moel@1
|
1 |
/*
|
moel@1
|
2 |
|
moel@1
|
3 |
Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
moel@1
|
4 |
|
moel@1
|
5 |
The contents of this file are subject to the Mozilla Public License Version
|
moel@1
|
6 |
1.1 (the "License"); you may not use this file except in compliance with
|
moel@1
|
7 |
the License. You may obtain a copy of the License at
|
moel@1
|
8 |
|
moel@1
|
9 |
http://www.mozilla.org/MPL/
|
moel@1
|
10 |
|
moel@1
|
11 |
Software distributed under the License is distributed on an "AS IS" basis,
|
moel@1
|
12 |
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
moel@1
|
13 |
for the specific language governing rights and limitations under the License.
|
moel@1
|
14 |
|
moel@1
|
15 |
The Original Code is the Open Hardware Monitor code.
|
moel@1
|
16 |
|
moel@1
|
17 |
The Initial Developer of the Original Code is
|
moel@1
|
18 |
Michael Möller <m.moeller@gmx.ch>.
|
moel@264
|
19 |
Portions created by the Initial Developer are Copyright (C) 2009-2011
|
moel@1
|
20 |
the Initial Developer. All Rights Reserved.
|
moel@1
|
21 |
|
moel@1
|
22 |
Contributor(s):
|
moel@1
|
23 |
|
moel@1
|
24 |
Alternatively, the contents of this file may be used under the terms of
|
moel@1
|
25 |
either the GNU General Public License Version 2 or later (the "GPL"), or
|
moel@1
|
26 |
the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
moel@1
|
27 |
in which case the provisions of the GPL or the LGPL are applicable instead
|
moel@1
|
28 |
of those above. If you wish to allow use of your version of this file only
|
moel@1
|
29 |
under the terms of either the GPL or the LGPL, and not to allow others to
|
moel@1
|
30 |
use your version of this file under the terms of the MPL, indicate your
|
moel@1
|
31 |
decision by deleting the provisions above and replace them with the notice
|
moel@1
|
32 |
and other provisions required by the GPL or the LGPL. If you do not delete
|
moel@1
|
33 |
the provisions above, a recipient may use your version of this file under
|
moel@1
|
34 |
the terms of any one of the MPL, the GPL or the LGPL.
|
moel@1
|
35 |
|
moel@1
|
36 |
*/
|
moel@1
|
37 |
|
moel@1
|
38 |
using System;
|
moel@219
|
39 |
using System.Globalization;
|
moel@219
|
40 |
using System.Text;
|
moel@1
|
41 |
|
moel@1
|
42 |
namespace OpenHardwareMonitor.Hardware.CPU {
|
moel@191
|
43 |
internal sealed class IntelCPU : GenericCPU {
|
moel@46
|
44 |
|
moel@219
|
45 |
private enum Microarchitecture {
|
moel@219
|
46 |
Unknown,
|
moel@264
|
47 |
NetBurst,
|
moel@219
|
48 |
Core,
|
moel@219
|
49 |
Atom,
|
moel@249
|
50 |
Nehalem,
|
moel@249
|
51 |
SandyBridge
|
moel@219
|
52 |
}
|
moel@219
|
53 |
|
moel@195
|
54 |
private readonly Sensor[] coreTemperatures;
|
moel@306
|
55 |
private readonly Sensor packageTemperature;
|
moel@195
|
56 |
private readonly Sensor[] coreClocks;
