sl@0
|
1 |
// Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
|
sl@0
|
2 |
// All rights reserved.
|
sl@0
|
3 |
// This component and the accompanying materials are made available
|
sl@0
|
4 |
// under the terms of the License "Eclipse Public License v1.0"
|
sl@0
|
5 |
// which accompanies this distribution, and is available
|
sl@0
|
6 |
// at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
sl@0
|
7 |
//
|
sl@0
|
8 |
// Initial Contributors:
|
sl@0
|
9 |
// Nokia Corporation - initial contribution.
|
sl@0
|
10 |
//
|
sl@0
|
11 |
// Contributors:
|
sl@0
|
12 |
//
|
sl@0
|
13 |
// Description:
|
sl@0
|
14 |
// e32\euser\us_decode.cpp
|
sl@0
|
15 |
//
|
sl@0
|
16 |
//
|
sl@0
|
17 |
|
sl@0
|
18 |
#include "e32huffman.h"
|
sl@0
|
19 |
#include <e32base.h>
|
sl@0
|
20 |
#include <e32base_private.h>
|
sl@0
|
21 |
#include <e32panic.h>
|
sl@0
|
22 |
#include <cpudefs.h>
|
sl@0
|
23 |
|
sl@0
|
24 |
const TInt KHuffTerminate=0x0001;
|
sl@0
|
25 |
const TUint32 KBranch1=sizeof(TUint32)<<16;
|
sl@0
|
26 |
_LIT(KCat,"Huffman");
|
sl@0
|
27 |
|
sl@0
|
28 |
TUint32* HuffmanSubTree(TUint32* aPtr,const TUint32* aValue,TUint32** aLevel)
|
sl@0
|
29 |
//
|
sl@0
|
30 |
// write the subtree below aPtr and return the head
|
sl@0
|
31 |
//
|
sl@0
|
32 |
{
|
sl@0
|
33 |
TUint32* l=*aLevel++;
|
sl@0
|
34 |
if (l>aValue)
|
sl@0
|
35 |
{
|
sl@0
|
36 |
TUint32* sub0=HuffmanSubTree(aPtr,aValue,aLevel); // 0-tree first
|
sl@0
|
37 |
aPtr=HuffmanSubTree(sub0,aValue-(aPtr-sub0)-1,aLevel); // 1-tree
|
sl@0
|
38 |
TInt branch0=(TUint8*)sub0-(TUint8*)(aPtr-1);
|
sl@0
|
39 |
*--aPtr=KBranch1|branch0;
|
sl@0
|
40 |
}
|
sl@0
|
41 |
else if (l==aValue)
|
sl@0
|
42 |
{
|
sl@0
|
43 |
TUint term0=*aValue--; // 0-term
|
sl@0
|
44 |
aPtr=HuffmanSubTree(aPtr,aValue,aLevel); // 1-tree
|
sl@0
|
45 |
*--aPtr=KBranch1|(term0>>16);
|
sl@0
|
46 |
}
|
sl@0
|
47 |
else // l<iNext
|
sl@0
|
48 |
{
|
sl@0
|
49 |
TUint term0=*aValue--; // 0-term
|
sl@0
|
50 |
TUint term1=*aValue--;
|
sl@0
|
51 |
*--aPtr=(term1>>16<<16)|(term0>>16);
|
sl@0
|
52 |
}
|
sl@0
|
53 |
return aPtr;
|
sl@0
|
54 |
}
|
sl@0
|
55 |
|
sl@0
|
56 |
/** Create a canonical Huffman decoding tree
|
sl@0
|
57 |
|
sl@0
|
58 |
This generates the huffman decoding tree used by TBitInput::HuffmanL() to read huffman
|
sl@0
|
59 |
encoded data. The input is table of code lengths, as generated by Huffman::HuffmanL()
|
sl@0
|
60 |
and must represent a valid huffman code.
