os/ossrv/genericopenlibs/openenvcore/libc/src/random.c
author sl
Tue, 10 Jun 2014 14:32:02 +0200
changeset 1 260cb5ec6c19
permissions -rw-r--r--
Update contrib.
sl@0
     1
/*
sl@0
     2
 * Copyright (c) 1983, 1993
sl@0
     3
 *	The Regents of the University of California.  All rights reserved.
sl@0
     4
 *
sl@0
     5
 * Redistribution and use in source and binary forms, with or without
sl@0
     6
 * modification, are permitted provided that the following conditions
sl@0
     7
 * are met:
sl@0
     8
 * 1. Redistributions of source code must retain the above copyright
sl@0
     9
 *    notice, this list of conditions and the following disclaimer.
sl@0
    10
 * 2. Redistributions in binary form must reproduce the above copyright
sl@0
    11
 *    notice, this list of conditions and the following disclaimer in the
sl@0
    12
 *    documentation and/or other materials provided with the distribution.
sl@0
    13
 * 4. Neither the name of the University nor the names of its contributors
sl@0
    14
 *    may be used to endorse or promote products derived from this software
sl@0
    15
 *    without specific prior written permission.
sl@0
    16
 *
sl@0
    17
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
sl@0
    18
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
sl@0
    19
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
sl@0
    20
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
sl@0
    21
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
sl@0
    22
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
sl@0
    23
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
sl@0
    24
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
sl@0
    25
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
sl@0
    26
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
sl@0
    27
 * SUCH DAMAGE.
sl@0
    28
 * © Portions copyright (c) 2006 Nokia Corporation.  All rights reserved.
sl@0
    29
 */
sl@0
    30
sl@0
    31
#if defined(LIBC_SCCS) && !defined(lint)
sl@0
    32
static char sccsid[] = "@(#)random.c	8.2 (Berkeley) 5/19/95";
sl@0
    33
#endif /* LIBC_SCCS and not lint */
sl@0
    34
#include <sys/cdefs.h>
sl@0
    35
__FBSDID("$FreeBSD: src/lib/libc/stdlib/random.c,v 1.24 2004/01/20 03:02:18 das Exp $");
sl@0
    36
sl@0
    37
#include <sys/time.h>          /* for srandomdev() */
sl@0
    38
#include <fcntl.h>             /* for srandomdev() */
sl@0
    39
#include <stdint.h>
sl@0
    40
#include <stdio.h>
sl@0
    41
#include <stdlib.h>
sl@0
    42
#include <unistd.h>            /* for srandomdev() */
sl@0
    43
sl@0
    44
/*
sl@0
    45
 * random.c:
sl@0
    46
 *
sl@0
    47
 * An improved random number generation package.  In addition to the standard
sl@0
    48
 * rand()/srand() like interface, this package also has a special state info
sl@0
    49
 * interface.  The initstate() routine is called with a seed, an array of
sl@0
    50
 * bytes, and a count of how many bytes are being passed in; this array is
sl@0
    51
 * then initialized to contain information for random number generation with
sl@0
    52
 * that much state information.  Good sizes for the amount of state
sl@0
    53
 * information are 32, 64, 128, and 256 bytes.  The state can be switched by
sl@0
    54
 * calling the setstate() routine with the same array as was initiallized
sl@0
    55
 * with initstate().  By default, the package runs with 128 bytes of state
sl@0
    56
 * information and generates far better random numbers than a linear
sl@0
    57
 * congruential generator.  If the amount of state information is less than
sl@0
    58
 * 32 bytes, a simple linear congruential R.N.G. is used.
sl@0
    59
 *
sl@0
    60
 * Internally, the state information is treated as an array of uint32_t's; the
sl@0
    61
 * zeroeth element of the array is the type of R.N.G. being used (small
sl@0
    62
 * integer); the remainder of the array is the state information for the
sl@0
    63
 * R.N.G.  Thus, 32 bytes of state information will give 7 ints worth of
sl@0
    64
 * state information, which will allow a degree seven polynomial.  (Note:
sl@0
    65
 * the zeroeth word of state information also has some other information
sl@0
    66
 * stored in it -- see setstate() for details).
