os/kernelhwsrv/kerneltest/e32test/benchmark/bm_main.cpp
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
// Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// Overview:
sl@0
    15
// Test and benchmark kernel-side utility operations  
sl@0
    16
// API Information:
sl@0
    17
// RBusLogicalChannel			
sl@0
    18
// Details:
sl@0
    19
// - Create a list of benchmark modules and start running them one by one;
sl@0
    20
// each module contains a set of measurement units, each unit runs for a fixed
sl@0
    21
// amount of time in a series of iterations; the results, minimum, maximum and
sl@0
    22
// average times are displayed on the screen;
sl@0
    23
// The tests use a high resolution timer implemented kernel side in a device
sl@0
    24
// driver.
sl@0
    25
// - The test contains the following benchmark modules:
sl@0
    26
// - Real-time latency module measures:
sl@0
    27
// - interrupt latency by calculating the time taken from when an
sl@0
    28
// interrupt is generated until the ISR starts
sl@0
    29
// - kernel thread latency by calculating the time taken from an ISR
sl@0
    30
// scheduling a DFC to signal the kernel thread until the kernel thread
sl@0
    31
// starts running
sl@0
    32
// - kernel thread latency as above while a CPU intensive low priority
sl@0
    33
// user thread runs at the same time
sl@0
    34
// - user thread latency by calculating the time taken from an ISR 
sl@0
    35
// scheduling a DFC to signal the user thread until the user thread
sl@0
    36
// starts running
sl@0
    37
// - user thread latency as above while a CPU intensive low priority
sl@0
    38
// user thread runs at the same time
sl@0
    39
// - NTimer period jitter by calculating the actual period as the delta
sl@0
    40
// between two consecutive NTimer callbacks that store the current time;
sl@0
    41
// the jitter is the difference between the actual period and a theoretical
sl@0
    42
// period.
sl@0
    43
// - timer overhead by calculating the delta of time between two consecutive
sl@0
    44
// timestamps requested from the high precision timer implemented in the
sl@0
    45
// device driver; the calls are made from kernel side code
sl@0
    46
// - Overhead module measures:
sl@0
    47
// - timer overhead by calculating the delta of time between two consecutive
sl@0
    48
// timestamps requested from the high precision timer implemented in the
sl@0
    49
// device driver; the calls are made from user side code
sl@0
    50
// - Synchronization module measures: 
sl@0
    51
// - mutex passing, local mutex contention, remote mutex contention, 
sl@0
    52
// local semaphore latency, remote semaphore latency, 
sl@0
    53
// local thread semaphore latency, remote thread semaphore latency.
sl@0
    54
// - Client-server framework module measures:
sl@0
    55
// - For local high priority, local low priority, remote high priority 
sl@0
    56
// and remote low priority: connection request latency, connection
sl@0
    57
// reply latency, request latency, request response time, reply latency.
sl@0
    58
// - Threads modules measures:
sl@0
    59
// - Thread creation latency, thread creation suicide, thread suicide,
sl@0
    60
// thread killing, setting per thread data, getting per thread data.
sl@0
    61
// - Properties module measures:
sl@0
    62
// - Local int notification latency, remote int notification latency, 
sl@0
    63
// local byte(1) notification latency, remote byte(1) notification latency, 
sl@0
    64
// local byte(8) notification latency, remote byte(8) notification latency, 
sl@0
    65
// local byte(512) notification latency, remote byte(512) notification latency, 
sl@0
    66
// int set overhead, byte(1) set overhead, byte(8) set overhead, byte(512) set 
sl@0
    67
// overhead, int get overhead, byte(1) get overhead, byte(8) get overhead, 
sl@0
    68
// byte(512) get overhead. 
sl@0
    69
// Platforms/Drives/Compatibility:
sl@0
    70
// All.
sl@0
    71
// Assumptions/Requirement/Pre-requisites:
sl@0
    72
// Failures and causes:
sl@0
    73
// Base Port information:
sl@0
    74
// 
sl@0
    75
//
sl@0
    76
sl@0
    77
#include "bm_suite.h"
sl@0
    78
#include <e32svr.h>
sl@0
    79
#include <u32hal.h>
sl@0
    80
sl@0
    81
RTest test(_L("Benchmark Suite"));
sl@0
    82
sl@0
    83
//
sl@0
    84
// The default value of the time allocated for one benchmark program.  
