os/kernelhwsrv/brdbootldr/ubootldr/inflate.c
author sl@SLION-WIN7.fritz.box
Fri, 15 Jun 2012 03:10:57 +0200
changeset 0 bde4ae8d615e
permissions -rw-r--r--
First public contribution.
sl@0
     1
/* inflate.c -- Not copyrighted 1992 by Mark Adler
sl@0
     2
   version c10p1, 10 January 1993 */
sl@0
     3
sl@0
     4
/* You can do whatever you like with this source file, though I would
sl@0
     5
   prefer that if you modify it and redistribute it that you include
sl@0
     6
   comments to that effect with your name and the date.  Thank you.
sl@0
     7
   [The history has been moved to the file ChangeLog.]
sl@0
     8
 */
sl@0
     9
sl@0
    10
/*
sl@0
    11
   Inflate deflated (PKZIP's method 8 compressed) data.  The compression
sl@0
    12
   method searches for as much of the current string of bytes (up to a
sl@0
    13
   length of 258) in the previous 32K bytes.  If it doesn't find any
sl@0
    14
   matches (of at least length 3), it codes the next byte.  Otherwise, it
sl@0
    15
   codes the length of the matched string and its distance backwards from
sl@0
    16
   the current position.  There is a single Huffman code that codes both
sl@0
    17
   single bytes (called "literals") and match lengths.  A second Huffman
sl@0
    18
   code codes the distance information, which follows a length code.  Each
sl@0
    19
   length or distance code actually represents a base value and a number
sl@0
    20
   of "extra" (sometimes zero) bits to get to add to the base value.  At
sl@0
    21
   the end of each deflated block is a special end-of-block (EOB) literal/
sl@0
    22
   length code.  The decoding process is basically: get a literal/length
sl@0
    23
   code; if EOB then done; if a literal, emit the decoded byte; if a
sl@0
    24
   length then get the distance and emit the referred-to bytes from the
sl@0
    25
   sliding window of previously emitted data.
sl@0
    26
sl@0
    27
   There are (currently) three kinds of inflate blocks: stored, fixed, and
sl@0
    28
   dynamic.  The compressor deals with some chunk of data at a time, and
sl@0
    29
   decides which method to use on a chunk-by-chunk basis.  A chunk might
sl@0
    30
   typically be 32K or 64K.  If the chunk is uncompressible, then the
sl@0
    31
   "stored" method is used.  In this case, the bytes are simply stored as
sl@0
    32
   is, eight bits per byte, with none of the above coding.  The bytes are
sl@0
    33
   preceded by a count, since there is no longer an EOB code.
sl@0
    34
sl@0
    35
   If the data is compressible, then either the fixed or dynamic methods
sl@0
    36
   are used.  In the dynamic method, the compressed data is preceded by
sl@0
    37
   an encoding of the literal/length and distance Huffman codes that are
sl@0
    38
   to be used to decode this block.  The representation is itself Huffman
sl@0
    39
   coded, and so is preceded by a description of that code.  These code
sl@0
    40
   descriptions take up a little space, and so for small blocks, there is
sl@0
    41
   a predefined set of codes, called the fixed codes.  The fixed method is
sl@0
    42
   used if the block codes up smaller that way (usually for quite small
sl@0
    43
   chunks), otherwise the dynamic method is used.  In the latter case, the
sl@0
    44
   codes are customized to the probabilities in the current block, and so
sl@0
    45
   can code it much better than the pre-determined fixed codes.
sl@0
    46
 
sl@0
    47
   The Huffman codes themselves are decoded using a mutli-level table
sl@0
    48
   lookup, in order to maximize the speed of decoding plus the speed of
sl@0
    49
   building the decoding tables.  See the comments below that precede the
sl@0
    50
   lbits and dbits tuning parameters.
sl@0
    51
 */
sl@0
    52
sl@0
    53
sl@0
    54
/*
sl@0
    55
   Notes beyond the 1.93a appnote.txt:
sl@0
    56
sl@0
    57
   1. Distance pointers never point before the beginning of the output
sl@0
    58
      stream.
sl@0
    59
   2. Distance pointers can point back across blocks, up to 32k away.
sl@0
    60
   3. There is an implied maximum of 7 bits for the bit length table and
sl@0
    61
      15 bits for the actual data.
sl@0
    62
   4. If only one code exists, then it is encoded using one bit.  (Zero
sl@0
    63
      would be more efficient, but perhaps a little confusing.)  If two
sl@0
    64
      codes exist, they are coded using one bit each (0 and 1).
sl@0
    65
   5. There is no way of sending zero distance codes--a dummy must be
sl@0
    66
      sent if there are none.  (History: a pre 2.0 version of PKZIP would
sl@0
    67
      store blocks with no distance codes, but this was discovered to be
sl@0
    68
      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
sl@0
    69
      zero distance codes, which is sent as one code of zero bits in
sl@0
    70
      length.
sl@0
    71
   6. There are up to 286 literal/length codes.  Code 256 represents the
sl@0
    72
      end-of-block.  Note however that the static length tree defines
sl@0
    73
      288 codes just to fill out the Huffman codes.  Codes 286 and 287
sl@0
    74
      cannot be used though, since there is no length base or extra bits
sl@0
    75
      defined for them.  Similarly, there are up to 30 distance codes.
sl@0
    76
      However, static trees define 32 codes (all 5 bits) to fill out the
sl@0
    77
      Huffman codes, but the last two had better not show up in the data.
sl@0
    78
   7. Unzip can check dynamic Huffman blocks for complete code sets.
sl@0
    79
      The exception is that a single code would not be complete (see #4).
sl@0
    80
   8. The five bits following the block type is really the number of
sl@0
    81
      literal codes sent minus 257.
