sl@0
|
50 |
else
|
sl@0
|
51 |
return (int2) L_temp;
|
sl@0
|
52 |
}
|
sl@0
|
53 |
|
sl@0
|
54 |
|
sl@0
|
55 |
/*
|
sl@0
|
56 |
** int2 sub( int2 var1, int2 var2 )
|
sl@0
|
57 |
**
|
sl@0
|
58 |
** Function performs the subtraction (var1-var2) with overflow control
|
sl@0
|
59 |
** and saturation; the result is set at +32767 when overflow occurs
|
sl@0
|
60 |
** or at -32768 when underflow occurs
|
sl@0
|
61 |
**
|
sl@0
|
62 |
** Input:
|
sl@0
|
63 |
** var1, var2
|
sl@0
|
64 |
** 16-bit variables to be summed
|
sl@0
|
65 |
**
|
sl@0
|
66 |
** Output:
|
sl@0
|
67 |
** Sum of var and var2, see description above
|
sl@0
|
68 |
**
|
sl@0
|
69 |
** Return value:
|
sl@0
|
70 |
** See above
|
sl@0
|
71 |
*/
|
sl@0
|
72 |
int2 sub( int2 var1, int2 var2 )
|
sl@0
|
73 |
{
|
sl@0
|
74 |
int4 L_temp;
|
sl@0
|
75 |
|
sl@0
|
76 |
L_temp = (int4) var1 - var2;
|
sl@0
|
77 |
|
sl@0
|
78 |
if ( L_temp < MININT2 )
|
sl@0
|
79 |
return MININT2;
|
sl@0
|
80 |
else if ( L_temp > MAXINT2 )
|
sl@0
|
81 |
return MAXINT2;
|
sl@0
|
82 |
else
|
sl@0
|
83 |
return (int2) L_temp;
|
sl@0
|
84 |
}
|
sl@0
|
85 |
|
sl@0
|
86 |
|
sl@0
|
87 |
|
sl@0
|
88 |
/*
|
sl@0
|
89 |
** int2 mult( int2 var1, int2 var2 )
|
sl@0
|
90 |
**
|
sl@0
|
91 |
** Function performs the multiplication of var1 by var2 and gives a
|
sl@0
|
92 |
** 16-bit result which is scaled ie
|
sl@0
|
93 |
** mult( var1, var2 ) = (var1 times var2) >> 15
|
sl@0
|
94 |
** and
|
sl@0
|
95 |
** mult( -32768, -32768 ) = 32767
|
sl@0
|
96 |
**
|
sl@0
|
97 |
** Input:
|
sl@0
|
98 |
** var1, var2
|
sl@0
|
99 |
** 16-bit variables to be multiplied
|
sl@0
|
100 |
**
|
sl@0
|
101 |
** Output:
|
sl@0
|
102 |
** Scaled result of multiplication
|
sl@0
|
103 |
**
|
sl@0
|
104 |
** Return value:
|
sl@0
|
105 |
** See above
|
sl@0
|
106 |
*/
|
sl@0
|
107 |
int2 mult( int2 var1, int2 var2 )
|
sl@0
|
108 |
{
|
sl@0
|
109 |
if ( ( var1 == MININT2 ) && ( var1 == var2 ) )
|
sl@0
|
110 |
return MAXINT2;
|
sl@0
|
111 |
else
|
sl@0
|
112 |
/* Note int4 cast of var1 to force 32-bit arithmetic */
|
sl@0
|
113 |
return( (int2) ( ( (int4) var1 * var2 ) >> 15 ) );
|
sl@0
|
114 |
}
|
sl@0
|
115 |
|
sl@0
|
116 |
|
sl@0
|
117 |
/*
|
sl@0
|
118 |
** int2 abs_s( int2 var1 )
|
sl@0
|
119 |
**
|
sl@0
|
120 |
** Function returns absolute value of var1 with possible saturation:
|
sl@0
|
121 |
** abs( -32768 ) = 32767
|
sl@0
|
122 |
**
|
sl@0
|
123 |