sl@0
    85
//
sl@0
    86
static TInt KBMSecondsPerProgram = 30;
sl@0
    87
//
sl@0
    88
// The initial number of iterations to estimate the acctual number of iteration. 
sl@0
    89
//
sl@0
    90
static TInt KBMCalibrationIter = 64;
sl@0
    91
sl@0
    92
//
sl@0
    93
// Global handle to high-resolution timer. 
sl@0
    94
//
sl@0
    95
RBMTimer bmTimer;
sl@0
    96
//
sl@0
    97
// The head of the benchmark programs' list
sl@0
    98
//
sl@0
    99
BMProgram* bmSuite; 
sl@0
   100
//
sl@0
   101
// Global handle to the kernel side benchmark utilty API 
sl@0
   102
//
sl@0
   103
static RBMDriver bmDriver;
sl@0
   104
sl@0
   105
TBMResult::TBMResult(const TDesC& aName) : iName(aName) 
sl@0
   106
	{
sl@0
   107
	Reset();
sl@0
   108
	}
sl@0
   109
sl@0
   110
void TBMResult::Reset()
sl@0
   111
	{
sl@0
   112
	::bmTimer.Period(&iMinTicks);
sl@0
   113
	iMaxTicks = 0;
sl@0
   114
	iCumulatedTicks = 0;
sl@0
   115
	iCumulatedIterations = 0;
sl@0
   116
	iIterations = 0;
sl@0
   117
	iMin = 0;
sl@0
   118
	iMax = 0;
sl@0
   119
	iAverage = 0;
sl@0
   120
	}
sl@0
   121
sl@0
   122
void TBMResult::Reset(const TDesC& aName)
sl@0
   123
	{
sl@0
   124
	Reset();
sl@0
   125
	iName.Set(aName);
sl@0
   126
	}
sl@0
   127
sl@0
   128
void TBMResult::Cumulate(TBMTicks aTicks)
sl@0
   129
{
sl@0
   130
	if (aTicks < iMinTicks) iMinTicks = aTicks;
sl@0
   131
	if (iMaxTicks < aTicks) iMaxTicks = aTicks;
sl@0
   132
sl@0
   133
	iCumulatedTicks += aTicks;
sl@0
   134
	if (iCumulatedIterations < KHeadSize)
sl@0
   135
		{
sl@0
   136
		iHeadTicks[iCumulatedIterations] = aTicks;
sl@0
   137
		}
sl@0
   138
		// use the array as a circular buufer to store last KTailSize results
sl@0
   139
		// (would not really know which one was actually the last)
sl@0
   140
	iTailTicks[iCumulatedIterations % KTailSize] = aTicks;
sl@0
   141
	++iCumulatedIterations;
sl@0
   142
	
sl@0
   143
}
sl@0
   144
sl@0
   145
sl@0
   146
void TBMResult::Cumulate(TBMTicks aTicks, TBMUInt64 aIter)
sl@0
   147
{
sl@0
   148
	iCumulatedIterations += aIter;
sl@0
   149
	iCumulatedTicks += aTicks;
sl@0
   150
}
sl@0
   151
sl@0
   152
void TBMResult::Update()
sl@0
   153
{
sl@0
   154
	if (iCumulatedIterations == 0) return;
sl@0
   155
	iIterations = iCumulatedIterations;
sl@0
   156
	::bmTimer.TicksToNs(&iMinTicks, &iMin);
sl@0
   157
	::bmTimer.TicksToNs(&iMaxTicks, &iMax);
sl@0
   158
	TBMTicks averageTicks = iCumulatedTicks/TBMUInt64(iCumulatedIterations);
sl@0
   159
	::bmTimer.TicksToNs(&averageTicks, &iAverage);
sl@0
   160
	TInt i;
sl@0
   161
	for (i = 0; i < KHeadSize; ++i) 
sl@0
   162
		{
sl@0
   163
		::bmTimer.TicksToNs(&iHeadTicks[i], &iHead[i]);
sl@0
   164
		}
sl@0
   165
	for (i = 0; i < KTailSize; ++i) 
sl@0
   166
		{
sl@0
   167
		::bmTimer.TicksToNs(&iTailTicks[i], &iTail[i]);
sl@0
   168
		}
sl@0
   169
	}
sl@0
   170
sl@0
   171
inline TBMNs TTimeIntervalMicroSecondsToTBMNs(TTimeIntervalMicroSeconds us)
sl@0
   172
	{
sl@0
   173
	return BMUsToNs(*(TBMUInt64*)&us);
sl@0
   174
	}
sl@0
   175
sl@0
   176
TBMNs TBMTimeInterval::iStampPeriodNs;
sl@0
   177
TBMTicks TBMTimeInterval::iStampPeriod;
sl@0
   178
sl@0
   179
void TBMTimeInterval::Init()
sl@0
   180
	{
sl@0
   181
	::bmTimer.Period(&iStampPeriod); 
sl@0
   182
	::bmTimer.TicksToNs(&iStampPeriod, &iStampPeriodNs);
sl@0
   183
}
sl@0
   184
sl@0
   185
void TBMTimeInterval::Begin()
sl@0
   186
	{
sl@0
   187
	//
sl@0
   188
	// Order is important: read first low-precision timer, then the high-precision one. 