|
sl@0
|
61 |
|
sl@0
|
62 |
@param aHuffman The table of code lengths as generated by Huffman::HuffmanL()
|
sl@0
|
63 |
@param aNumCodes The number of codes in the table
|
sl@0
|
64 |
@param aDecodeTree The space for the decoding tree. This must be the same
|
sl@0
|
65 |
size as the code-length table, and can safely be the same memory
|
sl@0
|
66 |
@param aSymbolBase the base value for the output 'symbols' from the decoding tree, by default
|
sl@0
|
67 |
this is zero.
|
sl@0
|
68 |
|
sl@0
|
69 |
@panic "USER ???" If the provided code is not a valid Huffman coding
|
sl@0
|
70 |
|
sl@0
|
71 |
@see IsValid()
|
sl@0
|
72 |
@see HuffmanL()
|
sl@0
|
73 |
*/
|
sl@0
|
74 |
EXPORT_C void Huffman::Decoding(const TUint32 aHuffman[],TInt aNumCodes,TUint32 aDecodeTree[],TInt aSymbolBase)
|
sl@0
|
75 |
{
|
sl@0
|
76 |
__ASSERT_ALWAYS(IsValid(aHuffman,aNumCodes),User::Panic(KCat,EHuffmanInvalidCoding));
|
sl@0
|
77 |
//
|
sl@0
|
78 |
TFixedArray<TInt,KMaxCodeLength> counts;
|
sl@0
|
79 |
counts.Reset();
|
sl@0
|
80 |
TInt codes=0;
|
sl@0
|
81 |
TInt ii;
|
sl@0
|
82 |
for (ii=0;ii<aNumCodes;++ii)
|
sl@0
|
83 |
{
|
sl@0
|
84 |
TInt len=aHuffman[ii];
|
sl@0
|
85 |
aDecodeTree[ii]=len;
|
sl@0
|
86 |
if (--len>=0)
|
sl@0
|
87 |
{
|
sl@0
|
88 |
++counts[len];
|
sl@0
|
89 |
++codes;
|
sl@0
|
90 |
}
|
sl@0
|
91 |
}
|
sl@0
|
92 |
//
|
sl@0
|
93 |
TFixedArray<TUint32*,KMaxCodeLength> level;
|
sl@0
|
94 |
TUint32* lit=aDecodeTree+codes;
|
sl@0
|
95 |
for (ii=0;ii<KMaxCodeLength;++ii)
|
sl@0
|
96 |
{
|
sl@0
|
97 |
level[ii]=lit;
|
sl@0
|
98 |
lit-=counts[ii];
|
sl@0
|
99 |
}
|
sl@0
|
100 |
aSymbolBase=(aSymbolBase<<17)+(KHuffTerminate<<16);
|
sl@0
|
101 |
for (ii=0;ii<aNumCodes;++ii)
|
sl@0
|
102 |
{
|
sl@0
|
103 |
TUint len=TUint8(aDecodeTree[ii]);
|
sl@0
|
104 |
if (len)
|
sl@0
|
105 |
*--level[len-1]|=(ii<<17)+aSymbolBase;
|
sl@0
|
106 |
}
|
sl@0
|
107 |
if (codes==1) // codes==1 special case: incomplete tree
|
sl@0
|
108 |
{
|
sl@0
|
109 |
TUint term=aDecodeTree[0]>>16;
|
sl@0
|
110 |
aDecodeTree[0]=term|(term<<16); // 0- and 1-terminate at root
|
sl@0
|
111 |
}
|
sl@0
|
112 |
else if (codes>1)
|
sl@0
|
113 |
HuffmanSubTree(aDecodeTree+codes-1,aDecodeTree+codes-1,&level[0]);
|
sl@0
|
114 |
}
|
sl@0
|
115 |
|
sl@0
|
116 |
// The decoding tree for the externalised code
|
sl@0
|
117 |
const TUint32 HuffmanDecoding[]=
|
sl@0
|
118 |
{
