moel@1
|
1 |
/*
|
moel@1
|
2 |
|
moel@344
|
3 |
This Source Code Form is subject to the terms of the Mozilla Public
|
moel@344
|
4 |
License, v. 2.0. If a copy of the MPL was not distributed with this
|
moel@344
|
5 |
file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
moel@1
|
6 |
|
moel@350
|
7 |
Copyright (C) 2009-2012 Michael Möller <mmoeller@openhardwaremonitor.org>
|
moel@344
|
8 |
|
moel@1
|
9 |
*/
|
moel@1
|
10 |
|
moel@1
|
11 |
using System;
|
moel@219
|
12 |
using System.Globalization;
|
moel@219
|
13 |
using System.Text;
|
moel@1
|
14 |
|
moel@1
|
15 |
namespace OpenHardwareMonitor.Hardware.CPU {
|
moel@191
|
16 |
internal sealed class IntelCPU : GenericCPU {
|
moel@46
|
17 |
|
moel@219
|
18 |
private enum Microarchitecture {
|
moel@219
|
19 |
Unknown,
|
moel@264
|
20 |
NetBurst,
|
moel@219
|
21 |
Core,
|
moel@219
|
22 |
Atom,
|
moel@249
|
23 |
Nehalem,
|
moel@350
|
24 |
SandyBridge,
|
moel@350
|
25 |
IvyBridge
|
moel@219
|
26 |
}
|
moel@219
|
27 |
|
moel@195
|
28 |
private readonly Sensor[] coreTemperatures;
|
moel@306
|
29 |
private readonly Sensor packageTemperature;
|
moel@195
|
30 |
private readonly Sensor[] coreClocks;
|
moel@195
|
31 |
private readonly Sensor busClock;
|
moel@321
|
32 |
private readonly Sensor[] powerSensors;
|
moel@63
|
33 |
|
moel@219
|
34 |
private readonly Microarchitecture microarchitecture;
|
moel@219
|
35 |
private readonly double timeStampCounterMultiplier;
|
moel@79
|
36 |
|
moel@1
|
37 |
private const uint IA32_THERM_STATUS_MSR = 0x019C;
|
moel@4
|
38 |
private const uint IA32_TEMPERATURE_TARGET = 0x01A2;
|
moel@44
|
39 |
private const uint IA32_PERF_STATUS = 0x0198;
|
moel@46
|
40 |
private const uint MSR_PLATFORM_INFO = 0xCE;
|
moel@306
|
41 |
private const uint IA32_PACKAGE_THERM_STATUS = 0x1B1;
|
moel@317
|
42 |
private const uint MSR_RAPL_POWER_UNIT = 0x606;
|
moel@317
|
43 |
private const uint MSR_PKG_ENERY_STATUS = 0x611;
|
moel@321
|
44 |
private const uint MSR_DRAM_ENERGY_STATUS = 0x619;
|
moel@317
|
45 |
private const uint MSR_PP0_ENERY_STATUS = 0x639;
|
moel@320
|
46 |
private const uint MSR_PP1_ENERY_STATUS = 0x641;
|
moel@317
|
47 |
|
moel@321
|
48 |
private readonly uint[] energyStatusMSRs = { MSR_PKG_ENERY_STATUS,
|
moel@321
|
49 |
MSR_PP0_ENERY_STATUS, MSR_PP1_ENERY_STATUS, MSR_DRAM_ENERGY_STATUS };
|
moel@321
|
50 |
private readonly string[] powerSensorLabels =
|
moel@321
|
51 |
{ "CPU Package", "CPU Cores", "CPU Graphics", "CPU DRAM" };
|
moel@317
|
52 |
private float energyUnitMultiplier = 0;
|
moel@321
|
53 |
private DateTime[] lastEnergyTime;
|
moel@321
|
54 |
private uint[] lastEnergyConsumed;
|
moel@317
|
55 |
|
moel@1
|
56 |
|
moel@69
|
57 |
private float[] Floats(float f) {
|
moel@69
|
58 |
float[] result = new float[coreCount];
|
moel@69
|
59 |
for (int i = 0; i < coreCount; i++)
|
moel@69
|
60 |
result[i] = f;
|
moel@69
|
61 |
return result;
|
moel@69
|
62 |
}
|
moel@69
|
63 |
|
moel@249
|
64 |
private float[] GetTjMaxFromMSR() {
|
moel@249
|
65 |
uint eax, edx;
|
