sl@0
|
1 |
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
// e32\euser\us_encode.cpp
|
sl@0
|
15 |
//
|
sl@0
|
16 |
//
|
sl@0
|
17 |
|
sl@0
|
18 |
#include "e32huffman.h"
|
sl@0
|
19 |
#include <e32base.h>
|
sl@0
|
20 |
#include <e32base_private.h>
|
sl@0
|
21 |
#include <e32panic.h>
|
sl@0
|
22 |
|
sl@0
|
23 |
_LIT(KCat,"Huffman");
|
sl@0
|
24 |
// local definitions used for Huffman code generation
|
sl@0
|
25 |
typedef TUint16 THuff; /** @internal */
|
sl@0
|
26 |
const THuff KLeaf=0x8000; /** @internal */
|
sl@0
|
27 |
struct TNode
|
sl@0
|
28 |
/** @internal */
|
sl@0
|
29 |
{
|
sl@0
|
30 |
TUint iCount;
|
sl@0
|
31 |
THuff iLeft;
|
sl@0
|
32 |
THuff iRight;
|
sl@0
|
33 |
};
|
sl@0
|
34 |
|
sl@0
|
35 |
/** recursive function to calculate the code lengths from the node tree
|
sl@0
|
36 |
|
sl@0
|
37 |
@internalComponent
|
sl@0
|
38 |
*/
|
sl@0
|
39 |
void HuffmanLengthsL(TUint32* aLengths,const TNode* aNodes,TInt aNode,TInt aLen)
|
sl@0
|
40 |
{
|
sl@0
|
41 |
if (++aLen>Huffman::KMaxCodeLength)
|
sl@0
|
42 |
User::Leave(KErrOverflow);
|
sl@0
|
43 |
|
sl@0
|
44 |
const TNode& node=aNodes[aNode];
|
sl@0
|
45 |
TUint x=node.iLeft;
|
sl@0
|
46 |
if (x&KLeaf)
|
sl@0
|
47 |
aLengths[x&~KLeaf]=aLen;
|
sl@0
|
48 |
else
|
sl@0
|
49 |
HuffmanLengthsL(aLengths,aNodes,x,aLen);
|
sl@0
|
50 |
x=node.iRight;
|
sl@0
|
51 |
if (x&KLeaf)
|
sl@0
|
52 |
aLengths[x&~KLeaf]=aLen;
|
sl@0
|
53 |
else
|
sl@0
|
54 |
HuffmanLengthsL(aLengths,aNodes,x,aLen);
|
sl@0
|
55 |
}
|
sl@0
|
56 |
|
sl@0
|
57 |
/** Insert the {aCount,aValue} pair into the already sorted array of nodes
|
sl@0
|
58 |
|
sl@0
|
59 |
@internalComponent
|
sl@0
|
60 |
*/
|
sl@0
|
61 |
void InsertInOrder(TNode* aNodes, TInt aSize, TUint aCount, TInt aVal)
|
sl@0
|
62 |
{
|
sl@0
|
63 |
// Uses Insertion sort following a binary search...
|
sl@0
|
64 |
TInt l=0, r=aSize;
|
sl@0
|
65 |
while (l < r)
|
sl@0
|
66 |
{
|
sl@0
|
67 |
TInt m = (l+r) >> 1;
|
sl@0
|
68 |
if (aNodes[m].iCount<aCount)
|
sl@0
|
69 |
r=m;
|
sl@0
|
70 |
else
|
sl@0
|
71 |
l=m+1;
|
sl@0
|
72 |
}
|
sl@0
|
73 |
Mem::Copy(aNodes+l+1,aNodes+l,sizeof(TNode)*(aSize-l));
|
sl@0
|
74 |
aNodes[l].iCount=aCount;
|
sl@0
|
75 |
aNodes[l].iRight=TUint16(aVal);
|
sl@0
|
76 |
}
|
sl@0
|
77 |
|
sl@0
|
78 |
/** Generate a Huffman code
|
sl@0
|
79 |
|
sl@0
|
80 |
This generates a Huffman code for a given set of code frequencies. The output
|
sl@0
|
81 |
is a table of code lengths which can be used to build canonincal encoding tables
|
sl@0
|
82 |
or decoding trees for use with the TBitInput and TBitOutput classes.
