diff -r 2fe1408b6811 -r e1b950c65cb4 epoc32/include/stdapis/boost/math/special_functions/atanh.hpp --- a/epoc32/include/stdapis/boost/math/special_functions/atanh.hpp Tue Mar 16 16:12:26 2010 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,267 +0,0 @@ -// boost atanh.hpp header file - -// (C) Copyright Hubert Holin 2001. -// Distributed under the Boost Software License, Version 1.0. (See -// accompanying file LICENSE_1_0.txt or copy at -// http://www.boost.org/LICENSE_1_0.txt) - -// See http://www.boost.org for updates, documentation, and revision history. - -#ifndef BOOST_ATANH_HPP -#define BOOST_ATANH_HPP - - -#include -#include -#include -#include - - -#include - - -// This is the inverse of the hyperbolic tangent function. - -namespace boost -{ - namespace math - { -#if defined(__GNUC__) && (__GNUC__ < 3) - // gcc 2.x ignores function scope using declarations, - // put them in the scope of the enclosing namespace instead: - - using ::std::abs; - using ::std::sqrt; - using ::std::log; - - using ::std::numeric_limits; -#endif - -#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) - // This is the main fare - - template - inline T atanh(const T x) - { - using ::std::abs; - using ::std::sqrt; - using ::std::log; - - using ::std::numeric_limits; - - T const one = static_cast(1); - T const two = static_cast(2); - - static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); - static T const taylor_n_bound = sqrt(taylor_2_bound); - - if (x < -one) - { - if (numeric_limits::has_quiet_NaN) - { - return(numeric_limits::quiet_NaN()); - } - else - { - ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); - ::std::domain_error bad_argument(error_reporting); - - throw(bad_argument); - } - } - else if (x < -one+numeric_limits::epsilon()) - { - if (numeric_limits::has_infinity) - { - return(-numeric_limits::infinity()); - } - else - { - ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); - ::std::out_of_range bad_argument(error_reporting); - - throw(bad_argument); - } - } - else if (x > +one-numeric_limits::epsilon()) - { - if (numeric_limits::has_infinity) - { - return(+numeric_limits::infinity()); - } - else - { - ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); - ::std::out_of_range bad_argument(error_reporting); - - throw(bad_argument); - } - } - else if (x > +one) - { - if (numeric_limits::has_quiet_NaN) - { - return(numeric_limits::quiet_NaN()); - } - else - { - ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); - ::std::domain_error bad_argument(error_reporting); - - throw(bad_argument); - } - } - else if (abs(x) >= taylor_n_bound) - { - return(log( (one + x) / (one - x) ) / two); - } - else - { - // approximation by taylor series in x at 0 up to order 2 - T result = x; - - if (abs(x) >= taylor_2_bound) - { - T x3 = x*x*x; - - // approximation by taylor series in x at 0 up to order 4 - result += x3/static_cast(3); - } - - return(result); - } - } -#else - // These are implementation details (for main fare see below) - - namespace detail - { - template < - typename T, - bool InfinitySupported - > - struct atanh_helper1_t - { - static T get_pos_infinity() - { - return(+::std::numeric_limits::infinity()); - } - - static T get_neg_infinity() - { - return(-::std::numeric_limits::infinity()); - } - }; // boost::math::detail::atanh_helper1_t - - - template - struct atanh_helper1_t - { - static T get_pos_infinity() - { - ::std::string error_reporting("Argument to atanh is +1 (result: +Infinity)!"); - ::std::out_of_range bad_argument(error_reporting); - - throw(bad_argument); - } - - static T get_neg_infinity() - { - ::std::string error_reporting("Argument to atanh is -1 (result: -Infinity)!"); - ::std::out_of_range bad_argument(error_reporting); - - throw(bad_argument); - } - }; // boost::math::detail::atanh_helper1_t - - - template < - typename T, - bool QuietNanSupported - > - struct atanh_helper2_t - { - static T get_NaN() - { - return(::std::numeric_limits::quiet_NaN()); - } - }; // boost::detail::atanh_helper2_t - - - template - struct atanh_helper2_t - { - static T get_NaN() - { - ::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!"); - ::std::domain_error bad_argument(error_reporting); - - throw(bad_argument); - } - }; // boost::detail::atanh_helper2_t - } // boost::detail - - - // This is the main fare - - template - inline T atanh(const T x) - { - using ::std::abs; - using ::std::sqrt; - using ::std::log; - - using ::std::numeric_limits; - - typedef detail::atanh_helper1_t::has_infinity> helper1_type; - typedef detail::atanh_helper2_t::has_quiet_NaN> helper2_type; - - - T const one = static_cast(1); - T const two = static_cast(2); - - static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); - static T const taylor_n_bound = sqrt(taylor_2_bound); - - if (x < -one) - { - return(helper2_type::get_NaN()); - } - else if (x < -one+numeric_limits::epsilon()) - { - return(helper1_type::get_neg_infinity()); - } - else if (x > +one-numeric_limits::epsilon()) - { - return(helper1_type::get_pos_infinity()); - } - else if (x > +one) - { - return(helper2_type::get_NaN()); - } - else if (abs(x) >= taylor_n_bound) - { - return(log( (one + x) / (one - x) ) / two); - } - else - { - // approximation by taylor series in x at 0 up to order 2 - T result = x; - - if (abs(x) >= taylor_2_bound) - { - T x3 = x*x*x; - - // approximation by taylor series in x at 0 up to order 4 - result += x3/static_cast(3); - } - - return(result); - } - } -#endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */ - } -} - -#endif /* BOOST_ATANH_HPP */ -