sl@0
    82
   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
sl@0
    83
      (1+6+6).  Therefore, to output three times the length, you output
sl@0
    84
      three codes (1+1+1), whereas to output four times the same length,
sl@0
    85
      you only need two codes (1+3).  Hmm.
sl@0
    86
  10. In the tree reconstruction algorithm, Code = Code + Increment
sl@0
    87
      only if BitLength(i) is not zero.  (Pretty obvious.)
sl@0
    88
  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
sl@0
    89
  12. Note: length code 284 can represent 227-258, but length code 285
sl@0
    90
      really is 258.  The last length deserves its own, short code
sl@0
    91
      since it gets used a lot in very redundant files.  The length
sl@0
    92
      258 is special since 258 - 3 (the min match length) is 255.
sl@0
    93
  13. The literal/length and distance code bit lengths are read as a
sl@0
    94
      single stream of lengths.  It is possible (and advantageous) for
sl@0
    95
      a repeat code (16, 17, or 18) to go across the boundary between
sl@0
    96
      the two sets of lengths.
sl@0
    97
 */
sl@0
    98
sl@0
    99
#include "inflate.h"
sl@0
   100
sl@0
   101
extern void* memcpy(void*, const void*, unsigned);
sl@0
   102
extern void* memset(void*, int, unsigned);
sl@0
   103
sl@0
   104
/* Huffman code lookup table entry--this entry is four bytes for machines
sl@0
   105
   that have 16-bit pointers (e.g. PC's in the small or medium model).
sl@0
   106
   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
sl@0
   107
   means that v is a literal, 16 < e < 32 means that v is a pointer to
sl@0
   108
   the next table, which codes e - 16 bits, and lastly e == 99 indicates
sl@0
   109
   an unused code.  If a code with e == 99 is looked up, this implies an
sl@0
   110
   error in the data. */
sl@0
   111
struct huft {
sl@0
   112
  uch e;                /* number of extra bits or operation */
sl@0
   113
  uch b;                /* number of bits in this code or subcode */
sl@0
   114
  union {
sl@0
   115
    ush n;              /* literal, length base, or distance base */
sl@0
   116
    struct huft *t;     /* pointer to next level of table */
sl@0
   117
  } v;
sl@0
   118
};
sl@0
   119
sl@0
   120
sl@0
   121
/* Function prototypes */
sl@0
   122
int huft_build(unsigned *, unsigned, unsigned, const ush *, const ush *,
sl@0
   123
                   struct huft **, int *);
sl@0
   124
int huft_free(struct huft *);
sl@0
   125
int inflate_codes(struct huft *, struct huft *, int, int);
sl@0
   126
int inflate_stored(void);
sl@0
   127
int inflate_fixed(void);
sl@0
   128
int inflate_dynamic(void);
sl@0
   129
int inflate_block(int *);
sl@0
   130
int inflate(void);
sl@0
   131
sl@0
   132
sl@0
   133
/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
sl@0
   134
   stream to find repeated byte strings.  This is implemented here as a
sl@0
   135
   circular buffer.  The index is updated simply by incrementing and then
sl@0
   136
   and'ing with 0x7fff (32K-1). */
sl@0
   137
/* It is left to other modules to supply the 32K area.  It is assumed
sl@0
   138
   to be usable as if it were declared "uch slide[32768];" or as just
sl@0
   139
   "uch *slide;" and then malloc'ed in the latter case.  The definition
sl@0
   140
   must be in unzip.h, included above. */
sl@0
   141
/* unsigned wp;             current position in slide */
sl@0
   142
/*#define wp outcnt*/
sl@0
   143
/*#define flush_output(w) (wp=(w),flush_window())*/
sl@0
   144
sl@0
   145
/* Tables for deflate from PKZIP's appnote.txt. */
sl@0
   146
static const unsigned border[] = {    /* Order of the bit length code lengths */
sl@0
   147
        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
sl@0
   148
static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */
sl@0
   149
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
sl@0
   150
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
sl@0
   151
        /* note: see note #13 above about the 258 in this list. */
sl@0
   152
static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */
sl@0
   153
        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
sl@0
   154
        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
sl@0
   155
static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */
sl@0
   156
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
sl@0
   157
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
sl@0
   158
        8193, 12289, 16385, 24577};
sl@0
   159
static const ush cpdext[] = {         /* Extra bits for distance codes */
sl@0
   160
        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
sl@0
   161
        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
sl@0
   162
        12, 12, 13, 13};
sl@0
   163
sl@0
   164
sl@0
   165
sl@0
   166
/* Macros for inflate() bit peeking and grabbing.
sl@0
   167
   The usage is:
sl@0
   168
   
sl@0
   169
        NEEDBITS(j)
sl@0
   170
        x = b & mask_bits[j];
sl@0
   171
        DUMPBITS(j)
sl@0
   172
sl@0
   173
   where NEEDBITS makes sure that b has at least j bits in it, and
sl@0
   174
   DUMPBITS removes the bits from b.  The macros use the variable k
sl@0
   175
   for the number of bits in b.  Normally, b and k are register
sl@0
   176
   variables for speed, and are initialized at the beginning of a
sl@0
   177
   routine that uses these macros from a global bit buffer and count.
sl@0
   178
sl@0
   179
   If we assume that EOB will be the longest code, then we will never
sl@0
   180
   ask for bits with NEEDBITS that are beyond the end of the stream.
sl@0
   181
   So, NEEDBITS should not read any more bytes than are needed to
sl@0
   182
   meet the request.  Then no bytes need to be "returned" to the buffer
sl@0
   183
   at the end of the last block.
sl@0
   184
sl@0
   185
   However, this assumption is not true for fixed blocks--the EOB code
sl@0
   186
   is 7 bits, but the other literal/length codes can be 8 or 9 bits.