moel@249
|
66 |
float[] result = new float[coreCount];
|
moel@249
|
67 |
for (int i = 0; i < coreCount; i++) {
|
moel@249
|
68 |
if (Ring0.RdmsrTx(IA32_TEMPERATURE_TARGET, out eax,
|
moel@249
|
69 |
out edx, 1UL << cpuid[i][0].Thread)) {
|
moel@249
|
70 |
result[i] = (eax >> 16) & 0xFF;
|
moel@249
|
71 |
} else {
|
moel@249
|
72 |
result[i] = 100;
|
moel@249
|
73 |
}
|
moel@249
|
74 |
}
|
moel@249
|
75 |
return result;
|
moel@249
|
76 |
}
|
moel@249
|
77 |
|
moel@191
|
78 |
public IntelCPU(int processorIndex, CPUID[][] cpuid, ISettings settings)
|
moel@321
|
79 |
: base(processorIndex, cpuid, settings) {
|
moel@219
|
80 |
// set tjMax
|
moel@69
|
81 |
float[] tjMax;
|
moel@49
|
82 |
switch (family) {
|
moel@49
|
83 |
case 0x06: {
|
moel@49
|
84 |
switch (model) {
|
moel@219
|
85 |
case 0x0F: // Intel Core 2 (65nm)
|
moel@219
|
86 |
microarchitecture = Microarchitecture.Core;
|
moel@49
|
87 |
switch (stepping) {
|
moel@49
|
88 |
case 0x06: // B2
|
moel@49
|
89 |
switch (coreCount) {
|
moel@49
|
90 |
case 2:
|
moel@69
|
91 |
tjMax = Floats(80 + 10); break;
|
moel@49
|
92 |
case 4:
|
moel@69
|
93 |
tjMax = Floats(90 + 10); break;
|
moel@49
|
94 |
default:
|
moel@69
|
95 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
96 |
}
|
moel@69
|
97 |
tjMax = Floats(80 + 10); break;
|
moel@49
|
98 |
case 0x0B: // G0
|
moel@69
|
99 |
tjMax = Floats(90 + 10); break;
|
moel@49
|
100 |
case 0x0D: // M0
|
moel@69
|
101 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
102 |
default:
|
moel@69
|
103 |
tjMax = Floats(85 + 10); break;
|
moel@49
|
104 |
} break;
|
moel@219
|
105 |
case 0x17: // Intel Core 2 (45nm)
|
moel@219
|
106 |
microarchitecture = Microarchitecture.Core;
|
moel@69
|
107 |
tjMax = Floats(100); break;
|
moel@114
|
108 |
case 0x1C: // Intel Atom (45nm)
|
moel@219
|
109 |
microarchitecture = Microarchitecture.Atom;
|
moel@114
|
110 |
switch (stepping) {
|
moel@114
|
111 |
case 0x02: // C0
|
moel@114
|
112 |
tjMax = Floats(90); break;
|
moel@114
|
113 |
case 0x0A: // A0, B0
|
moel@114
|
114 |
tjMax = Floats(100); break;
|
moel@114
|
115 |
default:
|
moel@114
|
116 |
tjMax = Floats(90); break;
|
moel@191
|
117 |
} break;
|
moel@49
|
118 |
case 0x1A: // Intel Core i7 LGA1366 (45nm)
|
moel@49
|
119 |
case 0x1E: // Intel Core i5, i7 LGA1156 (45nm)
|
moel@249
|
120 |
case 0x1F: // Intel Core i5, i7
|
moel@49
|
121 |
case 0x25: // Intel Core i3, i5, i7 LGA1156 (32nm)
|
moel@91
|
122 |
case 0x2C: // Intel Core i7 LGA1366 (32nm) 6 Core
|
moel@350
|
123 |
case 0x2E: // Intel Xeon Processor 7500 series (45nm)
|
moel@350
|
124 |
case 0x2F: // Intel Xeon Processor (32nm)
|
moel@219
|
125 |
microarchitecture = Microarchitecture.Nehalem;
|
moel@249
|
126 |
tjMax = GetTjMaxFromMSR();
|
moel@249
|
127 |
break;
|
moel@249
|
128 |
case 0x2A: // Intel Core i5, i7 2xxx LGA1155 (32nm)
|
moel@350
|
129 |
case 0x2D: // Next Generation Intel Xeon, i7 3xxx LGA2011 (32nm)
|
moel@249
|
130 |
microarchitecture = Microarchitecture.SandyBridge;
|
moel@249
|
131 |