|
sl@0
|
83 |
|
sl@0
|
84 |
Entries in the table with a frequency of zero will have a zero code length
|
sl@0
|
85 |
and thus no associated huffman encoding. If each such symbol should have a
|
sl@0
|
86 |
maximum length encoding, they must be given at least a frequency of 1.
|
sl@0
|
87 |
|
sl@0
|
88 |
For an alphabet of n symbols, this algorithm has a transient memory overhead
|
sl@0
|
89 |
of 8n, and a time complexity of O(n*log(n)).
|
sl@0
|
90 |
|
sl@0
|
91 |
@param aFrequency The table of code frequencies
|
sl@0
|
92 |
@param aNumCodes The number of codes in the table
|
sl@0
|
93 |
@param aHuffman The table for the output code-length table. This must be
|
sl@0
|
94 |
the same size as the frequency table, and can safely be the same table
|
sl@0
|
95 |
|
sl@0
|
96 |
@leave KErrNoMemory If memory used for code generation cannot be allocated
|
sl@0
|
97 |
|
sl@0
|
98 |
@panic "USER ???" If the number of codes exceeds Huffman::KMaxCodes
|
sl@0
|
99 |
*/
|
sl@0
|
100 |
EXPORT_C void Huffman::HuffmanL(const TUint32 aFrequency[],TInt aNumCodes,TUint32 aHuffman[])
|
sl@0
|
101 |
{
|
sl@0
|
102 |
__ASSERT_ALWAYS(TUint(aNumCodes)<=TUint(KMaxCodes),User::Panic(KCat,EHuffmanTooManyCodes));
|
sl@0
|
103 |
|
sl@0
|
104 |
// Sort the values into decreasing order of frequency
|
sl@0
|
105 |
//
|
sl@0
|
106 |
TNode* nodes = new(ELeave) TNode[aNumCodes];
|
sl@0
|
107 |
CleanupArrayDeletePushL(nodes);
|
sl@0
|
108 |
TInt lCount=0;
|
sl@0
|
109 |
|
sl@0
|
110 |
for (TInt ii=0;ii<aNumCodes;++ii)
|
sl@0
|
111 |
{
|
sl@0
|
112 |
TInt c=aFrequency[ii];
|
sl@0
|
113 |
if (c!=0)
|
sl@0
|
114 |
InsertInOrder(nodes,lCount++,c,ii|KLeaf);
|
sl@0
|
115 |
}
|
sl@0
|
116 |
|
sl@0
|
117 |
// default code length is zero
|
sl@0
|
118 |
Mem::FillZ(aHuffman,aNumCodes*sizeof(TUint32));
|
sl@0
|
119 |
|
sl@0
|
120 |
if (lCount==0)
|
sl@0
|
121 |
{
|
sl@0
|
122 |
// no codes with frequency>0. No code has a length
|
sl@0
|
123 |
}
|
sl@0
|
124 |
else if (lCount==1)
|
sl@0
|
125 |
{
|
sl@0
|
126 |
// special case for a single value (always encode as "0")
|
sl@0
|
127 |
aHuffman[nodes[0].iRight&~KLeaf]=1;
|
sl@0
|
128 |
}
|
sl@0
|
129 |
else
|
sl@0
|
130 |
{
|
sl@0
|
131 |
// Huffman algorithm: pair off least frequent nodes and reorder
|
sl@0
|
132 |
//
|
sl@0
|
133 |
do
|
sl@0
|
134 |
{
|
sl@0
|
135 |
--lCount;
|
sl@0
|
136 |
TUint c=nodes[lCount].iCount + nodes[lCount-1].iCount;
|
sl@0
|
137 |
nodes[lCount].iLeft=nodes[lCount-1].iRight;
|
sl@0
|
138 |
// re-order the leaves now to reflect new combined frequency 'c'
|
sl@0
|
139 |
InsertInOrder(nodes,lCount-1,c,lCount);
|
sl@0
|
140 |
} while (lCount>1);
|
sl@0
|
141 |
// generate code lengths in aHuffman[]
|
sl@0
|
142 |
HuffmanLengthsL(aHuffman,nodes,1,0);
|
sl@0
|
143 |
}
|
sl@0
|
144 |
CleanupStack::PopAndDestroy(nodes);
|
sl@0
|
145 |
|
sl@0
|
146 |
__ASSERT_DEBUG(IsValid(aHuffman,aNumCodes),User::Panic(KCat,EHuffmanInvalidCoding));
|
sl@0
|
147 |
}
|
sl@0
|
148 |
|
sl@0
|
149 |
/** Validate a Huffman encoding
|
sl@0
|
150 |
|
sl@0
|
151 |
This verifies that a Huffman coding described by the code lengths is valid.