|
moel@195
|
57 |
private readonly Sensor busClock;
|
moel@317
|
58 |
private readonly Sensor packagePower;
|
moel@317
|
59 |
private readonly Sensor coresPower;
|
moel@63
|
60 |
|
moel@219
|
61 |
private readonly Microarchitecture microarchitecture;
|
moel@219
|
62 |
private readonly double timeStampCounterMultiplier;
|
moel@79
|
63 |
|
moel@1
|
64 |
private const uint IA32_THERM_STATUS_MSR = 0x019C;
|
moel@4
|
65 |
private const uint IA32_TEMPERATURE_TARGET = 0x01A2;
|
moel@44
|
66 |
private const uint IA32_PERF_STATUS = 0x0198;
|
moel@46
|
67 |
private const uint MSR_PLATFORM_INFO = 0xCE;
|
moel@306
|
68 |
private const uint IA32_PACKAGE_THERM_STATUS = 0x1B1;
|
moel@317
|
69 |
private const uint MSR_RAPL_POWER_UNIT = 0x606;
|
moel@317
|
70 |
private const uint MSR_PKG_ENERY_STATUS = 0x611;
|
moel@317
|
71 |
private const uint MSR_PP0_ENERY_STATUS = 0x639;
|
moel@320
|
72 |
private const uint MSR_PP1_ENERY_STATUS = 0x641;
|
moel@317
|
73 |
|
moel@317
|
74 |
private float energyUnitMultiplier = 0;
|
moel@317
|
75 |
private DateTime lastPackageTime;
|
moel@317
|
76 |
private uint lastPackageEnergyConsumed;
|
moel@317
|
77 |
private DateTime lastCoresTime;
|
moel@317
|
78 |
private uint lastCoresEnergyConsumed;
|
moel@317
|
79 |
|
moel@317
|
80 |
|
moel@1
|
81 |
|
moel@69
|
82 |
private float[] Floats(float f) {
|
moel@69
|
83 |
float[] result = new float[coreCount];
|
moel@69
|
84 |
for (int i = 0; i < coreCount; i++)
|
moel@69
|
85 |
result[i] = f;
|
moel@69
|
86 |
return result;
|
moel@69
|
87 |
}
|
moel@69
|
88 |
|
moel@249
|
89 |
private float[] GetTjMaxFromMSR() {
|
moel@249
|
90 |
uint eax, edx;
|
moel@249
|
91 |
float[] result = new float[coreCount];
|
moel@249
|
92 |
for (int i = 0; i < coreCount; i++) {
|
moel@249
|
93 |
if (Ring0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax,
|
moel@249
|
94 |
out edx, 1UL << cpuid[i][0].Thread)) {
|
moel@249
|
95 |
result[i] = (eax >> 16) & 0xFF;
|
moel@249
|
96 |
} else {
|
moel@249
|
97 |
result[i] = 100;
|
moel@249
|
98 |
}
|
moel@249
|
99 |
}
|
moel@249
|
100 |
return result;
|
moel@249
|
101 |
}
|
moel@249
|
102 |
|
moel@191
|
103 |
public IntelCPU(int processorIndex, CPUID[][] cpuid, ISettings settings)
|
moel@191
|
104 |
: base(processorIndex, cpuid, settings)
|
moel@191
|
105 |
{
|
moel@219
|
106 |
// set tjMax
|
moel@69
|
107 |
float[] tjMax;
|
moel@49
|
108 |
switch (family) {
|
moel@49
|
109 |
case 0x06: {
|
moel@49
|
110 |
switch (model) {
|
moel@219
|
111 |
case 0x0F: // Intel Core 2 (65nm)
|
moel@219
|
112 |
microarchitecture = Microarchitecture.Core;
|
moel@49
|
113 |
switch (stepping) {
|
moel@49
|
114 |
case 0x06: // B2
|
moel@49
|
115 |
switch (coreCount) {
|
moel@49
|
116 |
case 2:
|
moel@69
|
117 |
tjMax = Floats(80 + 10); break;
|
moel@49
|
118 |
case 4:
|