** Input:
|
sl@0
|
124 |
** var1
|
sl@0
|
125 |
** 16-bit variable
|
sl@0
|
126 |
**
|
sl@0
|
127 |
** Output:
|
sl@0
|
128 |
** absolute value of var1
|
sl@0
|
129 |
**
|
sl@0
|
130 |
** Return value:
|
sl@0
|
131 |
** See above
|
sl@0
|
132 |
*/
|
sl@0
|
133 |
int2 abs_s( int2 var1 )
|
sl@0
|
134 |
{
|
sl@0
|
135 |
if ( var1 == MININT2 )
|
sl@0
|
136 |
return MAXINT2;
|
sl@0
|
137 |
else
|
sl@0
|
138 |
return ( var1 > 0 ) ? var1 : int2 (-var1);
|
sl@0
|
139 |
}
|
sl@0
|
140 |
|
sl@0
|
141 |
|
sl@0
|
142 |
#ifdef L_MULTF
|
sl@0
|
143 |
/* else implemented using macro (basicop.h) */
|
sl@0
|
144 |
|
sl@0
|
145 |
/*
|
sl@0
|
146 |
** int4 L_mult( int2 var1, int2 var2 )
|
sl@0
|
147 |
**
|
sl@0
|
148 |
** Function performs the multiplication of var1 by var2 and gives a
|
sl@0
|
149 |
** 32-bit result which is scaled by shifting result one bit left ie
|
sl@0
|
150 |
** L_mult( var1, var2 ) = (var1 times var2) << 1
|
sl@0
|
151 |
**
|
sl@0
|
152 |
** L_mult( -32768, -32768 ) does not occur in algorithm
|
sl@0
|
153 |
**
|
sl@0
|
154 |
** Input:
|
sl@0
|
155 |
** var1, var2
|
sl@0
|
156 |
** 16-bit variables to be multiplied
|
sl@0
|
157 |
**
|
sl@0
|
158 |
** Output:
|
sl@0
|
159 |
** Scaled result of multiplication
|
sl@0
|
160 |
**
|
sl@0
|
161 |
** Return value:
|
sl@0
|
162 |
** See above
|
sl@0
|
163 |
*/
|
sl@0
|
164 |
int4 L_mult( int2 var1, int2 var2 )
|
sl@0
|
165 |
{
|
sl@0
|
166 |
/* Note int4 cast of var1 to force 32-bit arithmetic */
|
sl@0
|
167 |
return ( L_shl( (int4) var1 * var2 ), 1 );
|
sl@0
|
168 |
}
|
sl@0
|
169 |
#endif /* L_MULTF */
|
sl@0
|
170 |
|
sl@0
|
171 |
|
sl@0
|
172 |
|
sl@0
|
173 |
/*
|
sl@0
|
174 |
** int2 shr( int2 var1, int2 var2 )
|
sl@0
|
175 |
**
|
sl@0
|
176 |
** Function makes arithmetic var2-bit shift right of var1. If var2 is
|
sl@0
|
177 |
** less than 0, this operation becomes arithmetic left shift of -var2
|
sl@0
|
178 |
**
|
sl@0
|
179 |
** Input:
|
sl@0
|
180 |
** var1
|
sl@0
|
181 |
** 16-bit variable to be shifted
|
sl@0
|
182 |
** var2
|
sl@0
|
183 |
** amount of bits to be shifted
|
sl@0
|
184 |
**
|
sl@0
|
185 |
** Output:
|
sl@0
|
186 |
** 16-bit value of shifted var1 is returned
|
sl@0
|
187 |
**
|
sl@0
|
188 |
** Return value:
|
sl@0
|
189 |
** See above
|
sl@0
|
190 |
*/
|
sl@0
|
191 |
int2 shr( int2 var1, int2 var2 )
|
sl@0
|
192 |
{
|
sl@0
|
193 |
return shl( var1, int2 (-var2) );
