os/persistentdata/persistentstorage/sql/SQLite364/utf.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/*
sl@0
     2
** 2004 April 13
sl@0
     3
**
sl@0
     4
** The author disclaims copyright to this source code.  In place of
sl@0
     5
** a legal notice, here is a blessing:
sl@0
     6
**
sl@0
     7
**    May you do good and not evil.
sl@0
     8
**    May you find forgiveness for yourself and forgive others.
sl@0
     9
**    May you share freely, never taking more than you give.
sl@0
    10
**
sl@0
    11
*************************************************************************
sl@0
    12
** This file contains routines used to translate between UTF-8, 
sl@0
    13
** UTF-16, UTF-16BE, and UTF-16LE.
sl@0
    14
**
sl@0
    15
** $Id: utf.c,v 1.65 2008/08/12 15:04:59 danielk1977 Exp $
sl@0
    16
**
sl@0
    17
** Notes on UTF-8:
sl@0
    18
**
sl@0
    19
**   Byte-0    Byte-1    Byte-2    Byte-3    Value
sl@0
    20
**  0xxxxxxx                                 00000000 00000000 0xxxxxxx
sl@0
    21
**  110yyyyy  10xxxxxx                       00000000 00000yyy yyxxxxxx
sl@0
    22
**  1110zzzz  10yyyyyy  10xxxxxx             00000000 zzzzyyyy yyxxxxxx
sl@0
    23
**  11110uuu  10uuzzzz  10yyyyyy  10xxxxxx   000uuuuu zzzzyyyy yyxxxxxx
sl@0
    24
**
sl@0
    25
**
sl@0
    26
** Notes on UTF-16:  (with wwww+1==uuuuu)
sl@0
    27
**
sl@0
    28
**      Word-0               Word-1          Value
sl@0
    29
**  110110ww wwzzzzyy   110111yy yyxxxxxx    000uuuuu zzzzyyyy yyxxxxxx
sl@0
    30
**  zzzzyyyy yyxxxxxx                        00000000 zzzzyyyy yyxxxxxx
sl@0
    31
**
sl@0
    32
**
sl@0
    33
** BOM or Byte Order Mark:
sl@0
    34
**     0xff 0xfe   little-endian utf-16 follows
sl@0
    35
**     0xfe 0xff   big-endian utf-16 follows
sl@0
    36
**
sl@0
    37
*/
sl@0
    38
#include "sqliteInt.h"
sl@0
    39
#include <assert.h>
sl@0
    40
#include "vdbeInt.h"
sl@0
    41
sl@0
    42
/*
sl@0
    43
** The following constant value is used by the SQLITE_BIGENDIAN and
sl@0
    44
** SQLITE_LITTLEENDIAN macros.
sl@0
    45
*/
sl@0
    46
const int sqlite3one = 1;
