sl@0
|
1 |
/*
|
sl@0
|
2 |
* Copyright (c) 1983, 1993
|
sl@0
|
3 |
* The Regents of the University of California. All rights reserved.
|
sl@0
|
4 |
*
|
sl@0
|
5 |
* Redistribution and use in source and binary forms, with or without
|
sl@0
|
6 |
* modification, are permitted provided that the following conditions
|
sl@0
|
7 |
* are met:
|
sl@0
|
8 |
* 1. Redistributions of source code must retain the above copyright
|
sl@0
|
9 |
* notice, this list of conditions and the following disclaimer.
|
sl@0
|
10 |
* 2. Redistributions in binary form must reproduce the above copyright
|
sl@0
|
11 |
* notice, this list of conditions and the following disclaimer in the
|
sl@0
|
12 |
* documentation and/or other materials provided with the distribution.
|
sl@0
|
13 |
* 4. Neither the name of the University nor the names of its contributors
|
sl@0
|
14 |
* may be used to endorse or promote products derived from this software
|
sl@0
|
15 |
* without specific prior written permission.
|
sl@0
|
16 |
*
|
sl@0
|
17 |
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
sl@0
|
18 |
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
sl@0
|
19 |
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
sl@0
|
20 |
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
sl@0
|
21 |
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
sl@0
|
22 |
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
sl@0
|
23 |
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
sl@0
|
24 |
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
sl@0
|
25 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
sl@0
|
26 |
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
sl@0
|
27 |
* SUCH DAMAGE.
|
sl@0
|
28 |
* © Portions copyright (c) 2006 Nokia Corporation. All rights reserved.
|
sl@0
|
29 |
*/
|
sl@0
|
30 |
|
sl@0
|
31 |
#if defined(LIBC_SCCS) && !defined(lint)
|
sl@0
|
32 |
static char sccsid[] = "@(#)random.c 8.2 (Berkeley) 5/19/95";
|
sl@0
|
33 |
#endif /* LIBC_SCCS and not lint */
|
sl@0
|
34 |
#include <sys/cdefs.h>
|
sl@0
|
35 |
__FBSDID("$FreeBSD: src/lib/libc/stdlib/random.c,v 1.24 2004/01/20 03:02:18 das Exp $");
|
sl@0
|
36 |
|
sl@0
|
37 |
#include <sys/time.h> /* for srandomdev() */
|
sl@0
|
38 |
#include <fcntl.h> /* for srandomdev() */
|
sl@0
|
39 |
#include <stdint.h>
|
sl@0
|
40 |
#include <stdio.h>
|
sl@0
|
41 |
#include <stdlib.h>
|
sl@0
|
42 |
#include <unistd.h> /* for srandomdev() */
|
sl@0
|
43 |
|
sl@0
|
44 |
/*
|
sl@0
|
45 |
* random.c:
|
sl@0
|
46 |
*
|
sl@0
|
47 |
* An improved random number generation package. In addition to the standard
|
sl@0
|
48 |
* rand()/srand() like interface, this package also has a special state info
|
sl@0
|
49 |
* interface. The initstate() routine is called with a seed, an array of
|
sl@0
|
50 |
* bytes, and a count of how many bytes are being passed in; this array is
|
sl@0
|
51 |
* then initialized to contain information for random number generation with
|
sl@0
|
52 |
* that much state information. Good sizes for the amount of state
|
sl@0
|
53 |
* information are 32, 64, 128, and 256 bytes. The state can be switched by
|
sl@0
|
54 |
* calling the setstate() routine with the same array as was initiallized
|
sl@0
|
55 |
* with initstate(). By default, the package runs with 128 bytes of state
|
sl@0
|
56 |
* information and generates far better random numbers than a linear
|
sl@0
|
57 |
* congruential generator. If the amount of state information is less than
|
sl@0
|
58 |
* 32 bytes, a simple linear congruential R.N.G. is used.
