os/kernelhwsrv/kernel/eka/include/kernel/kpower.h
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
sl@0
     2
// All rights reserved.
sl@0
     3
// This component and the accompanying materials are made available
sl@0
     4
// under the terms of the License "Eclipse Public License v1.0"
sl@0
     5
// which accompanies this distribution, and is available
sl@0
     6
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
sl@0
     7
//
sl@0
     8
// Initial Contributors:
sl@0
     9
// Nokia Corporation - initial contribution.
sl@0
    10
//
sl@0
    11
// Contributors:
sl@0
    12
//
sl@0
    13
// Description:
sl@0
    14
// e32\include\kernel\kpower.h
sl@0
    15
// Public header for power management
sl@0
    16
// 
sl@0
    17
// WARNING: This file contains some APIs which are internal and are subject
sl@0
    18
//          to change without notice. Such APIs should therefore not be used
sl@0
    19
//          outside the Kernel and Hardware Services package.
sl@0
    20
//
sl@0
    21
sl@0
    22
sl@0
    23
#ifndef __K32POWER_H__
sl@0
    24
#define __K32POWER_H__
sl@0
    25
sl@0
    26
#include <e32power.h>
sl@0
    27
#include <kernel/kernel.h>
sl@0
    28
sl@0
    29
/**
sl@0
    30
@internalTechnology
sl@0
    31
*/
sl@0
    32
#define __PM_ASSERT(aCond) \
sl@0
    33
	__ASSERT_DEBUG( (aCond), \
sl@0
    34
		( \
sl@0
    35
			Kern::Printf("Assertion '" #aCond "' failed;\nFile: '" __FILE__ "' Line: %d\n", __LINE__), \
sl@0
    36
			Kern::Fault("Power Management", 0) \
sl@0
    37
		) )
sl@0
    38
sl@0
    39
/**
sl@0
    40
@internalTechnology
sl@0
    41
*/
sl@0
    42
#define __PM_PANIC(aMsg) \
sl@0
    43
	(\
sl@0
    44
		Kern::Printf("PANIC:'" aMsg "';\nFile: '" __FILE__ "' Line: %d\n", __LINE__), \
sl@0
    45
		Kern::Fault("Power Management", 0) \
sl@0
    46
	)
sl@0
    47
sl@0
    48
sl@0
    49
sl@0
    50
sl@0
    51
/**
sl@0
    52
@publishedPartner
sl@0
    53
@released
sl@0
    54
sl@0
    55
Interface and support functions for a power controller implementation.
sl@0
    56
	  
sl@0
    57
A power controller implementation depends on the specific power management
sl@0
    58
hardware and is typically variant-dependent.
sl@0
    59
sl@0
    60
The class defines the interface that any power controller implementation
sl@0
    61
must provide to the generic kernel-side power manager. 
sl@0
    62
It also provides the power controller with an API to the power manager.
sl@0
    63
*/
sl@0
    64
class DPowerController : public DBase
sl@0
    65
	{
sl@0
    66
public:
sl@0
    67
	IMPORT_C DPowerController();
sl@0
    68
	IMPORT_C void Register();
sl@0
    69
	IMPORT_C void WakeupEvent();
sl@0
    70
#ifndef __X86__
sl@0
    71
	IMPORT_C TInt RegisterResourceController(DBase* aController, TInt aClientId);
sl@0
    72
protected:
sl@0
    73
    struct SResourceControllerData
sl@0
    74
		{
sl@0
    75
        DBase* iResourceController;
sl@0
    76
        TInt iClientId;
sl@0
    77
		}iResourceControllerData;
sl@0
    78
#endif
sl@0
    79
public:
sl@0
    80
sl@0
    81
sl@0
    82
	/**
sl@0
    83
	The target power state of the last, possibly still not completed,
sl@0
    84
	kernel transition.
sl@0
    85
	*/
sl@0
    86
	volatile TPowerState	iTargetState;
sl@0
    87
public:
sl@0
    88
sl@0
    89
sl@0
    90
	/**
sl@0
    91
	Puts the CPU into the Idle mode.
sl@0
    92
	*/
sl@0
    93
	virtual void CpuIdle() = 0;
sl@0
    94
sl@0
    95
	