sl@0
    67
 *
sl@0
    68
 * The random number generation technique is a linear feedback shift register
sl@0
    69
 * approach, employing trinomials (since there are fewer terms to sum up that
sl@0
    70
 * way).  In this approach, the least significant bit of all the numbers in
sl@0
    71
 * the state table will act as a linear feedback shift register, and will
sl@0
    72
 * have period 2^deg - 1 (where deg is the degree of the polynomial being
sl@0
    73
 * used, assuming that the polynomial is irreducible and primitive).  The
sl@0
    74
 * higher order bits will have longer periods, since their values are also
sl@0
    75
 * influenced by pseudo-random carries out of the lower bits.  The total
sl@0
    76
 * period of the generator is approximately deg*(2**deg - 1); thus doubling
sl@0
    77
 * the amount of state information has a vast influence on the period of the
sl@0
    78
 * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
sl@0
    79
 * large deg, when the period of the shift is the dominant factor.
sl@0
    80
 * With deg equal to seven, the period is actually much longer than the
sl@0
    81
 * 7*(2**7 - 1) predicted by this formula.
sl@0
    82
 *
sl@0
    83
 * Modified 28 December 1994 by Jacob S. Rosenberg.
sl@0
    84
 * The following changes have been made:
sl@0
    85
 * All references to the type u_int have been changed to unsigned long.
sl@0
    86
 * All references to type int have been changed to type long.  Other
sl@0
    87
 * cleanups have been made as well.  A warning for both initstate and
sl@0
    88
 * setstate has been inserted to the effect that on Sparc platforms
sl@0
    89
 * the 'arg_state' variable must be forced to begin on word boundaries.
sl@0
    90
 * This can be easily done by casting a long integer array to char *.
sl@0
    91
 * The overall logic has been left STRICTLY alone.  This software was
sl@0
    92
 * tested on both a VAX and Sun SpacsStation with exactly the same
sl@0
    93
 * results.  The new version and the original give IDENTICAL results.
sl@0
    94
 * The new version is somewhat faster than the original.  As the
sl@0
    95
 * documentation says:  "By default, the package runs with 128 bytes of
sl@0
    96
 * state information and generates far better random numbers than a linear
sl@0
    97
 * congruential generator.  If the amount of state information is less than
sl@0
    98
 * 32 bytes, a simple linear congruential R.N.G. is used."  For a buffer of
sl@0
    99
 * 128 bytes, this new version runs about 19 percent faster and for a 16
sl@0
   100
 * byte buffer it is about 5 percent faster.
sl@0
   101
 */
sl@0
   102
sl@0
   103
/*
sl@0
   104
 * For each of the currently supported random number generators, we have a
sl@0
   105
 * break value on the amount of state information (you need at least this
sl@0
   106
 * many bytes of state info to support this random number generator), a degree
sl@0
   107
 * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
sl@0
   108
 * the separation between the two lower order coefficients of the trinomial.
sl@0
   109
 */
sl@0
   110
#define	TYPE_0		0		/* linear congruential */
sl@0
   111
#define	BREAK_0		8
sl@0
   112
#define	DEG_0		0
sl@0
   113
#define	SEP_0		0
sl@0
   114
sl@0
   115
#define	TYPE_1		1		/* x**7 + x**3 + 1 */
sl@0
   116
#define	BREAK_1		32
sl@0
   117
#define	DEG_1		7
sl@0
   118
#define	SEP_1		3
sl@0
   119
sl@0
   120
#define	TYPE_2		2		/* x**15 + x + 1 */
sl@0
   121
#define	BREAK_2		64
sl@0
   122
#define	DEG_2		15
sl@0
   123
#define	SEP_2		1
sl@0
   124
sl@0
   125
#define	TYPE_3		3		/* x**31 + x**3 + 1 */
sl@0
   126
#define	BREAK_3		128
sl@0
   127
#define	DEG_3		31
sl@0
   128
#define	SEP_3		3
sl@0
   129
sl@0
   130
#define	TYPE_4		4		/* x**63 + x + 1 */
sl@0
   131
#define	BREAK_4		256
sl@0
   132
#define	DEG_4		63
sl@0
   133
#define	SEP_4		1
sl@0
   134
sl@0
   135
/*
sl@0
   136
 * Array versions of the above information to make code run faster --
sl@0
   137
 * relies on fact that TYPE_i == i.