sl@0
   187
   (The EOB code is shorter than other codes because fixed blocks are
sl@0
   188
   generally short.  So, while a block always has an EOB, many other
sl@0
   189
   literal/length codes have a significantly lower probability of
sl@0
   190
   showing up at all.)  However, by making the first table have a
sl@0
   191
   lookup of seven bits, the EOB code will be found in that first
sl@0
   192
   lookup, and so will not require that too many bits be pulled from
sl@0
   193
   the stream.
sl@0
   194
 */
sl@0
   195
sl@0
   196
ulg bb;                         /* bit buffer */
sl@0
   197
unsigned bk;                    /* bits in bit buffer */
sl@0
   198
sl@0
   199
static const ush mask_bits[] = {
sl@0
   200
    0x0000,
sl@0
   201
    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
sl@0
   202
    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
sl@0
   203
};
sl@0
   204
sl@0
   205
#define get_byte()  (inptr < inbuf_end ? *inptr++ : fill_inbuf())
sl@0
   206
#define NEXTBYTE()  (uch)get_byte()
sl@0
   207
#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}}
sl@0
   208
#define DUMPBITS(n) {b>>=(n);k-=(n);}
sl@0
   209
sl@0
   210
sl@0
   211
/*
sl@0
   212
   Huffman code decoding is performed using a multi-level table lookup.
sl@0
   213
   The fastest way to decode is to simply build a lookup table whose
sl@0
   214
   size is determined by the longest code.  However, the time it takes
sl@0
   215
   to build this table can also be a factor if the data being decoded
sl@0
   216
   is not very long.  The most common codes are necessarily the
sl@0
   217
   shortest codes, so those codes dominate the decoding time, and hence
sl@0
   218
   the speed.  The idea is you can have a shorter table that decodes the
sl@0
   219
   shorter, more probable codes, and then point to subsidiary tables for
sl@0
   220
   the longer codes.  The time it costs to decode the longer codes is
sl@0
   221
   then traded against the time it takes to make longer tables.
sl@0
   222
sl@0
   223
   This results of this trade are in the variables lbits and dbits
sl@0
   224
   below.  lbits is the number of bits the first level table for literal/
sl@0
   225
   length codes can decode in one step, and dbits is the same thing for
sl@0
   226
   the distance codes.  Subsequent tables are also less than or equal to
sl@0
   227
   those sizes.  These values may be adjusted either when all of the
sl@0
   228
   codes are shorter than that, in which case the longest code length in
sl@0
   229
   bits is used, or when the shortest code is *longer* than the requested
sl@0
   230
   table size, in which case the length of the shortest code in bits is
sl@0
   231
   used.
sl@0
   232
sl@0
   233
   There are two different values for the two tables, since they code a
sl@0
   234
   different number of possibilities each.  The literal/length table
sl@0
   235
   codes 286 possible values, or in a flat code, a little over eight
sl@0
   236
   bits.  The distance table codes 30 possible values, or a little less
sl@0
   237
   than five bits, flat.  The optimum values for speed end up being
sl@0
   238
   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
sl@0
   239
   The optimum values may differ though from machine to machine, and
sl@0
   240
   possibly even between compilers.  Your mileage may vary.
sl@0
   241
 */
sl@0
   242
sl@0
   243
sl@0
   244
static const int lbits = 9;          /* bits in base literal/length lookup table */
sl@0
   245
static const int dbits = 6;          /* bits in base distance lookup table */
sl@0
   246
sl@0
   247
sl@0
   248
/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
sl@0
   249
#define BMAX 16         /* maximum bit length of any code (16 for explode) */
sl@0
   250
#define N_MAX 288       /* maximum number of codes in any set */
sl@0
   251
sl@0
   252
sl@0
   253
unsigned hufts;         /* track memory usage */
sl@0
   254
sl@0
   255
sl@0
   256
int huft_build(
sl@0
   257
unsigned *b,            /* code lengths in bits (all assumed <= BMAX) */
sl@0
   258
unsigned n,             /* number of codes (assumed <= N_MAX) */
sl@0
   259
unsigned s,             /* number of simple-valued codes (0..s-1) */
sl@0
   260
const ush *d,                 /* list of base values for non-simple codes */
sl@0
   261
const ush *e,                 /* list of extra bits for non-simple codes */
sl@0
   262
struct huft **t,        /* result: starting table */
sl@0
   263
int *m                 /* maximum lookup bits, returns actual */
sl@0
   264
)
sl@0
   265
/* Given a list of code lengths and a maximum table size, make a set of
sl@0
   266
   tables to decode that set of codes.  Return zero on success, one if
sl@0
   267
   the given code set is incomplete (the tables are still built in this
sl@0
   268
   case), two if the input is invalid (all zero length codes or an