sl@0
    47
sl@0
    48
/*
sl@0
    49
** This lookup table is used to help decode the first byte of
sl@0
    50
** a multi-byte UTF8 character.
sl@0
    51
*/
sl@0
    52
static const unsigned char sqlite3UtfTrans1[] = {
sl@0
    53
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
sl@0
    54
  0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
sl@0
    55
  0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
sl@0
    56
  0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
sl@0
    57
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
sl@0
    58
  0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
sl@0
    59
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
sl@0
    60
  0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
sl@0
    61
};
sl@0
    62
sl@0
    63
sl@0
    64
#define WRITE_UTF8(zOut, c) {                          \
sl@0
    65
  if( c<0x00080 ){                                     \
sl@0
    66
    *zOut++ = (c&0xFF);                                \
sl@0
    67
  }                                                    \
sl@0
    68
  else if( c<0x00800 ){                                \
sl@0
    69
    *zOut++ = 0xC0 + ((c>>6)&0x1F);                    \
sl@0
    70
    *zOut++ = 0x80 + (c & 0x3F);                       \
sl@0
    71
  }                                                    \
sl@0
    72
  else if( c<0x10000 ){                                \
sl@0
    73
    *zOut++ = 0xE0 + ((c>>12)&0x0F);                   \
sl@0
    74
    *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
sl@0
    75
    *zOut++ = 0x80 + (c & 0x3F);                       \
sl@0
    76
  }else{                                               \
sl@0
    77
    *zOut++ = 0xF0 + ((c>>18) & 0x07);                 \
sl@0
    78
    *zOut++ = 0x80 + ((c>>12) & 0x3F);                 \
sl@0
    79
    *zOut++ = 0x80 + ((c>>6) & 0x3F);                  \
sl@0
    80
    *zOut++ = 0x80 + (c & 0x3F);                       \
sl@0
    81
  }                                                    \
sl@0
    82
}
sl@0
    83
sl@0
    84
#define WRITE_UTF16LE(zOut, c) {                                \
sl@0
    85
  if( c<=0xFFFF ){                                              \
sl@0
    86
    *zOut++ = (c&0x00FF);                                       \
sl@0
    87
    *zOut++ = ((c>>8)&0x00FF);                                  \
sl@0
    88
  }else{                                                        \
sl@0
    89
    *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
sl@0
    90
    *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
sl@0
    91
    *zOut++ = (c&0x00FF);                                       \
sl@0
    92
    *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
sl@0
    93
  }                                                             \
sl@0
    94
}
sl@0
    95
sl@0
    96
#define WRITE_UTF16BE(zOut, c) {                                \
sl@0
    97
  if( c<=0xFFFF ){                                              \
sl@0
    98
    *zOut++ = ((c>>8)&0x00FF);                                  \
sl@0
    99
    *zOut++ = (c&0x00FF);                                       \
sl@0
   100
  }else{                                                        \
sl@0
   101
    *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03));              \
sl@0
   102
    *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0));  \
sl@0
   103
    *zOut++ = (0x00DC + ((c>>8)&0x03));                         \
sl@0
   104
    *zOut++ = (c&0x00FF);                                       \
sl@0
   105
  }                                                             \
sl@0
   106
}
sl@0
   107
sl@0
   108
#define READ_UTF16LE(zIn, c){                                         \
sl@0
   109
  c = (*zIn++);                                                       \
sl@0
   110
  c += ((*zIn++)<<8);                                                 \
sl@0
   111
  if( c>=0xD800 && c<0xE000 ){                                       \
sl@0
   112
    int c2 = (*zIn++);                                                \
sl@0
   113
    c2 += ((*zIn++)<<8);                                              \
sl@0
   114
    c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
sl@0
   115
    if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
sl@0
   116
  }                                                                   \
sl@0
   117
}
sl@0
   118
sl@0
   119
#define READ_UTF16BE(zIn, c){                                         \
sl@0
   120
  c = ((*zIn++)<<8);                                                  \
sl@0
   121
  c += (*zIn++);                                                      \