moel@69
|
119 |
tjMax = Floats(90 + 10); break;
|
moel@49
|
120 |
default:
|
moel@69
|
121 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
122 |
}
|
moel@69
|
123 |
tjMax = Floats(80 + 10); break;
|
moel@49
|
124 |
case 0x0B: // G0
|
moel@69
|
125 |
tjMax = Floats(90 + 10); break;
|
moel@49
|
126 |
case 0x0D: // M0
|
moel@69
|
127 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
128 |
default:
|
moel@69
|
129 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
130 |
} break;
|
moel@219
|
131 |
case 0x17: // Intel Core 2 (45nm)
|
moel@219
|
132 |
microarchitecture = Microarchitecture.Core;
|
moel@69
|
133 |
tjMax = Floats(100); break;
|
moel@114
|
134 |
case 0x1C: // Intel Atom (45nm)
|
moel@219
|
135 |
microarchitecture = Microarchitecture.Atom;
|
moel@114
|
136 |
switch (stepping) {
|
moel@114
|
137 |
case 0x02: // C0
|
moel@114
|
138 |
tjMax = Floats(90); break;
|
moel@114
|
139 |
case 0x0A: // A0, B0
|
moel@114
|
140 |
tjMax = Floats(100); break;
|
moel@114
|
141 |
default:
|
moel@114
|
142 |
tjMax = Floats(90); break;
|
moel@191
|
143 |
} break;
|
moel@49
|
144 |
case 0x1A: // Intel Core i7 LGA1366 (45nm)
|
moel@49
|
145 |
case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
|
moel@249
|
146 |
case 0x1F: // Intel Core i5, i7
|
moel@49
|
147 |
case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
|
moel@91
|
148 |
case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core
|
moel@249
|
149 |
case 0x2E: // Intel Xeon Processor 7500 series
|
moel@219
|
150 |
microarchitecture = Microarchitecture.Nehalem;
|
moel@249
|
151 |
tjMax = GetTjMaxFromMSR();
|
moel@249
|
152 |
break;
|
moel@249
|
153 |
case 0x2A: // Intel Core i5, i7 2xxx LGA1155 (32nm)
|
moel@249
|
154 |
case 0x2D: // Next Generation Intel Xeon Processor
|
moel@249
|
155 |
microarchitecture = Microarchitecture.SandyBridge;
|
moel@249
|
156 |
tjMax = GetTjMaxFromMSR();
|
moel@49
|
157 |
break;
|
moel@49
|
158 |
default:
|
moel@219
|
159 |
microarchitecture = Microarchitecture.Unknown;
|
moel@219
|
160 |
tjMax = Floats(100);
|
moel@219
|
161 |
break;
|
moel@49
|
162 |
}
|
moel@49
|
163 |
} break;
|
moel@264
|
164 |
case 0x0F: {
|
moel@264
|
165 |
switch (model) {
|
moel@264
|
166 |
case 0x00: // Pentium 4 (180nm)
|
moel@264
|
167 |
case 0x01: // Pentium 4 (130nm)
|
moel@264
|
168 |
case 0x02: // Pentium 4 (130nm)
|
moel@264
|
169 |
case 0x03: // Pentium 4, Celeron D (90nm)
|
moel@264
|
170 |
case 0x04: // Pentium 4, Pentium D, Celeron D (90nm)
|
moel@264
|
171 |
case 0x06: // Pentium 4, Pentium D, Celeron D (65nm)
|
moel@264
|
172 |
microarchitecture = Microarchitecture.NetBurst;
|
moel@264
|
173 |
tjMax = Floats(100);
|
moel@264
|
174 |
break;
|
moel@264
|
175 |
default:
|
moel@264
|
176 |
microarchitecture = Microarchitecture.Unknown;
|
moel@264
|
177 |
tjMax = Floats(100);