|
sl@0
|
194 |
}
|
sl@0
|
195 |
|
sl@0
|
196 |
|
sl@0
|
197 |
/*
|
sl@0
|
198 |
** int2 negate( int2 var1 )
|
sl@0
|
199 |
**
|
sl@0
|
200 |
** Function negates 16-bit variable var1.
|
sl@0
|
201 |
** negate( -32768 ) = 32767
|
sl@0
|
202 |
**
|
sl@0
|
203 |
** Input:
|
sl@0
|
204 |
** var1
|
sl@0
|
205 |
** 16-bit variable to be negated
|
sl@0
|
206 |
**
|
sl@0
|
207 |
** Output:
|
sl@0
|
208 |
** negated var1
|
sl@0
|
209 |
**
|
sl@0
|
210 |
** Return value:
|
sl@0
|
211 |
** See above
|
sl@0
|
212 |
*/
|
sl@0
|
213 |
int2 negate( int2 var1 )
|
sl@0
|
214 |
{
|
sl@0
|
215 |
if ( var1 == MININT2 )
|
sl@0
|
216 |
return MAXINT2;
|
sl@0
|
217 |
else
|
sl@0
|
218 |
return int2 (-var1);
|
sl@0
|
219 |
}
|
sl@0
|
220 |
|
sl@0
|
221 |
|
sl@0
|
222 |
/*
|
sl@0
|
223 |
** int2 extract_h( int4 L_var1 )
|
sl@0
|
224 |
**
|
sl@0
|
225 |
** Function returns upper word (16 most significat bits) of the
|
sl@0
|
226 |
** 32-bit variable L_var1
|
sl@0
|
227 |
**
|
sl@0
|
228 |
** Input:
|
sl@0
|
229 |
** L_var1
|
sl@0
|
230 |
** 32-bit variable
|
sl@0
|
231 |
**
|
sl@0
|
232 |
** Output:
|
sl@0
|
233 |
** upper word of the L_var1
|
sl@0
|
234 |
**
|
sl@0
|
235 |
** Return value:
|
sl@0
|
236 |
** See above
|
sl@0
|
237 |
*/
|
sl@0
|
238 |
int2 extract_h( int4 L_var1 )
|
sl@0
|
239 |
{
|
sl@0
|
240 |
return (int2) ( L_var1 >> 16 );
|
sl@0
|
241 |
}
|
sl@0
|
242 |
|
sl@0
|
243 |
|
sl@0
|
244 |
/*
|
sl@0
|
245 |
** int2 extract_l( int4 L_var1 )
|
sl@0
|
246 |
**
|
sl@0
|
247 |
** Function returns lower word (16 least significat bits) of the
|
sl@0
|
248 |
** 32-bit variable L_var1
|
sl@0
|
249 |
**
|
sl@0
|
250 |
** Input:
|
sl@0
|
251 |
** L_var1
|
sl@0
|
252 |
** 32-bit variable
|
sl@0
|
253 |
**
|
sl@0
|
254 |
** Output:
|
sl@0
|
255 |
** lower word of L_var1
|
sl@0
|
256 |
**
|
sl@0
|
257 |
** Return value:
|
sl@0
|
258 |
** See above
|
sl@0
|
259 |
*/
|
sl@0
|
260 |
int2 extract_l( int4 L_var1 )
|
sl@0
|
261 |
{
|
sl@0
|
262 |
return (int2) (L_var1 & 0x0000ffff);
|
sl@0
|
263 |
}
|
sl@0
|
264 |
|
sl@0
|
265 |
|
sl@0
|
266 |
/*
|
sl@0
|
267 |
** int4 L_mac( int4 L_var3, int2 var1, int2 var2 )
|
sl@0
|
268 |
**
|
sl@0
|
269 |
** Function multiplies var1 by var2 and shifts result left by one bit.
|
sl@0
|
270 |
** Shifted result of multiplication is then added to L_var3 and result
|
sl@0
|
271 |
** is returned. Summation is done with overflow control and saturation;
|
sl@0
|
272 |
** the result is set at 2147483647 when overflow occurs and at
|
sl@0
|
273 |
** -2147483648 when underflow occurs
|
sl@0
|
274 |
**
|
sl@0
|
275 |
** Input:
|
sl@0
|
276 |
** var1
|
sl@0
|
277 |
** 16-bit multiplicant
|
sl@0
|
278 |
** var2
|
sl@0
|
279 |
** 16-bit multiplier
|
sl@0
|
280 |
**
|
sl@0
|
281 |
** L_var3
|
sl@0
|
282 |
** 32-bit number that is summed with (var1*var2)<<1
|
sl@0
|
283 |
**
|
sl@0
|
284 |
** Output:
|
sl@0
|
285 |
** See description above
|
sl@0
|
286 |
**
|
sl@0
|
287 |
** Return value:
|
sl@0
|
288 |
** See above
|
sl@0
|
289 |
*/
|
sl@0
|
290 |
int4 L_mac( int4 L_var3, int2 var1, int2 var2 )
|
sl@0
|
291 |
{
|
sl@0
|
292 |
int4 L_temp;
|
sl@0
|
293 |
|
sl@0
|
294 |
L_temp = ( (int4) var1 * var2 ) << 1;
|
sl@0
|
295 |
return L_add( L_var3, L_temp );
|
sl@0
|
296 |
}
|
sl@0
|
297 |
|
sl@0
|
298 |
|
sl@0
|
299 |
/*
|
sl@0
|
300 |
** int4 L_add( int4 L_var1, int4 L_var2 )
|
sl@0
|
301 |
**
|
sl@0
|
302 |
** Function performs 32-bit addition of two 32-bit variables
|
sl@0
|
303 |
** (L_var1 + L_var2) with overflow control and saturation; the
|
sl@0
|
304 |
** result is set at 2147483647 when overflow occurs and at
|
sl@0
|
305 |
** -2147483648 when underflow occurs
|
sl@0
|
306 |
**
|
sl@0
|
307 |
** Input:
|
sl@0
|
308 |
** L_var1, L_var2
|
sl@0
|
309 |
** 32-bit variables to be summed
|
sl@0
|
310 |
**
|
sl@0
|
311 |
** Output:
|
sl@0
|
312 |
** 32-bit result, see description above
|
sl@0
|
313 |
**
|
sl@0
|
314 |
** Return value:
|
sl@0
|
315 |
** See above
|
sl@0
|
316 |
*/
|
sl@0
|
317 |
int4 L_add( int4 L_var1, int4 L_var2 )
|
sl@0
|
318 |
{
|
sl@0
|
319 |
int4 L_temp1;
|
sl@0
|
320 |
int temp2; /* used for storing sign of L_var1 */
|
sl@0
|
321 |
|
sl@0
|
322 |
L_temp1 = L_var1 + L_var2;
|
sl@0
|
323 |
|
sl@0
|
324 |
/*
|
sl@0
|
325 |
* Overflow
|
sl@0
|
326 |
* if sign(L_var1)==sign(L_var2) && sign(L_var1)!=sign(L_temp1).