tjMax = GetTjMaxFromMSR();
|
moel@49
|
132 |
break;
|
moel@350
|
133 |
case 0x3A: // Intel Core i5, i7 3xxx LGA1155 (22nm)
|
moel@350
|
134 |
microarchitecture = Microarchitecture.IvyBridge;
|
moel@350
|
135 |
tjMax = GetTjMaxFromMSR();
|
moel@350
|
136 |
break;
|
moel@49
|
137 |
default:
|
moel@219
|
138 |
microarchitecture = Microarchitecture.Unknown;
|
moel@321
|
139 |
tjMax = Floats(100);
|
moel@219
|
140 |
break;
|
moel@49
|
141 |
}
|
moel@49
|
142 |
} break;
|
moel@264
|
143 |
case 0x0F: {
|
moel@264
|
144 |
switch (model) {
|
moel@264
|
145 |
case 0x00: // Pentium 4 (180nm)
|
moel@264
|
146 |
case 0x01: // Pentium 4 (130nm)
|
moel@264
|
147 |
case 0x02: // Pentium 4 (130nm)
|
moel@264
|
148 |
case 0x03: // Pentium 4, Celeron D (90nm)
|
moel@264
|
149 |
case 0x04: // Pentium 4, Pentium D, Celeron D (90nm)
|
moel@264
|
150 |
case 0x06: // Pentium 4, Pentium D, Celeron D (65nm)
|
moel@264
|
151 |
microarchitecture = Microarchitecture.NetBurst;
|
moel@321
|
152 |
tjMax = Floats(100);
|
moel@264
|
153 |
break;
|
moel@264
|
154 |
default:
|
moel@264
|
155 |
microarchitecture = Microarchitecture.Unknown;
|
moel@264
|
156 |
tjMax = Floats(100);
|
moel@264
|
157 |
break;
|
moel@264
|
158 |
}
|
moel@264
|
159 |
} break;
|
moel@219
|
160 |
default:
|
moel@219
|
161 |
microarchitecture = Microarchitecture.Unknown;
|
moel@321
|
162 |
tjMax = Floats(100);
|
moel@219
|
163 |
break;
|
moel@219
|
164 |
}
|
moel@219
|
165 |
|
moel@219
|
166 |
// set timeStampCounterMultiplier
|
moel@219
|
167 |
switch (microarchitecture) {
|
moel@264
|
168 |
case Microarchitecture.NetBurst:
|
moel@219
|
169 |
case Microarchitecture.Atom:
|
moel@219
|
170 |
case Microarchitecture.Core: {
|
moel@219
|
171 |
uint eax, edx;
|
moel@236
|
172 |
if (Ring0.Rdmsr(IA32_PERF_STATUS, out eax, out edx)) {
|
moel@321
|
173 |
timeStampCounterMultiplier =
|
moel@219
|
174 |
((edx >> 8) & 0x1f) + 0.5 * ((edx >> 14) & 1);
|
moel@219
|
175 |
}
|
moel@219
|
176 |
} break;
|
moel@321
|
177 |
case Microarchitecture.Nehalem:
|
moel@350
|
178 |
case Microarchitecture.SandyBridge:
|
moel@350
|
179 |
case Microarchitecture.IvyBridge: {
|
moel@219
|
180 |
uint eax, edx;
|
moel@236
|
181 |
if (Ring0.Rdmsr(MSR_PLATFORM_INFO, out eax, out edx)) {
|
moel@219
|
182 |
timeStampCounterMultiplier = (eax >> 8) & 0xff;
|
moel@219
|
183 |
}
|
moel@219
|
184 |
} break;
|
moel@350
|
185 |
default:
|
moel@350
|
186 |
timeStampCounterMultiplier = 0;
|
moel@350
|
187 |
break;
|
moel@49
|
188 |
}
|
moel@1
|
189 |
|
moel@306
|
190 |
// check if processor supports a digital thermal sensor at core level
|
moel@191
|
191 |
if (cpuid[0][0].Data.GetLength(0) > 6 &&
|
moel@350
|
192 |
(cpuid[0][0].Data[6, 0] & 1) != 0 &&
|
moel@350
|
193 |
microarchitecture != Microarchitecture.Unknown)
|
moel@350
|
194 |
{
|
moel@44
|
195 |
coreTemperatures = new Sensor[coreCount];
|
moel@44
|
196 |
for (int i = 0; i < coreTemperatures.Length; i++) {
|
moel@134
|
197 |
coreTemperatures[i] = new Sensor(CoreString(i), i,
|
moel@321
|
198 |