|
sl@0
|
119 |
0x0004006c,
|
sl@0
|
120 |
0x00040064,
|
sl@0
|
121 |
0x0004005c,
|
sl@0
|
122 |
0x00040050,
|
sl@0
|
123 |
0x00040044,
|
sl@0
|
124 |
0x0004003c,
|
sl@0
|
125 |
0x00040034,
|
sl@0
|
126 |
0x00040021,
|
sl@0
|
127 |
0x00040023,
|
sl@0
|
128 |
0x00040025,
|
sl@0
|
129 |
0x00040027,
|
sl@0
|
130 |
0x00040029,
|
sl@0
|
131 |
0x00040014,
|
sl@0
|
132 |
0x0004000c,
|
sl@0
|
133 |
0x00040035,
|
sl@0
|
134 |
0x00390037,
|
sl@0
|
135 |
0x00330031,
|
sl@0
|
136 |
0x0004002b,
|
sl@0
|
137 |
0x002f002d,
|
sl@0
|
138 |
0x001f001d,
|
sl@0
|
139 |
0x001b0019,
|
sl@0
|
140 |
0x00040013,
|
sl@0
|
141 |
0x00170015,
|
sl@0
|
142 |
0x0004000d,
|
sl@0
|
143 |
0x0011000f,
|
sl@0
|
144 |
0x000b0009,
|
sl@0
|
145 |
0x00070003,
|
sl@0
|
146 |
0x00050001
|
sl@0
|
147 |
};
|
sl@0
|
148 |
|
sl@0
|
149 |
/** Restore a canonical huffman encoding from a bit stream
|
sl@0
|
150 |
|
sl@0
|
151 |
The encoding must have been stored using Huffman::ExternalizeL(). The resulting
|
sl@0
|
152 |
code-length table can be used to create an encoding table using Huffman::Encoding()
|
sl@0
|
153 |
or a decoding tree using Huffman::Decoding().
|
sl@0
|
154 |
|
sl@0
|
155 |
@param aInput The input stream with the encoding
|
sl@0
|
156 |
@param aHuffman The internalized code-length table is placed here
|
sl@0
|
157 |
@param aNumCodes The number of huffman codes in the table
|
sl@0
|
158 |
|
sl@0
|
159 |
@leave TBitInput::HuffmanL()
|
sl@0
|
160 |
|
sl@0
|
161 |
@see ExternalizeL()
|
sl@0
|
162 |
*/
|
sl@0
|
163 |
EXPORT_C void Huffman::InternalizeL(TBitInput& aInput,TUint32 aHuffman[],TInt aNumCodes)
|
sl@0
|
164 |
// See ExternalizeL for a description of the format
|
sl@0
|
165 |
{
|
sl@0
|
166 |
// initialise move-to-front list
|
sl@0
|
167 |
TFixedArray<TUint8,Huffman::KMetaCodes> list;
|
sl@0
|
168 |
for (TInt i=0;i<list.Count();++i)
|
sl@0
|
169 |
list[i]=TUint8(i);
|
sl@0
|
170 |
TInt last=0;
|
sl@0
|
171 |
// extract codes, reverse rle-0 and mtf encoding in one pass
|
sl@0
|
172 |
TUint32* p=aHuffman;
|
sl@0
|
173 |
const TUint32* end=aHuffman+aNumCodes;
|
sl@0
|
174 |
TUint rl=0;
|
sl@0
|
175 |
while (p+rl<end)
|
sl@0
|
176 |
{
|
sl@0
|
177 |
TInt c=aInput.HuffmanL(HuffmanDecoding);
|
sl@0
|
178 |
// c is now 0..28
|
sl@0
|
179 |
if (c<2)
|
sl@0
|
180 |
{
|
sl@0
|
181 |
// one of the zero codes used by RLE-0
|
sl@0
|
182 |