sl@0
   189
	// Therefore, two high-precision timer reads will be accounted in the low-precision interval,
sl@0
   190
	// that's better than the opposite.
sl@0
   191
	//
sl@0
   192
	iTime.HomeTime();
sl@0
   193
	::bmTimer.Stamp(&iStamp);
sl@0
   194
	}
sl@0
   195
sl@0
   196
TBMNs TBMTimeInterval::EndNs()
sl@0
   197
	{
sl@0
   198
	//
sl@0
   199
	// Now, in the reverse order
sl@0
   200
	//
sl@0
   201
	TBMTicks stamp;
sl@0
   202
	::bmTimer.Stamp(&stamp);
sl@0
   203
	TTime time;	
sl@0
   204
	time.HomeTime();
sl@0
   205
	TBMNs ns = TTimeIntervalMicroSecondsToTBMNs(time.MicroSecondsFrom(iTime));
sl@0
   206
	//
sl@0
   207
	// If the interval fits in the high-precision timer period we can use it;
sl@0
   208
	// otherwise, use the low-precision timer.
sl@0
   209
	//
sl@0
   210
	if (ns < iStampPeriodNs)
sl@0
   211
		{
sl@0
   212
		stamp = TBMTicksDelta(iStamp, stamp);
sl@0
   213
		::bmTimer.TicksToNs(&stamp, &ns);
sl@0
   214
		}
sl@0
   215
	return ns;
sl@0
   216
	}
sl@0
   217
sl@0
   218
TBMTicks TBMTimeInterval::End()
sl@0
   219
	{
sl@0
   220
	//
sl@0
   221
	// The same as the previous one but returns ticks
sl@0
   222
	//
sl@0
   223
sl@0
   224
	TBMTicks stamp;
sl@0
   225
	::bmTimer.Stamp(&stamp);
sl@0
   226
	TTime time;	
sl@0
   227
	time.HomeTime();
sl@0
   228
	TBMNs ns = TTimeIntervalMicroSecondsToTBMNs(time.MicroSecondsFrom(iTime));
sl@0
   229
	if (ns < iStampPeriodNs)
sl@0
   230
		{
sl@0
   231
		stamp = TBMTicksDelta(iStamp, stamp);
sl@0
   232
		}
sl@0
   233
	else
sl@0
   234
		{
sl@0
   235
			// multiply first - privileging precision to improbable overflow.
sl@0
   236
		stamp = (ns * iStampPeriod) / iStampPeriodNs; 
sl@0
   237
		}
sl@0
   238
	return stamp;
sl@0
   239
	}
sl@0
   240
sl@0
   241
TInt BMProgram::SetAbsPriority(RThread aThread, TInt aNewPrio)
sl@0
   242
	{
sl@0
   243
	TInt aOldPrio=0;
sl@0
   244
	TInt r = ::bmDriver.SetAbsPriority(aThread, aNewPrio, &aOldPrio);
sl@0
   245
	BM_ERROR(r, r == KErrNone);
sl@0
   246
	return aOldPrio;
sl@0
   247
	}
sl@0
   248
sl@0
   249
const TInt TBMSpawnArgs::KMagic = 0xdeadbeef;
sl@0
   250
sl@0
   251
TBMSpawnArgs::TBMSpawnArgs(TThreadFunction aChildFunc, TInt aChildPrio, TBool aRemote, TInt aSize)
sl@0
   252
	{
sl@0
   253
	iMagic = KMagic;
sl@0
   254
	iParentId = RThread().Id();
sl@0
   255
		// get a thread handle meaningful in the context of any other thread. 