|
sl@0
|
327 |
*/
|
sl@0
|
328 |
|
sl@0
|
329 |
if ( ( temp2 = (L_var1 < 0) ) == ( L_var2 < 0 )
|
sl@0
|
330 |
&& ( temp2 != ( L_temp1 < 0 ) ) ) {
|
sl@0
|
331 |
L_temp1 = temp2 ? MININT4 : MAXINT4;
|
sl@0
|
332 |
}
|
sl@0
|
333 |
|
sl@0
|
334 |
return L_temp1;
|
sl@0
|
335 |
}
|
sl@0
|
336 |
|
sl@0
|
337 |
|
sl@0
|
338 |
/*
|
sl@0
|
339 |
** int4 L_sub( int4 L_var1, int4 L_var2 )
|
sl@0
|
340 |
**
|
sl@0
|
341 |
** Function performs 32-bit subtraction of two 32-bit variables
|
sl@0
|
342 |
** (L_var1 - L_var2) with overflow control and saturation; the
|
sl@0
|
343 |
** result is set at 2147483647 when overflow occurs and at
|
sl@0
|
344 |
** -2147483648 when underflow occurs
|
sl@0
|
345 |
**
|
sl@0
|
346 |
** Input:
|
sl@0
|
347 |
** L_var1, L_var2
|
sl@0
|
348 |
** 32-bit variables to be summed
|
sl@0
|
349 |
**
|
sl@0
|
350 |
** Output:
|
sl@0
|
351 |
** 32-bit result, see description above
|
sl@0
|
352 |
**
|
sl@0
|
353 |
** Return value:
|
sl@0
|
354 |
** See above
|
sl@0
|
355 |
*/
|
sl@0
|
356 |
int4 L_sub( int4 L_var1, int4 L_var2 )
|
sl@0
|
357 |
{
|
sl@0
|
358 |
int4 L_temp1;
|
sl@0
|
359 |
int temp2;
|
sl@0
|
360 |
|
sl@0
|
361 |
L_temp1 = L_var1 - L_var2;
|
sl@0
|
362 |
|
sl@0
|
363 |
/*
|
sl@0
|
364 |
* Overflow
|
sl@0
|
365 |
* if sign(L_var1)!=sign(L_var2) && sign(L_var1)!=sign(L_temp).
|
sl@0
|
366 |
*/
|
sl@0
|
367 |
|
sl@0
|
368 |
if ( ( temp2 = ( L_var1 < 0 ) ) != ( L_var2 < 0 )
|
sl@0
|
369 |
&& ( temp2 != ( L_temp1 < 0 ) ) ) {
|
sl@0
|
370 |
L_temp1 = temp2 ? MININT4 : MAXINT4;
|
sl@0
|
371 |
}
|
sl@0
|
372 |
|
sl@0
|
373 |
return L_temp1;
|
sl@0
|
374 |
}
|
sl@0
|
375 |
|
sl@0
|
376 |
|
sl@0
|
377 |
/*
|
sl@0
|
378 |
** int2 mult_r( int2 var1, int2 var2 )
|
sl@0
|
379 |
**
|
sl@0
|
380 |
** Function performs the multiplication of var1 by var2 and gives a
|
sl@0
|
381 |
** 16-bit result which is scaled with rounding ie
|
sl@0
|
382 |
** mult_r(var1, var2) = ((var1 times var2) + 16384) >> 15
|
sl@0
|
383 |
** and
|
sl@0
|
384 |
** mult_r( -32768, -32768 ) = 32767
|
sl@0
|
385 |
**
|
sl@0
|
386 |
** Input:
|
sl@0
|
387 |
** var1, var2
|
sl@0
|
388 |
** 16-bit variables to be multiplied
|