sl@0
   138
 */
sl@0
   139
#define	MAX_TYPES	5		/* max number of types above */
sl@0
   140
sl@0
   141
#ifdef  USE_WEAK_SEEDING
sl@0
   142
#define NSHUFF 0
sl@0
   143
#else   /* !USE_WEAK_SEEDING */
sl@0
   144
#define NSHUFF 50       /* to drop some "seed -> 1st value" linearity */
sl@0
   145
#endif  /* !USE_WEAK_SEEDING */
sl@0
   146
sl@0
   147
static const int degrees[MAX_TYPES] =	{ DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
sl@0
   148
static const int seps [MAX_TYPES] =	{ SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
sl@0
   149
sl@0
   150
/*
sl@0
   151
 * Initially, everything is set up as if from:
sl@0
   152
 *
sl@0
   153
 *	initstate(1, randtbl, 128);
sl@0
   154
 *
sl@0
   155
 * Note that this initialization takes advantage of the fact that srandom()
sl@0
   156
 * advances the front and rear pointers 10*rand_deg times, and hence the
sl@0
   157
 * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
sl@0
   158
 * element of the state information, which contains info about the current
sl@0
   159
 * position of the rear pointer is just
sl@0
   160
 *
sl@0
   161
 *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
sl@0
   162
 */
sl@0
   163
sl@0
   164
static uint32_t randtbl[DEG_3 + 1] = {
sl@0
   165
	TYPE_3,
sl@0
   166
#ifdef  USE_WEAK_SEEDING
sl@0
   167
/* Historic implementation compatibility */
sl@0
   168
/* The random sequences do not vary much with the seed */
sl@0
   169
	0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
sl@0
   170
	0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
sl@0
   171
	0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
sl@0
   172
	0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
sl@0
   173
	0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
sl@0
   174
	0x27fb47b9,
sl@0
   175
#else   /* !USE_WEAK_SEEDING */
sl@0
   176
	0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
sl@0
   177
	0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
sl@0
   178
	0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
sl@0
   179
	0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
sl@0
   180
	0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
sl@0
   181
	0xf3bec5da
sl@0
   182
#endif  /* !USE_WEAK_SEEDING */
sl@0
   183
};
sl@0
   184
sl@0
   185
/*
sl@0
   186
 * fptr and rptr are two pointers into the state info, a front and a rear
sl@0
   187
 * pointer.  These two pointers are always rand_sep places aparts, as they
sl@0
   188
 * cycle cyclically through the state information.  (Yes, this does mean we
sl@0
   189
 * could get away with just one pointer, but the code for random() is more
sl@0
   190
 * efficient this way).  The pointers are left positioned as they would be
sl@0
   191
 * from the call
sl@0
   192
 *
sl@0
   193
 *	initstate(1, randtbl, 128);
sl@0
   194
 *
sl@0
   195
 * (The position of the rear pointer, rptr, is really 0 (as explained above
sl@0
   196
 * in the initialization of randtbl) because the state table pointer is set
sl@0
   197
 * to point to randtbl[1] (as explained below).