sl@0
   256
		// (RThread() doesn't work since contextual!)
sl@0
   257
	TInt r = iParent.Open(iParentId);
sl@0
   258
	BM_ERROR(r, r == KErrNone);
sl@0
   259
	iRemote = aRemote;
sl@0
   260
	iChildFunc = aChildFunc;
sl@0
   261
	iChildPrio = aChildPrio;
sl@0
   262
	iSize = aSize;
sl@0
   263
	}
sl@0
   264
sl@0
   265
TBMSpawnArgs::~TBMSpawnArgs()
sl@0
   266
	{
sl@0
   267
	iParent.Close();
sl@0
   268
	}
sl@0
   269
sl@0
   270
//
sl@0
   271
// An object of CLocalChild class represents a "child" thread created by its "parent" thread 
sl@0
   272
// in the parent's process through BmProgram::SpawnChild() interface.
sl@0
   273
//
sl@0
   274
// CLocalChild class is typically used (invoked) by the parent's thread. 
sl@0
   275
//
sl@0
   276
class CLocalChild : public CBase, public MBMChild
sl@0
   277
	{
sl@0
   278
private:
sl@0
   279
	BMProgram*		iProg;
sl@0
   280
public:
sl@0
   281
	RThread			iChild;
sl@0
   282
	TRequestStatus	iExitStatus;
sl@0
   283
sl@0
   284
	CLocalChild(BMProgram* aProg)
sl@0
   285
		{
sl@0
   286
		iProg = aProg;
sl@0
   287
		}
sl@0
   288
	
sl@0
   289
	virtual void WaitChildExit();
sl@0
   290
	virtual void Kill();
sl@0
   291
	};
sl@0
   292
sl@0
   293
void CLocalChild::Kill()
sl@0
   294
	{
sl@0
   295
	iChild.Kill(KErrCancel);
sl@0
   296
	}
sl@0
   297
sl@0
   298
void CLocalChild::WaitChildExit()
sl@0
   299
	{
sl@0
   300
	User::WaitForRequest(iExitStatus);
sl@0
   301
	CLOSE_AND_WAIT(iChild);
sl@0
   302
	//
sl@0
   303
	// Lower the parent thread prioirty and then restore the current one 
sl@0
   304
	// to make sure that the kernel-side thread destruction DFC had a chance to complete.
sl@0
   305
	//
sl@0
   306
	TInt prio = BMProgram::SetAbsPriority(RThread(), iProg->iOrigAbsPriority);
sl@0
   307
	BMProgram::SetAbsPriority(RThread(), prio);
sl@0
   308
	delete this;
sl@0
   309
	}
sl@0
   310
sl@0
   311
//
sl@0
   312
// Local (i.e. sharing the parent's process) child's entry point
sl@0
   313
//
sl@0
   314
TInt LocalChildEntry(void* ptr)
sl@0
   315
	{
sl@0
   316
	TBMSpawnArgs* args = (TBMSpawnArgs*) ptr;
sl@0
   317
	args->iChildOrigPriority = BMProgram::SetAbsPriority(RThread(), args->iChildPrio);
sl@0
   318
	return args->iChildFunc(args);
sl@0
   319
	}
sl@0
   320
sl@0
   321
MBMChild* BMProgram::SpawnLocalChild(TBMSpawnArgs* args)
sl@0
   322
	{
sl@0
   323
	CLocalChild* child = new CLocalChild(this);
sl@0
   324
	BM_ERROR(KErrNoMemory, child);
sl@0
   325
	TInt r = child->iChild.Create(KNullDesC, ::LocalChildEntry, 0x2000, NULL, args);
sl@0
   326
	BM_ERROR(r, r == KErrNone);
sl@0
   327
	child->iChild.Logon(child->iExitStatus);
sl@0
   328
	child->iChild.Resume();
sl@0
   329
	return child;
sl@0
   330
	}
sl@0
   331
sl@0
   332
//
sl@0
   333
// An object of CRemoteChild class represents a "child" thread created by its "parent" thread 
sl@0
   334
// as a separate process through BmProgram::SpawnChild() interface.