sl@0
|
389 |
**
|
sl@0
|
390 |
** Output:
|
sl@0
|
391 |
** 16-bit scaled result of multiplication
|
sl@0
|
392 |
**
|
sl@0
|
393 |
** Return value:
|
sl@0
|
394 |
** See above
|
sl@0
|
395 |
*/
|
sl@0
|
396 |
int2 mult_r( int2 var1, int2 var2 )
|
sl@0
|
397 |
{
|
sl@0
|
398 |
if ( ( var1 == MININT2 ) && ( var1 == var2 ) )
|
sl@0
|
399 |
return MAXINT2;
|
sl@0
|
400 |
else
|
sl@0
|
401 |
/* Note int4 cast of var1 to force 32-bit arithmetic */
|
sl@0
|
402 |
return( (int2) ( ( (int4) var1 * var2 + (int4) 16384 ) >> 15 ) );
|
sl@0
|
403 |
}
|
sl@0
|
404 |
|
sl@0
|
405 |
/*
|
sl@0
|
406 |
** int4 L_shr( int4 L_var1, int2 var2 )
|
sl@0
|
407 |
**
|
sl@0
|
408 |
** Function makes arithmetic var2-bit shift right of var1. If var2 is
|
sl@0
|
409 |
** less than 0, this operation becomes arithmetic left shift of -var2
|
sl@0
|
410 |
**
|
sl@0
|
411 |
** Input:
|
sl@0
|
412 |
** L_var1
|
sl@0
|
413 |
** 32-bit variable to be shifted
|
sl@0
|
414 |
** var2
|
sl@0
|
415 |
** amount of bits to be shifted
|
sl@0
|
416 |
**
|
sl@0
|
417 |
** Output:
|
sl@0
|
418 |
** 16-bit value of shifted var1
|
sl@0
|
419 |
**
|
sl@0
|
420 |
** Return value:
|
sl@0
|
421 |
** See above
|
sl@0
|
422 |
*/
|
sl@0
|
423 |
int4 L_shr( int4 L_var1, int2 var2 )
|
sl@0
|
424 |
{
|
sl@0
|
425 |
return L_shl( L_var1, int2 (-var2) );
|
sl@0
|
426 |
}
|
sl@0
|
427 |
|
sl@0
|
428 |
|
sl@0
|
429 |
/*
|
sl@0
|
430 |
** int4 L_deposit_h( int2 var1 )
|
sl@0
|
431 |
**
|
sl@0
|
432 |
** Function deposits the 16-bit variable var1 into the 16 most
|
sl@0
|
433 |
** significant bits of the 32-bit word. The 16 least significant
|
sl@0
|
434 |
** bits of the result are zeroed.
|
sl@0
|
435 |
**
|
sl@0
|
436 |
** Input:
|
sl@0
|
437 |
** var1
|
sl@0
|
438 |
** 16-bit variable to be loaded to the upper 16 bits of
|
sl@0
|
439 |
** of the 32-bit variable
|
sl@0
|
440 |
**
|
sl@0
|
441 |
** Output:
|
sl@0
|
442 |
** 32-bit number, see description above
|
sl@0
|
443 |
**
|
sl@0
|
444 |
** Return value:
|
sl@0
|
445 |
** See above
|
sl@0
|
446 |
*/
|
sl@0
|
447 |
int4 L_deposit_h( int2 var1 )
|
sl@0
|
448 |
{
|
sl@0
|
449 |
return ( (int4) var1 ) << 16;