sl@0
   269
   oversubscribed set of lengths), and three if not enough memory. */
sl@0
   270
{
sl@0
   271
  unsigned a;                   /* counter for codes of length k */
sl@0
   272
  unsigned c[BMAX+1];           /* bit length count table */
sl@0
   273
  unsigned f;                   /* i repeats in table every f entries */
sl@0
   274
  int g;                        /* maximum code length */
sl@0
   275
  int h;                        /* table level */
sl@0
   276
  register unsigned i;          /* counter, current code */
sl@0
   277
  register unsigned j;          /* counter */
sl@0
   278
  register int k;               /* number of bits in current code */
sl@0
   279
  int l;                        /* bits per table (returned in m) */
sl@0
   280
  register unsigned *p;         /* pointer into c[], b[], or v[] */
sl@0
   281
  register struct huft *q;      /* points to current table */
sl@0
   282
  struct huft r;                /* table entry for structure assignment */
sl@0
   283
  struct huft *u[BMAX];         /* table stack */
sl@0
   284
  unsigned v[N_MAX];            /* values in order of bit length */
sl@0
   285
  register int w;               /* bits before this table == (l * h) */
sl@0
   286
  unsigned x[BMAX+1];           /* bit offsets, then code stack */
sl@0
   287
  unsigned *xp;                 /* pointer into x */
sl@0
   288
  int y;                        /* number of dummy codes added */
sl@0
   289
  unsigned z;                   /* number of entries in current table */
sl@0
   290
sl@0
   291
sl@0
   292
  /* Generate counts for each bit length */
sl@0
   293
  memset(c, 0, sizeof(c));
sl@0
   294
  p = b;  i = n;
sl@0
   295
  do {
sl@0
   296
/*    Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"), 
sl@0
   297
	    n-i, *p));*/
sl@0
   298
    c[*p]++;                    /* assume all entries <= BMAX */
sl@0
   299
    p++;                      /* Can't combine with above line (Solaris bug) */
sl@0
   300
  } while (--i);
sl@0
   301
  if (c[0] == n)                /* null input--all zero length codes */
sl@0
   302
  {
sl@0
   303
    *t = (struct huft *)NULL;
sl@0
   304
    *m = 0;
sl@0
   305
    return 0;
sl@0
   306
  }
sl@0
   307
sl@0
   308
sl@0
   309
  /* Find minimum and maximum length, bound *m by those */
sl@0
   310
  l = *m;
sl@0
   311
  for (j = 1; j <= BMAX; j++)
sl@0
   312
    if (c[j])
sl@0
   313
      break;
sl@0
   314
  k = j;                        /* minimum code length */
sl@0
   315
  if ((unsigned)l < j)
sl@0
   316
    l = j;
sl@0
   317
  for (i = BMAX; i; i--)
sl@0
   318
    if (c[i])
sl@0
   319
      break;
sl@0
   320
  g = i;                        /* maximum code length */
sl@0
   321
  if ((unsigned)l > i)
sl@0
   322
    l = i;
sl@0
   323
  *m = l;
sl@0
   324
sl@0
   325
sl@0
   326
  /* Adjust last length count to fill out codes, if needed */
sl@0
   327
  for (y = 1 << j; j < i; j++, y <<= 1)
sl@0
   328
    if ((y -= c[j]) < 0)
sl@0
   329
      return 2;                 /* bad input: more codes than bits */
sl@0
   330
  if ((y -= c[i]) < 0)
sl@0
   331
    return 2;
sl@0
   332
  c[i] += y;
sl@0
   333
sl@0
   334
sl@0
   335
  /* Generate starting offsets into the value table for each length */
sl@0
   336
  x[1] = j = 0;
sl@0
   337
  p = c + 1;  xp = x + 2;
sl@0
   338
  while (--i) {                 /* note that i == g from above */
sl@0
   339
    *xp++ = (j += *p++);
sl@0
   340
  }
sl@0
   341
sl@0
   342
sl@0
   343
  /* Make a table of values in order of bit lengths */
sl@0
   344
  p = b;  i = 0;
sl@0
   345
  do {
sl@0
   346
    if ((j = *p++) != 0)
sl@0
   347
      v[x[j]++] = i;
sl@0
   348
  } while (++i < n);
sl@0
   349
sl@0
   350
sl@0
   351
  /* Generate the Huffman codes and for each, make the table entries */
sl@0
   352
  x[0] = i = 0;                 /* first Huffman code is zero */
sl@0
   353
  p = v;                        /* grab values in bit order */
sl@0
   354
  h = -1;                       /* no tables yet--level -1 */
sl@0
   355
  w = -l;                       /* bits decoded == (l * h) */
sl@0
   356
  u[0] = (struct huft *)NULL;   /* just to keep compilers happy */
sl@0
   357
  q = (struct huft *)NULL;      /* ditto */
sl@0
   358
  z = 0;                        /* ditto */
sl@0
   359
sl@0
   360
  /* go through the bit lengths (k already is bits in shortest code) */
sl@0
   361
  for (; k <= g; k++)
sl@0
   362
  {
sl@0
   363
    a = c[k];
sl@0
   364
    while (a--)
sl@0
   365
    {
sl@0
   366
      /* here i is the Huffman code of length k bits for value *p */
sl@0
   367
      /* make tables up to required level */
sl@0
   368
      while (k > w + l)
sl@0
   369
      {
sl@0
   370
        h++;
sl@0
   371
        w += l;                 /* previous table always l bits */
sl@0
   372
sl@0
   373
        /* compute minimum size table less than or equal to l bits */