sl@0
   335
//
sl@0
   336
// CRemoteChild class is typically used (invoked) by the parent's thread. 
sl@0
   337
//
sl@0
   338
class CRemoteChild : public CBase, public MBMChild
sl@0
   339
	{
sl@0
   340
private:
sl@0
   341
	BMProgram*		iProg;
sl@0
   342
public:
sl@0
   343
	RProcess		iChild;
sl@0
   344
	TRequestStatus	iExitStatus;
sl@0
   345
sl@0
   346
	CRemoteChild(BMProgram* aProg)
sl@0
   347
		{
sl@0
   348
		iProg = aProg;
sl@0
   349
		}
sl@0
   350
sl@0
   351
	virtual void WaitChildExit();
sl@0
   352
	virtual void Kill();
sl@0
   353
	};
sl@0
   354
sl@0
   355
void CRemoteChild::Kill()
sl@0
   356
	{
sl@0
   357
	iChild.Kill(KErrCancel);
sl@0
   358
	}
sl@0
   359
sl@0
   360
void CRemoteChild::WaitChildExit()
sl@0
   361
	{
sl@0
   362
	User::WaitForRequest(iExitStatus);
sl@0
   363
	CLOSE_AND_WAIT(iChild);
sl@0
   364
	//
sl@0
   365
	// Lower the parent thread prioirty and then restore the current one 
sl@0
   366
	// to make sure that the kernel-side thread destruction DFC had a chance to complete.
sl@0
   367
	//
sl@0
   368
	TInt prio = BMProgram::SetAbsPriority(RThread(), iProg->iOrigAbsPriority);
sl@0
   369
	BMProgram::SetAbsPriority(RThread(), prio);
sl@0
   370
	delete this;
sl@0
   371
	}
sl@0
   372
sl@0
   373
//
sl@0
   374
// Remote (i.e. running in its own process) child's entry point.
sl@0
   375
// Note that the child's process entry point is still E32Main() process (see below)
sl@0
   376
//
sl@0
   377
TInt ChildMain(TBMSpawnArgs* args)
sl@0
   378
	{
sl@0
   379
	args->iChildOrigPriority = BMProgram::SetAbsPriority(RThread(), args->iChildPrio);
sl@0
   380
		// get a handle to the parent's thread in the child's context.
sl@0
   381
	TInt r = args->iParent.Open(args->iParentId);
sl@0
   382
	BM_ERROR(r, r == KErrNone);
sl@0
   383
	return args->iChildFunc(args);
sl@0
   384
	}
sl@0
   385
sl@0
   386
MBMChild* BMProgram::SpawnRemoteChild(TBMSpawnArgs* args)
sl@0
   387
	{
sl@0
   388
	CRemoteChild* child = new CRemoteChild(this);
sl@0
   389
	BM_ERROR(KErrNoMemory, child);
sl@0
   390
	//
sl@0
   391
	// Create the child process and pass args as a UNICODE command line.
sl@0
   392
	// (we suppose that the args size is multiple of sizeof(TUint16))
sl@0
   393
	//
sl@0
   394
	BM_ASSERT((args->iSize % sizeof(TUint16)) == 0);
sl@0
   395
	TInt r = child->iChild.Create(RProcess().FileName(), TPtrC((TUint16*) args, args->iSize/sizeof(TUint16)));
sl@0
   396
	BM_ERROR(r, (r == KErrNone) );
sl@0
   397
	child->iChild.Logon(child->iExitStatus);
sl@0
   398
	child->iChild.Resume();
sl@0
   399
	return child;
sl@0
   400
	}
sl@0
   401
sl@0
   402
MBMChild* BMProgram::SpawnChild(TBMSpawnArgs* args)
sl@0
   403
	{
sl@0
   404
	MBMChild* child;
sl@0
   405
	if (args->iRemote)
sl@0
   406
		{
sl@0
   407
		child = SpawnRemoteChild(args);
sl@0
   408
		}
sl@0
   409
	else
sl@0
   410
		{
sl@0
   411
		child = SpawnLocalChild(args);
sl@0
   412
		}
sl@0
   413
	return child;
sl@0
   414
	}
sl@0
   415
sl@0
   416
//
sl@0
   417
// The benchmark-suite entry point.