|
moel@264
|
178 |
break;
|
moel@264
|
179 |
}
|
moel@264
|
180 |
} break;
|
moel@219
|
181 |
default:
|
moel@219
|
182 |
microarchitecture = Microarchitecture.Unknown;
|
moel@219
|
183 |
tjMax = Floats(100);
|
moel@219
|
184 |
break;
|
moel@219
|
185 |
}
|
moel@219
|
186 |
|
moel@219
|
187 |
// set timeStampCounterMultiplier
|
moel@219
|
188 |
switch (microarchitecture) {
|
moel@264
|
189 |
case Microarchitecture.NetBurst:
|
moel@219
|
190 |
case Microarchitecture.Atom:
|
moel@219
|
191 |
case Microarchitecture.Core: {
|
moel@219
|
192 |
uint eax, edx;
|
moel@236
|
193 |
if (Ring0.Rdmsr(IA32_PERF_STATUS, out eax, out edx)) {
|
moel@219
|
194 |
timeStampCounterMultiplier =
|
moel@219
|
195 |
((edx >> 8) & 0x1f) + 0.5 * ((edx >> 14) & 1);
|
moel@219
|
196 |
}
|
moel@219
|
197 |
} break;
|
moel@249
|
198 |
case Microarchitecture.Nehalem:
|
moel@249
|
199 |
case Microarchitecture.SandyBridge: {
|
moel@219
|
200 |
uint eax, edx;
|
moel@236
|
201 |
if (Ring0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
|
moel@219
|
202 |
timeStampCounterMultiplier = (eax >> 8) & 0xff;
|
moel@219
|
203 |
}
|
moel@219
|
204 |
} break;
|
moel@264
|
205 |
default: {
|
moel@264
|
206 |
timeStampCounterMultiplier = 1;
|
moel@264
|
207 |
uint eax, edx;
|
moel@264
|
208 |
if (Ring0.Rdmsr(IA32_PERF_STATUS, out eax, out edx)) {
|
moel@264
|
209 |
timeStampCounterMultiplier =
|
moel@264
|
210 |
((edx >> 8) & 0x1f) + 0.5 * ((edx >> 14) & 1);
|
moel@264
|
211 |
}
|
moel@264
|
212 |
} break;
|
moel@49
|
213 |
}
|
moel@1
|
214 |
|
moel@306
|
215 |
// check if processor supports a digital thermal sensor at core level
|
moel@191
|
216 |
if (cpuid[0][0].Data.GetLength(0) > 6 &&
|
moel@306
|
217 |
(cpuid[0][0].Data[6, 0] & 1) != 0)
|
moel@306
|
218 |
{
|
moel@44
|
219 |
coreTemperatures = new Sensor[coreCount];
|
moel@44
|
220 |
for (int i = 0; i < coreTemperatures.Length; i++) {
|
moel@134
|
221 |
coreTemperatures[i] = new Sensor(CoreString(i), i,
|
moel@195
|
222 |
SensorType.Temperature, this, new [] {
|
moel@63
|
223 |
new ParameterDescription(
|
moel@306
|
224 |
"TjMax [°C]", "TjMax temperature of the core sensor.\n" +
|
moel@69
|
225 |
"Temperature = TjMax - TSlope * Value.", tjMax[i]),
|
moel@122
|
226 |
new ParameterDescription("TSlope [°C]",
|
moel@122
|
227 |
"Temperature slope of the digital thermal sensor.\n" +
|
moel@165
|
228 |
"Temperature = TjMax - TSlope * Value.", 1)}, settings);
|
moel@155
|
229 |
ActivateSensor(coreTemperatures[i]);
|
moel@44
|
230 |
}
|
moel@44
|
231 |
} else {
|
moel@44
|
232 |
coreTemperatures = new Sensor[0];
|
moel@1
|
233 |
}
|
moel@49
|
234 |
|
moel@306
|
235 |
// check if processor supports a digital thermal sensor at package level
|
moel@306
|
236 |
if (cpuid[0][0].Data.GetLength(0) > 6 &&
|
moel@306
|
237 |