sl@0
   374
        z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */
sl@0
   375
        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
sl@0
   376
        {                       /* too few codes for k-w bit table */
sl@0
   377
          f -= a + 1;           /* deduct codes from patterns left */
sl@0
   378
          xp = c + k;
sl@0
   379
          while (++j < z)       /* try smaller tables up to z bits */
sl@0
   380
          {
sl@0
   381
            if ((f <<= 1) <= *++xp)
sl@0
   382
              break;            /* enough codes to use up j bits */
sl@0
   383
            f -= *xp;           /* else deduct codes from patterns */
sl@0
   384
          }
sl@0
   385
        }
sl@0
   386
        z = 1 << j;             /* table entries for j-bit table */
sl@0
   387
sl@0
   388
        /* allocate and link in new table */
sl@0
   389
        if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) ==
sl@0
   390
            (struct huft *)NULL)
sl@0
   391
        {
sl@0
   392
          if (h)
sl@0
   393
            huft_free(u[0]);
sl@0
   394
          return 3;             /* not enough memory */
sl@0
   395
        }
sl@0
   396
        hufts += z + 1;         /* track memory usage */
sl@0
   397
        *t = q + 1;             /* link to list for huft_free() */
sl@0
   398
        *(t = &(q->v.t)) = (struct huft *)NULL;
sl@0
   399
        u[h] = ++q;             /* table starts after link */
sl@0
   400
sl@0
   401
        /* connect to last table, if there is one */
sl@0
   402
        if (h)
sl@0
   403
        {
sl@0
   404
          x[h] = i;             /* save pattern for backing up */
sl@0
   405
          r.b = (uch)l;         /* bits to dump before this table */
sl@0
   406
          r.e = (uch)(16 + j);  /* bits in this table */
sl@0
   407
          r.v.t = q;            /* pointer to this table */
sl@0
   408
          j = i >> (w - l);     /* (get around Turbo C bug) */
sl@0
   409
          u[h-1][j] = r;        /* connect to last table */
sl@0
   410
        }
sl@0
   411
      }
sl@0
   412
sl@0
   413
      /* set up table entry in r */
sl@0
   414
      r.b = (uch)(k - w);
sl@0
   415
      if (p >= v + n)
sl@0
   416
        r.e = 99;               /* out of values--invalid code */
sl@0
   417
      else if (*p < s)
sl@0
   418
      {
sl@0
   419
        r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */
sl@0
   420
        r.v.n = (ush)(*p);             /* simple code is just the value */
sl@0
   421
	p++;                           /* one compiler does not like *p++ */
sl@0
   422
      }
sl@0
   423
      else
sl@0
   424
      {
sl@0
   425
        r.e = (uch)e[*p - s];   /* non-simple--look up in lists */
sl@0
   426
        r.v.n = d[*p++ - s];
sl@0
   427
      }
sl@0
   428
sl@0
   429
      /* fill code-like entries with r */
sl@0
   430
      f = 1 << (k - w);
sl@0
   431
      for (j = i >> w; j < z; j += f)
sl@0
   432
        q[j] = r;
sl@0
   433
sl@0
   434
      /* backwards increment the k-bit code i */
sl@0
   435
      for (j = 1 << (k - 1); i & j; j >>= 1)
sl@0
   436
        i ^= j;
sl@0
   437
      i ^= j;
sl@0
   438
sl@0
   439
      /* backup over finished tables */
sl@0
   440
      while ((i & ((1 << w) - 1)) != x[h])
sl@0
   441
      {
sl@0
   442
        h--;                    /* don't need to update q */
sl@0
   443
        w -= l;
sl@0
   444
      }
sl@0
   445
    }
sl@0
   446
  }
sl@0
   447
sl@0
   448
sl@0
   449
  /* Return true (1) if we were given an incomplete table */
sl@0
   450
  return y != 0 && g != 1;
sl@0
   451
}
sl@0
   452
sl@0
   453
sl@0
   454
sl@0
   455
int huft_free(struct huft *t)
sl@0
   456
/* Free the malloc'ed tables built by huft_build(), which makes a linked
sl@0
   457
   list of the tables it made, with the links in a dummy first entry of
sl@0
   458
   each table. */
sl@0
   459
{
sl@0
   460
  register struct huft *p, *q;
sl@0
   461
sl@0
   462
sl@0
   463
  /* Go through linked list, freeing from the malloced (t[-1]) address. */
sl@0
   464
  p = t;
sl@0
   465
  while (p != (struct huft *)NULL)
sl@0
   466
  {
sl@0
   467
    q = (--p)->v.t;
sl@0
   468
    free((char*)p);
sl@0
   469
    p = q;
sl@0
   470
  } 
sl@0
   471
  return 0;
sl@0
   472
}
sl@0
   473
sl@0
   474
sl@0
   475
int inflate_codes(
sl@0
   476
struct huft *tl,
sl@0
   477
struct huft *td,   /* literal/length and distance decoder tables */
sl@0
   478
int bl,
sl@0
   479
int bd             /* number of bits decoded by tl[] and td[] */
sl@0
   480
)
sl@0
   481
/* inflate (decompress) the codes in a deflated (compressed) block.
sl@0
   482
   Return an error code or zero if it all goes ok. */
sl@0
   483
{
sl@0
   484
  register unsigned e;  /* table entry flag/number of extra bits */
sl@0
   485
  unsigned n, d;        /* length and index for copy */
sl@0