sl@0
   418
//
sl@0
   419
GLDEF_C TInt E32Main()
sl@0
   420
	{
sl@0
   421
	test.Title();
sl@0
   422
sl@0
   423
	TInt r = UserSvr::HalFunction(EHalGroupKernel, EKernelHalNumLogicalCpus, 0, 0);
sl@0
   424
	if (r != 1)
sl@0
   425
		{
sl@0
   426
		test.Printf(_L("%d CPUs detected ... test not run\n"), r);
sl@0
   427
		return r;
sl@0
   428
		}
sl@0
   429
	
sl@0
   430
	AddProperty();
sl@0
   431
	AddThread();
sl@0
   432
	AddIpc();
sl@0
   433
	AddSync();
sl@0
   434
	AddOverhead();
sl@0
   435
	AddrtLatency();
sl@0
   436
sl@0
   437
	r = User::LoadPhysicalDevice(KBMPddFileName);
sl@0
   438
	BM_ERROR(r, (r == KErrNone) || (r == KErrAlreadyExists));
sl@0
   439
sl@0
   440
	r = User::LoadLogicalDevice(KBMLddFileName);
sl@0
   441
	BM_ERROR(r, (r == KErrNone) || (r == KErrAlreadyExists));
sl@0
   442
sl@0
   443
	r = ::bmTimer.Open();
sl@0
   444
	BM_ERROR(r, (r == KErrNone));
sl@0
   445
sl@0
   446
	r = ::bmDriver.Open();
sl@0
   447
	BM_ERROR(r, (r == KErrNone));
sl@0
   448
sl@0
   449
	TBMTimeInterval::Init();
sl@0
   450
sl@0
   451
	TInt seconds = KBMSecondsPerProgram;
sl@0
   452
sl@0
   453
	TInt len = User::CommandLineLength();
sl@0
   454
	if (len)
sl@0
   455
		{
sl@0
   456
		//
sl@0
   457
		// Copy the command line in a buffer
sl@0
   458
		//
sl@0
   459
		TInt size = len * sizeof(TUint16);
sl@0
   460
		HBufC8* hb = HBufC8::NewMax(size);
sl@0
   461
		BM_ERROR(KErrNoMemory, hb);
sl@0
   462
		TPtr cmd((TUint16*) hb->Ptr(), len);
sl@0
   463
		User::CommandLine(cmd);
sl@0
   464
		//
sl@0
   465
		// Check for the TBMSpawnArgs magic number.
sl@0
   466
		//
sl@0
   467
		TBMSpawnArgs* args = (TBMSpawnArgs*) hb->Ptr();	
sl@0
   468
		if (args->iMagic == TBMSpawnArgs::KMagic)
sl@0
   469
			{
sl@0
   470
			//
sl@0
   471
			// This is a child process -  call it's entry point
sl@0
   472
			//
sl@0
   473
			return ::ChildMain(args);
sl@0
   474
			}
sl@0
   475
		else
sl@0
   476
			{
sl@0
   477
			//
sl@0
   478
			// A real command line - the time (in seconds) for each benchmark program.
sl@0
   479
			//
sl@0
   480
			TLex l(cmd);
sl@0
   481
			r = l.Val(seconds);
sl@0
   482
			if (r != KErrNone)
sl@0
   483
				{
sl@0
   484
				test.Printf(_L("Usage: bm_suite <seconds>\n"));
sl@0
   485
				BM_ERROR(r, 0);
sl@0
   486
				}
sl@0
   487
			}
sl@0
   488
		delete hb;
sl@0
   489
		}
sl@0
   490
sl@0
   491
	{
sl@0
   492
	TBMTicks ticks = 1;
sl@0
   493
	TBMNs ns;
sl@0
   494
	::bmTimer.TicksToNs(&ticks, &ns);
sl@0
   495
	test.Printf(_L("High resolution timer tick %dns\n"), TInt(ns));
sl@0
   496
	test.Printf(_L("High resolution timer period %dms\n"), BMNsToMs(TBMTimeInterval::iStampPeriodNs));
sl@0
   497
	}
sl@0
   498
sl@0
   499
	test.Start(_L("Performance Benchmark Suite"));
sl@0
   500
sl@0
   501
	BMProgram* prog = ::bmSuite;
sl@0
   502
	while (prog) {
sl@0
   503
		//
sl@0
   504
		// For each program from the benchmark-suite's list
sl@0
   505
		//
sl@0
   506
sl@0
   507
		//
sl@0
   508
		// Remember the number of open handles. Just for a sanity check ....