SensorType.Temperature, this, new[] {
|
moel@63
|
199 |
new ParameterDescription(
|
moel@306
|
200 |
"TjMax [°C]", "TjMax temperature of the core sensor.\n" +
|
moel@69
|
201 |
"Temperature = TjMax - TSlope * Value.", tjMax[i]),
|
moel@122
|
202 |
new ParameterDescription("TSlope [°C]",
|
moel@122
|
203 |
"Temperature slope of the digital thermal sensor.\n" +
|
moel@165
|
204 |
"Temperature = TjMax - TSlope * Value.", 1)}, settings);
|
moel@155
|
205 |
ActivateSensor(coreTemperatures[i]);
|
moel@44
|
206 |
}
|
moel@44
|
207 |
} else {
|
moel@44
|
208 |
coreTemperatures = new Sensor[0];
|
moel@1
|
209 |
}
|
moel@49
|
210 |
|
moel@306
|
211 |
// check if processor supports a digital thermal sensor at package level
|
moel@306
|
212 |
if (cpuid[0][0].Data.GetLength(0) > 6 &&
|
moel@350
|
213 |
(cpuid[0][0].Data[6, 0] & 0x40) != 0 &&
|
moel@350
|
214 |
microarchitecture != Microarchitecture.Unknown)
|
moel@350
|
215 |
{
|
moel@321
|
216 |
packageTemperature = new Sensor("CPU Package",
|
moel@321
|
217 |
coreTemperatures.Length, SensorType.Temperature, this, new[] {
|
moel@306
|
218 |
new ParameterDescription(
|
moel@306
|
219 |
"TjMax [°C]", "TjMax temperature of the package sensor.\n" +
|
moel@306
|
220 |
"Temperature = TjMax - TSlope * Value.", tjMax[0]),
|
moel@306
|
221 |
new ParameterDescription("TSlope [°C]",
|
moel@306
|
222 |
"Temperature slope of the digital thermal sensor.\n" +
|
moel@306
|
223 |
"Temperature = TjMax - TSlope * Value.", 1)}, settings);
|
moel@306
|
224 |
ActivateSensor(packageTemperature);
|
moel@321
|
225 |
}
|
moel@306
|
226 |
|
moel@191
|
227 |
busClock = new Sensor("Bus Speed", 0, SensorType.Clock, this, settings);
|
moel@44
|
228 |
coreClocks = new Sensor[coreCount];
|
moel@44
|
229 |
for (int i = 0; i < coreClocks.Length; i++) {
|
moel@49
|
230 |
coreClocks[i] =
|
moel@165
|
231 |
new Sensor(CoreString(i), i + 1, SensorType.Clock, this, settings);
|
moel@350
|
232 |
if (HasTimeStampCounter && microarchitecture != Microarchitecture.Unknown)
|
moel@79
|
233 |
ActivateSensor(coreClocks[i]);
|
moel@44
|
234 |
}
|
moel@191
|
235 |
|
moel@350
|
236 |
if (microarchitecture == Microarchitecture.SandyBridge ||
|
moel@350
|
237 |
microarchitecture == Microarchitecture.IvyBridge)
|
moel@350
|
238 |
{
|
moel@321
|
239 |
powerSensors = new Sensor[energyStatusMSRs.Length];
|
moel@321
|
240 |
lastEnergyTime = new DateTime[energyStatusMSRs.Length];
|
moel@321
|
241 |
lastEnergyConsumed = new uint[energyStatusMSRs.Length];
|
moel@321
|
242 |
|
moel@317
|
243 |
uint eax, edx;
|
moel@317
|
244 |
if (Ring0.Rdmsr(MSR_RAPL_POWER_UNIT, out eax, out edx))
|
moel@317
|
245 |
energyUnitMultiplier = 1.0f / (1 << (int)((eax >> 8) & 0x1FF));
|
moel@317
|
246 |
|
moel@321
|
247 |
if (energyUnitMultiplier != 0) {
|
moel@321
|
248 |
for (int i = 0; i < energyStatusMSRs.Length; i++) {
|
moel@321
|
249 |
if (!Ring0.Rdmsr(energyStatusMSRs[i], out eax, out edx))
|
moel@321
|
250 |
continue;
|
moel@317
|
251 |
|
moel@321
|
252 |
lastEnergyTime[i] = DateTime.UtcNow;
