sl@0: /* sl@0: ** 2004 April 13 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This file contains routines used to translate between UTF-8, sl@0: ** UTF-16, UTF-16BE, and UTF-16LE. sl@0: ** sl@0: ** $Id: utf.c,v 1.65 2008/08/12 15:04:59 danielk1977 Exp $ sl@0: ** sl@0: ** Notes on UTF-8: sl@0: ** sl@0: ** Byte-0 Byte-1 Byte-2 Byte-3 Value sl@0: ** 0xxxxxxx 00000000 00000000 0xxxxxxx sl@0: ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx sl@0: ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx sl@0: ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx sl@0: ** sl@0: ** sl@0: ** Notes on UTF-16: (with wwww+1==uuuuu) sl@0: ** sl@0: ** Word-0 Word-1 Value sl@0: ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx sl@0: ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx sl@0: ** sl@0: ** sl@0: ** BOM or Byte Order Mark: sl@0: ** 0xff 0xfe little-endian utf-16 follows sl@0: ** 0xfe 0xff big-endian utf-16 follows sl@0: ** sl@0: */ sl@0: #include "sqliteInt.h" sl@0: #include sl@0: #include "vdbeInt.h" sl@0: sl@0: /* sl@0: ** The following constant value is used by the SQLITE_BIGENDIAN and sl@0: ** SQLITE_LITTLEENDIAN macros. sl@0: */ sl@0: const int sqlite3one = 1; sl@0: sl@0: /* sl@0: ** This lookup table is used to help decode the first byte of sl@0: ** a multi-byte UTF8 character. sl@0: */ sl@0: static const unsigned char sqlite3UtfTrans1[] = { sl@0: 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, sl@0: 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, sl@0: 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, sl@0: 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, sl@0: 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, sl@0: 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, sl@0: 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, sl@0: 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, sl@0: }; sl@0: sl@0: sl@0: #define WRITE_UTF8(zOut, c) { \ sl@0: if( c<0x00080 ){ \ sl@0: *zOut++ = (c&0xFF); \ sl@0: } \ sl@0: else if( c<0x00800 ){ \ sl@0: *zOut++ = 0xC0 + ((c>>6)&0x1F); \ sl@0: *zOut++ = 0x80 + (c & 0x3F); \ sl@0: } \ sl@0: else if( c<0x10000 ){ \ sl@0: *zOut++ = 0xE0 + ((c>>12)&0x0F); \ sl@0: *zOut++ = 0x80 + ((c>>6) & 0x3F); \ sl@0: *zOut++ = 0x80 + (c & 0x3F); \ sl@0: }else{ \ sl@0: *zOut++ = 0xF0 + ((c>>18) & 0x07); \ sl@0: *zOut++ = 0x80 + ((c>>12) & 0x3F); \ sl@0: *zOut++ = 0x80 + ((c>>6) & 0x3F); \ sl@0: *zOut++ = 0x80 + (c & 0x3F); \ sl@0: } \ sl@0: } sl@0: sl@0: #define WRITE_UTF16LE(zOut, c) { \ sl@0: if( c<=0xFFFF ){ \ sl@0: *zOut++ = (c&0x00FF); \ sl@0: *zOut++ = ((c>>8)&0x00FF); \ sl@0: }else{ \ sl@0: *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ sl@0: *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ sl@0: *zOut++ = (c&0x00FF); \ sl@0: *zOut++ = (0x00DC + ((c>>8)&0x03)); \ sl@0: } \ sl@0: } sl@0: sl@0: #define WRITE_UTF16BE(zOut, c) { \ sl@0: if( c<=0xFFFF ){ \ sl@0: *zOut++ = ((c>>8)&0x00FF); \ sl@0: *zOut++ = (c&0x00FF); \ sl@0: }else{ \ sl@0: *zOut++ = (0x00D8 + (((c-0x10000)>>18)&0x03)); \ sl@0: *zOut++ = (((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ sl@0: *zOut++ = (0x00DC + ((c>>8)&0x03)); \ sl@0: *zOut++ = (c&0x00FF); \ sl@0: } \ sl@0: } sl@0: sl@0: #define READ_UTF16LE(zIn, c){ \ sl@0: c = (*zIn++); \ sl@0: c += ((*zIn++)<<8); \ sl@0: if( c>=0xD800 && c<0xE000 ){ \ sl@0: int c2 = (*zIn++); \ sl@0: c2 += ((*zIn++)<<8); \ sl@0: c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ sl@0: if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \ sl@0: } \ sl@0: } sl@0: sl@0: #define READ_UTF16BE(zIn, c){ \ sl@0: c = ((*zIn++)<<8); \ sl@0: c += (*zIn++); \ sl@0: if( c>=0xD800 && c<0xE000 ){ \ sl@0: int c2 = ((*zIn++)<<8); \ sl@0: c2 += (*zIn++); \ sl@0: c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ sl@0: if( (c & 0xFFFF0000)==0 ) c = 0xFFFD; \ sl@0: } \ sl@0: } sl@0: sl@0: /* sl@0: ** Translate a single UTF-8 character. Return the unicode value. sl@0: ** sl@0: ** During translation, assume that the byte that zTerm points sl@0: ** is a 0x00. sl@0: ** sl@0: ** Write a pointer to the next unread byte back into *pzNext. sl@0: ** sl@0: ** Notes On Invalid UTF-8: sl@0: ** sl@0: ** * This routine never allows a 7-bit character (0x00 through 0x7f) to sl@0: ** be encoded as a multi-byte character. Any multi-byte character that sl@0: ** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. sl@0: ** sl@0: ** * This routine never allows a UTF16 surrogate value to be encoded. sl@0: ** If a multi-byte character attempts to encode a value between sl@0: ** 0xd800 and 0xe000 then it is rendered as 0xfffd. sl@0: ** sl@0: ** * Bytes in the range of 0x80 through 0xbf which occur as the first sl@0: ** byte of a character are interpreted as single-byte characters sl@0: ** and rendered as themselves even though they are technically sl@0: ** invalid characters. sl@0: ** sl@0: ** * This routine accepts an infinite number of different UTF8 encodings sl@0: ** for unicode values 0x80 and greater. It do not change over-length sl@0: ** encodings to 0xfffd as some systems recommend. sl@0: */ sl@0: #define READ_UTF8(zIn, zTerm, c) \ sl@0: c = *(zIn++); \ sl@0: if( c>=0xc0 ){ \ sl@0: c = sqlite3UtfTrans1[c-0xc0]; \ sl@0: while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ sl@0: c = (c<<6) + (0x3f & *(zIn++)); \ sl@0: } \ sl@0: if( c<0x80 \ sl@0: || (c&0xFFFFF800)==0xD800 \ sl@0: || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ sl@0: } sl@0: int sqlite3Utf8Read( sl@0: const unsigned char *z, /* First byte of UTF-8 character */ sl@0: const unsigned char *zTerm, /* Pretend this byte is 0x00 */ sl@0: const unsigned char **pzNext /* Write first byte past UTF-8 char here */ sl@0: ){ sl@0: int c; sl@0: READ_UTF8(z, zTerm, c); sl@0: *pzNext = z; sl@0: return c; sl@0: } sl@0: sl@0: sl@0: sl@0: sl@0: /* sl@0: ** If the TRANSLATE_TRACE macro is defined, the value of each Mem is sl@0: ** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). sl@0: */ sl@0: /* #define TRANSLATE_TRACE 1 */ sl@0: sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: /* sl@0: ** This routine transforms the internal text encoding used by pMem to sl@0: ** desiredEnc. It is an error if the string is already of the desired sl@0: ** encoding, or if *pMem does not contain a string value. sl@0: */ sl@0: int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ sl@0: int len; /* Maximum length of output string in bytes */ sl@0: unsigned char *zOut; /* Output buffer */ sl@0: unsigned char *zIn; /* Input iterator */ sl@0: unsigned char *zTerm; /* End of input */ sl@0: unsigned char *z; /* Output iterator */ sl@0: unsigned int c; sl@0: sl@0: assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); sl@0: assert( pMem->flags&MEM_Str ); sl@0: assert( pMem->enc!=desiredEnc ); sl@0: assert( pMem->enc!