(cpuid[0][0].Data[6, 0] & 0x40) != 0)
|
moel@306
|
238 |
{
|
moel@306
|
239 |
packageTemperature = new Sensor("CPU Package",
|
moel@306
|
240 |
coreTemperatures.Length, SensorType.Temperature, this, new[] {
|
moel@306
|
241 |
new ParameterDescription(
|
moel@306
|
242 |
"TjMax [°C]", "TjMax temperature of the package sensor.\n" +
|
moel@306
|
243 |
"Temperature = TjMax - TSlope * Value.", tjMax[0]),
|
moel@306
|
244 |
new ParameterDescription("TSlope [°C]",
|
moel@306
|
245 |
"Temperature slope of the digital thermal sensor.\n" +
|
moel@306
|
246 |
"Temperature = TjMax - TSlope * Value.", 1)}, settings);
|
moel@306
|
247 |
ActivateSensor(packageTemperature);
|
moel@306
|
248 |
}
|
moel@306
|
249 |
|
moel@191
|
250 |
busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this, settings);
|
moel@44
|
251 |
coreClocks = new Sensor[coreCount];
|
moel@44
|
252 |
for (int i = 0; i < coreClocks.Length; i++) {
|
moel@49
|
253 |
coreClocks[i] =
|
moel@165
|
254 |
new Sensor(CoreString(i), i + 1, SensorType.Clock, this, settings);
|
moel@201
|
255 |
if (HasTimeStampCounter)
|
moel@79
|
256 |
ActivateSensor(coreClocks[i]);
|
moel@44
|
257 |
}
|
moel@191
|
258 |
|
moel@317
|
259 |
if (microarchitecture == Microarchitecture.SandyBridge) {
|
moel@317
|
260 |
uint eax, edx;
|
moel@317
|
261 |
if (Ring0.Rdmsr(MSR_RAPL_POWER_UNIT, out eax, out edx))
|
moel@317
|
262 |
energyUnitMultiplier = 1.0f / (1 << (int)((eax >> 8) & 0x1FF));
|
moel@317
|
263 |
|
moel@317
|
264 |
|
moel@317
|
265 |
if (energyUnitMultiplier != 0 &&
|
moel@317
|
266 |
Ring0.Rdmsr(MSR_PKG_ENERY_STATUS, out eax, out edx))
|
moel@317
|
267 |
{
|
moel@317
|
268 |
lastPackageTime = DateTime.UtcNow;
|
moel@317
|
269 |
lastPackageEnergyConsumed = eax;
|
moel@317
|
270 |
packagePower = new Sensor("CPU Package", 0, SensorType.Power, this,
|
moel@317
|
271 |
settings);
|
moel@317
|
272 |
ActivateSensor(packagePower);
|
moel@317
|
273 |
}
|
moel@317
|
274 |
|
moel@317
|
275 |
if (energyUnitMultiplier != 0 &&
|
moel@317
|
276 |
Ring0.Rdmsr(MSR_PP0_ENERY_STATUS, out eax, out edx))
|
moel@317
|
277 |
{
|
moel@317
|
278 |
lastCoresTime = DateTime.UtcNow;
|
moel@317
|
279 |
lastCoresEnergyConsumed = eax;
|
moel@317
|
280 |
coresPower = new Sensor("CPU Cores", 1, SensorType.Power, this,
|
moel@317
|
281 |
settings);
|
moel@317
|
282 |
ActivateSensor(coresPower);
|
moel@317
|
283 |
}
|
moel@317
|
284 |
}
|
moel@317
|
285 |
|
moel@191
|
286 |
Update();
|
moel@1
|
287 |
}
|
moel@1
|
288 |
|
moel@191
|
289 |
protected override uint[] GetMSRs() {
|
moel@195
|
290 |
return new [] {
|
moel@191
|
291 |
MSR_PLATFORM_INFO,
|
moel@191
|
292 |
IA32_PERF_STATUS ,
|
moel@191
|
293 |
IA32_THERM_STATUS_MSR,
|
moel@306
|
294 |
IA32_TEMPERATURE_TARGET,
|
moel@317
|
295 |
IA32_PACKAGE_THERM_STATUS,
|
moel@317
|
296 |
MSR_RAPL_POWER_UNIT,
|
moel@317