|
sl@0
|
59 |
*
|
sl@0
|
60 |
* Internally, the state information is treated as an array of uint32_t's; the
|
sl@0
|
61 |
* zeroeth element of the array is the type of R.N.G. being used (small
|
sl@0
|
62 |
* integer); the remainder of the array is the state information for the
|
sl@0
|
63 |
* R.N.G. Thus, 32 bytes of state information will give 7 ints worth of
|
sl@0
|
64 |
* state information, which will allow a degree seven polynomial. (Note:
|
sl@0
|
65 |
* the zeroeth word of state information also has some other information
|
sl@0
|
66 |
* stored in it -- see setstate() for details).
|
sl@0
|
67 |
*
|
sl@0
|
68 |
* The random number generation technique is a linear feedback shift register
|
sl@0
|
69 |
* approach, employing trinomials (since there are fewer terms to sum up that
|
sl@0
|
70 |
* way). In this approach, the least significant bit of all the numbers in
|
sl@0
|
71 |
* the state table will act as a linear feedback shift register, and will
|
sl@0
|
72 |
* have period 2^deg - 1 (where deg is the degree of the polynomial being
|
sl@0
|
73 |
* used, assuming that the polynomial is irreducible and primitive). The
|
sl@0
|
74 |
* higher order bits will have longer periods, since their values are also
|
sl@0
|
75 |
* influenced by pseudo-random carries out of the lower bits. The total
|
sl@0
|
76 |
* period of the generator is approximately deg*(2**deg - 1); thus doubling
|
sl@0
|
77 |
* the amount of state information has a vast influence on the period of the
|
sl@0
|
78 |
* generator. Note: the deg*(2**deg - 1) is an approximation only good for
|
sl@0
|
79 |
* large deg, when the period of the shift is the dominant factor.
|
sl@0
|
80 |
* With deg equal to seven, the period is actually much longer than the
|
sl@0
|
81 |
* 7*(2**7 - 1) predicted by this formula.
|
sl@0
|
82 |
*
|
sl@0
|
83 |
* Modified 28 December 1994 by Jacob S. Rosenberg.
|
sl@0
|
84 |
* The following changes have been made:
|
sl@0
|
85 |
* All references to the type u_int have been changed to unsigned long.
|
sl@0
|
86 |
* All references to type int have been changed to type long. Other
|
sl@0
|
87 |
* cleanups have been made as well. A warning for both initstate and
|
sl@0
|
88 |
* setstate has been inserted to the effect that on Sparc platforms
|
sl@0
|
89 |
* the 'arg_state' variable must be forced to begin on word boundaries.
|
sl@0
|
90 |
* This can be easily done by casting a long integer array to char *.
|
sl@0
|
91 |
* The overall logic has been left STRICTLY alone. This software was
|
sl@0
|
92 |
* tested on both a VAX and Sun SpacsStation with exactly the same
|
sl@0
|
93 |
* results. The new version and the original give IDENTICAL results.
|
sl@0
|
94 |
* The new version is somewhat faster than the original. As the
|
sl@0
|
95 |
* documentation says: "By default, the package runs with 128 bytes of
|
sl@0
|
96 |
* state information and generates far better random numbers than a linear
|
sl@0
|
97 |
* congruential generator. If the amount of state information is less than
|
sl@0
|
98 |
* 32 bytes, a simple linear congruential R.N.G. is used." For a buffer of
|
sl@0
|
99 |
* 128 bytes, this new version runs about 19 percent faster and for a 16
|
sl@0
|
100 |
* byte buffer it is about 5 percent faster.
|
sl@0
|
101 |
*/
|
sl@0
|
102 |
|
sl@0
|
103 |
/*
|
sl@0
|
104 |
* For each of the currently supported random number generators, we have a
|
sl@0
|
105 |
* break value on the amount of state information (you need at least this
|
sl@0
|
106 |
* many bytes of state info to support this random number generator), a degree
|
sl@0
|
107 |
* for the polynomial (actually a trinomial) that the R.N.G. is based on, and
|
sl@0
|
108 |
* the separation between the two lower order coefficients of the trinomial.