sl@0
   122
  if( c>=0xD800 && c<0xE000 ){                                       \
sl@0
   123
    int c2 = ((*zIn++)<<8);                                           \
sl@0
   124
    c2 += (*zIn++);                                                   \
sl@0
   125
    c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10);   \
sl@0
   126
    if( (c & 0xFFFF0000)==0 ) c = 0xFFFD;                             \
sl@0
   127
  }                                                                   \
sl@0
   128
}
sl@0
   129
sl@0
   130
/*
sl@0
   131
** Translate a single UTF-8 character.  Return the unicode value.
sl@0
   132
**
sl@0
   133
** During translation, assume that the byte that zTerm points
sl@0
   134
** is a 0x00.
sl@0
   135
**
sl@0
   136
** Write a pointer to the next unread byte back into *pzNext.
sl@0
   137
**
sl@0
   138
** Notes On Invalid UTF-8:
sl@0
   139
**
sl@0
   140
**  *  This routine never allows a 7-bit character (0x00 through 0x7f) to
sl@0
   141
**     be encoded as a multi-byte character.  Any multi-byte character that
sl@0
   142
**     attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
sl@0
   143
**
sl@0
   144
**  *  This routine never allows a UTF16 surrogate value to be encoded.
sl@0
   145
**     If a multi-byte character attempts to encode a value between
sl@0
   146
**     0xd800 and 0xe000 then it is rendered as 0xfffd.
sl@0
   147
**
sl@0
   148
**  *  Bytes in the range of 0x80 through 0xbf which occur as the first
sl@0
   149
**     byte of a character are interpreted as single-byte characters
sl@0
   150
**     and rendered as themselves even though they are technically
sl@0
   151
**     invalid characters.
sl@0
   152
**
sl@0
   153
**  *  This routine accepts an infinite number of different UTF8 encodings
sl@0
   154
**     for unicode values 0x80 and greater.  It do not change over-length
sl@0
   155
**     encodings to 0xfffd as some systems recommend.
sl@0
   156
*/
sl@0
   157
#define READ_UTF8(zIn, zTerm, c)                           \
sl@0
   158
  c = *(zIn++);                                            \
sl@0
   159
  if( c>=0xc0 ){                                           \
sl@0
   160
    c = sqlite3UtfTrans1[c-0xc0];                          \
sl@0
   161
    while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){            \
sl@0
   162
      c = (c<<6) + (0x3f & *(zIn++));                      \
sl@0
   163
    }                                                      \
sl@0
   164
    if( c<0x80                                             \
sl@0
   165
        || (c&0xFFFFF800)==0xD800                          \
sl@0
   166
        || (c&0xFFFFFFFE)==0xFFFE ){  c = 0xFFFD; }        \
sl@0
   167
  }
sl@0
   168
int sqlite3Utf8Read(
sl@0
   169
  const unsigned char *z,         /* First byte of UTF-8 character */
sl@0
   170
  const unsigned char *zTerm,     /* Pretend this byte is 0x00 */
sl@0
   171
  const unsigned char **pzNext    /* Write first byte past UTF-8 char here */
sl@0
   172
){
sl@0
   173
  int c;
sl@0
   174
  READ_UTF8(z, zTerm, c);
sl@0
   175
  *pzNext = z;
sl@0
   176
  return c;
sl@0
   177
}
sl@0
   178
sl@0
   179
sl@0
   180
sl@0
   181
sl@0
   182
/*
sl@0
   183
** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
sl@0
   184
** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
sl@0
   185
*/ 
sl@0
   186
/* #define TRANSLATE_TRACE 1 */
sl@0
   187
sl@0
   188
#ifndef SQLITE_OMIT_UTF16
sl@0
   189
/*
sl@0
   190
** This routine transforms the internal text encoding used by pMem to
sl@0
   191
** desiredEnc. It is an error if the string is already of the desired
sl@0
   192
** encoding, or if *pMem does not contain a string value.
sl@0
   193
*/
sl@0
   194
int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
sl@0
   195
  int len;                    /* Maximum length of output string in bytes */
sl@0
   196
  unsigned char *zOut;                  /* Output buffer */
sl@0
   197
  unsigned char *zIn;                   /* Input iterator */
sl@0
   198
  unsigned char *zTerm;                 /* End of input */
sl@0
   199
  unsigned char *z;                     /* Output iterator */
sl@0
   200
  unsigned int c;
sl@0
   201
sl@0
   202
  assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
sl@0
   203
  assert( pMem->flags&MEM_Str );
sl@0
   204
  assert( pMem->enc!=desiredEnc );
sl@0
   205
  assert( pMem->enc!=0 );
sl@0
   206
  assert( pMem->n>=0 );
sl@0
   207
sl@0
   208
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
sl@0
   209
  {
sl@0
   210
    char zBuf[100];
sl@0
   211
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
sl@0
   212
    fprintf(stderr, "INPUT:  %s\n", zBuf);