|
sl@0
|
152 |
In particular, it ensures that no code exceeds the maximum length and
|
sl@0
|
153 |
that it is possible to generate a canonical coding for the specified lengths.
|
sl@0
|
154 |
|
sl@0
|
155 |
@param aHuffman The table of code lengths as generated by Huffman::HuffmanL()
|
sl@0
|
156 |
@param aNumCodes The number of codes in the table
|
sl@0
|
157 |
|
sl@0
|
158 |
@return True if the code is valid, otherwise false
|
sl@0
|
159 |
*/
|
sl@0
|
160 |
EXPORT_C TBool Huffman::IsValid(const TUint32 aHuffman[],TInt aNumCodes)
|
sl@0
|
161 |
{
|
sl@0
|
162 |
// The code is valid if one of the following holds:
|
sl@0
|
163 |
// (a) the code exactly fills the 'code space'
|
sl@0
|
164 |
// (b) there is only a single symbol with code length 1
|
sl@0
|
165 |
// (c) there are no encoded symbols
|
sl@0
|
166 |
//
|
sl@0
|
167 |
TUint remain=1<<KMaxCodeLength;
|
sl@0
|
168 |
TInt totlen=0;
|
sl@0
|
169 |
for (const TUint32* p=aHuffman+aNumCodes; p>aHuffman;)
|
sl@0
|
170 |
{
|
sl@0
|
171 |
TInt len=*--p;
|
sl@0
|
172 |
if (len>0)
|
sl@0
|
173 |
{
|
sl@0
|
174 |
totlen+=len;
|
sl@0
|
175 |
if (len>KMaxCodeLength)
|
sl@0
|
176 |
return EFalse;
|
sl@0
|
177 |
TUint c=1<<(KMaxCodeLength-len);
|
sl@0
|
178 |
if (c>remain)
|
sl@0
|
179 |
return EFalse;
|
sl@0
|
180 |
remain-=c;
|
sl@0
|
181 |
}
|
sl@0
|
182 |
}
|
sl@0
|
183 |
|
sl@0
|
184 |
return remain==0 || totlen<=1;
|
sl@0
|
185 |
}
|
sl@0
|
186 |
|
sl@0
|
187 |
/** Create a canonical Huffman encoding table
|
sl@0
|
188 |
|
sl@0
|
189 |
This generates the huffman codes used by TBitOutput::HuffmanL() to write huffman
|
sl@0
|
190 |
encoded data. The input is table of code lengths, as generated by Huffman::HuffmanL()
|
sl@0
|
191 |
and must represent a valid huffman code.