|
sl@0
|
109 |
*/
|
sl@0
|
110 |
#define TYPE_0 0 /* linear congruential */
|
sl@0
|
111 |
#define BREAK_0 8
|
sl@0
|
112 |
#define DEG_0 0
|
sl@0
|
113 |
#define SEP_0 0
|
sl@0
|
114 |
|
sl@0
|
115 |
#define TYPE_1 1 /* x**7 + x**3 + 1 */
|
sl@0
|
116 |
#define BREAK_1 32
|
sl@0
|
117 |
#define DEG_1 7
|
sl@0
|
118 |
#define SEP_1 3
|
sl@0
|
119 |
|
sl@0
|
120 |
#define TYPE_2 2 /* x**15 + x + 1 */
|
sl@0
|
121 |
#define BREAK_2 64
|
sl@0
|
122 |
#define DEG_2 15
|
sl@0
|
123 |
#define SEP_2 1
|
sl@0
|
124 |
|
sl@0
|
125 |
#define TYPE_3 3 /* x**31 + x**3 + 1 */
|
sl@0
|
126 |
#define BREAK_3 128
|
sl@0
|
127 |
#define DEG_3 31
|
sl@0
|
128 |
#define SEP_3 3
|
sl@0
|
129 |
|
sl@0
|
130 |
#define TYPE_4 4 /* x**63 + x + 1 */
|
sl@0
|
131 |
#define BREAK_4 256
|
sl@0
|
132 |
#define DEG_4 63
|
sl@0
|
133 |
#define SEP_4 1
|
sl@0
|
134 |
|
sl@0
|
135 |
/*
|
sl@0
|
136 |
* Array versions of the above information to make code run faster --
|
sl@0
|
137 |
* relies on fact that TYPE_i == i.
|
sl@0
|
138 |
*/
|
sl@0
|
139 |
#define MAX_TYPES 5 /* max number of types above */
|
sl@0
|
140 |
|
sl@0
|
141 |
#ifdef USE_WEAK_SEEDING
|
sl@0
|
142 |
#define NSHUFF 0
|
sl@0
|
143 |
#else /* !USE_WEAK_SEEDING */
|
sl@0
|
144 |
#define NSHUFF 50 /* to drop some "seed -> 1st value" linearity */
|
sl@0
|
145 |
#endif /* !USE_WEAK_SEEDING */
|
sl@0
|
146 |
|
sl@0
|
147 |
static const int degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
|
sl@0
|
148 |
static const int seps [MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
|
sl@0
|
149 |
|
sl@0
|
150 |
/*
|
sl@0
|
151 |
* Initially, everything is set up as if from:
|
sl@0
|
152 |
*
|
sl@0
|
153 |
* initstate(1, randtbl, 128);
|
sl@0
|
154 |
*
|
sl@0
|
155 |
* Note that this initialization takes advantage of the fact that srandom()
|
sl@0
|
156 |
* advances the front and rear pointers 10*rand_deg times, and hence the
|
sl@0
|
157 |
* rear pointer which starts at 0 will also end up at zero; thus the zeroeth
|
sl@0
|
158 |
* element of the state information, which contains info about the current
|
sl@0
|
159 |
* position of the rear pointer is just
|
sl@0
|
160 |
*
|
sl@0
|
161 |
* MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
|
sl@0
|
162 |
*/
|
sl@0
|
163 |
|
sl@0
|
164 |
static uint32_t randtbl[DEG_3 + 1] = {
|
sl@0
|
165 |
TYPE_3,
|
sl@0
|
166 |
#ifdef USE_WEAK_SEEDING
|
sl@0
|
167 |
/* Historic implementation compatibility */
|
sl@0
|
168 |
/* The random sequences do not vary much with the seed */
|
sl@0
|
169 |
0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
|
sl@0
|
170 |
0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
|
sl@0
|
171 |
0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
|
sl@0
|
172 |
0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
|
sl@0
|
173 |
0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
|
sl@0
|
174 |
0x27fb47b9,
|
sl@0
|
175 |
#else /* !USE_WEAK_SEEDING */
|
sl@0
|
176 |
0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
|
sl@0
|
177 |
0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
|
sl@0
|
178 |
0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
|
sl@0
|
179 |
0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
|
sl@0
|
180 |
0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
|
sl@0
|
181 |
0xf3bec5da
|
sl@0
|
182 |
#endif /* !USE_WEAK_SEEDING */
|
sl@0
|
183 |
};
|
sl@0
|
184 |
|
sl@0
|
185 |
/*
|
sl@0
|
186 |
* fptr and rptr are two pointers into the state info, a front and a rear
|
sl@0
|
187 |
* pointer. These two pointers are always rand_sep places aparts, as they
|
sl@0
|
188 |
* cycle cyclically through the state information. (Yes, this does mean we
|
sl@0
|
189 |
* could get away with just one pointer, but the code for random() is more
|
sl@0
|
190 |
* efficient this way). The pointers are left positioned as they would be
|
sl@0
|
191 |
* from the call
|
sl@0
|
192 |
*
|
sl@0
|
193 |
* initstate(1, randtbl, 128);
|
sl@0
|
194 |
*
|
sl@0
|
195 |
* (The position of the rear pointer, rptr, is really 0 (as explained above
|
sl@0
|
196 |
* in the initialization of randtbl) because the state table pointer is set
|
sl@0
|
197 |
* to point to randtbl[1] (as explained below).