   486
  struct huft *t;       /* pointer to table entry */
sl@0
   487
  unsigned ml, md;      /* masks for bl and bd bits */
sl@0
   488
  register ulg b=bb;       /* bit buffer */
sl@0
   489
  register unsigned k=bk;  /* number of bits in bit buffer */
sl@0
   490
  register uch* p=(uch*)outptr;
sl@0
   491
sl@0
   492
  /* inflate the coded data */
sl@0
   493
  ml = mask_bits[bl];           /* precompute masks for speed */
sl@0
   494
  md = mask_bits[bd];
sl@0
   495
  for (;;)                      /* do until end of block */
sl@0
   496
  {
sl@0
   497
    NEEDBITS((unsigned)bl)
sl@0
   498
    if ((e = (t = tl + ((unsigned)b & ml))->e) > 16)
sl@0
   499
      do {
sl@0
   500
        if (e == 99)
sl@0
   501
          return 1;
sl@0
   502
        DUMPBITS(t->b)
sl@0
   503
        e -= 16;
sl@0
   504
        NEEDBITS(e)
sl@0
   505
      } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
sl@0
   506
    DUMPBITS(t->b)
sl@0
   507
    if (e == 16)                /* then it's a literal */
sl@0
   508
    {
sl@0
   509
      *p++ = (uch)t->v.n;
sl@0
   510
    }
sl@0
   511
    else                        /* it's an EOB or a length */
sl@0
   512
    {
sl@0
   513
      /* exit if end of block */
sl@0
   514
      if (e == 15)
sl@0
   515
        break;
sl@0
   516
sl@0
   517
      /* get length of block to copy */
sl@0
   518
      NEEDBITS(e)
sl@0
   519
      n = t->v.n + ((unsigned)b & mask_bits[e]);
sl@0
   520
      DUMPBITS(e);
sl@0
   521
sl@0
   522
      /* decode distance of block to copy */
sl@0
   523
      NEEDBITS((unsigned)bd)
sl@0
   524
      if ((e = (t = td + ((unsigned)b & md))->e) > 16)
sl@0
   525
        do {
sl@0
   526
          if (e == 99)
sl@0
   527
            return 1;
sl@0
   528
          DUMPBITS(t->b)
sl@0
   529
          e -= 16;
sl@0
   530
          NEEDBITS(e)
sl@0
   531
        } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16);
sl@0
   532
      DUMPBITS(t->b)
sl@0
   533
      NEEDBITS(e)
sl@0
   534
      d = t->v.n + ((unsigned)b & mask_bits[e]);
sl@0
   535
	  d &= ZIP_WINDOW_SIZE-1;
sl@0
   536
      DUMPBITS(e)
sl@0
   537
sl@0
   538
      /* do the copy */
sl@0
   539
	  if (d>=n)
sl@0
   540
		  {
sl@0
   541
		  memcpy(p, p-d, n);
sl@0
   542
		  p+=n;
sl@0
   543
		  }
sl@0
   544
	  else
sl@0
   545
		  {
sl@0
   546
		  uch* q=p-d;
sl@0
   547
		  while(n--) *p++=*q++;
sl@0
   548
		  }
sl@0
   549
    }
sl@0
   550
  }
sl@0
   551
sl@0
   552
sl@0
   553
  /* restore the globals from the locals */
sl@0
   554
  outptr=p;
sl@0
   555
  bb = b;                       /* restore global bit buffer */
sl@0
   556
  bk = k;
sl@0
   557
sl@0
   558
  /* done */
sl@0
   559
  return 0;
sl@0
   560
}
sl@0
   561
sl@0
   562
sl@0
   563
sl@0
   564
int inflate_stored()
sl@0
   565
/* "decompress" an inflated type 0 (stored) block. */
sl@0
   566
{
sl@0
   567
  unsigned n;           /* number of bytes in block */
sl@0
   568
  register ulg b;       /* bit buffer */
sl@0
   569
  register unsigned k;  /* number of bits in bit buffer */
sl@0
   570
sl@0
   571
  register uch* p=(uch*)outptr;
sl@0
   572
sl@0
   573
sl@0
   574
  /* make local copies of globals */
sl@0
   575
  b = bb;                       /* initialize bit buffer */
sl@0
   576
  k = bk;
sl@0
   577
sl@0
   578
sl@0
   579
  /* go to byte boundary */
sl@0
   580
  n = k & 7;
sl@0
   581
  DUMPBITS(n);
sl@0
   582
sl@0
   583
sl@0
   584
  /* get the length and its complement */
sl@0
   585
  NEEDBITS(16)
sl@0
   586
  n = ((unsigned)b & 0xffff);
sl@0
   587
  DUMPBITS(16)
sl@0
   588
  NEEDBITS(16)
sl@0
   589
  if (n != (unsigned)((~b) & 0xffff))
sl@0
   590
    return 1;                   /* error in compressed data */
sl@0
   591
  DUMPBITS(16)
sl@0
   592
sl@0
   593
sl@0
   594
  /* read and output the compressed data */
sl@0
   595
  while (n--)
sl@0
   596
  {
sl@0
   597
    NEEDBITS(8)
sl@0
   598
	*p++=(uch)b;
sl@0
   599
    DUMPBITS(8)
sl@0
   600
  }
sl@0
   601
sl@0
   602
sl@0
   603
  /* restore the globals from the locals */
sl@0
   604
  outptr=p;
sl@0
   605
  bb = b;                       /* restore global bit buffer */
sl@0
   606
  bk = k;
sl@0
   607
  return 0;
sl@0
   608
}
sl@0
   609
sl@0
   610
sl@0
   611
sl@0
   612
int inflate_fixed()
sl@0
   613
/* decompress an inflated type 1 (fixed Huffman codes) block.  We should
sl@0
   614
   either replace this with a custom decoder, or at least precompute the
sl@0
   615
   Huffman tables. */
sl@0
   616
{
sl@0
   617
  int i;                /* temporary variable */
sl@0
   618
  struct huft *tl;      /* literal/length code table */
sl@0
   619
  struct huft *td;      /* distance code table */
sl@0
   620
  int bl;               /* lookup bits for tl */
sl@0
   621
  int bd;               /* lookup bits for td */
sl@0
   622
  unsigned l[288];      /* length list for huft_build */
