diff -r 2fe1408b6811 -r e1b950c65cb4 epoc32/include/stdapis/boost/math/complex/acosh.hpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/epoc32/include/stdapis/boost/math/complex/acosh.hpp	Wed Mar 31 12:27:01 2010 +0100
@@ -0,0 +1,198 @@
+//    boost asinh.hpp header file
+
+//  (C) Copyright Eric Ford 2001 & Hubert Holin.
+//  Distributed under the Boost Software License, Version 1.0. (See
+//  accompanying file LICENSE_1_0.txt or copy at
+//  http://www.boost.org/LICENSE_1_0.txt)
+
+// See http://www.boost.org for updates, documentation, and revision history.
+
+#ifndef BOOST_ACOSH_HPP
+#define BOOST_ACOSH_HPP
+
+
+#include <cmath>
+#include <limits>
+#include <string>
+#include <stdexcept>
+
+
+#include <boost/config.hpp>
+
+
+// This is the inverse of the hyperbolic cosine function.
+
+namespace boost
+{
+    namespace math
+    {
+#if defined(__GNUC__) && (__GNUC__ < 3)
+        // gcc 2.x ignores function scope using declarations,
+        // put them in the scope of the enclosing namespace instead:
+        
+        using    ::std::abs;
+        using    ::std::sqrt;
+        using    ::std::log;
+        
+        using    ::std::numeric_limits;
+#endif
+        
+#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
+        // This is the main fare
+        
+        template<typename T>
+        inline T    acosh(const T x)
+        {
+            using    ::std::abs;
+            using    ::std::sqrt;
+            using    ::std::log;
+            
+            using    ::std::numeric_limits;
+            
+            
+            T const    one = static_cast<T>(1);
+            T const    two = static_cast<T>(2);
+            
+            static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
+            static T const    taylor_n_bound = sqrt(taylor_2_bound);
+            static T const    upper_taylor_2_bound = one/taylor_2_bound;
+            
+            if        (x < one)
+            {
+                if    (numeric_limits<T>::has_quiet_NaN)
+                {
+                    return(numeric_limits<T>::quiet_NaN());
+                }
+                else
+                {
+                    ::std::string        error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
+                    ::std::domain_error  bad_argument(error_reporting);
+                    
+                    throw(bad_argument);
+                }
+            }
+            else if    (x >= taylor_n_bound)
+            {
+                if    (x > upper_taylor_2_bound)
+                {
+                    // approximation by laurent series in 1/x at 0+ order from -1 to 0
+                    return( log( x*two) );
+                }
+                else
+                {
+                    return( log( x + sqrt(x*x-one) ) );
+                }
+            }
+            else
+            {
+                T    y = sqrt(x-one);
+                
+                // approximation by taylor series in y at 0 up to order 2
+                T    result = y;
+                
+                if    (y >= taylor_2_bound)
+                {
+                    T    y3 = y*y*y;
+                    
+                    // approximation by taylor series in y at 0 up to order 4
+                    result -= y3/static_cast<T>(12);
+                }
+                
+                return(sqrt(static_cast<T>(2))*result);
+            }
+        }
+#else
+        // These are implementation details (for main fare see below)
+        
+        namespace detail
+        {
+            template    <
+                            typename T,
+                            bool QuietNanSupported
+                        >
+            struct    acosh_helper2_t
+            {
+                static T    get_NaN()
+                {
+                    return(::std::numeric_limits<T>::quiet_NaN());
+                }
+            };  // boost::detail::acosh_helper2_t
+            
+            
+            template<typename T>
+            struct    acosh_helper2_t<T, false>
+            {
+                static T    get_NaN()
+                {
+                    ::std::string        error_reporting("Argument to acosh is greater than or equal to +1!");
+                    ::std::domain_error  bad_argument(error_reporting);
+                    
+                    throw(bad_argument);
+                }
+            };  // boost::detail::acosh_helper2_t
+        
+        }  // boost::detail
+        
+        
+        // This is the main fare
+        
+        template<typename T>
+        inline T    acosh(const T x)
+        {
+            using    ::std::abs;
+            using    ::std::sqrt;
+            using    ::std::log;
+            
+            using    ::std::numeric_limits;
+            
+            typedef    detail::acosh_helper2_t<T, std::numeric_limits<T>::has_quiet_NaN>    helper2_type;
+            
+            
+            T const    one = static_cast<T>(1);
+            T const    two = static_cast<T>(2);
+            
+            static T const    taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
+            static T const    taylor_n_bound = sqrt(taylor_2_bound);
+            static T const    upper_taylor_2_bound = one/taylor_2_bound;
+            
+            if        (x < one)
+            {
+                return(helper2_type::get_NaN());
+            }
+            else if    (x >= taylor_n_bound)
+            {
+                if    (x > upper_taylor_2_bound)
+                {
+                    // approximation by laurent series in 1/x at 0+ order from -1 to 0
+                    return( log( x*two) );
+                }
+                else
+                {
+                    return( log( x + sqrt(x*x-one) ) );
+                }
+            }
+            else
+            {
+                T    y = sqrt(x-one);
+                
+                // approximation by taylor series in y at 0 up to order 2
+                T    result = y;
+                
+                if    (y >= taylor_2_bound)
+                {
+                    T    y3 = y*y*y;
+                    
+                    // approximation by taylor series in y at 0 up to order 4
+                    result -= y3/static_cast<T>(12);
+                }
+                
+                return(sqrt(static_cast<T>(2))*result);
+            }
+        }
+#endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */
+    }
+}
+
+#endif /* BOOST_ACOSH_HPP */
+
+