sl@0
    96
	/**
sl@0
    97
	Enables wakeup events.
sl@0
    98
sl@0
    99
	When called, iTargetState is guaranteed NOT to be equal to EPwActive.
sl@0
   100
sl@0
   101
	After this call, and until a DisableWakeupEvents() or PowerDown() call,
sl@0
   102
	the power controller must track and signal wakeup events corresponding
sl@0
   103
	to iTargetState. 
sl@0
   104
	
sl@0
   105
	@see DPowerController::iTargetState
sl@0
   106
	@see TPowerState
sl@0
   107
	*/
sl@0
   108
	virtual void EnableWakeupEvents() = 0;
sl@0
   109
sl@0
   110
	
sl@0
   111
	/**
sl@0
   112
	Disables wakeup events.
sl@0
   113
sl@0
   114
	When called, iTargetState is guaranteed to be equal to EPwActive.
sl@0
   115
sl@0
   116
	After this call, the power controller must stop signalling wakeup events.
sl@0
   117
	
sl@0
   118
    @see DPowerController::iTargetState
sl@0
   119
   	@see TPowerState
sl@0
   120
	*/
sl@0
   121
	virtual void DisableWakeupEvents() = 0;
sl@0
   122
	
sl@0
   123
	
sl@0
   124
	/**
sl@0
   125
	Notifies an absolute timer expiration.
sl@0
   126
sl@0
   127
	The	power controller implementation must call WakeupEvent() if absolute
sl@0
   128
	timer expiration is currently tracking wakeup events.
sl@0
   129
	*/
sl@0
   130
	virtual void AbsoluteTimerExpired() = 0;
sl@0
   131
	
sl@0
   132
	
sl@0
   133
	/**
sl@0
   134
	Puts the CPU into the low power state.
sl@0
   135
sl@0
   136
	When called, iTargetState is guaranteed NOT to be equal to EPwActive.
sl@0
   137
sl@0
   138
	If iTargetState is EPwStandby, the power controller will put
sl@0
   139
	the hardware into standby.
sl@0
   140
sl@0
   141
	If at least one wakeup event has been detected since the last
sl@0
   142
	call to EnableWakeupEvents(), then PowerDown() returns immediately;
sl@0
   143
	otherwise, PowerDown() returns when a wakeup event occurs.
sl@0
   144
sl@0
   145
	When PowerDown() returns, wakeup events must be considered as disabled.
sl@0
   146
sl@0
   147
	If iTargetState is EPwOff, then PowerDown() must never return.
sl@0
   148
	Typically, it turns the platform off, but may perform any other
sl@0
   149
	platform-specific action such as system reboot.
sl@0
   150
sl@0
   151
	@param	aWakeupTime If not zero, specifies the system time when
sl@0
   152
	                    the system will wakeup.
sl@0
   153
	                    
sl@0
   154
	@see DPowerController::iTargetState
sl@0
   155
    @see TPowerState
sl@0
   156
	*/
sl@0
   157
	virtual void PowerDown(TTimeK aWakeupTime) = 0;
sl@0
   158
	};
sl@0
   159
sl@0
   160
#ifndef __X86__
sl@0
   161
/**
sl@0
   162
@internalTechnology
sl@0
   163
@prototype 9.5
sl@0
   164
*/
sl@0
   165
class TPowerController
sl@0
   166
	{
sl@0
   167
public:
sl@0
   168
	IMPORT_C static DPowerController* PowerController();
sl@0
   169
public:
sl@0
   170
	static DPowerController* ThePowerController;
sl@0
   171
	};
sl@0
   172
#endif
sl@0
   173
sl@0
   174
/**
sl@0
   175
@internalTechnology
sl@0
   176
*/
sl@0
   177
class DBatteryMonitor
sl@0
   178
	{
sl@0
   179
public:
sl@0
   180
	IMPORT_C DBatteryMonitor();
sl@0
   181
	IMPORT_C void Register();
sl@0
   182
public:
sl@0
   183
	virtual TSupplyStatus MachinePowerStatus() = 0;
sl@0
   184
	virtual void SystemTimeChanged(TInt anOldTime, TInt aNewTime) = 0;
sl@0
   185
	};
sl@0
   186
sl@0
   187
/**
sl@0
   188
@internalTechnology
sl@0
   189
*/
sl@0
   190
class DPowerHal : public DBase
sl@0
   191
	{
sl@0
   192
public:
sl@0
   193
	IMPORT_C DPowerHal();
sl@0
   194
	IMPORT_C void Register();
sl@0
   195
public:
sl@0
   196
	virtual TInt PowerHalFunction(TInt aFunction, TAny* a1, TAny* a2) = 0;
sl@0
   197
	};
sl@0
   198
sl@0
   199
sl@0
   200
/**
sl@0
   201
@publishedPartner
sl@0
   202
@released
sl@0
   203
sl@0
   204
Interface and support functions for a device driver's power-handler.
sl@0
   205
	  