sl@0
   623
sl@0
   624
sl@0
   625
  /* set up literal table */
sl@0
   626
  for (i = 0; i < 144; i++)
sl@0
   627
    l[i] = 8;
sl@0
   628
  for (; i < 256; i++)
sl@0
   629
    l[i] = 9;
sl@0
   630
  for (; i < 280; i++)
sl@0
   631
    l[i] = 7;
sl@0
   632
  for (; i < 288; i++)          /* make a complete, but wrong code set */
sl@0
   633
    l[i] = 8;
sl@0
   634
  bl = 7;
sl@0
   635
  // coverity[overrun-call]
sl@0
   636
  // Coverity seems to get confused - there is nothing wrong with this code
sl@0
   637
  if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
sl@0
   638
    return i;
sl@0
   639
sl@0
   640
sl@0
   641
  /* set up distance table */
sl@0
   642
  for (i = 0; i < 30; i++)      /* make an incomplete code set */
sl@0
   643
    l[i] = 5;
sl@0
   644
  bd = 5;
sl@0
   645
  if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
sl@0
   646
  {
sl@0
   647
    huft_free(tl);
sl@0
   648
    return i;
sl@0
   649
  }
sl@0
   650
sl@0
   651
sl@0
   652
  /* decompress until an end-of-block code */
sl@0
   653
  if (inflate_codes(tl, td, bl, bd))
sl@0
   654
    return 1;
sl@0
   655
sl@0
   656
sl@0
   657
  /* free the decoding tables, return */
sl@0
   658
  huft_free(tl);
sl@0
   659
  huft_free(td);
sl@0
   660
  return 0;
sl@0
   661
}
sl@0
   662
sl@0
   663
sl@0
   664
sl@0
   665
int inflate_dynamic()
sl@0
   666
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
sl@0
   667
{
sl@0
   668
  int i;                /* temporary variables */
sl@0
   669
  unsigned j;
sl@0
   670
  unsigned l;           /* last length */
sl@0
   671
  unsigned m;           /* mask for bit lengths table */
sl@0
   672
  unsigned n;           /* number of lengths to get */
sl@0
   673
  struct huft *tl;      /* literal/length code table */
sl@0
   674
  struct huft *td;      /* distance code table */
sl@0
   675
  int bl;               /* lookup bits for tl */
sl@0
   676
  int bd;               /* lookup bits for td */
sl@0
   677
  unsigned nb;          /* number of bit length codes */
sl@0
   678
  unsigned nl;          /* number of literal/length codes */
sl@0
   679
  unsigned nd;          /* number of distance codes */
sl@0
   680
#ifdef PKZIP_BUG_WORKAROUND
sl@0
   681
  unsigned ll[288+32];  /* literal/length and distance code lengths */
sl@0
   682
#else
sl@0
   683
  unsigned ll[286+30];  /* literal/length and distance code lengths */
sl@0
   684
#endif
sl@0
   685
  register ulg b;       /* bit buffer */
sl@0
   686
  register unsigned k;  /* number of bits in bit buffer */
sl@0
   687
sl@0
   688
sl@0
   689
  /* make local bit buffer */
sl@0
   690
  b = bb;
sl@0
   691
  k = bk;
sl@0
   692
sl@0
   693
sl@0
   694
  /* read in table lengths */
sl@0
   695
  NEEDBITS(5)
sl@0
   696
  nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */
sl@0
   697
  DUMPBITS(5)
sl@0
   698
  NEEDBITS(5)
sl@0
   699
  nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */
sl@0
   700
  DUMPBITS(5)
sl@0
   701
  NEEDBITS(4)
sl@0
   702
  nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */
sl@0
   703
  DUMPBITS(4)
sl@0
   704
#ifdef PKZIP_BUG_WORKAROUND
sl@0
   705
  if (nl > 288 || nd > 32)
sl@0
   706
#else
sl@0
   707
  if (nl > 286 || nd > 30)
sl@0
   708
#endif
sl@0
   709
    return 1;                   /* bad lengths */
sl@0
   710
sl@0
   711
sl@0
   712
  /* read in bit-length-code lengths */
sl@0
   713
  for (j = 0; j < nb; j++)
sl@0
   714
  {
sl@0
   715
    NEEDBITS(3)
sl@0
   716
    ll[border[j]] = (unsigned)b & 7;
sl@0
   717
    DUMPBITS(3)
sl@0
   718
  }
sl@0
   719
  for (; j < 19; j++)
sl@0
   720
    ll[border[j]] = 0;
sl@0
   721
sl@0
   722
sl@0
   723
  /* build decoding table for trees--single level, 7 bit lookup */
sl@0
   724
  bl = 7;
sl@0
   725
  if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
sl@0
   726
  {
sl@0
   727
    if (i == 1)
sl@0
   728
      huft_free(tl);
sl@0
   729
    return i;                   /* incomplete code set */
sl@0
   730
  }
sl@0
   731
sl@0
   732
sl@0
   733
  /* read in literal and distance code lengths */
sl@0
   734
  n = nl + nd;
sl@0
   735
  m = mask_bits[bl];
sl@0
   736
  i = l = 0;
sl@0
   737
  while ((unsigned)i < n)
sl@0
   738
  {
sl@0
   739
    NEEDBITS((unsigned)bl)
sl@0
   740
    j = (td = tl + ((unsigned)b & m))->b;
sl@0
   741
    DUMPBITS(j)
sl@0
   742
    j = td->v.n;
sl@0
   743
    if (j < 16)                 /* length of code in bits (0..15) */
sl@0
   744
      ll[i++] = l = j;          /* save last length in l */
sl@0
   745
    else if (j == 16)           /* repeat last length 3 to 6 times */
sl@0
   746
    {
sl@0
   747
      NEEDBITS(2)
sl@0
   748
      j = 3 + ((unsigned)b & 3);
sl@0
   749
      DUMPBITS(2)
sl@0
   750
      if ((unsigned)i + j > n)
sl@0
   751
        return 1;
sl@0
   752
      while (j--)
sl@0
   753
        ll[i++] = l;
sl@0
   754
    }