sl@0
   213
  }
sl@0
   214
#endif
sl@0
   215
sl@0
   216
  /* If the translation is between UTF-16 little and big endian, then 
sl@0
   217
  ** all that is required is to swap the byte order. This case is handled
sl@0
   218
  ** differently from the others.
sl@0
   219
  */
sl@0
   220
  if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
sl@0
   221
    u8 temp;
sl@0
   222
    int rc;
sl@0
   223
    rc = sqlite3VdbeMemMakeWriteable(pMem);
sl@0
   224
    if( rc!=SQLITE_OK ){
sl@0
   225
      assert( rc==SQLITE_NOMEM );
sl@0
   226
      return SQLITE_NOMEM;
sl@0
   227
    }
sl@0
   228
    zIn = (u8*)pMem->z;
sl@0
   229
    zTerm = &zIn[pMem->n];
sl@0
   230
    while( zIn<zTerm ){
sl@0
   231
      temp = *zIn;
sl@0
   232
      *zIn = *(zIn+1);
sl@0
   233
      zIn++;
sl@0
   234
      *zIn++ = temp;
sl@0
   235
    }
sl@0
   236
    pMem->enc = desiredEnc;
sl@0
   237
    goto translate_out;
sl@0
   238
  }
sl@0
   239
sl@0
   240
  /* Set len to the maximum number of bytes required in the output buffer. */
sl@0
   241
  if( desiredEnc==SQLITE_UTF8 ){
sl@0
   242
    /* When converting from UTF-16, the maximum growth results from
sl@0
   243
    ** translating a 2-byte character to a 4-byte UTF-8 character.
sl@0
   244
    ** A single byte is required for the output string
sl@0
   245
    ** nul-terminator.
sl@0
   246
    */
sl@0
   247
    len = pMem->n * 2 + 1;
sl@0
   248
  }else{
sl@0
   249
    /* When converting from UTF-8 to UTF-16 the maximum growth is caused
sl@0
   250
    ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
sl@0
   251
    ** character. Two bytes are required in the output buffer for the
sl@0
   252
    ** nul-terminator.
sl@0
   253
    */
sl@0
   254
    len = pMem->n * 2 + 2;
sl@0
   255
  }
sl@0
   256
sl@0
   257
  /* Set zIn to point at the start of the input buffer and zTerm to point 1
sl@0
   258
  ** byte past the end.
sl@0
   259
  **
sl@0
   260
  ** Variable zOut is set to point at the output buffer, space obtained
sl@0
   261
  ** from sqlite3_malloc().
sl@0
   262
  */
sl@0
   263
  zIn = (u8*)pMem->z;
sl@0
   264
  zTerm = &zIn[pMem->n];
sl@0
   265
  zOut = sqlite3DbMallocRaw(pMem->db, len);
sl@0
   266
  if( !zOut ){
sl@0
   267
    return SQLITE_NOMEM;
sl@0
   268
  }
sl@0
   269
  z = zOut;
sl@0
   270
sl@0
   271
  if( pMem->enc==SQLITE_UTF8 ){
sl@0
   272
    if( desiredEnc==SQLITE_UTF16LE ){
sl@0
   273
      /* UTF-8 -> UTF-16 Little-endian */
sl@0
   274
      while( zIn<zTerm ){
sl@0
   275
        /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
sl@0
   276
        READ_UTF8(zIn, zTerm, c);
sl@0
   277
        WRITE_UTF16LE(z, c);
sl@0
   278
      }
sl@0
   279
    }else{
sl@0
   280
      assert( desiredEnc==SQLITE_UTF16BE );
sl@0
   281
      /* UTF-8 -> UTF-16 Big-endian */
sl@0
   282
      while( zIn<zTerm ){
sl@0
   283
        /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