|
sl@0
|
450 |
}
|
sl@0
|
451 |
|
sl@0
|
452 |
|
sl@0
|
453 |
/*
|
sl@0
|
454 |
** int4 L_deposit_l( int2 var1 )
|
sl@0
|
455 |
**
|
sl@0
|
456 |
** Function deposits the 16-bit variable var1 into the 16 least
|
sl@0
|
457 |
** significant bits of the 32-bit word. The 16 most significant bits
|
sl@0
|
458 |
** of the result are sign extended.
|
sl@0
|
459 |
**
|
sl@0
|
460 |
** Input:
|
sl@0
|
461 |
** var1
|
sl@0
|
462 |
** 16-bit variable to be converted to 32-bit variable
|
sl@0
|
463 |
**
|
sl@0
|
464 |
** Output:
|
sl@0
|
465 |
** 32-bit variable that has same magnitude than var1
|
sl@0
|
466 |
**
|
sl@0
|
467 |
** Return value:
|
sl@0
|
468 |
** See above
|
sl@0
|
469 |
*/
|
sl@0
|
470 |
int4 L_deposit_l( int2 var1 )
|
sl@0
|
471 |
{
|
sl@0
|
472 |
return (int4) var1;
|
sl@0
|
473 |
}
|
sl@0
|
474 |
|
sl@0
|
475 |
|
sl@0
|
476 |
/*
|
sl@0
|
477 |
** int2 norm_s( int2 var1 )
|
sl@0
|
478 |
**
|
sl@0
|
479 |
** Function produces number of left shifts needed to normalize the
|
sl@0
|
480 |
** 16-bit variable var1 for positive values on the interval with
|
sl@0
|
481 |
** minimum of 16384 and maximum of 32767 and for negative
|
sl@0
|
482 |
** values on the interval with minimum of -32768 and maximum of
|
sl@0
|
483 |
** -16384; in order to normalize the result, the following
|
sl@0
|
484 |
** operation must be done:
|
sl@0
|
485 |
** norm_var1 = var1 << norm_s(var1)
|
sl@0
|
486 |
**
|
sl@0
|
487 |
** Input:
|
sl@0
|
488 |
** var1
|
sl@0
|
489 |
** 16-bit variable which normalization factor is solved
|
sl@0
|
490 |
**
|
sl@0
|
491 |
** Output:
|
sl@0
|
492 |
** see description above
|
sl@0
|
493 |
**
|
sl@0
|
494 |
** Return value:
|
sl@0
|
495 |
** See above
|
sl@0
|
496 |
*/
|
sl@0
|
497 |
int2 norm_s( int2 var1 )
|
sl@0
|
498 |
{
|
sl@0
|
499 |
int2 cntr = 0;
|
sl@0
|
500 |
|
sl@0
|
501 |
/* Special case when L_var1 == -32768: shift leads to underflow */
|
sl@0
|
502 |
if ( var1 == MININT2 )
|
sl@0
|
503 |
return 0;
|
sl@0
|
504 |
/* Special case when var1 == 0: shift does not change the value */
|
sl@0
|
505 |
else if ( var1 == 0 )
|
sl@0
|
506 |
return 0;
|
sl@0
|
507 |
else {
|
sl@0
|
508 |
if ( var1 < 0 ) {
|
sl@0
|
509 |
for ( ; var1 >= -16384; var1 *= 2 )
|
sl@0
|
510 |
cntr++;
|
sl@0
|
511 |
}
|
sl@0
|
512 |
else {
|
sl@0
|
513 |
for ( ; var1 < 16384; var1 <<= 1 )
|
sl@0
|
514 |
cntr++;
|
sl@0
|
515 |
}
|
sl@0
|
516 |
|
sl@0
|
517 |
return cntr;
|
sl@0
|
518 |
}
|
sl@0
|
519 |
}
|
sl@0
|
520 |
|
sl@0
|
521 |
|
sl@0
|
522 |
/*
|
sl@0
|
523 |
** int2 norm_l( int4 L_var1 )
|
sl@0
|
524 |
**
|
sl@0
|
525 |
** Function produces number of left shifts needed to normalize the
|
sl@0
|
526 |
** 32-bit variable L_var1 for positive values on the interval with
|
sl@0
|
527 |
** minimum of 1073741824 and maximum of 2147483647 and for negative
|
sl@0
|
528 |
** values on the interval with minimum of -2147483648 and maximum of
|
sl@0
|
529 |
** -1073741824; in order to normalize the result, the following
|
sl@0
|
530 |
** operation must be done:
|
sl@0
|
531 |
** L_norm_var1 = L_var1 << norm_l(L_var1)
|
sl@0
|
532 |
**
|
sl@0
|
533 |
** Input:
|
sl@0
|
534 |
** L_var1
|
sl@0
|
535 |
** 32-bit variable which normalization factor is solved
|
sl@0
|
536 |
**
|
sl@0
|
537 |