|
sl@0
|
198 |
*/
|
sl@0
|
199 |
static uint32_t *fptr = &randtbl[SEP_3 + 1];
|
sl@0
|
200 |
static uint32_t *rptr = &randtbl[1];
|
sl@0
|
201 |
|
sl@0
|
202 |
/*
|
sl@0
|
203 |
* The following things are the pointer to the state information table, the
|
sl@0
|
204 |
* type of the current generator, the degree of the current polynomial being
|
sl@0
|
205 |
* used, and the separation between the two pointers. Note that for efficiency
|
sl@0
|
206 |
* of random(), we remember the first location of the state information, not
|
sl@0
|
207 |
* the zeroeth. Hence it is valid to access state[-1], which is used to
|
sl@0
|
208 |
* store the type of the R.N.G. Also, we remember the last location, since
|
sl@0
|
209 |
* this is more efficient than indexing every time to find the address of
|
sl@0
|
210 |
* the last element to see if the front and rear pointers have wrapped.
|
sl@0
|
211 |
*/
|
sl@0
|
212 |
static uint32_t *state = &randtbl[1];
|
sl@0
|
213 |
static int rand_type = TYPE_3;
|
sl@0
|
214 |
static int rand_deg = DEG_3;
|
sl@0
|
215 |
static int rand_sep = SEP_3;
|
sl@0
|
216 |
static uint32_t *end_ptr = &randtbl[DEG_3 + 1];
|
sl@0
|
217 |
|
sl@0
|
218 |
static inline uint32_t good_rand(int32_t);
|
sl@0
|
219 |
|
sl@0
|
220 |
static inline uint32_t good_rand (x)
|
sl@0
|
221 |
int32_t x;
|
sl@0
|
222 |
{
|
sl@0
|
223 |
#ifdef USE_WEAK_SEEDING
|
sl@0
|
224 |
/*
|
sl@0
|
225 |
* Historic implementation compatibility.
|
sl@0
|
226 |
* The random sequences do not vary much with the seed,
|
sl@0
|
227 |
* even with overflowing.
|
sl@0
|
228 |
*/
|
sl@0
|
229 |
return (1103515245 * x + 12345);
|
sl@0
|
230 |
#else /* !USE_WEAK_SEEDING */
|
sl@0
|
231 |
/*
|
sl@0
|
232 |
* Compute x = (7^5 * x) mod (2^31 - 1)
|
sl@0
|
233 |
* wihout overflowing 31 bits:
|
sl@0
|
234 |
* (2^31 - 1) = 127773 * (7^5) + 2836
|
sl@0
|
235 |
* From "Random number generators: good ones are hard to find",
|
sl@0
|
236 |
* Park and Miller, Communications of the ACM, vol. 31, no. 10,
|
sl@0
|
237 |
* October 1988, p. 1195.