|
sl@0
|
192 |
|
sl@0
|
193 |
@param aHuffman The table of code lengths as generated by Huffman::HuffmanL()
|
sl@0
|
194 |
@param aNumCodes The number of codes in the table
|
sl@0
|
195 |
@param aEncodeTable The table for the output huffman codes. This must be
|
sl@0
|
196 |
the same size as the code-length table, and can safely be the same table
|
sl@0
|
197 |
|
sl@0
|
198 |
@panic "USER ???" If the provided code is not a valid Huffman coding
|
sl@0
|
199 |
|
sl@0
|
200 |
@see IsValid()
|
sl@0
|
201 |
@see HuffmanL()
|
sl@0
|
202 |
*/
|
sl@0
|
203 |
EXPORT_C void Huffman::Encoding(const TUint32 aHuffman[],TInt aNumCodes,TUint32 aEncodeTable[])
|
sl@0
|
204 |
{
|
sl@0
|
205 |
__ASSERT_ALWAYS(IsValid(aHuffman,aNumCodes),User::Panic(KCat,EHuffmanInvalidCoding));
|
sl@0
|
206 |
|
sl@0
|
207 |
TFixedArray<TInt,KMaxCodeLength> lenCount;
|
sl@0
|
208 |
lenCount.Reset();
|
sl@0
|
209 |
|
sl@0
|
210 |
TInt ii;
|
sl@0
|
211 |
for (ii=0;ii<aNumCodes;++ii)
|
sl@0
|
212 |
{
|
sl@0
|
213 |
TInt len=aHuffman[ii]-1;
|
sl@0
|
214 |
if (len>=0)
|
sl@0
|
215 |
++lenCount[len];
|
sl@0
|
216 |
}
|
sl@0
|
217 |
|
sl@0
|
218 |
TFixedArray<TUint,KMaxCodeLength> nextCode;
|
sl@0
|
219 |
TUint code=0;
|
sl@0
|
220 |
for (ii=0;ii<KMaxCodeLength;++ii)
|
sl@0
|
221 |
{
|
sl@0
|
222 |
code<<=1;
|
sl@0
|
223 |
nextCode[ii]=code;
|
sl@0
|
224 |
code+=lenCount[ii];
|
sl@0
|
225 |
}
|
sl@0
|
226 |
|
sl@0
|
227 |
for (ii=0;ii<aNumCodes;++ii)
|
sl@0
|
228 |
{
|
sl@0
|
229 |
TInt len=aHuffman[ii];
|
sl@0
|
230 |
if (len==0)
|
sl@0
|
231 |
aEncodeTable[ii]=0;
|
sl@0
|
232 |
else
|
sl@0
|
233 |
{
|
sl@0
|
234 |
aEncodeTable[ii] = (nextCode[len-1]<<(KMaxCodeLength-len))|(len<<KMaxCodeLength);
|
sl@0
|
235 |
++nextCode[len-1];
|
sl@0
|
236 |
}
|
sl@0
|
237 |
}
|
sl@0
|
238 |
}
|
sl@0
|
239 |
|
sl@0
|
240 |
/** the encoding table for the externalised code
|
sl@0
|
241 |
@internalComponent
|
sl@0
|
242 |
*/
|
sl@0
|
243 |
const TUint32 HuffmanEncoding[]=
|
sl@0
|
244 |
{
|
sl@0
|
245 |
0x10000000,
|
sl@0
|
246 |
0x1c000000,
|
sl@0
|
247 |
0x12000000,
|
sl@0
|
248 |
0x1d000000,
|
sl@0
|
249 |
0x26000000,
|
sl@0
|
250 |
0x26800000,
|
sl@0
|
251 |
0x2f000000,
|
sl@0
|
252 |
0x37400000,
|
sl@0
|
253 |
0x37600000,
|
sl@0
|
254 |
0x37800000,
|
sl@0
|
255 |
0x3fa00000,
|
sl@0
|
256 |
0x3fb00000,
|
sl@0
|
257 |
0x3fc00000,
|
sl@0
|
258 |
0x3fd00000,
|
sl@0
|
259 |
0x47e00000,
|
sl@0
|
260 |
0x47e80000,
|
sl@0
|
261 |
0x47f00000,
|
sl@0
|
262 |
0x4ff80000,
|
sl@0
|
263 |
0x57fc0000,
|
sl@0
|
264 |
0x5ffe0000,
|
sl@0
|
265 |
0x67ff0000,
|
sl@0
|
266 |
0x77ff8000,
|
sl@0
|
267 |
0x7fffa000,
|
sl@0
|
268 |
0x7fffb000,
|
sl@0
|
269 |
0x7fffc000,
|
sl@0
|
270 |
0x7fffd000,
|
sl@0
|
271 |
0x7fffe000,
|
sl@0
|
272 |
0x87fff000,
|
sl@0
|
273 |
0x87fff800
|
sl@0
|
274 |
};
|
sl@0
|
275 |
|
sl@0
|
276 |
/** encode 0a as '0' and 0b as '1', return number of symbols created
|
sl@0
|
277 |
|
sl@0
|
278 |
@internalComponent
|
sl@0
|
279 |
*/
|
sl@0
|
280 |
void EncodeRunLengthL(TBitOutput& aOutput, TInt aLength)
|
sl@0
|
281 |
{
|
sl@0
|
282 |
if (aLength>0)
|
sl@0
|
283 |
{
|
sl@0
|
284 |
EncodeRunLengthL(aOutput,(aLength-1)>>1);
|
sl@0
|
285 |
aOutput.HuffmanL(HuffmanEncoding[1-(aLength&1)]);
|
sl@0
|
286 |
}
|
sl@0
|
287 |
}
|
sl@0
|
288 |
|
sl@0
|
289 |
/** Store a canonical huffman encoding in compact form
|
sl@0
|
290 |
|
sl@0
|
291 |
As the encoding is canonical, only the code lengths of each code needs to be saved.