sl@0
   198
 */
sl@0
   199
static uint32_t *fptr = &randtbl[SEP_3 + 1];
sl@0
   200
static uint32_t *rptr = &randtbl[1];
sl@0
   201
sl@0
   202
/*
sl@0
   203
 * The following things are the pointer to the state information table, the
sl@0
   204
 * type of the current generator, the degree of the current polynomial being
sl@0
   205
 * used, and the separation between the two pointers.  Note that for efficiency
sl@0
   206
 * of random(), we remember the first location of the state information, not
sl@0
   207
 * the zeroeth.  Hence it is valid to access state[-1], which is used to
sl@0
   208
 * store the type of the R.N.G.  Also, we remember the last location, since
sl@0
   209
 * this is more efficient than indexing every time to find the address of
sl@0
   210
 * the last element to see if the front and rear pointers have wrapped.
sl@0
   211
 */
sl@0
   212
static uint32_t *state = &randtbl[1];
sl@0
   213
static int rand_type = TYPE_3;
sl@0
   214
static int rand_deg = DEG_3;
sl@0
   215
static int rand_sep = SEP_3;
sl@0
   216
static uint32_t *end_ptr = &randtbl[DEG_3 + 1];
sl@0
   217
sl@0
   218
static inline uint32_t good_rand(int32_t);
sl@0
   219
sl@0
   220
static inline uint32_t good_rand (x)
sl@0
   221
	int32_t x;
sl@0
   222
{
sl@0
   223
#ifdef  USE_WEAK_SEEDING
sl@0
   224
/*
sl@0
   225
 * Historic implementation compatibility.
sl@0
   226
 * The random sequences do not vary much with the seed,
sl@0
   227
 * even with overflowing.
sl@0
   228
 */
sl@0
   229
	return (1103515245 * x + 12345);
sl@0
   230
#else   /* !USE_WEAK_SEEDING */
sl@0
   231
/*
sl@0
   232
 * Compute x = (7^5 * x) mod (2^31 - 1)
sl@0
   233
 * wihout overflowing 31 bits:
sl@0
   234
 *      (2^31 - 1) = 127773 * (7^5) + 2836
sl@0
   235
 * From "Random number generators: good ones are hard to find",
sl@0
   236
 * Park and Miller, Communications of the ACM, vol. 31, no. 10,
sl@0
   237
 * October 1988, p. 1195.
sl@0
   238
 */
sl@0
   239
	int32_t hi, lo;
sl@0
   240
sl@0
   241
	/* Can't be initialized with 0, so use another value. */
sl@0
   242
	if (x == 0)
sl@0
   243
		x = 123459876;
sl@0
   244
	hi = x / 127773;
sl@0
   245
	lo = x % 127773;
sl@0
   246
	x = 16807 * lo - 2836 * hi;
sl@0
   247
	if (x < 0)
sl@0
   248
		x += 0x7fffffff;
sl@0
   249
	return (x);
sl@0
   250
#endif  /* !USE_WEAK_SEEDING */
sl@0
   251
}
sl@0
   252
sl@0
   253
/*
sl@0
   254
 * srandom:
sl@0
   255
 *
sl@0
   256
 * Initialize the random number generator based on the given seed.  If the
sl@0
   257
 * type is the trivial no-state-information type, just remember the seed.
sl@0
   258
 * Otherwise, initializes state[] based on the given "seed" via a linear
sl@0
   259
 * congruential generator.  Then, the pointers are set to known locations
sl@0
   260
 * that are exactly rand_sep places apart.  Lastly, it cycles the state
sl@0
   261
 * information a given number of times to get rid of any initial dependencies
sl@0
   262
 * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
sl@0
   263
 * for default usage relies on values produced by this routine.