sl@0
   284
        READ_UTF8(zIn, zTerm, c);
sl@0
   285
        WRITE_UTF16BE(z, c);
sl@0
   286
      }
sl@0
   287
    }
sl@0
   288
    pMem->n = z - zOut;
sl@0
   289
    *z++ = 0;
sl@0
   290
  }else{
sl@0
   291
    assert( desiredEnc==SQLITE_UTF8 );
sl@0
   292
    if( pMem->enc==SQLITE_UTF16LE ){
sl@0
   293
      /* UTF-16 Little-endian -> UTF-8 */
sl@0
   294
      while( zIn<zTerm ){
sl@0
   295
        READ_UTF16LE(zIn, c); 
sl@0
   296
        WRITE_UTF8(z, c);
sl@0
   297
      }
sl@0
   298
    }else{
sl@0
   299
      /* UTF-16 Big-endian -> UTF-8 */
sl@0
   300
      while( zIn<zTerm ){
sl@0
   301
        READ_UTF16BE(zIn, c); 
sl@0
   302
        WRITE_UTF8(z, c);
sl@0
   303
      }
sl@0
   304
    }
sl@0
   305
    pMem->n = z - zOut;
sl@0
   306
  }
sl@0
   307
  *z = 0;
sl@0
   308
  assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
sl@0
   309
sl@0
   310
  sqlite3VdbeMemRelease(pMem);
sl@0
   311
  pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
sl@0
   312
  pMem->enc = desiredEnc;
sl@0
   313
  pMem->flags |= (MEM_Term|MEM_Dyn);
sl@0
   314
  pMem->z = (char*)zOut;
sl@0
   315
  pMem->zMalloc = pMem->z;
sl@0
   316
sl@0
   317
translate_out:
sl@0
   318
#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
sl@0
   319
  {
sl@0
   320
    char zBuf[100];
sl@0
   321
    sqlite3VdbeMemPrettyPrint(pMem, zBuf);
sl@0
   322
    fprintf(stderr, "OUTPUT: %s\n", zBuf);
sl@0
   323
  }
sl@0
   324
#endif
sl@0
   325
  return SQLITE_OK;
sl@0
   326
}
sl@0
   327
sl@0
   328
/*
sl@0
   329
** This routine checks for a byte-order mark at the beginning of the 
sl@0
   330
** UTF-16 string stored in *pMem. If one is present, it is removed and
sl@0
   331
** the encoding of the Mem adjusted. This routine does not do any
sl@0
   332
** byte-swapping, it just sets Mem.enc appropriately.
sl@0
   333
**
sl@0
   334
** The allocation (static, dynamic etc.) and encoding of the Mem may be
sl@0
   335
** changed by this function.
sl@0
   336
*/
sl@0
   337
int sqlite3VdbeMemHandleBom(Mem *pMem){
sl@0
   338
  int rc = SQLITE_OK;
sl@0
   339
  u8 bom = 0;
sl@0
   340
sl@0
   341
  if( pMem->n<0 || pMem->n>1 ){
sl@0
   342
    u8 b1 = *(u8 *)pMem->z;
sl@0
   343
    u8 b2 = *(((u8 *)pMem->z) + 1);
sl@0
   344
    if( b1==0xFE && b2==0xFF ){
sl@0
   345
      bom = SQLITE_UTF16BE;
sl@0
   346
    }
sl@0
   347
    if( b1==0xFF && b2==0xFE ){
sl@0
   348
      bom = SQLITE_UTF16LE;
sl@0
   349
    }
sl@0
   350
  }
sl@0
   351
  
sl@0
   352
  if( bom ){
sl@0
   353
    rc = sqlite3VdbeMemMakeWriteable(pMem);
sl@0
   354
    if( rc==SQLITE_OK ){
sl@0
   355
      pMem->n -= 2;
sl@0
   356
      memmove(pMem->z, &pMem->z[2], pMem->n);
sl@0
   357
      pMem->z[pMem->n] = '\0';
sl@0
   358
      pMem->z[pMem->n+1] = '\0';
sl@0
   359
      pMem->flags |= MEM_Term;
sl@0
   360
      pMem->enc = bom;
sl@0
   361
    }
sl@0
   362
  }
sl@0
   363
  return rc;