|
sl@0
|
292 |
|
sl@0
|
293 |
Due to the nature of code length tables, these can usually be stored very compactly
|
sl@0
|
294 |
by encoding the encoding itself, hence the use of the bit output stream.
|
sl@0
|
295 |
|
sl@0
|
296 |
@param aOutput The output stream for the encoding
|
sl@0
|
297 |
@param aHuffman The table of code lengths as generated by Huffman::HuffmanL()
|
sl@0
|
298 |
@param aNumCodes The number of huffman codes in the table
|
sl@0
|
299 |
|
sl@0
|
300 |
@leave TBitOutput::HuffmanL()
|
sl@0
|
301 |
*/
|
sl@0
|
302 |
EXPORT_C void Huffman::ExternalizeL(TBitOutput& aOutput,const TUint32 aHuffman[],TInt aNumCodes)
|
sl@0
|
303 |
{
|
sl@0
|
304 |
// We assume that the code length table is generated by the huffman generator,
|
sl@0
|
305 |
// in which case the maxmimum code length is 27 bits.
|
sl@0
|
306 |
//
|
sl@0
|
307 |
// We apply three transformations to the data:
|
sl@0
|
308 |
// 1. the data goes through a move-to-front coder
|
sl@0
|
309 |
// 2. apply a rle-0 coder which replace runs of '0' with streams of '0a' and '0b'
|
sl@0
|
310 |
// 3. encode the result using a predefined (average) huffman coding
|
sl@0
|
311 |
//
|
sl@0
|
312 |
// This can be done in a single pass over the data, avoiding the need for additional
|
sl@0
|
313 |
// memory.
|
sl@0
|
314 |
//
|
sl@0
|
315 |
// initialise the list for the MTF coder
|
sl@0
|
316 |
TFixedArray<TUint8,Huffman::KMetaCodes> list;
|
sl@0
|
317 |
TInt i;
|
sl@0
|
318 |
for (i=0;i<list.Count();++i)
|
sl@0
|
319 |
list[i]=TUint8(i);
|
sl@0
|
320 |
TInt last=0;
|
sl@0
|
321 |
|
sl@0
|
322 |
TInt rl=0;
|
sl@0
|
323 |
const TUint32* p32=aHuffman;
|
sl@0
|
324 |
const TUint32* e32=p32+aNumCodes;
|
sl@0
|
325 |
while (p32<e32)
|
sl@0
|
326 |
{
|
sl@0
|
327 |
TInt c=*p32++;
|
sl@0
|
328 |
if (c==last)
|
sl@0
|
329 |
++rl; // repeat of last symbol
|
sl@0
|
330 |
else
|
sl@0
|
331 |
{
|
sl@0
|
332 |
// encode run-length
|
sl@0
|
333 |
EncodeRunLengthL(aOutput,rl);
|
sl@0
|
334 |
rl=0;
|
sl@0
|
335 |
// find code in MTF list
|
sl@0
|
336 |
TInt j;
|
sl@0
|
337 |
for (j=1;list[j]!=c;++j)
|
sl@0
|
338 |
;
|
sl@0
|
339 |
// store this code
|
sl@0
|
340 |
aOutput.HuffmanL(HuffmanEncoding[j+1]);
|
sl@0
|
341 |
// adjust list for MTF algorithm
|
sl@0
|
342 |
while (--j>0)
|
sl@0
|
343 |
list[j+1]=list[j];
|
sl@0
|
344 |
list[1]=TUint8(last);
|
sl@0
|
345 |
last=c;
|
sl@0
|
346 |
}
|
sl@0
|
347 |
}
|
sl@0
|
348 |
// encod any remaining run-length
|
sl@0
|
349 |
EncodeRunLengthL(aOutput,rl);
|
sl@0
|
350 |
}
|
sl@0
|
351 |
|
sl@0
|
352 |
|
sl@0
|
353 |
/** Construct a bit stream output object
|
sl@0
|
354 |
|
sl@0
|
355 |
Following construction the bit stream is ready for writing bits, but will first call
|
sl@0
|
356 |
OverflowL() as the output buffer is 'full'. A derived class can detect this state as
|
sl@0
|
357 |
Ptr() will return null.