sl@0
   264
 */
sl@0
   265
sl@0
   266
EXPORT_C
sl@0
   267
void
sl@0
   268
srandom(x)
sl@0
   269
	unsigned long x;
sl@0
   270
{
sl@0
   271
	int i, lim;
sl@0
   272
sl@0
   273
	state[0] = (uint32_t)x;
sl@0
   274
	if (rand_type == TYPE_0)
sl@0
   275
		lim = NSHUFF;
sl@0
   276
	else {
sl@0
   277
		for (i = 1; i < rand_deg; i++)
sl@0
   278
			state[i] = good_rand(state[i - 1]);
sl@0
   279
		fptr = &state[rand_sep];
sl@0
   280
		rptr = &state[0];
sl@0
   281
		lim = 10 * rand_deg;
sl@0
   282
	}
sl@0
   283
	for (i = 0; i < lim; i++)
sl@0
   284
		(void)random();
sl@0
   285
}
sl@0
   286
#ifdef __SYMBIAN_COMPILE_UNUSED__
sl@0
   287
/*
sl@0
   288
 * srandomdev:
sl@0
   289
 *
sl@0
   290
 * Many programs choose the seed value in a totally predictable manner.
sl@0
   291
 * This often causes problems.  We seed the generator using the much more
sl@0
   292
 * secure random(4) interface.  Note that this particular seeding
sl@0
   293
 * procedure can generate states which are impossible to reproduce by
sl@0
   294
 * calling srandom() with any value, since the succeeding terms in the
sl@0
   295
 * state buffer are no longer derived from the LC algorithm applied to
sl@0
   296
 * a fixed seed.
sl@0
   297
 */
sl@0
   298
void
sl@0
   299
srandomdev()
sl@0
   300
{
sl@0
   301
	int fd, done;
sl@0
   302
	size_t len;
sl@0
   303
sl@0
   304
	if (rand_type == TYPE_0)
sl@0
   305
		len = sizeof state[0];
sl@0
   306
	else
sl@0
   307
		len = rand_deg * sizeof state[0];
sl@0
   308
sl@0
   309
	done = 0;
sl@0
   310
	fd = open("/dev/random", O_RDONLY, 0);
sl@0
   311
	if (fd >= 0) {
sl@0
   312
		if (read(fd, (void *) state, len) == (ssize_t) len)
sl@0
   313
			done = 1;
sl@0
   314
		close(fd);
sl@0
   315
	}
sl@0
   316
sl@0
   317
	if (!done) {
sl@0
   318
		struct timeval tv;
sl@0
   319
		unsigned long junk = 0;
sl@0
   320
sl@0
   321
		gettimeofday(&tv, NULL);
sl@0
   322
		srandom((getpid() << 16) ^ tv.tv_sec ^ tv.tv_usec ^ junk);
sl@0
   323
		return;
sl@0
   324
	}
sl@0
   325
sl@0
   326
	if (rand_type != TYPE_0) {
sl@0
   327
		fptr = &state[rand_sep];
sl@0
   328
		rptr = &state[0];
sl@0
   329
	}
sl@0
   330
}
sl@0
   331
#endif
sl@0
   332
/*
sl@0
   333
 * initstate:
sl@0
   334
 *
sl@0
   335
 * Initialize the state information in the given array of n bytes for future
sl@0
   336
 * random number generation.  Based on the number of bytes we are given, and
sl@0
   337
 * the break values for the different R.N.G.'s, we choose the best (largest)
sl@0
   338
 * one we can and set things up for it.  srandom() is then called to
sl@0
   339
 * initialize the state information.
sl@0
   340
 *
sl@0
   341
 * Note that on return from srandom(), we set state[-1] to be the type
sl@0
   342
 * multiplexed with the current value of the rear pointer; this is so
sl@0
   343
 * successive calls to initstate() won't lose this information and will be
sl@0
   344
 * able to restart with setstate().
sl@0
   345
 *
sl@0
   346
 * Note: the first thing we do is save the current state, if any, just like
sl@0
   347
 * setstate() so that it doesn't matter when initstate is called.
sl@0
   348
 *
sl@0
   349
 * Returns a pointer to the old state.