sl@0
   364
}
sl@0
   365
#endif /* SQLITE_OMIT_UTF16 */
sl@0
   366
sl@0
   367
/*
sl@0
   368
** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
sl@0
   369
** return the number of unicode characters in pZ up to (but not including)
sl@0
   370
** the first 0x00 byte. If nByte is not less than zero, return the
sl@0
   371
** number of unicode characters in the first nByte of pZ (or up to 
sl@0
   372
** the first 0x00, whichever comes first).
sl@0
   373
*/
sl@0
   374
int sqlite3Utf8CharLen(const char *zIn, int nByte){
sl@0
   375
  int r = 0;
sl@0
   376
  const u8 *z = (const u8*)zIn;
sl@0
   377
  const u8 *zTerm;
sl@0
   378
  if( nByte>=0 ){
sl@0
   379
    zTerm = &z[nByte];
sl@0
   380
  }else{
sl@0
   381
    zTerm = (const u8*)(-1);
sl@0
   382
  }
sl@0
   383
  assert( z<=zTerm );
sl@0
   384
  while( *z!=0 && z<zTerm ){
sl@0
   385
    SQLITE_SKIP_UTF8(z);
sl@0
   386
    r++;
sl@0
   387
  }
sl@0
   388
  return r;
sl@0
   389
}
sl@0
   390
sl@0
   391
/* This test function is not currently used by the automated test-suite. 
sl@0
   392
** Hence it is only available in debug builds.
sl@0
   393
*/
sl@0
   394
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
sl@0
   395
/*
sl@0
   396
** Translate UTF-8 to UTF-8.
sl@0
   397
**
sl@0
   398
** This has the effect of making sure that the string is well-formed
sl@0
   399
** UTF-8.  Miscoded characters are removed.
sl@0
   400
**
sl@0
   401
** The translation is done in-place (since it is impossible for the
sl@0
   402
** correct UTF-8 encoding to be longer than a malformed encoding).
sl@0
   403
*/
sl@0
   404
int sqlite3Utf8To8(unsigned char *zIn){
sl@0
   405
  unsigned char *zOut = zIn;
sl@0
   406
  unsigned char *zStart = zIn;
sl@0
   407
  unsigned char *zTerm = &zIn[strlen((char *)zIn)];
sl@0
   408
  u32 c;
sl@0
   409
sl@0
   410
  while( zIn[0] ){
sl@0
   411
    c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn);
sl@0
   412
    if( c!=0xfffd ){
sl@0
   413
      WRITE_UTF8(zOut, c);
sl@0
   414
    }
sl@0
   415
  }
sl@0
   416
  *zOut = 0;
sl@0
   417
  return zOut - zStart;
sl@0
   418
}
sl@0
   419
#endif
sl@0
   420
sl@0
   421
#ifndef SQLITE_OMIT_UTF16
sl@0
   422
/*
sl@0
   423
** Convert a UTF-16 string in the native encoding into a UTF-8 string.
sl@0
   424
** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
sl@0
   425
** be freed by the calling function.
sl@0
   426
**
sl@0
   427
** NULL is returned if there is an allocation error.
sl@0
   428
*/
sl@0
   429
char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte){
sl@0
   430
  Mem m;
sl@0
   431
  memset(&m, 0, sizeof(m));
sl@0
   432
  m.db = db;
sl@0
   433
  sqlite3VdbeMemSetStr(&m, z, nByte, SQLITE_UTF16NATIVE, SQLITE_STATIC);
sl@0
   434
  sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
sl@0
   435
  if( db->mallocFailed ){
sl@0
   436
    sqlite3VdbeMemRelease(&m);
sl@0
   437
    m.z = 0;
sl@0
   438
  }
sl@0
   439
  assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
sl@0
   440
  assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
sl@0
   441
  return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z);