sl@0
   755
    else if (j == 17)           /* 3 to 10 zero length codes */
sl@0
   756
    {
sl@0
   757
      NEEDBITS(3)
sl@0
   758
      j = 3 + ((unsigned)b & 7);
sl@0
   759
      DUMPBITS(3)
sl@0
   760
      if ((unsigned)i + j > n)
sl@0
   761
        return 1;
sl@0
   762
      while (j--)
sl@0
   763
        ll[i++] = 0;
sl@0
   764
      l = 0;
sl@0
   765
    }
sl@0
   766
    else                        /* j == 18: 11 to 138 zero length codes */
sl@0
   767
    {
sl@0
   768
      NEEDBITS(7)
sl@0
   769
      j = 11 + ((unsigned)b & 0x7f);
sl@0
   770
      DUMPBITS(7)
sl@0
   771
      if ((unsigned)i + j > n)
sl@0
   772
        return 1;
sl@0
   773
      while (j--)
sl@0
   774
        ll[i++] = 0;
sl@0
   775
      l = 0;
sl@0
   776
    }
sl@0
   777
  }
sl@0
   778
sl@0
   779
sl@0
   780
  /* free decoding table for trees */
sl@0
   781
  huft_free(tl);
sl@0
   782
sl@0
   783
sl@0
   784
  /* restore the global bit buffer */
sl@0
   785
  bb = b;
sl@0
   786
  bk = k;
sl@0
   787
sl@0
   788
sl@0
   789
  /* build the decoding tables for literal/length and distance codes */
sl@0
   790
  bl = lbits;
sl@0
   791
  if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
sl@0
   792
  {
sl@0
   793
    if (i == 1) {
sl@0
   794
/*      fprintf(stderr, " incomplete literal tree\n");*/
sl@0
   795
      huft_free(tl);
sl@0
   796
    }
sl@0
   797
    return i;                   /* incomplete code set */
sl@0
   798
  }
sl@0
   799
  bd = dbits;
sl@0
   800
  if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
sl@0
   801
  {
sl@0
   802
    if (i == 1) {
sl@0
   803
/*      fprintf(stderr, " incomplete distance tree\n");*/
sl@0
   804
#ifdef PKZIP_BUG_WORKAROUND
sl@0
   805
      i = 0;
sl@0
   806
    }
sl@0
   807
#else
sl@0
   808
      huft_free(td);
sl@0
   809
    }
sl@0
   810
    huft_free(tl);
sl@0
   811
    return i;                   /* incomplete code set */
sl@0
   812
#endif
sl@0
   813
  }
sl@0
   814
sl@0
   815
sl@0
   816
  /* decompress until an end-of-block code */
sl@0
   817
  if (inflate_codes(tl, td, bl, bd))
sl@0
   818
    return 1;
sl@0
   819
sl@0
   820
sl@0
   821
  /* free the decoding tables, return */
sl@0
   822
  huft_free(tl);
sl@0
   823
  huft_free(td);
sl@0
   824
  return 0;
sl@0
   825
}
sl@0
   826
sl@0
   827
sl@0
   828
sl@0
   829
int inflate_block(int* e)
sl@0
   830
/* decompress an inflated block */
sl@0
   831
{
sl@0
   832
  unsigned t;           /* block type */
sl@0
   833
  register ulg b;       /* bit buffer */
sl@0
   834
  register unsigned k;  /* number of bits in bit buffer */
sl@0
   835
sl@0
   836
sl@0
   837
  /* make local bit buffer */
sl@0
   838
  b = bb;
sl@0
   839
  k = bk;
sl@0
   840
sl@0
   841
sl@0
   842
  /* read in last block bit */
sl@0
   843
  NEEDBITS(1)
sl@0
   844
  *e = (int)b & 1;
sl@0
   845
  DUMPBITS(1)
sl@0
   846
sl@0
   847
sl@0
   848
  /* read in block type */
sl@0
   849
  NEEDBITS(2)
sl@0
   850
  t = (unsigned)b & 3;
sl@0
   851
  DUMPBITS(2)
sl@0
   852
sl@0
   853
sl@0
   854
  /* restore the global bit buffer */
sl@0
   855
  bb = b;
sl@0
   856
  bk = k;
sl@0
   857
sl@0
   858
sl@0
   859
  /* inflate that block type */
sl@0
   860
  if (t == 2)
sl@0
   861
    return inflate_dynamic();
sl@0
   862
  if (t == 0)
sl@0
   863
    return inflate_stored();
sl@0
   864
  if (t == 1)
sl@0
   865
    return inflate_fixed();
sl@0
   866
sl@0
   867
sl@0
   868
  /* bad block type */
sl@0
   869
  return 2;
sl@0
   870
}
sl@0
   871
sl@0
   872
sl@0
   873
sl@0
   874
int inflate()
sl@0
   875
/* decompress an inflated entry */
sl@0
   876
{
sl@0
   877
  int e;                /* last block flag */
sl@0
   878
  int r;                /* result code */
sl@0
   879
  unsigned h;           /* maximum struct huft's malloc'ed */
sl@0
   880
sl@0
   881
sl@0
   882
  /* initialize window, bit buffer */
sl@0
   883
/*  wp = 0;*/
sl@0
   884
  bk = 0;
sl@0
   885
  bb = 0;
sl@0
   886
sl@0
   887
sl@0
   888
  /* decompress until the last block */
sl@0
   889
  h = 0;
sl@0
   890
  do {
sl@0
   891
    hufts = 0;
sl@0
   892
	r=inflate_block(&e);
sl@0
   893
	process_block(r);
sl@0
   894
	if (r!=0)
sl@0
   895
		return r;
sl@0
   896
    if (hufts > h)
sl@0
   897
      h = hufts;
sl@0
   898
  } while (!e);
sl@0
   899
sl@0
   900
  /* Undo too much lookahead. The next read will be byte aligned so we
sl@0
   901
   * can discard unused bits in the last meaningful byte.
sl@0
   902
   */
sl@0
   903
/*  while (bk >= 8) {
sl@0
   904
    bk -= 8;
sl@0
   905
    inptr--;
sl@0
   906
  }*/
sl@0
   907
sl@0
   908
  /* flush out slide */
sl@0
   909
/*  flush_output(wp);*/
sl@0
   910
sl@0
   911
sl@0
   912
  /* return success */
sl@0
   913
#ifdef DEBUG
sl@0
   914
/*  fprintf(stderr, "<%u> ", h);*/
sl@0
   915
#endif /* DEBUG */
sl@0
   916
sl@0
   917
  return 0;
sl@0
   918
}