sl@0
   206
There is typically one power handler object per peripheral. The object
sl@0
   207
is typically implemented by	the peripheral's device driver.
sl@0
   208
sl@0
   209
The class defines the interface that the driver must provide to
sl@0
   210
the generic kernel-side power manager.
sl@0
   211
		
sl@0
   212
It also provides the driver with an API to the kernel-side power manager.
sl@0
   213
*/
sl@0
   214
class DPowerHandler : public DBase
sl@0
   215
	{
sl@0
   216
public: // from DBase
sl@0
   217
	IMPORT_C ~DPowerHandler();
sl@0
   218
public:
sl@0
   219
	IMPORT_C DPowerHandler(const TDesC& aName);
sl@0
   220
	IMPORT_C void Add();
sl@0
   221
	IMPORT_C void Remove();
sl@0
   222
	IMPORT_C void PowerUpDone();
sl@0
   223
	IMPORT_C void PowerDownDone();
sl@0
   224
	/**	@deprecated, no replacement	*/
sl@0
   225
	IMPORT_C void SetCurrentConsumption(TInt aCurrent);
sl@0
   226
	/**	@deprecated, no replacement	*/
sl@0
   227
	IMPORT_C void DeltaCurrentConsumption(TInt aCurrent);
sl@0
   228
public: 
sl@0
   229
	/**
sl@0
   230
	Requests peripheral power down.
sl@0
   231
sl@0
   232
	The power manager calls PowerDown() during a transition to standby
sl@0
   233
	or power off.
sl@0
   234
	
sl@0
   235
	The driver must signal the completion of peripheral power down to
sl@0
   236
	the power manager by calling PowerDownDone().
sl@0
   237
	Note that PowerDownDone() can be called from the path of PowerDown(),
sl@0
   238
	as well as asynchronously by another thread before or
sl@0
   239
	after PowerDown() returns.
sl@0
   240
sl@0
   241
    Note that the implementation of Add() & Remove() acquires
sl@0
   242
    an internal lock (a DMutex), which is also held when the power manager
sl@0
   243
    calls PowerDown(). This means that the device driver cannot hold a lock
sl@0
   244
    over Add() & Remove() calls if the same lock is acquired
sl@0
   245
    by PowerDown() implementations.
sl@0
   246
sl@0
   247
    You can find an example of synchronization between outgoing Add() & Remove()
sl@0
   248
    and incoming PowerDown() in e32/drivers/ecomm/d_comm.cpp.
sl@0
   249
sl@0
   250
	@param aState the target power state; can be EPwStandby or EPwOff only
sl@0
   251
	*/
sl@0
   252
	virtual void PowerDown(TPowerState aState) = 0;
sl@0
   253
sl@0
   254
	/**
sl@0
   255
	Notifies the peripheral of system power up.
sl@0
   256
sl@0
   257
	The power manager calls PowerUp() during a transition from standby.
sl@0
   258
	
sl@0
   259
	It is up to the device driver's policy whether to power up the periphiral or not.
sl@0
   260
	The driver must signal the completion of the operation to the power manager by calling PowerUpDone().
sl@0
   261
	Note that PowerUpDone() can be called from the path of PowerUp(), as well as asynchronously by another
sl@0
   262
	thread before or after PowerUp() returns.
sl@0
   263
sl@0
   264
    Note that the implementation of Add() & Remove() acquires
sl@0
   265
    an internal lock (a DMutex), which is also held when the power manager
sl@0
   266
    calls PowerUp(). This means that the device driver cannot hold a lock
sl@0
   267
    over Add() & Remove() calls if the same lock is acquired
sl@0
   268
    by PowerUp() implementations.
sl@0
   269
sl@0
   270
    You can find an example of synchronization between outgoing Add() & Remove()
sl@0
   271
    and incoming PowerUp() in e32/drivers/ecomm/d_comm.cpp.
sl@0
   272
	*/
sl@0
   273
	virtual void PowerUp() = 0;
sl@0
   274
sl@0
   275
private:
sl@0
   276
	friend class DPowerManager;
sl@0
   277
	