|
297 |
MSR_PKG_ENERY_STATUS,
|
moel@320
|
298 |
MSR_PP0_ENERY_STATUS,
|
moel@320
|
299 |
MSR_PP1_ENERY_STATUS
|
moel@191
|
300 |
};
|
moel@1
|
301 |
}
|
moel@1
|
302 |
|
moel@219
|
303 |
public override string GetReport() {
|
moel@219
|
304 |
StringBuilder r = new StringBuilder();
|
moel@219
|
305 |
r.Append(base.GetReport());
|
moel@219
|
306 |
|
moel@264
|
307 |
r.Append("Microarchitecture: ");
|
moel@264
|
308 |
r.AppendLine(microarchitecture.ToString());
|
moel@219
|
309 |
r.Append("Time Stamp Counter Multiplier: ");
|
moel@219
|
310 |
r.AppendLine(timeStampCounterMultiplier.ToString(
|
moel@219
|
311 |
CultureInfo.InvariantCulture));
|
moel@219
|
312 |
r.AppendLine();
|
moel@219
|
313 |
|
moel@219
|
314 |
return r.ToString();
|
moel@219
|
315 |
}
|
moel@219
|
316 |
|
moel@191
|
317 |
public override void Update() {
|
moel@191
|
318 |
base.Update();
|
moel@1
|
319 |
|
moel@1
|
320 |
for (int i = 0; i < coreTemperatures.Length; i++) {
|
moel@46
|
321 |
uint eax, edx;
|
moel@236
|
322 |
if (Ring0.RdmsrTx(
|
moel@191
|
323 |
IA32_THERM_STATUS_MSR, out eax, out edx,
|
moel@238
|
324 |
1UL << cpuid[i][0].Thread)) {
|
moel@1
|
325 |
// if reading is valid
|
moel@1
|
326 |
if ((eax & 0x80000000) != 0) {
|
moel@1
|
327 |
// get the dist from tjMax from bits 22:16
|
moel@63
|
328 |
float deltaT = ((eax & 0x007F0000) >> 16);
|
moel@63
|
329 |
float tjMax = coreTemperatures[i].Parameters[0].Value;
|
moel@63
|
330 |
float tSlope = coreTemperatures[i].Parameters[1].Value;
|
moel@63
|
331 |
coreTemperatures[i].Value = tjMax - tSlope * deltaT;
|
moel@24
|
332 |
} else {
|
moel@155
|
333 |
coreTemperatures[i].Value = null;
|
moel@1
|
334 |
}
|
moel@79
|
335 |
}
|
moel@24
|
336 |
}
|
moel@24
|
337 |
|
moel@306
|
338 |
if (packageTemperature != null) {
|
moel@306
|
339 |
uint eax, edx;
|
moel@306
|
340 |
if (Ring0.RdmsrTx(
|
moel@315
|
341 |
IA32_PACKAGE_THERM_STATUS, out eax, out edx,
|
moel@306
|
342 |
1UL << cpuid[0][0].Thread)) {
|
moel@306
|
343 |
// get the dist from tjMax from bits 22:16
|
moel@306
|
344 |
float deltaT = ((eax & 0x007F0000) >> 16);
|
moel@306
|
345 |
float tjMax = packageTemperature.Parameters[0].Value;
|
moel@306
|
346 |
float tSlope = packageTemperature.Parameters[1].Value;
|
moel@306
|
347 |
packageTemperature.Value = tjMax - tSlope * deltaT;
|
moel@306
|
348 |
} else {
|
moel@306
|
349 |
packageTemperature.Value = null;
|
moel@306
|
350 |
}
|
moel@306
|
351 |
}
|
moel@306
|
352 |
|
moel@201
|
353 |
if (HasTimeStampCounter) {
|
moel@191
|
354 |
double newBusClock = 0;
|
moel@191
|
355 |
uint eax, edx;
|
moel@191
|
356 |
for (int i = 0; i < coreClocks.Length; i++) {
|
moel@191
|
357 |
System.Threading.Thread.Sleep(1);
|
moel@236
|
358 |
if (Ring0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
|
moel@238
|
359 |
1UL << cpuid[i][0].Thread))