|
sl@0
|
238 |
*/
|
sl@0
|
239 |
int32_t hi, lo;
|
sl@0
|
240 |
|
sl@0
|
241 |
/* Can't be initialized with 0, so use another value. */
|
sl@0
|
242 |
if (x == 0)
|
sl@0
|
243 |
x = 123459876;
|
sl@0
|
244 |
hi = x / 127773;
|
sl@0
|
245 |
lo = x % 127773;
|
sl@0
|
246 |
x = 16807 * lo - 2836 * hi;
|
sl@0
|
247 |
if (x < 0)
|
sl@0
|
248 |
x += 0x7fffffff;
|
sl@0
|
249 |
return (x);
|
sl@0
|
250 |
#endif /* !USE_WEAK_SEEDING */
|
sl@0
|
251 |
}
|
sl@0
|
252 |
|
sl@0
|
253 |
/*
|
sl@0
|
254 |
* srandom:
|
sl@0
|
255 |
*
|
sl@0
|
256 |
* Initialize the random number generator based on the given seed. If the
|
sl@0
|
257 |
* type is the trivial no-state-information type, just remember the seed.
|
sl@0
|
258 |
* Otherwise, initializes state[] based on the given "seed" via a linear
|
sl@0
|
259 |
* congruential generator. Then, the pointers are set to known locations
|
sl@0
|
260 |
* that are exactly rand_sep places apart. Lastly, it cycles the state
|
sl@0
|
261 |
* information a given number of times to get rid of any initial dependencies
|
sl@0
|
262 |
* introduced by the L.C.R.N.G. Note that the initialization of randtbl[]
|
sl@0
|
263 |
* for default usage relies on values produced by this routine.
|
sl@0
|
264 |
*/
|
sl@0
|
265 |
|
sl@0
|
266 |
EXPORT_C
|
sl@0
|
267 |
void
|
sl@0
|
268 |
srandom(x)
|
sl@0
|
269 |
unsigned long x;
|
sl@0
|
270 |
{
|
sl@0
|
271 |
int i, lim;
|
sl@0
|
272 |
|
sl@0
|
273 |
state[0] = (uint32_t)x;
|
sl@0
|
274 |
if (rand_type == TYPE_0)
|
sl@0
|
275 |
lim = NSHUFF;
|
sl@0
|
276 |
else {
|
sl@0
|
277 |
for (i = 1; i < rand_deg; i++)
|
sl@0
|
278 |
state[i] = good_rand(state[i - 1]);
|
sl@0
|
279 |
fptr = &state[rand_sep];
|
sl@0
|
280 |
rptr = &state[0];
|
sl@0
|
281 |
lim = 10 * rand_deg;
|
sl@0
|
282 |
}
|
sl@0
|
283 |
for (i = 0; i < lim; i++)
|
sl@0
|
284 |
(void)random();
|
sl@0
|
285 |
}
|
sl@0
|
286 |
#ifdef __SYMBIAN_COMPILE_UNUSED__
|
sl@0
|
287 |
/*
|
sl@0
|
288 |
* srandomdev:
|
sl@0
|
289 |
*
|
sl@0
|
290 |
* Many programs choose the seed value in a totally predictable manner.
|
sl@0
|
291 |
* This often causes problems. We seed the generator using the much more
|
sl@0
|
292 |
* secure random(4) interface. Note that this particular seeding
|
sl@0
|
293 |
* procedure can generate states which are impossible to reproduce by
|
sl@0
|
294 |
* calling srandom() with any value, since the succeeding terms in the
|
sl@0
|
295 |
* state buffer are no longer derived from the LC algorithm applied to
|
sl@0
|
296 |
* a fixed seed.