|
moel@321
|
253 |
lastEnergyConsumed[i] = eax;
|
moel@321
|
254 |
powerSensors[i] = new Sensor(powerSensorLabels[i], i,
|
moel@321
|
255 |
SensorType.Power, this, settings);
|
moel@321
|
256 |
ActivateSensor(powerSensors[i]);
|
moel@321
|
257 |
}
|
moel@317
|
258 |
}
|
moel@317
|
259 |
}
|
moel@317
|
260 |
|
moel@191
|
261 |
Update();
|
moel@1
|
262 |
}
|
moel@1
|
263 |
|
moel@191
|
264 |
protected override uint[] GetMSRs() {
|
moel@321
|
265 |
return new[] {
|
moel@191
|
266 |
MSR_PLATFORM_INFO,
|
moel@191
|
267 |
IA32_PERF_STATUS ,
|
moel@191
|
268 |
IA32_THERM_STATUS_MSR,
|
moel@306
|
269 |
IA32_TEMPERATURE_TARGET,
|
moel@317
|
270 |
IA32_PACKAGE_THERM_STATUS,
|
moel@317
|
271 |
MSR_RAPL_POWER_UNIT,
|
moel@317
|
272 |
MSR_PKG_ENERY_STATUS,
|
moel@321
|
273 |
MSR_DRAM_ENERGY_STATUS,
|
moel@320
|
274 |
MSR_PP0_ENERY_STATUS,
|
moel@320
|
275 |
MSR_PP1_ENERY_STATUS
|
moel@191
|
276 |
};
|
moel@1
|
277 |
}
|
moel@1
|
278 |
|
moel@219
|
279 |
public override string GetReport() {
|
moel@219
|
280 |
StringBuilder r = new StringBuilder();
|
moel@219
|
281 |
r.Append(base.GetReport());
|
moel@219
|
282 |
|
moel@264
|
283 |
r.Append("Microarchitecture: ");
|
moel@264
|
284 |
r.AppendLine(microarchitecture.ToString());
|
moel@219
|
285 |
r.Append("Time Stamp Counter Multiplier: ");
|
moel@219
|
286 |
r.AppendLine(timeStampCounterMultiplier.ToString(
|
moel@219
|
287 |
CultureInfo.InvariantCulture));
|
moel@219
|
288 |
r.AppendLine();
|
moel@219
|
289 |
|
moel@219
|
290 |
return r.ToString();
|
moel@219
|
291 |
}
|
moel@219
|
292 |
|
moel@191
|
293 |
public override void Update() {
|
moel@191
|
294 |
base.Update();
|
moel@1
|
295 |
|
moel@1
|
296 |
for (int i = 0; i < coreTemperatures.Length; i++) {
|
moel@46
|
297 |
uint eax, edx;
|
moel@236
|
298 |
if (Ring0.RdmsrTx(
|
moel@191
|
299 |
IA32_THERM_STATUS_MSR, out eax, out edx,
|
moel@238
|
300 |
1UL << cpuid[i][0].Thread)) {
|
moel@1
|
301 |
// if reading is valid
|
moel@1
|
302 |
if ((eax & 0x80000000) != 0) {
|
moel@1
|
303 |
// get the dist from tjMax from bits 22:16
|
moel@63
|
304 |
float deltaT = ((eax & 0x007F0000) >> 16);
|
moel@63
|
305 |
float tjMax = coreTemperatures[i].Parameters[0].Value;
|
moel@63
|
306 |
float tSlope = coreTemperatures[i].Parameters[1].Value;
|
moel@63
|
307 |
coreTemperatures[i].Value = tjMax - tSlope * deltaT;
|
moel@24
|
308 |
} else {
|
moel@155
|
309 |
coreTemperatures[i].Value = null;
|
moel@1
|
310 |
}
|
moel@79
|
311 |
}
|
moel@24
|
312 |
}
|
moel@24
|
313 |
|
moel@306
|
314 |
if (packageTemperature != null) {
|
moel@306
|
315 |
uint eax, edx;
|
moel@306
|
316 |
if (Ring0.RdmsrTx(
|
moel@315
|
317 |
IA32_PACKAGE_THERM_STATUS, out eax, out edx,
|
moel@306
|
318 |
1UL << cpuid[0][0].Thread)) {
|
moel@306
|
319 |
// get the dist from tjMax from bits 22:16
|
moel@306
|
320 |
float deltaT = ((eax & 0x007F0000) >> 16);
|
moel@306
|
321 |
float tjMax = packageTemperature.Parameters[0].Value;
|
moel@306
|
322 |
float tSlope = packageTemperature.Parameters[1].Value;