// update he run-length
|
sl@0
|
183 |
rl+=rl+c+1;
|
sl@0
|
184 |
}
|
sl@0
|
185 |
else
|
sl@0
|
186 |
{
|
sl@0
|
187 |
if(rl >= TUint(end-p))
|
sl@0
|
188 |
User::Leave(KErrCorrupt);
|
sl@0
|
189 |
while (rl>0)
|
sl@0
|
190 |
{
|
sl@0
|
191 |
*p++=last;
|
sl@0
|
192 |
--rl;
|
sl@0
|
193 |
}
|
sl@0
|
194 |
--c; // c is now 1..27
|
sl@0
|
195 |
list[0]=TUint8(last);
|
sl@0
|
196 |
last=list[c];
|
sl@0
|
197 |
Mem::Copy(&list[1],&list[0],c);
|
sl@0
|
198 |
*p++=last;
|
sl@0
|
199 |
}
|
sl@0
|
200 |
}
|
sl@0
|
201 |
|
sl@0
|
202 |
while (p<end)
|
sl@0
|
203 |
*p++=last;
|
sl@0
|
204 |
|
sl@0
|
205 |
}
|
sl@0
|
206 |
|
sl@0
|
207 |
// bit-stream input class
|
sl@0
|
208 |
|
sl@0
|
209 |
inline TUint reverse(TUint aVal)
|
sl@0
|
210 |
//
|
sl@0
|
211 |
// Reverse the byte-order of a 32 bit value
|
sl@0
|
212 |
// This generates optimal ARM code (4 instructions)
|
sl@0
|
213 |
//
|
sl@0
|
214 |
{
|
sl@0
|
215 |
TUint v=(aVal<<16)|(aVal>>16);
|
sl@0
|
216 |
v^=aVal;
|
sl@0
|
217 |
v&=0xff00ffff;
|
sl@0
|
218 |
aVal=(aVal>>8)|(aVal<<24);
|
sl@0
|
219 |
return aVal^(v>>8);
|
sl@0
|
220 |
}
|
sl@0
|
221 |
|
sl@0
|
222 |
/** Construct a bit stream input object
|
sl@0
|
223 |
|
sl@0
|
224 |
Following construction the bit stream is ready for reading bits, but will
|
sl@0
|
225 |
immediately call UnderflowL() as the input buffer is empty.
|
sl@0
|
226 |
*/
|
sl@0
|
227 |
EXPORT_C TBitInput::TBitInput()
|
sl@0
|
228 |
:iCount(0),iRemain(0)
|
sl@0
|
229 |
{}
|
sl@0
|
230 |
|
sl@0
|
231 |
/** Construct a bit stream input object over a buffer
|
sl@0
|
232 |
|
sl@0
|
233 |
Following construction the bit stream is ready for reading bits from
|
sl@0
|
234 |
the specified buffer.
|
sl@0
|
235 |
|
sl@0
|
236 |
@param aPtr The address of the buffer containing the bit stream
|
sl@0
|
237 |
@param aLength The length of the bitstream in bits
|
sl@0
|
238 |
@param aOffset The bit offset from the start of the buffer to the bit stream (defaults to zero)
|
sl@0
|
239 |
*/
|
sl@0
|
240 |
EXPORT_C TBitInput::TBitInput(const TUint8* aPtr, TInt aLength, TInt aOffset)
|
sl@0
|
241 |
{
|
sl@0
|
242 |
Set(aPtr,aLength,aOffset);
|
sl@0
|
243 |
}
|
sl@0
|
244 |
|
sl@0
|
245 |
/** Set the memory buffer to use for input
|
sl@0
|
246 |
|
sl@0
|
247 |
Bits will be read from this buffer until it is empty, at which point
|
sl@0
|
248 |
UnderflowL() will be called.