|
sl@0
|
358 |
*/
|
sl@0
|
359 |
EXPORT_C TBitOutput::TBitOutput()
|
sl@0
|
360 |
:iCode(0),iBits(-8),iPtr(0),iEnd(0)
|
sl@0
|
361 |
{}
|
sl@0
|
362 |
|
sl@0
|
363 |
/** Construct a bit stream output object over a buffer
|
sl@0
|
364 |
|
sl@0
|
365 |
Data will be written to the buffer until it is full, at which point OverflowL() will
|
sl@0
|
366 |
be called. This should handle the data and then can Set() again to reset the buffer
|
sl@0
|
367 |
for further output.
|
sl@0
|
368 |
|
sl@0
|
369 |
@param aBuf The buffer for output
|
sl@0
|
370 |
@param aSize The size of the buffer in bytes
|
sl@0
|
371 |
*/
|
sl@0
|
372 |
EXPORT_C TBitOutput::TBitOutput(TUint8* aBuf,TInt aSize)
|
sl@0
|
373 |
:iCode(0),iBits(-8),iPtr(aBuf),iEnd(aBuf+aSize)
|
sl@0
|
374 |
{}
|
sl@0
|
375 |
|
sl@0
|
376 |
/** Write a huffman code
|
sl@0
|
377 |
|
sl@0
|
378 |
This expects a huffman code value as generated by Huffman::Encoding()
|
sl@0
|
379 |
|
sl@0
|
380 |
@param aHuffCode The huffman code write to the stream
|
sl@0
|
381 |
|
sl@0
|
382 |
@leave OverflowL() If the output buffer is full, OverflowL() is called
|
sl@0
|
383 |
*/
|
sl@0
|
384 |
EXPORT_C void TBitOutput::HuffmanL(TUint aHuffCode)
|
sl@0
|
385 |
{
|
sl@0
|
386 |
DoWriteL(aHuffCode<<(32-Huffman::KMaxCodeLength),aHuffCode>>Huffman::KMaxCodeLength);
|
sl@0
|
387 |
}
|
sl@0
|
388 |
|
sl@0
|
389 |
/** Write an arbitrary integer value
|
sl@0
|
390 |
|
sl@0
|
391 |
Write an unsigned integer using the number of bits specified. Only
|
sl@0
|
392 |
the low order bits of the value are written to the output, most
|
sl@0
|
393 |
significant bit first.
|
sl@0
|
394 |
|
sl@0
|
395 |
@param aValue The value to write to the stream
|
sl@0
|
396 |
@param aLength The number of bits to output
|
sl@0
|
397 |
|
sl@0
|
398 |
@leave OverflowL() If the output buffer is full, OverflowL() is called
|
sl@0
|
399 |
*/
|
sl@0
|
400 |
EXPORT_C void TBitOutput::WriteL(TUint aValue,TInt aLength)
|
sl@0
|
401 |
{
|
sl@0
|
402 |
if (aLength)
|
sl@0
|
403 |
DoWriteL(aValue<<=32-aLength,aLength);
|
sl@0
|
404 |
}
|
sl@0
|
405 |
|
sl@0
|
406 |
/** Pad the bitstream to the next byte boundary
|
sl@0
|
407 |
|
sl@0
|
408 |
Terminate the bitstream by padding the last byte with the requested value.