sl@0
   442
}
sl@0
   443
sl@0
   444
/*
sl@0
   445
** pZ is a UTF-16 encoded unicode string. If nChar is less than zero,
sl@0
   446
** return the number of bytes up to (but not including), the first pair
sl@0
   447
** of consecutive 0x00 bytes in pZ. If nChar is not less than zero,
sl@0
   448
** then return the number of bytes in the first nChar unicode characters
sl@0
   449
** in pZ (or up until the first pair of 0x00 bytes, whichever comes first).
sl@0
   450
*/
sl@0
   451
int sqlite3Utf16ByteLen(const void *zIn, int nChar){
sl@0
   452
  unsigned int c = 1;
sl@0
   453
  char const *z = zIn;
sl@0
   454
  int n = 0;
sl@0
   455
  if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
sl@0
   456
    /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here
sl@0
   457
    ** and in other parts of this file means that at one branch will
sl@0
   458
    ** not be covered by coverage testing on any single host. But coverage
sl@0
   459
    ** will be complete if the tests are run on both a little-endian and 
sl@0
   460
    ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE
sl@0
   461
    ** macros are constant at compile time the compiler can determine
sl@0
   462
    ** which branch will be followed. It is therefore assumed that no runtime
sl@0
   463
    ** penalty is paid for this "if" statement.
sl@0
   464
    */
sl@0
   465
    while( c && ((nChar<0) || n<nChar) ){
sl@0
   466
      READ_UTF16BE(z, c);
sl@0
   467
      n++;
sl@0
   468
    }
sl@0
   469
  }else{
sl@0
   470
    while( c && ((nChar<0) || n<nChar) ){
sl@0
   471
      READ_UTF16LE(z, c);
sl@0
   472
      n++;
sl@0
   473
    }
sl@0
   474
  }
sl@0
   475
  return (z-(char const *)zIn)-((c==0)?2:0);
sl@0
   476
}
sl@0
   477
sl@0
   478
#if defined(SQLITE_TEST)
sl@0
   479
/*
sl@0
   480
** This routine is called from the TCL test function "translate_selftest".
sl@0
   481
** It checks that the primitives for serializing and deserializing
sl@0
   482
** characters in each encoding are inverses of each other.
sl@0
   483
*/
sl@0
   484
void sqlite3UtfSelfTest(void){
sl@0
   485
  unsigned int i, t;
sl@0
   486
  unsigned char zBuf[20];
sl@0
   487
  unsigned char *z;
sl@0
   488
  unsigned char *zTerm;
sl@0
   489
  int n;
sl@0
   490
  unsigned int c;
sl@0
   491
sl@0
   492
  for(i=0; i<0x00110000; i++){
sl@0
   493
    z = zBuf;
sl@0
   494
    WRITE_UTF8(z, i);
sl@0
   495
    n = z-zBuf;
sl@0
   496
    z[0] = 0;
sl@0
   497
    zTerm = z;
sl@0
   498
    z = zBuf;
sl@0
   499
    c = sqlite3Utf8Read(z, zTerm, (const u8**)&z);
sl@0
   500
    t = i;
sl@0
   501
    if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
sl@0
   502
    if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
sl@0
   503
    assert( c==t );
sl@0
   504
    assert( (z-zBuf)==n );
sl@0
   505
  }
sl@0
   506
  for(i=0; i<0x00110000; i++){
sl@0
   507
    if( i>=0xD800 && i<0xE000 ) continue;
sl@0
   508
    z = zBuf;
sl@0
   509
    WRITE_UTF16LE(z, i);
sl@0
   510
    n = z-zBuf;
sl@0
   511
    z[0] = 0;
sl@0
   512
    z = zBuf;
sl@0
   513
    READ_UTF16LE(z, c);
sl@0
   514
    assert( c==i );
sl@0
   515
    assert( (z-zBuf)==n );
sl@0
   516
  }
sl@0
   517
  for(i=0; i<0x00110000; i++){
sl@0
   518
    if( i>=0xD800 && i<0xE000 ) continue;
sl@0
   519
    z = zBuf;
sl@0
   520
    WRITE_UTF16BE(z, i);
sl@0
   521
    n = z-zBuf;
sl@0
   522
    z[0] = 0;
sl@0
   523
    z = zBuf;
sl@0
   524
    READ_UTF16BE(z, c);
sl@0
   525
    assert( c==i );
sl@0
   526
    assert( (z-zBuf)==n );
sl@0
   527
  }
sl@0
   528
}
sl@0
   529
#endif /* SQLITE_TEST */
sl@0
   530
#endif /* SQLITE_OMIT_UTF16 */