|
sl@0
|
249 |
|
sl@0
|
250 |
@param aPtr The address of the buffer containing the bit stream
|
sl@0
|
251 |
@param aLength The length of the bitstream in bits
|
sl@0
|
252 |
@param aOffset The bit offset from the start of the buffer to the bit stream (defaults to zero)
|
sl@0
|
253 |
*/
|
sl@0
|
254 |
EXPORT_C void TBitInput::Set(const TUint8* aPtr, TInt aLength, TInt aOffset)
|
sl@0
|
255 |
{
|
sl@0
|
256 |
TUint p=(TUint)aPtr;
|
sl@0
|
257 |
p+=aOffset>>3; // nearest byte to the specified bit offset
|
sl@0
|
258 |
aOffset&=7; // bit offset within the byte
|
sl@0
|
259 |
const TUint32* ptr=(const TUint32*)(p&~3); // word containing this byte
|
sl@0
|
260 |
aOffset+=(p&3)<<3; // bit offset within the word
|
sl@0
|
261 |
if (aLength==0)
|
sl@0
|
262 |
iCount=0;
|
sl@0
|
263 |
else
|
sl@0
|
264 |
{
|
sl@0
|
265 |
// read the first few bits of the stream
|
sl@0
|
266 |
iBits=reverse(*ptr++)<<aOffset;
|
sl@0
|
267 |
aOffset=32-aOffset;
|
sl@0
|
268 |
aLength-=aOffset;
|
sl@0
|
269 |
if (aLength<0)
|
sl@0
|
270 |
aOffset+=aLength;
|
sl@0
|
271 |
iCount=aOffset;
|
sl@0
|
272 |
}
|
sl@0
|
273 |
iRemain=aLength;
|
sl@0
|
274 |
iPtr=ptr;
|
sl@0
|
275 |
}
|
sl@0
|
276 |
|
sl@0
|
277 |
#ifndef __HUFFMAN_MACHINE_CODED__
|
sl@0
|
278 |
|
sl@0
|
279 |
/** Read a single bit from the input
|
sl@0
|
280 |
|
sl@0
|
281 |
Return the next bit in the input stream. This will call UnderflowL() if
|
sl@0
|
282 |
there are no more bits available.
|
sl@0
|
283 |
|
sl@0
|
284 |
@return The next bit in the stream
|
sl@0
|
285 |
|
sl@0
|
286 |
@leave "UnderflowL()" It the bit stream is exhausted more UnderflowL is called
|
sl@0
|
287 |
to get more data
|
sl@0
|
288 |
*/
|
sl@0
|
289 |
EXPORT_C TUint TBitInput::ReadL()
|
sl@0
|
290 |
{
|
sl@0
|
291 |
TInt c=iCount;
|
sl@0
|
292 |
TUint bits=iBits;
|
sl@0
|
293 |
if (--c<0)
|
sl@0
|
294 |
return ReadL(1);
|
sl@0
|
295 |
iCount=c;
|
sl@0
|
296 |
iBits=bits<<1;
|
sl@0
|
297 |
return bits>>31;
|
sl@0
|
298 |
}
|
sl@0
|
299 |
|
sl@0
|
300 |
/** Read a multi-bit value from the input
|
sl@0
|
301 |
|
sl@0
|
302 |
Return the next few bits as an unsigned integer. The last bit read is
|
sl@0
|
303 |
the least significant bit of the returned value, and the value is
|
sl@0
|
304 |
zero extended to return a 32-bit result.
|
sl@0
|
305 |
|
sl@0
|
306 |
A read of zero bits will always reaturn zero.
|
sl@0
|
307 |
|
sl@0
|
308 |
This will call UnderflowL() if there are not enough bits available.