|
sl@0
|
409 |
Following this operation the bitstream can continue to be used, the data will
|
sl@0
|
410 |
start at the next byte.
|
sl@0
|
411 |
|
sl@0
|
412 |
@param aPadding The bit value to pad the final byte with
|
sl@0
|
413 |
|
sl@0
|
414 |
@leave OverflowL() If the output buffer is full, OverflowL() is called
|
sl@0
|
415 |
*/
|
sl@0
|
416 |
EXPORT_C void TBitOutput::PadL(TUint aPadding)
|
sl@0
|
417 |
{
|
sl@0
|
418 |
if (iBits>-8)
|
sl@0
|
419 |
WriteL(aPadding?0xffffffffu:0,-iBits);
|
sl@0
|
420 |
}
|
sl@0
|
421 |
|
sl@0
|
422 |
/** Write the higher order bits to the stream
|
sl@0
|
423 |
|
sl@0
|
424 |
@internalComponent
|
sl@0
|
425 |
*/
|
sl@0
|
426 |
void TBitOutput::DoWriteL(TUint aBits,TInt aSize)
|
sl@0
|
427 |
{
|
sl@0
|
428 |
if (aSize>25)
|
sl@0
|
429 |
{
|
sl@0
|
430 |
// cannot process >25 bits in a single pass
|
sl@0
|
431 |
// so do the top 8 bits first
|
sl@0
|
432 |
ASSERT(aSize<=32);
|
sl@0
|
433 |
DoWriteL(aBits&0xff000000u,8);
|
sl@0
|
434 |
aBits<<=8;
|
sl@0
|
435 |
aSize-=8;
|
sl@0
|
436 |
}
|
sl@0
|
437 |
|
sl@0
|
438 |
TInt bits=iBits;
|
sl@0
|
439 |
TUint code=iCode|(aBits>>(bits+8));
|
sl@0
|
440 |
bits+=aSize;
|
sl@0
|
441 |
if (bits>=0)
|
sl@0
|
442 |
{
|
sl@0
|
443 |
TUint8* p=iPtr;
|
sl@0
|
444 |
do
|
sl@0
|
445 |
{
|
sl@0
|
446 |
if (p==iEnd)
|
sl@0
|
447 |
{
|
sl@0
|
448 |
// run out of buffer space so invoke the overflow handler
|
sl@0
|
449 |
iPtr=p;
|
sl@0
|
450 |
OverflowL();
|
sl@0
|
451 |
p=iPtr;
|
sl@0
|
452 |
ASSERT(p!=iEnd);
|
sl@0
|
453 |
}
|
sl@0
|
454 |
*p++=TUint8(code>>24);
|
sl@0
|
455 |
code<<=8;
|
sl@0
|
456 |
bits-=8;
|
sl@0
|
457 |
} while (bits>=0);
|
sl@0
|
458 |
iPtr=p;
|
sl@0
|
459 |
}
|
sl@0
|
460 |
iCode=code;
|
sl@0
|
461 |
iBits=bits;
|
sl@0
|
462 |
}
|
sl@0
|
463 |
|
sl@0
|
464 |
/** Handle a full output buffer
|
sl@0
|
465 |
|
sl@0
|
466 |
This virtual function is called when the output buffer is full. It should deal
|
sl@0
|
467 |
with the data in the buffer before reseting the buffer using Set(), allowing
|
sl@0
|
468 |
further data to be written.
|
sl@0
|
469 |
|
sl@0
|
470 |
A derived class can replace this to write the data to a file (for example)
|
sl@0
|
471 |
before marking the buffer as empty.
|
sl@0
|
472 |
|
sl@0
|
473 |
@leave KErrOverflow The default implementation leaves
|
sl@0
|
474 |
*/
|
sl@0
|
475 |
void TBitOutput::OverflowL()
|
sl@0
|
476 |
{
|
sl@0
|
477 |
User::Leave(KErrOverflow);
|
sl@0
|
478 |
}
|