|
sl@0
|
297 |
*/
|
sl@0
|
298 |
void
|
sl@0
|
299 |
srandomdev()
|
sl@0
|
300 |
{
|
sl@0
|
301 |
int fd, done;
|
sl@0
|
302 |
size_t len;
|
sl@0
|
303 |
|
sl@0
|
304 |
if (rand_type == TYPE_0)
|
sl@0
|
305 |
len = sizeof state[0];
|
sl@0
|
306 |
else
|
sl@0
|
307 |
len = rand_deg * sizeof state[0];
|
sl@0
|
308 |
|
sl@0
|
309 |
done = 0;
|
sl@0
|
310 |
fd = open("/dev/random", O_RDONLY, 0);
|
sl@0
|
311 |
if (fd >= 0) {
|
sl@0
|
312 |
if (read(fd, (void *) state, len) == (ssize_t) len)
|
sl@0
|
313 |
done = 1;
|
sl@0
|
314 |
close(fd);
|
sl@0
|
315 |
}
|
sl@0
|
316 |
|
sl@0
|
317 |
if (!done) {
|
sl@0
|
318 |
struct timeval tv;
|
sl@0
|
319 |
unsigned long junk = 0;
|
sl@0
|
320 |
|
sl@0
|
321 |
gettimeofday(&tv, NULL);
|
sl@0
|
322 |
srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk);
|
sl@0
|
323 |
return;
|
sl@0
|
324 |
}
|
sl@0
|
325 |
|
sl@0
|
326 |
if (rand_type != TYPE_0) {
|
sl@0
|
327 |
fptr = &state[rand_sep];
|
sl@0
|
328 |
rptr = &state[0];
|
sl@0
|
329 |
}
|
sl@0
|
330 |
}
|
sl@0
|
331 |
#endif
|
sl@0
|
332 |
/*
|
sl@0
|
333 |
* initstate:
|
sl@0
|
334 |
*
|
sl@0
|
335 |
* Initialize the state information in the given array of n bytes for future
|
sl@0
|
336 |
* random number generation. Based on the number of bytes we are given, and
|
sl@0
|
337 |
* the break values for the different R.N.G.'s, we choose the best (largest)
|
sl@0
|
338 |
* one we can and set things up for it. srandom() is then called to
|
sl@0
|
339 |
* initialize the state information.
|
sl@0
|
340 |
*
|
sl@0
|
341 |
* Note that on return from srandom(), we set state[-1] to be the type
|
sl@0
|
342 |
* multiplexed with the current value of the rear pointer; this is so
|
sl@0
|
343 |
* successive calls to initstate() won't lose this information and will be
|
sl@0
|
344 |
* able to restart with setstate().
|
sl@0
|
345 |
*
|
sl@0
|
346 |
* Note: the first thing we do is save the current state, if any, just like
|
sl@0
|
347 |
* setstate() so that it doesn't matter when initstate is called.
|
sl@0
|
348 |
*
|
sl@0
|
349 |
* Returns a pointer to the old state.
|
sl@0
|
350 |
*
|
sl@0
|
351 |
* Note: The Sparc platform requires that arg_state begin on an int
|
sl@0
|
352 |
* word boundary; otherwise a bus error will occur. Even so, lint will
|
sl@0
|
353 |
* complain about mis-alignment, but you should disregard these messages.
|
sl@0
|
354 |
*/
|
sl@0
|
355 |
|
sl@0
|
356 |
EXPORT_C
|
sl@0
|
357 |
char *
|
sl@0
|
358 |
initstate(seed, arg_state, n)
|
sl@0
|
359 |
unsigned long seed; /* seed for R.N.G. */
|
sl@0
|
360 |
char *arg_state; /* pointer to state array */
|
sl@0
|
361 |
long n; /* # bytes of state info */