|
sl@0
|
309 |
|
sl@0
|
310 |
@param aSize The number of bits to read
|
sl@0
|
311 |
|
sl@0
|
312 |
@return The bits read from the stream
|
sl@0
|
313 |
|
sl@0
|
314 |
@leave "UnderflowL()" It the bit stream is exhausted more UnderflowL is called
|
sl@0
|
315 |
to get more data
|
sl@0
|
316 |
*/
|
sl@0
|
317 |
EXPORT_C TUint TBitInput::ReadL(TInt aSize)
|
sl@0
|
318 |
{
|
sl@0
|
319 |
if (!aSize)
|
sl@0
|
320 |
return 0;
|
sl@0
|
321 |
TUint val=0;
|
sl@0
|
322 |
TUint bits=iBits;
|
sl@0
|
323 |
iCount-=aSize;
|
sl@0
|
324 |
while (iCount<0)
|
sl@0
|
325 |
{
|
sl@0
|
326 |
// need more bits
|
sl@0
|
327 |
#ifdef __CPU_X86
|
sl@0
|
328 |
// X86 does not allow shift-by-32
|
sl@0
|
329 |
if (iCount+aSize!=0)
|
sl@0
|
330 |
val|=bits>>(32-(iCount+aSize))<<(-iCount); // scrub low order bits
|
sl@0
|
331 |
#else
|
sl@0
|
332 |
val|=bits>>(32-(iCount+aSize))<<(-iCount); // scrub low order bits
|
sl@0
|
333 |
#endif
|
sl@0
|
334 |
aSize=-iCount; // bits still required
|
sl@0
|
335 |
if (iRemain>0)
|
sl@0
|
336 |
{
|
sl@0
|
337 |
bits=reverse(*iPtr++);
|
sl@0
|
338 |
iCount+=32;
|
sl@0
|
339 |
iRemain-=32;
|
sl@0
|
340 |
if (iRemain<0)
|
sl@0
|
341 |
iCount+=iRemain;
|
sl@0
|
342 |
}
|
sl@0
|
343 |
else
|
sl@0
|
344 |
{
|
sl@0
|
345 |
UnderflowL();
|
sl@0
|
346 |
bits=iBits;
|
sl@0
|
347 |
iCount-=aSize;
|
sl@0
|
348 |
}
|
sl@0
|
349 |
}
|
sl@0
|
350 |
#ifdef __CPU_X86
|
sl@0
|
351 |
// X86 does not allow shift-by-32
|
sl@0
|
352 |
iBits=aSize==32?0:bits<<aSize;
|
sl@0
|
353 |
#else
|
sl@0
|
354 |
iBits=bits<<aSize;
|
sl@0
|
355 |
#endif
|
sl@0
|
356 |
return val|(bits>>(32-aSize));
|
sl@0
|
357 |
}
|
sl@0
|
358 |
|
sl@0
|
359 |
/** Read and decode a Huffman Code
|
sl@0
|
360 |
|
sl@0
|
361 |
Interpret the next bits in the input as a Huffman code in the specified
|
sl@0
|
362 |
decoding. The decoding tree should be the output from Huffman::Decoding().
|
sl@0
|
363 |
|
sl@0
|
364 |
@param aTree The huffman decoding tree
|
sl@0
|
365 |
|
sl@0
|
366 |
@return The symbol that was decoded
|
sl@0
|
367 |
|
sl@0
|
368 |
@leave "UnderflowL()" It the bit stream is exhausted more UnderflowL is called
|
sl@0
|
369 |
to get more data
|
sl@0
|
370 |
*/
|
sl@0
|
371 |
EXPORT_C TUint TBitInput::HuffmanL(const TUint32* aTree)
|
sl@0
|
372 |
{
|
sl@0
|
373 |
TUint huff=0;
|
sl@0
|
374 |
do
|
sl@0
|
375 |
{
|
sl@0
|
376 |
aTree=PtrAdd(aTree,huff>>16);
|
sl@0
|
377 |
huff=*aTree;
|
sl@0
|
378 |
if (ReadL()==0)
|
sl@0
|
379 |
huff<<=16;
|
sl@0
|
380 |
} while ((huff&0x10000u)==0);
|
sl@0
|
381 |
return huff>>17;
|
sl@0
|
382 |
}
|
sl@0
|
383 |
|
sl@0
|
384 |
#endif
|
sl@0
|
385 |
|
sl@0
|
386 |
/** Handle an empty input buffer
|
sl@0
|
387 |
|
sl@0
|
388 |
This virtual function is called when the input buffer is empty and
|
sl@0
|
389 |
more bits are required. It should reset the input buffer with more
|
sl@0
|
390 |
data using Set().
|
sl@0
|
391 |
|
sl@0
|
392 |
A derived class can replace this to read the data from a file
|
sl@0
|
393 |
(for example) before reseting the input buffer.
|
sl@0
|
394 |
|
sl@0
|
395 |
@leave KErrUnderflow The default implementation leaves
|
sl@0
|
396 |
*/
|
sl@0
|
397 |
void TBitInput::UnderflowL()
|
sl@0
|
398 |
{
|
sl@0
|
399 |
User::Leave(KErrUnderflow);
|
sl@0
|
400 |
}
|