=0 ); sl@0: assert( pMem->n>=0 ); sl@0: sl@0: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) sl@0: { sl@0: char zBuf[100]; sl@0: sqlite3VdbeMemPrettyPrint(pMem, zBuf); sl@0: fprintf(stderr, "INPUT: %s\n", zBuf); sl@0: } sl@0: #endif sl@0: sl@0: /* If the translation is between UTF-16 little and big endian, then sl@0: ** all that is required is to swap the byte order. This case is handled sl@0: ** differently from the others. sl@0: */ sl@0: if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ sl@0: u8 temp; sl@0: int rc; sl@0: rc = sqlite3VdbeMemMakeWriteable(pMem); sl@0: if( rc!=SQLITE_OK ){ sl@0: assert( rc==SQLITE_NOMEM ); sl@0: return SQLITE_NOMEM; sl@0: } sl@0: zIn = (u8*)pMem->z; sl@0: zTerm = &zIn[pMem->n]; sl@0: while( zInenc = desiredEnc; sl@0: goto translate_out; sl@0: } sl@0: sl@0: /* Set len to the maximum number of bytes required in the output buffer. */ sl@0: if( desiredEnc==SQLITE_UTF8 ){ sl@0: /* When converting from UTF-16, the maximum growth results from sl@0: ** translating a 2-byte character to a 4-byte UTF-8 character. sl@0: ** A single byte is required for the output string sl@0: ** nul-terminator. sl@0: */ sl@0: len = pMem->n * 2 + 1; sl@0: }else{ sl@0: /* When converting from UTF-8 to UTF-16 the maximum growth is caused sl@0: ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 sl@0: ** character. Two bytes are required in the output buffer for the sl@0: ** nul-terminator. sl@0: */ sl@0: len = pMem->n * 2 + 2; sl@0: } sl@0: sl@0: /* Set zIn to point at the start of the input buffer and zTerm to point 1 sl@0: ** byte past the end. sl@0: ** sl@0: ** Variable zOut is set to point at the output buffer, space obtained sl@0: ** from sqlite3_malloc(). sl@0: */ sl@0: zIn = (u8*)pMem->z; sl@0: zTerm = &zIn[pMem->n]; sl@0: zOut = sqlite3DbMallocRaw(pMem->db, len); sl@0: if( !zOut ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: z = zOut; sl@0: sl@0: if( pMem->enc==SQLITE_UTF8 ){ sl@0: if( desiredEnc==SQLITE_UTF16LE ){ sl@0: /* UTF-8 -> UTF-16 Little-endian */ sl@0: while( zIn UTF-16 Big-endian */ sl@0: while( zInn = z - zOut; sl@0: *z++ = 0; sl@0: }else{ sl@0: assert( desiredEnc==SQLITE_UTF8 ); sl@0: if( pMem->enc==SQLITE_UTF16LE ){ sl@0: /* UTF-16 Little-endian -> UTF-8 */ sl@0: while( zIn UTF-8 */ sl@0: while( zInn = z - zOut; sl@0: } sl@0: *z = 0; sl@0: assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); sl@0: sl@0: sqlite3VdbeMemRelease(pMem); sl@0: pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); sl@0: pMem->enc = desiredEnc; sl@0: pMem->flags |= (MEM_Term|MEM_Dyn); sl@0: pMem->z = (char*)zOut; sl@0: pMem->zMalloc = pMem->z; sl@0: sl@0: translate_out: sl@0: #if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) sl@0: { sl@0: char zBuf[100]; sl@0: sqlite3VdbeMemPrettyPrint(pMem, zBuf); sl@0: fprintf(stderr, "OUTPUT: %s\n", zBuf); sl@0: } sl@0: #endif sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** This routine checks for a byte-order mark at the beginning of the sl@0: ** UTF-16 string stored in *pMem. If one is present, it is removed and sl@0: ** the encoding of the Mem adjusted. This routine does not do any sl@0: ** byte-swapping, it just sets Mem.enc appropriately. sl@0: ** sl@0: ** The allocation (static, dynamic etc.) and encoding of the Mem may be sl@0: ** changed by this function. sl@0: */ sl@0: int sqlite3VdbeMemHandleBom(Mem *pMem){ sl@0: int rc = SQLITE_OK; sl@0: u8 bom = 0; sl@0: sl@0: if( pMem->n<0 || pMem->n>1 ){ sl@0: u8 b1 = *(u8 *)pMem->z; sl@0: u8 b2 = *(((u8 *)pMem->z) + 1); sl@0: if( b1==0xFE && b2==0xFF ){ sl@0: bom = SQLITE_UTF16BE; sl@0: } sl@0: if( b1==0xFF && b2==0xFE ){ sl@0: bom = SQLITE_UTF16LE; sl@0: } sl@0: } sl@0: sl@0: if( bom ){ sl@0: rc = sqlite3VdbeMemMakeWriteable(pMem); sl@0: if( rc==SQLITE_OK ){ sl@0: pMem->n -= 2; sl@0: memmove(pMem->z, &pMem->z[2], pMem->n); sl@0: pMem->z[pMem->n] = '\0'; sl@0: pMem->z[pMem->n+1] = '\0'; sl@0: pMem->flags |= MEM_Term; sl@0: pMem->enc = bom; sl@0: } sl@0: } sl@0: return rc; sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: sl@0: /* sl@0: ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, sl@0: ** return the number of unicode characters in pZ up to (but not including) sl@0: ** the first 0x00 byte. If nByte is not less than zero, return the sl@0: ** number of unicode characters in the first nByte of pZ (or up to sl@0: ** the first 0x00, whichever comes first). sl@0: */ sl@0: int sqlite3Utf8CharLen(const char *zIn, int nByte){ sl@0: int r = 0; sl@0: const u8 *z = (const u8*)zIn; sl@0: const u8 *zTerm; sl@0: if( nByte>=0 ){ sl@0: zTerm = &z[nByte]; sl@0: }else{ sl@0: zTerm = (const u8*)(-1); sl@0: } sl@0: assert( z<=zTerm ); sl@0: while( *z!=0 && zmallocFailed ){ sl@0: sqlite3VdbeMemRelease(&m); sl@0: m.z = 0; sl@0: } sl@0: assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); sl@0: assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); sl@0: return (m.flags & MEM_Dyn)!=0 ? m.z : sqlite3DbStrDup(db, m.z); sl@0: } sl@0: sl@0: /* sl@0: ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero, sl@0: ** return the number of bytes up to (but not including), the first pair sl@0: ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero, sl@0: ** then return the number of bytes in the first nChar unicode characters sl@0: ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first). sl@0: */ sl@0: int sqlite3Utf16ByteLen(const void *zIn, int nChar){ sl@0: unsigned int c = 1; sl@0: char const *z = zIn; sl@0: int n = 0; sl@0: if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ sl@0: /* Using an "if (SQLITE_UTF16NATIVE==SQLITE_UTF16BE)" construct here sl@0: ** and in other parts of this file means that at one branch will sl@0: ** not be covered by coverage testing on any single host. But coverage sl@0: ** will be complete if the tests are run on both a little-endian and sl@0: ** big-endian host. Because both the UTF16NATIVE and SQLITE_UTF16BE sl@0: ** macros are constant at compile time the compiler can determine sl@0: ** which branch will be followed. It is therefore assumed that no runtime sl@0: ** penalty is paid for this "if" statement. sl@0: */ sl@0: while( c && ((nChar<0) || n=0xD800 && i<=0xDFFF ) t = 0xFFFD; sl@0: if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; sl@0: assert( c==t ); sl@0: assert( (z-zBuf)==n ); sl@0: } sl@0: for(i=0; i<0x00110000; i++){ sl@0: if( i>=0xD800 && i<0xE000 ) continue; sl@0: z = zBuf; sl@0: WRITE_UTF16LE(z, i); sl@0: n = z-zBuf; sl@0: z[0] = 0; sl@0: z = zBuf; sl@0: READ_UTF16LE(z, c); sl@0: assert( c==i ); sl@0: assert( (z-zBuf)==n ); sl@0: } sl@0: for(i=0; i<0x00110000; i++){ sl@0: if( i>=0xD800 && i<0xE000 ) continue; sl@0: z = zBuf; sl@0: WRITE_UTF16BE(z, i); sl@0: n = z-zBuf; sl@0: z[0] = 0; sl@0: z = zBuf; sl@0: READ_UTF16BE(z, c); sl@0: assert( c==i ); sl@0: assert( (z-zBuf)==n ); sl@0: } sl@0: } sl@0: #endif /* SQLITE_TEST */ sl@0: #endif /* SQLITE_OMIT_UTF16 */