|
sl@0
|
362 |
{
|
sl@0
|
363 |
char *ostate = (char *)(&state[-1]);
|
sl@0
|
364 |
uint32_t *int_arg_state = (uint32_t *)arg_state;
|
sl@0
|
365 |
|
sl@0
|
366 |
if (rand_type == TYPE_0)
|
sl@0
|
367 |
state[-1] = rand_type;
|
sl@0
|
368 |
else
|
sl@0
|
369 |
state[-1] = MAX_TYPES * (rptr - state) + rand_type;
|
sl@0
|
370 |
if (n < BREAK_0) {
|
sl@0
|
371 |
(void)fprintf(stderr,
|
sl@0
|
372 |
"random: not enough state (%ld bytes); ignored.\n", n);
|
sl@0
|
373 |
return(0);
|
sl@0
|
374 |
}
|
sl@0
|
375 |
if (n < BREAK_1) {
|
sl@0
|
376 |
rand_type = TYPE_0;
|
sl@0
|
377 |
rand_deg = DEG_0;
|
sl@0
|
378 |
rand_sep = SEP_0;
|
sl@0
|
379 |
} else if (n < BREAK_2) {
|
sl@0
|
380 |
rand_type = TYPE_1;
|
sl@0
|
381 |
rand_deg = DEG_1;
|
sl@0
|
382 |
rand_sep = SEP_1;
|
sl@0
|
383 |
} else if (n < BREAK_3) {
|
sl@0
|
384 |
rand_type = TYPE_2;
|
sl@0
|
385 |
rand_deg = DEG_2;
|
sl@0
|
386 |
rand_sep = SEP_2;
|
sl@0
|
387 |
} else if (n < BREAK_4) {
|
sl@0
|
388 |
rand_type = TYPE_3;
|
sl@0
|
389 |
rand_deg = DEG_3;
|
sl@0
|
390 |
rand_sep = SEP_3;
|
sl@0
|
391 |
} else {
|
sl@0
|
392 |
rand_type = TYPE_4;
|
sl@0
|
393 |
rand_deg = DEG_4;
|
sl@0
|
394 |
rand_sep = SEP_4;
|
sl@0
|
395 |
}
|
sl@0
|
396 |
state = int_arg_state + 1; /* first location */
|
sl@0
|
397 |
end_ptr = &state[rand_deg]; /* must set end_ptr before srandom */
|
sl@0
|
398 |
srandom(seed);
|
sl@0
|
399 |
if (rand_type == TYPE_0)
|
sl@0
|
400 |
int_arg_state[0] = rand_type;
|
sl@0
|
401 |
else
|
sl@0
|
402 |
int_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
|
sl@0
|
403 |
return(ostate);
|
sl@0
|
404 |
}
|
sl@0
|
405 |
|
sl@0
|
406 |
/*
|
sl@0
|
407 |
* setstate:
|
sl@0
|
408 |
*
|
sl@0
|
409 |
* Restore the state from the given state array.
|
sl@0
|
410 |
*
|
sl@0
|
411 |
* Note: it is important that we also remember the locations of the pointers
|
sl@0
|
412 |
* in the current state information, and restore the locations of the pointers
|
sl@0
|
413 |
* from the old state information. This is done by multiplexing the pointer
|
sl@0
|
414 |
* location into the zeroeth word of the state information.
|
sl@0
|
415 |
*
|
sl@0
|
416 |
* Note that due to the order in which things are done, it is OK to call
|
sl@0
|
417 |
* setstate() with the same state as the current state.
|
sl@0
|
418 |
*
|
sl@0
|
419 |
* Returns a pointer to the old state information.
|
sl@0
|
420 |
*
|
sl@0
|
421 |
* Note: The Sparc platform requires that arg_state begin on an int
|
sl@0
|
422 |
* word boundary; otherwise a bus error will occur. Even so, lint will
|
sl@0
|
423 |
* complain about mis-alignment, but you should disregard these messages.