|
moel@219
|
360 |
{
|
moel@219
|
361 |
newBusClock =
|
moel@219
|
362 |
TimeStampCounterFrequency / timeStampCounterMultiplier;
|
moel@250
|
363 |
switch (microarchitecture) {
|
moel@250
|
364 |
case Microarchitecture.Nehalem: {
|
moel@250
|
365 |
uint multiplier = eax & 0xff;
|
moel@250
|
366 |
coreClocks[i].Value = (float)(multiplier * newBusClock);
|
moel@250
|
367 |
} break;
|
moel@250
|
368 |
case Microarchitecture.SandyBridge: {
|
moel@250
|
369 |
uint multiplier = (eax >> 8) & 0xff;
|
moel@250
|
370 |
coreClocks[i].Value = (float)(multiplier * newBusClock);
|
moel@250
|
371 |
} break;
|
moel@250
|
372 |
default: {
|
moel@250
|
373 |
double multiplier =
|
moel@250
|
374 |
((eax >> 8) & 0x1f) + 0.5 * ((eax >> 14) & 1);
|
moel@250
|
375 |
coreClocks[i].Value = (float)(multiplier * newBusClock);
|
moel@250
|
376 |
} break;
|
moel@250
|
377 |
}
|
moel@219
|
378 |
} else {
|
moel@201
|
379 |
// if IA32_PERF_STATUS is not available, assume TSC frequency
|
moel@201
|
380 |
coreClocks[i].Value = (float)TimeStampCounterFrequency;
|
moel@46
|
381 |
}
|
moel@44
|
382 |
}
|
moel@191
|
383 |
if (newBusClock > 0) {
|
moel@191
|
384 |
this.busClock.Value = (float)newBusClock;
|
moel@191
|
385 |
ActivateSensor(this.busClock);
|
moel@191
|
386 |
}
|
moel@44
|
387 |
}
|
moel@317
|
388 |
|
moel@317
|
389 |
|
moel@317
|
390 |
if (packagePower != null) {
|
moel@317
|
391 |
uint eax, edx;
|
moel@317
|
392 |
if (Ring0.Rdmsr(MSR_PKG_ENERY_STATUS, out eax, out edx)) {
|
moel@317
|
393 |
DateTime time = DateTime.UtcNow;
|
moel@317
|
394 |
uint energyConsumed = eax;
|
moel@317
|
395 |
float deltaTime = (float)(time - lastPackageTime).TotalSeconds;
|
moel@317
|
396 |
if (deltaTime > 0.01) {
|
moel@317
|
397 |
packagePower.Value = energyUnitMultiplier *
|
moel@317
|
398 |
unchecked(energyConsumed - lastPackageEnergyConsumed) / deltaTime;
|
moel@317
|
399 |
lastPackageTime = time;
|
moel@317
|
400 |
lastPackageEnergyConsumed = energyConsumed;
|
moel@317
|
401 |
}
|
moel@317
|
402 |
}
|
moel@317
|
403 |
}
|
moel@317
|
404 |
|
moel@317
|
405 |
if (coresPower != null) {
|
moel@317
|
406 |
uint eax, edx;
|
moel@317
|
407 |
if (Ring0.Rdmsr(MSR_PP0_ENERY_STATUS, out eax, out edx)) {
|
moel@317
|
408 |
DateTime time = DateTime.UtcNow;
|
moel@317
|
409 |
uint energyConsumed = eax;
|
moel@317
|
410 |
float deltaTime = (float)(time - lastCoresTime).TotalSeconds;
|
moel@317
|
411 |
if (deltaTime > 0.01) {
|
moel@317
|
412 |
coresPower.Value = energyUnitMultiplier *
|
moel@317
|
413 |
unchecked(energyConsumed - lastCoresEnergyConsumed) / deltaTime;
|
moel@317
|
414 |
lastCoresTime = time;
|
moel@317
|
415 |
lastCoresEnergyConsumed = energyConsumed;
|
moel@317
|
416 |
}
|
moel@317
|
417 |
}
|
moel@317
|
418 |
}
|
moel@46
|
419 |
}
|
moel@191
|
420 |
}
|
moel@1
|
421 |
}
|