sl@0
   350
 *
sl@0
   351
 * Note: The Sparc platform requires that arg_state begin on an int
sl@0
   352
 * word boundary; otherwise a bus error will occur. Even so, lint will
sl@0
   353
 * complain about mis-alignment, but you should disregard these messages.
sl@0
   354
 */
sl@0
   355
sl@0
   356
EXPORT_C
sl@0
   357
char *
sl@0
   358
initstate(seed, arg_state, n)
sl@0
   359
	unsigned long seed;		/* seed for R.N.G. */
sl@0
   360
	char *arg_state;		/* pointer to state array */
sl@0
   361
	long n;				/* # bytes of state info */
sl@0
   362
{
sl@0
   363
	char *ostate = (char *)(&state[-1]);
sl@0
   364
	uint32_t *int_arg_state = (uint32_t *)arg_state;
sl@0
   365
sl@0
   366
	if (rand_type == TYPE_0)
sl@0
   367
		state[-1] = rand_type;
sl@0
   368
	else
sl@0
   369
		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
sl@0
   370
	if (n < BREAK_0) {
sl@0
   371
		(void)fprintf(stderr,
sl@0
   372
		    "random: not enough state (%ld bytes); ignored.\n", n);
sl@0
   373
		return(0);
sl@0
   374
	}
sl@0
   375
	if (n < BREAK_1) {
sl@0
   376
		rand_type = TYPE_0;
sl@0
   377
		rand_deg = DEG_0;
sl@0
   378
		rand_sep = SEP_0;
sl@0
   379
	} else if (n < BREAK_2) {
sl@0
   380
		rand_type = TYPE_1;
sl@0
   381
		rand_deg = DEG_1;
sl@0
   382
		rand_sep = SEP_1;
sl@0
   383
	} else if (n < BREAK_3) {
sl@0
   384
		rand_type = TYPE_2;
sl@0
   385
		rand_deg = DEG_2;
sl@0
   386
		rand_sep = SEP_2;
sl@0
   387
	} else if (n < BREAK_4) {
sl@0
   388
		rand_type = TYPE_3;
sl@0
   389
		rand_deg = DEG_3;
sl@0
   390
		rand_sep = SEP_3;
sl@0
   391
	} else {
sl@0
   392
		rand_type = TYPE_4;
sl@0
   393
		rand_deg = DEG_4;
sl@0
   394
		rand_sep = SEP_4;
sl@0
   395
	}
sl@0
   396
	state = int_arg_state + 1; /* first location */
sl@0
   397
	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
sl@0
   398
	srandom(seed);
sl@0
   399
	if (rand_type == TYPE_0)
sl@0
   400
		int_arg_state[0] = rand_type;
sl@0
   401
	else
sl@0
   402
		int_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
sl@0
   403
	return(ostate);
sl@0
   404
}
sl@0
   405
sl@0
   406
/*
sl@0
   407
 * setstate:
sl@0
   408
 *
sl@0
   409
 * Restore the state from the given state array.
sl@0
   410
 *
sl@0
   411
 * Note: it is important that we also remember the locations of the pointers
sl@0
   412
 * in the current state information, and restore the locations of the pointers
sl@0
   413
 * from the old state information.  This is done by multiplexing the pointer
sl@0
   414
 * location into the zeroeth word of the state information.
sl@0
   415
 *
sl@0
   416
 * Note that due to the order in which things are done, it is OK to call
sl@0
   417
 * setstate() with the same state as the current state.
sl@0
   418
 *
sl@0
   419
 * Returns a pointer to the old state information.
sl@0
   420
 *
sl@0
   421
 * Note: The Sparc platform requires that arg_state begin on an int
sl@0
   422
 * word boundary; otherwise a bus error will occur. Even so, lint will
sl@0
   423
 * complain about mis-alignment, but you should disregard these messages.