sl@0
   278
	typedef TUint8 TStatus;
sl@0
   279
	enum { EDone = 0x01 };
sl@0
   280
sl@0
   281
	void Wait();
sl@0
   282
	void Done();
sl@0
   283
sl@0
   284
	const TDesC&	iName;
sl@0
   285
	DPowerHandler*	iNext;
sl@0
   286
	DPowerHandler*	iPrev;
sl@0
   287
	NFastSemaphore*	iSem;
sl@0
   288
	TStatus			iStatus;
sl@0
   289
	TUint8			i_DPowerHandler_Spare[3];
sl@0
   290
	TInt			iCurrent;
sl@0
   291
	};
sl@0
   292
sl@0
   293
sl@0
   294
sl@0
   295
sl@0
   296
/**
sl@0
   297
@publishedPartner
sl@0
   298
@released
sl@0
   299
sl@0
   300
The recommended interface for objects that represent shared power sources.
sl@0
   301
	
sl@0
   302
The objects representing shared power sources are typically implemented by
sl@0
   303
the variant and used by device drivers.
sl@0
   304
sl@0
   305
We recommend that these objects implement the MPowerInput interface.
sl@0
   306
*/
sl@0
   307
class MPowerInput
sl@0
   308
	{
sl@0
   309
public:
sl@0
   310
sl@0
   311
sl@0
   312
	/**
sl@0
   313
	Signals that the power source is in use.
sl@0
   314
sl@0
   315
	Typically, a driver calls this function when it needs the source
sl@0
   316
	to be powered on.
sl@0
   317
		
sl@0
   318
	A typical implementation associates a counter with the object.
sl@0
   319
	The initial counter's value is 0. Use() increments the counter and, if
sl@0
   320
	the counter's value changes from 0 to 1, powers on the source.    
sl@0
   321
	*/
sl@0
   322
	virtual void Use() = 0;
sl@0
   323
	
sl@0
   324
	
sl@0
   325
	/**
sl@0
   326
	Signals that the power source is not in use.
sl@0
   327
sl@0
   328
	Typically, a driver calls this function when it no longer needs
sl@0
   329
	the source to be powered on.
sl@0
   330
sl@0
   331
	A typical implementation associates a counter with the object.
sl@0
   332
	The initial counter's value is 0. While the implementation of
sl@0
   333
	Use() would increment the counter, Release() would decrement it.
sl@0
   334
	If the counter's value changes from 1 to 0, Release() powers off
sl@0
   335
	the source.
sl@0
   336
	*/
sl@0
   337
	virtual void Release() = 0;
sl@0
   338
	};
sl@0
   339
sl@0
   340
//
sl@0
   341
// Kernel private
sl@0
   342
//
sl@0
   343
sl@0
   344
/**
sl@0
   345
@internalAll
sl@0
   346
*/
sl@0
   347
class DPowerModel : public DBase
sl@0
   348
	{
sl@0
   349
public:
sl@0
   350
	virtual void AbsoluteTimerExpired() = 0;
sl@0
   351
	virtual void RegisterUserActivity(const TRawEvent& anEvent) = 0;
sl@0
   352
public:
sl@0
   353
	virtual void CpuIdle() = 0;
sl@0
   354
public:
sl@0
   355
	virtual void SystemTimeChanged(TInt anOldTime, TInt aNewTime) = 0;
sl@0
   356
	virtual TSupplyStatus MachinePowerStatus() = 0;
sl@0
   357
public:
sl@0
   358
	virtual TInt PowerHalFunction(TInt aFunction, TAny* a1, TAny* a2) = 0;
sl@0
   359
	};
sl@0
   360
sl@0
   361
TInt PowerModelInit();
sl@0
   362
sl@0
   363
#endif
sl@0
   364