|
sl@0
|
424 |
*/
|
sl@0
|
425 |
|
sl@0
|
426 |
EXPORT_C
|
sl@0
|
427 |
char *
|
sl@0
|
428 |
setstate(arg_state)
|
sl@0
|
429 |
char *arg_state; /* pointer to state array */
|
sl@0
|
430 |
{
|
sl@0
|
431 |
uint32_t *new_state = (uint32_t *)arg_state;
|
sl@0
|
432 |
uint32_t type = new_state[0] % MAX_TYPES;
|
sl@0
|
433 |
uint32_t rear = new_state[0] / MAX_TYPES;
|
sl@0
|
434 |
char *ostate = (char *)(&state[-1]);
|
sl@0
|
435 |
|
sl@0
|
436 |
if (rand_type == TYPE_0)
|
sl@0
|
437 |
state[-1] = rand_type;
|
sl@0
|
438 |
else
|
sl@0
|
439 |
state[-1] = MAX_TYPES * (rptr - state) + rand_type;
|
sl@0
|
440 |
switch(type) {
|
sl@0
|
441 |
case TYPE_0:
|
sl@0
|
442 |
case TYPE_1:
|
sl@0
|
443 |
case TYPE_2:
|
sl@0
|
444 |
case TYPE_3:
|
sl@0
|
445 |
case TYPE_4:
|
sl@0
|
446 |
rand_type = type;
|
sl@0
|
447 |
rand_deg = degrees[type];
|
sl@0
|
448 |
rand_sep = seps[type];
|
sl@0
|
449 |
break;
|
sl@0
|
450 |
default:
|
sl@0
|
451 |
(void)fprintf(stderr,
|
sl@0
|
452 |
"random: state info corrupted; not changed.\n");
|
sl@0
|
453 |
}
|
sl@0
|
454 |
state = new_state + 1;
|
sl@0
|
455 |
if (rand_type != TYPE_0) {
|
sl@0
|
456 |
rptr = &state[rear];
|
sl@0
|
457 |
fptr = &state[(rear + rand_sep) % rand_deg];
|
sl@0
|
458 |
}
|
sl@0
|
459 |
end_ptr = &state[rand_deg]; /* set end_ptr too */
|
sl@0
|
460 |
return(ostate);
|
sl@0
|
461 |
}
|
sl@0
|
462 |
|
sl@0
|
463 |
/*
|
sl@0
|
464 |
* random:
|
sl@0
|
465 |
*
|
sl@0
|
466 |
* If we are using the trivial TYPE_0 R.N.G., just do the old linear
|
sl@0
|
467 |
* congruential bit. Otherwise, we do our fancy trinomial stuff, which is
|
sl@0
|
468 |
* the same in all the other cases due to all the global variables that have
|
sl@0
|
469 |
* been set up. The basic operation is to add the number at the rear pointer
|
sl@0
|
470 |
* into the one at the front pointer. Then both pointers are advanced to
|
sl@0
|
471 |
* the next location cyclically in the table. The value returned is the sum
|
sl@0
|
472 |
* generated, reduced to 31 bits by throwing away the "least random" low bit.
|
sl@0
|
473 |
*
|
sl@0
|
474 |
* Note: the code takes advantage of the fact that both the front and
|
sl@0
|
475 |
* rear pointers can't wrap on the same call by not testing the rear
|
sl@0
|
476 |
* pointer if the front one has wrapped.
|
sl@0
|
477 |
*
|
sl@0
|
478 |
* Returns a 31-bit random number.
|
sl@0
|
479 |
*/
|
sl@0
|
480 |
|
sl@0
|
481 |
EXPORT_C
|
sl@0
|
482 |
long
|
sl@0
|
483 |
random()
|
sl@0
|
484 |
{
|
sl@0
|
485 |
uint32_t i;
|
sl@0
|
486 |
uint32_t *f, *r;
|
sl@0
|
487 |
|
sl@0
|
488 |
if (rand_type == TYPE_0) {
|
sl@0
|
489 |
i = state[0];
|
sl@0
|
490 |
state[0] = i = (good_rand(i)) & 0x7fffffff;
|
sl@0
|
491 |
} else {
|
sl@0
|
492 |
/*
|
sl@0
|
493 |
* Use local variables rather than static variables for speed.
|
sl@0
|
494 |
*/
|
sl@0
|
495 |
f = fptr; r = rptr;
|
sl@0
|
496 |
*f += *r;
|
sl@0
|
497 |
i = (*f >> 1) & 0x7fffffff; /* chucking least random bit */
|
sl@0
|
498 |
if (++f >= end_ptr) {
|
sl@0
|
499 |
f = state;
|
sl@0
|
500 |
++r;
|
sl@0
|
501 |
}
|
sl@0
|
502 |
else if (++r >= end_ptr) {
|
sl@0
|
503 |
r = state;
|
sl@0
|
504 |
}
|
sl@0
|
505 |
|
sl@0
|
506 |
fptr = f; rptr = r;
|
sl@0
|
507 |
}
|
sl@0
|
508 |
return((long)i);
|
sl@0
|
509 |
}
|