diff -r 2fe1408b6811 -r e1b950c65cb4 epoc32/include/stdapis/boost/math/special_functions/asinh.hpp --- a/epoc32/include/stdapis/boost/math/special_functions/asinh.hpp Tue Mar 16 16:12:26 2010 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,101 +0,0 @@ -// boost asinh.hpp header file - -// (C) Copyright Eric Ford & Hubert Holin 2001. -// Distributed under the Boost Software License, Version 1.0. (See -// accompanying file LICENSE_1_0.txt or copy at -// http://www.boost.org/LICENSE_1_0.txt) - -// See http://www.boost.org for updates, documentation, and revision history. - -#ifndef BOOST_ASINH_HPP -#define BOOST_ASINH_HPP - - -#include -#include -#include -#include - - -#include - - -// This is the inverse of the hyperbolic sine function. - -namespace boost -{ - namespace math - { -#if defined(__GNUC__) && (__GNUC__ < 3) - // gcc 2.x ignores function scope using declarations, - // put them in the scope of the enclosing namespace instead: - - using ::std::abs; - using ::std::sqrt; - using ::std::log; - - using ::std::numeric_limits; -#endif - - template - inline T asinh(const T x) - { - using ::std::abs; - using ::std::sqrt; - using ::std::log; - - using ::std::numeric_limits; - - - T const one = static_cast(1); - T const two = static_cast(2); - - static T const taylor_2_bound = sqrt(numeric_limits::epsilon()); - static T const taylor_n_bound = sqrt(taylor_2_bound); - static T const upper_taylor_2_bound = one/taylor_2_bound; - static T const upper_taylor_n_bound = one/taylor_n_bound; - - if (x >= +taylor_n_bound) - { - if (x > upper_taylor_n_bound) - { - if (x > upper_taylor_2_bound) - { - // approximation by laurent series in 1/x at 0+ order from -1 to 0 - return( log( x * two) ); - } - else - { - // approximation by laurent series in 1/x at 0+ order from -1 to 1 - return( log( x*two + (one/(x*two)) ) ); - } - } - else - { - return( log( x + sqrt(x*x+one) ) ); - } - } - else if (x <= -taylor_n_bound) - { - return(-asinh(-x)); - } - else - { - // approximation by taylor series in x at 0 up to order 2 - T result = x; - - if (abs(x) >= taylor_2_bound) - { - T x3 = x*x*x; - - // approximation by taylor series in x at 0 up to order 4 - result -= x3/static_cast(6); - } - - return(result); - } - } - } -} - -#endif /* BOOST_ASINH_HPP */