sl@0
   424
 */
sl@0
   425
sl@0
   426
EXPORT_C
sl@0
   427
char *
sl@0
   428
setstate(arg_state)
sl@0
   429
	char *arg_state;		/* pointer to state array */
sl@0
   430
{
sl@0
   431
	uint32_t *new_state = (uint32_t *)arg_state;
sl@0
   432
	uint32_t type = new_state[0] % MAX_TYPES;
sl@0
   433
	uint32_t rear = new_state[0] / MAX_TYPES;
sl@0
   434
	char *ostate = (char *)(&state[-1]);
sl@0
   435
sl@0
   436
	if (rand_type == TYPE_0)
sl@0
   437
		state[-1] = rand_type;
sl@0
   438
	else
sl@0
   439
		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
sl@0
   440
	switch(type) {
sl@0
   441
	case TYPE_0:
sl@0
   442
	case TYPE_1:
sl@0
   443
	case TYPE_2:
sl@0
   444
	case TYPE_3:
sl@0
   445
	case TYPE_4:
sl@0
   446
		rand_type = type;
sl@0
   447
		rand_deg = degrees[type];
sl@0
   448
		rand_sep = seps[type];
sl@0
   449
		break;
sl@0
   450
	default:
sl@0
   451
		(void)fprintf(stderr,
sl@0
   452
		    "random: state info corrupted; not changed.\n");
sl@0
   453
	}
sl@0
   454
	state = new_state + 1;
sl@0
   455
	if (rand_type != TYPE_0) {
sl@0
   456
		rptr = &state[rear];
sl@0
   457
		fptr = &state[(rear + rand_sep) % rand_deg];
sl@0
   458
	}
sl@0
   459
	end_ptr = &state[rand_deg];		/* set end_ptr too */
sl@0
   460
	return(ostate);
sl@0
   461
}
sl@0
   462
sl@0
   463
/*
sl@0
   464
 * random:
sl@0
   465
 *
sl@0
   466
 * If we are using the trivial TYPE_0 R.N.G., just do the old linear
sl@0
   467
 * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
sl@0
   468
 * the same in all the other cases due to all the global variables that have
sl@0
   469
 * been set up.  The basic operation is to add the number at the rear pointer
sl@0
   470
 * into the one at the front pointer.  Then both pointers are advanced to
sl@0
   471
 * the next location cyclically in the table.  The value returned is the sum
sl@0
   472
 * generated, reduced to 31 bits by throwing away the "least random" low bit.
sl@0
   473
 *
sl@0
   474
 * Note: the code takes advantage of the fact that both the front and
sl@0
   475
 * rear pointers can't wrap on the same call by not testing the rear
sl@0
   476
 * pointer if the front one has wrapped.
sl@0
   477
 *
sl@0
   478
 * Returns a 31-bit random number.
sl@0
   479
 */
sl@0
   480
sl@0
   481
EXPORT_C
sl@0
   482
long
sl@0
   483
random()
sl@0
   484
{
sl@0
   485
	uint32_t i;
sl@0
   486
	uint32_t *f, *r;
sl@0
   487
sl@0
   488
	if (rand_type == TYPE_0) {
sl@0
   489
		i = state[0];
sl@0
   490
		state[0] = i = (good_rand(i)) & 0x7fffffff;
sl@0
   491
	} else {
sl@0
   492
		/*
sl@0
   493
		 * Use local variables rather than static variables for speed.
sl@0
   494
		 */
sl@0
   495
		f = fptr; r = rptr;
sl@0
   496
		*f += *r;
sl@0
   497
		i = (*f >> 1) & 0x7fffffff;	/* chucking least random bit */
sl@0
   498
		if (++f >= end_ptr) {
sl@0
   499
			f = state;
sl@0
   500
			++r;
sl@0
   501
		}
sl@0
   502
		else if (++r >= end_ptr) {
sl@0
   503
			r = state;
sl@0
   504
		}
sl@0
   505
sl@0
   506
		fptr = f; rptr = r;
sl@0
   507
	}
sl@0
   508
	return((long)i);
sl@0
   509
}