|
moel@306
|
323 |
packageTemperature.Value = tjMax - tSlope * deltaT;
|
moel@306
|
324 |
} else {
|
moel@306
|
325 |
packageTemperature.Value = null;
|
moel@306
|
326 |
}
|
moel@306
|
327 |
}
|
moel@306
|
328 |
|
moel@350
|
329 |
if (HasTimeStampCounter && timeStampCounterMultiplier > 0) {
|
moel@191
|
330 |
double newBusClock = 0;
|
moel@191
|
331 |
uint eax, edx;
|
moel@191
|
332 |
for (int i = 0; i < coreClocks.Length; i++) {
|
moel@191
|
333 |
System.Threading.Thread.Sleep(1);
|
moel@236
|
334 |
if (Ring0.RdmsrTx(IA32_PERF_STATUS, out eax, out edx,
|
moel@321
|
335 |
1UL << cpuid[i][0].Thread)) {
|
moel@321
|
336 |
newBusClock =
|
moel@219
|
337 |
TimeStampCounterFrequency / timeStampCounterMultiplier;
|
moel@250
|
338 |
switch (microarchitecture) {
|
moel@250
|
339 |
case Microarchitecture.Nehalem: {
|
moel@250
|
340 |
uint multiplier = eax & 0xff;
|
moel@250
|
341 |
coreClocks[i].Value = (float)(multiplier * newBusClock);
|
moel@250
|
342 |
} break;
|
moel@350
|
343 |
case Microarchitecture.SandyBridge:
|
moel@350
|
344 |
case Microarchitecture.IvyBridge: {
|
moel@250
|
345 |
uint multiplier = (eax >> 8) & 0xff;
|
moel@250
|
346 |
coreClocks[i].Value = (float)(multiplier * newBusClock);
|
moel@250
|
347 |
} break;
|
moel@250
|
348 |
default: {
|
moel@321
|
349 |
double multiplier =
|
moel@250
|
350 |
((eax >> 8) & 0x1f) + 0.5 * ((eax >> 14) & 1);
|
moel@250
|
351 |
coreClocks[i].Value = (float)(multiplier * newBusClock);
|
moel@250
|
352 |
} break;
|
moel@321
|
353 |
}
|
moel@321
|
354 |
} else {
|
moel@201
|
355 |
// if IA32_PERF_STATUS is not available, assume TSC frequency
|
moel@201
|
356 |
coreClocks[i].Value = (float)TimeStampCounterFrequency;
|
moel@46
|
357 |
}
|
moel@44
|
358 |
}
|
moel@191
|
359 |
if (newBusClock > 0) {
|
moel@191
|
360 |
this.busClock.Value = (float)newBusClock;
|
moel@191
|
361 |
ActivateSensor(this.busClock);
|
moel@191
|
362 |
}
|
moel@44
|
363 |
}
|
moel@317
|
364 |
|
moel@321
|
365 |
if (powerSensors != null) {
|
moel@321
|
366 |
foreach (Sensor sensor in powerSensors) {
|
moel@321
|
367 |
if (sensor == null)
|
moel@321
|
368 |
continue;
|
moel@317
|
369 |
|
moel@321
|
370 |
uint eax, edx;
|
moel@321
|
371 |
if (!Ring0.Rdmsr(energyStatusMSRs[sensor.Index], out eax, out edx))
|
moel@321
|
372 |
continue;
|
moel@317
|
373 |
|
moel@317
|
374 |
DateTime time = DateTime.UtcNow;
|
moel@317
|
375 |
uint energyConsumed = eax;
|
moel@321
|
376 |
float deltaTime =
|
moel@321
|
377 |
(float)(time - lastEnergyTime[sensor.Index]).TotalSeconds;
|
moel@321
|
378 |
if (deltaTime < 0.01)
|
moel@321
|
379 |
continue;
|
moel@321
|
380 |
|
moel@321
|
381 |
sensor.Value = energyUnitMultiplier * unchecked(
|
moel@321
|
382 |
energyConsumed - lastEnergyConsumed[sensor.Index]) / deltaTime;
|
moel@321
|
383 |
lastEnergyTime[sensor.Index] = time;
|
moel@321
|
384 |
lastEnergyConsumed[sensor.Index] = energyConsumed;
|
moel@317
|
385 |
}
|
moel@317
|
386 |
}
|
moel@46
|
387 |
}
|
moel@191
|
388 |
}
|
moel@1
|
389 |
}
|