** Output:
|
sl@0
|
538 |
** see description above
|
sl@0
|
539 |
**
|
sl@0
|
540 |
** Return value:
|
sl@0
|
541 |
** See above
|
sl@0
|
542 |
*/
|
sl@0
|
543 |
int2 norm_l( int4 L_var1 )
|
sl@0
|
544 |
{
|
sl@0
|
545 |
int2 cntr = 0;
|
sl@0
|
546 |
|
sl@0
|
547 |
/* Special case when L_var1 == -2147483648: shift leads to underflow */
|
sl@0
|
548 |
if ( L_var1 == MININT4 )
|
sl@0
|
549 |
return 0;
|
sl@0
|
550 |
/* Special case when L_var1 == 0: shift does not change the value */
|
sl@0
|
551 |
else if ( L_var1 == 0 )
|
sl@0
|
552 |
return 0;
|
sl@0
|
553 |
else {
|
sl@0
|
554 |
if ( L_var1 < 0 ) {
|
sl@0
|
555 |
for ( ; L_var1 >= (int4) -1073741824L; L_var1 *= 2 )
|
sl@0
|
556 |
cntr++;
|
sl@0
|
557 |
}
|
sl@0
|
558 |
else {
|
sl@0
|
559 |
for ( ; L_var1 < (int4) 1073741824L; L_var1 <<= 1 )
|
sl@0
|
560 |
cntr++;
|
sl@0
|
561 |
}
|
sl@0
|
562 |
|
sl@0
|
563 |
return cntr;
|
sl@0
|
564 |
}
|
sl@0
|
565 |
}
|
sl@0
|
566 |
|
sl@0
|
567 |
|
sl@0
|
568 |
/*
|
sl@0
|
569 |
** int2 div_s( int2 num, int2 denum )
|
sl@0
|
570 |
**
|
sl@0
|
571 |
** Function produces a result which is the fractional integer division
|
sl@0
|
572 |
** of var1 by var2; var1 and var2 must be positive and var2 must be
|
sl@0
|
573 |
** greater or equal to var1; The result is positive (leading bit equal
|
sl@0
|
574 |
** to 0) and truncated to 16 bits. If var1 == var2 then
|
sl@0
|
575 |
** div_s( var1, var2 ) = 32767
|
sl@0
|
576 |
**
|
sl@0
|
577 |
** Input:
|
sl@0
|
578 |
** L_var1
|
sl@0
|
579 |
** 32-bit variable which normalization factor is solved
|
sl@0
|
580 |
**
|
sl@0
|
581 |
** Output:
|
sl@0
|
582 |
** 16-bit result, see description above
|
sl@0
|
583 |
**
|
sl@0
|
584 |
** Return value:
|
sl@0
|
585 |
** See above
|
sl@0
|
586 |
*/
|
sl@0
|
587 |
int2 div_s( int2 num, int2 denum )
|
sl@0
|
588 |
{
|
sl@0
|
589 |
if ( num == denum )
|
sl@0
|
590 |
return MAXINT2;
|
sl@0
|
591 |
else
|
sl@0
|
592 |
return (int2) ( ( ( (int4) num ) << 15 ) / denum );
|
sl@0
|
593 |
}
|
sl@0
|
594 |
|
sl@0
|
595 |
|
sl@0
|
596 |
/*
|
sl@0
|
597 |
** int2 shl( int2 var1, int2 var2 )
|
sl@0
|
598 |
**
|
sl@0
|
599 |
** Function makes arithmetic var2-bit shift left of var1. If var2 is
|
sl@0
|
600 |
** less than 0, this operation becomes arithmetic right shift of -var2
|
sl@0
|
601 |
**
|
sl@0
|
602 |
** Input:
|
sl@0
|
603 |
** var1
|
sl@0
|
604 |
** 16-bit variable to be shifted
|
sl@0
|
605 |
** var2
|
sl@0
|
606 |
** amount of bits to be shifted
|
sl@0
|
607 |
**
|
sl@0
|
608 |
** Output:
|
sl@0
|
609 |
** 16-bit value of shifted var1 is retuned
|
sl@0
|
610 |
**
|
sl@0
|
611 |
** Return value:
|
sl@0
|
612 |
** See above
|
sl@0
|
613 |
**
|
sl@0
|
614 |
** Notes:
|
sl@0
|
615 |
** ANSI C does not guarantee that right shift is arithmetical
|
sl@0
|
616 |
** (that sign extension is done during shifting). That is why in this
|
sl@0
|
617 |
** routine negative values are complemented before shifting.
|
sl@0
|
618 |
*/
|
sl@0
|
619 |
int2 shl( int2 var1, int2 var2 )
|
sl@0
|
620 |
{
|
sl@0
|
621 |
int2 result;
|
sl@0
|
622 |
|
sl@0
|
623 |
if ( ( var1 == 0 ) || ( var2 == 0 ) ) {
|
sl@0
|
624 |
result = var1;
|
sl@0
|
625 |
}
|
sl@0
|
626 |
|
sl@0
|
627 |
/* var2 > 0: Perform left shift */
|
sl@0
|
628 |