sl@0
   509
		//
sl@0
   510
		TInt start_thc, start_phc;
sl@0
   511
		RThread().HandleCount(start_phc, start_thc);
sl@0
   512
sl@0
   513
		test.Printf(_L("%S\n"), &prog->Name());
sl@0
   514
	
sl@0
   515
		//
sl@0
   516
		// A benchmark-suite's thread can run at any of three possible absolute priorities:
sl@0
   517
		//		KBMPriorityLow, KBMPriorityMid and KBMPriorityHigh.
sl@0
   518
		// The main thread starts individual benchmark programs at KBMPriorityMid
sl@0
   519
		//
sl@0
   520
		prog->iOrigAbsPriority = BMProgram::SetAbsPriority(RThread(), KBMPriorityMid);
sl@0
   521
sl@0
   522
		//
sl@0
   523
		// First of all figure out how many iteration would be required to run this program
sl@0
   524
		// for the given number of seconds.
sl@0
   525
		//
sl@0
   526
		TInt count;
sl@0
   527
		TBMNs ns = 0;
sl@0
   528
		TBMUInt64 iter = KBMCalibrationIter;
sl@0
   529
		for (;;) 
sl@0
   530
			{
sl@0
   531
			TBMTimeInterval ti;
sl@0
   532
			ti.Begin();
sl@0
   533
			prog->Run(iter, &count);
sl@0
   534
			ns = ti.EndNs();
sl@0
   535
				// run at least 100ms (otherwise, could be too much impricise ...)
sl@0
   536
			if (ns > BMMsToNs(100)) break;
sl@0
   537
			iter *= 2;
sl@0
   538
			}
sl@0
   539
		test.Printf(_L("%d iterations in %dms\n"), TInt(iter), BMNsToMs(ns));
sl@0
   540
		iter = (BMSecondsToNs(seconds) * iter) / ns;
sl@0
   541
		test.Printf(_L("Go for %d iterations ...\n"), TInt(iter));
sl@0
   542
sl@0
   543
		//
sl@0
   544
		// Now the real run ...
sl@0
   545
		//
sl@0
   546
		TBMResult* results = prog->Run(iter, &count);
sl@0
   547
sl@0
   548
			// Restore the original prioirty
sl@0
   549
		BMProgram::SetAbsPriority(RThread(), prog->iOrigAbsPriority);
sl@0
   550
sl@0
   551
		//
sl@0
   552
		// Now print out the results
sl@0
   553
		//
sl@0
   554
		for (TInt i = 0; i < count; ++i) 
sl@0
   555
			{
sl@0
   556
			if (results[i].iMax)
sl@0
   557
				{
sl@0
   558
				test.Printf(_L("%S. %d iterations; Avr: %dns; Min: %dns; Max: %dns\n"), 
sl@0
   559
							&results[i].iName, TInt(results[i].iIterations),
sl@0
   560
							TInt(results[i].iAverage), TInt(results[i].iMin), TInt(results[i].iMax));
sl@0
   561
sl@0
   562
				TInt j;
sl@0
   563
				BM_ASSERT((TBMResult::KHeadSize % 4) == 0);
sl@0
   564
				test.Printf(_L("Head:"));
sl@0
   565
				for (j = 0; j < TBMResult::KHeadSize; j += 4)
sl@0
   566
					{
sl@0
   567
					test.Printf(_L(" %d %d %d %d "), 
sl@0
   568
								TInt(results[i].iHead[j]), TInt(results[i].iHead[j+1]), 
sl@0
   569
								TInt(results[i].iHead[j+2]), TInt(results[i].iHead[j+3]));
sl@0
   570
					}
sl@0
   571
				test.Printf(_L("\n"));
sl@0
   572
sl@0
   573
				BM_ASSERT((TBMResult::KTailSize % 4) == 0);
sl@0
   574
				test.Printf(_L("Tail:"));
sl@0
   575
				for (j = 0; j < TBMResult::KTailSize; j += 4)
sl@0
   576
					{
sl@0
   577
					test.Printf(_L(" %d %d %d %d "), 
sl@0
   578
								TInt(results[i].iTail[j]), TInt(results[i].iTail[j+1]), 
sl@0
   579
								TInt(results[i].iTail[j+2]), TInt(results[i].iTail[j+3]));
sl@0
   580
					}
sl@0
   581
				test.Printf(_L("\n"));
sl@0
   582
				}
sl@0
   583
			else
sl@0
   584
				{
sl@0
   585
				test.Printf(_L("%S. %d iterations; Avr: %dns\n"), 
sl@0
   586
							&results[i].iName, TInt(results[i].iIterations), TInt(results[i].iAverage));
sl@0
   587
				}
sl@0
   588
sl@0
   589
			}
sl@0
   590
sl@0
   591
		//
sl@0
   592
		// Sanity check for open handles
sl@0
   593
		//
sl@0
   594
		TInt end_thc, end_phc;
sl@0
   595
		RThread().HandleCount(end_phc, end_thc);
sl@0
   596
		BM_ASSERT(start_thc == end_thc);
sl@0
   597
		BM_ASSERT(start_phc == end_phc);
sl@0
   598
			// and also for pending requests ...
sl@0
   599
		BM_ASSERT(RThread().RequestCount() == 0);
sl@0
   600
sl@0
   601
		prog = prog->Next();
sl@0
   602
//
sl@0
   603
//		This can be used to run forever ...
sl@0
   604
//
sl@0
   605
//		if (prog == NULL)
sl@0
   606
//			prog = ::bmSuite;
sl@0
   607
//
sl@0
   608
	}
sl@0
   609
	
sl@0
   610
	test.End();
sl@0
   611
sl@0
   612
	::bmDriver.Close();
sl@0
   613
	::bmTimer.Close();
sl@0
   614
	return 0;
sl@0
   615
	}
sl@0
   616
sl@0
   617
sl@0
   618
void bm_assert_failed(char* aCond, char* aFile, TInt aLine)
sl@0
   619
	{
sl@0
   620
	TPtrC8 fd((TUint8*)aFile);
sl@0
   621
	TPtrC8 cd((TUint8*)aCond);
sl@0
   622
sl@0
   623
	HBufC* fhb = HBufC::NewMax(fd.Length());
sl@0
   624
	test(fhb != 0);
sl@0
   625
	HBufC* chb = HBufC::NewMax(cd.Length());
sl@0
   626
	test(chb != 0);
sl@0
   627
sl@0
   628
	fhb->Des().Copy(fd);
sl@0
   629
	chb->Des().Copy(cd);
sl@0
   630
sl@0
   631
	test.Printf(_L("Assertion %S failed;  File: %S; Line %d;\n"), chb, fhb, aLine);
sl@0
   632
	test(0);
sl@0
   633
	}
sl@0
   634
sl@0
   635
void bm_error_detected(TInt aError, char* aCond, char* aFile, TInt aLine)
sl@0
   636
	{
sl@0
   637
	TPtrC8 fd((TUint8*)aFile);
sl@0
   638
	TPtrC8 cd((TUint8*)aCond);
sl@0
   639
sl@0
   640
	HBufC* fhb = HBufC::NewMax(fd.Length());
sl@0
   641
	test(fhb != 0);
sl@0
   642
	HBufC* chb = HBufC::NewMax(cd.Length());
sl@0
   643
	test(chb != 0);
sl@0
   644
sl@0
   645
	fhb->Des().Copy(fd);
sl@0
   646
	chb->Des().Copy(cd);
sl@0
   647
sl@0
   648
	test.Printf(_L("Error: %d; Cond: %S; File: %S; Line %d;\n"), aError, chb, fhb, aLine);
sl@0
   649
	test(0);
sl@0
   650
	}