else if ( var2 > 0 ) {
|
sl@0
|
629 |
if ( var2 >= 15 ) {
|
sl@0
|
630 |
result = ( var1 < 0 ) ? int2(MININT2) : int2(MAXINT2);
|
sl@0
|
631 |
}
|
sl@0
|
632 |
else {
|
sl@0
|
633 |
|
sl@0
|
634 |
int4 L_temp;
|
sl@0
|
635 |
|
sl@0
|
636 |
L_temp = (int4) var1 << var2;
|
sl@0
|
637 |
if ( L_temp < MININT2 ) {
|
sl@0
|
638 |
result = MININT2;
|
sl@0
|
639 |
}
|
sl@0
|
640 |
else if ( L_temp > MAXINT2 ) {
|
sl@0
|
641 |
result = MAXINT2;
|
sl@0
|
642 |
}
|
sl@0
|
643 |
else {
|
sl@0
|
644 |
result = (int2) L_temp;
|
sl@0
|
645 |
}
|
sl@0
|
646 |
}
|
sl@0
|
647 |
}
|
sl@0
|
648 |
/* var2 < 0: Perform right shift */
|
sl@0
|
649 |
else {
|
sl@0
|
650 |
if ( -var2 >= 15 ) {
|
sl@0
|
651 |
result = ( var1 < 0 ) ? int2 (-1) : int2 (0);
|
sl@0
|
652 |
}
|
sl@0
|
653 |
else if ( var1 < 0 ) {
|
sl@0
|
654 |
result = int2 (~( (~var1) >> -var2 )); /* ~ used to ensure arith. shift */
|
sl@0
|
655 |
}
|
sl@0
|
656 |
else {
|
sl@0
|
657 |
result = int2 (var1 >> -var2);
|
sl@0
|
658 |
}
|
sl@0
|
659 |
}
|
sl@0
|
660 |
|
sl@0
|
661 |
return result;
|
sl@0
|
662 |
|
sl@0
|
663 |
}
|
sl@0
|
664 |
|
sl@0
|
665 |
|
sl@0
|
666 |
/*
|
sl@0
|
667 |
** int4 L_shl( int4 L_var1, int2 var2 )
|
sl@0
|
668 |
**
|
sl@0
|
669 |
** Function makes arithmetic var2-bit shift left of var1. If var2 is
|
sl@0
|
670 |
** less than 0, this operation becomes arithmetic right shift of -var2
|
sl@0
|
671 |
**
|
sl@0
|
672 |
** Input:
|
sl@0
|
673 |
** L_var1
|
sl@0
|
674 |
** 32-bit variable to be shifted
|
sl@0
|
675 |
** var2
|
sl@0
|
676 |
** amount of bits to be shifted
|
sl@0
|
677 |
**
|
sl@0
|
678 |
** Output:
|
sl@0
|
679 |
** 32-bit value of shifted var1 is retuned
|
sl@0
|
680 |
**
|
sl@0
|
681 |
** Return value:
|
sl@0
|
682 |
** See above
|
sl@0
|
683 |
**
|
sl@0
|
684 |
** Notes:
|
sl@0
|
685 |
** ANSI C does not guarantee that right shift is arithmetical
|
sl@0
|
686 |
** (that sign extension is done during shifting). That is why in this
|
sl@0
|
687 |
** routine negative values are complemented before shifting.
|
sl@0
|
688 |
*/
|
sl@0
|
689 |
|
sl@0
|
690 |
int4 L_shl(int4 L_var1, int2 var2 )
|
sl@0
|
691 |
{
|
sl@0
|
692 |
if ( ( L_var1 == 0L ) || ( var2 == 0 ) ) {
|
sl@0
|
693 |
return L_var1;
|
sl@0
|
694 |
}
|
sl@0
|
695 |
/* var2 > 0: Perform left shift */
|
sl@0
|
696 |
else if ( var2 > 0 ) {
|
sl@0
|
697 |
if ( var2 >= 31 ) {
|
sl@0
|
698 |
return ( L_var1 < 0 ) ? MININT4 : MAXINT4;
|
sl@0
|
699 |
}
|
sl@0
|
700 |
else {
|
sl@0
|
701 |
for( ; var2 > 0; var2-- ) {
|
sl@0
|
702 |
if ( L_var1 > (MAXINT4 >> 1) )
|
sl@0
|
703 |
return MAXINT4;
|
sl@0
|
704 |
else if ( L_var1 < (MININT4 / 2) )
|
sl@0
|
705 |
return MININT4;
|
sl@0
|
706 |
else
|
sl@0
|
707 |
L_var1 *= 2;
|
sl@0
|
708 |
}
|
sl@0
|
709 |
return L_var1;
|
sl@0
|
710 |
}
|
sl@0
|
711 |
}
|
sl@0
|
712 |
/* var2 < 0: Perform right shift */
|
sl@0
|
713 |
else {
|
sl@0
|
714 |
if ( -var2 >= 31 ) {
|
sl@0
|
715 |
return ( L_var1 < 0 ) ? -1L : 0L;
|
sl@0
|
716 |
}
|
sl@0
|
717 |
else if ( L_var1 < 0 ) {
|
sl@0
|
718 |
return ~( (~L_var1) >> -var2 ); /* ~ used to ensure arith. shift */
|
sl@0
|
719 |
}
|
sl@0
|
720 |
else {
|
sl@0
|
721 |
return L_var1 >> -var2;
|
sl@0
|
722 |
}
|
sl@0
|
723 |
}
|
sl@0
|
724 |
|
sl@0
|
725 |
}
|
sl@0
|
726 |
|