diff -r e1b950c65cb4 -r 837f303aceeb epoc32/include/tools/elfdefs.h --- a/epoc32/include/tools/elfdefs.h Wed Mar 31 12:27:01 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,812 +0,0 @@ -// Copyright (c) 2001-2009 Nokia Corporation and/or its subsidiary(-ies). -// All rights reserved. -// This component and the accompanying materials are made available -// under the terms of the License "Symbian Foundation License v1.0" to Symbian Foundation members and "Symbian Foundation End User License Agreement v1.0" to non-members -// which accompanies this distribution, and is available -// at the URL "http://www.symbianfoundation.org/legal/licencesv10.html". -// -// Initial Contributors: -// Nokia Corporation - initial contribution. -// -// Contributors: -// -// Description: -// lifted from the ARMELF spec -// -// - -#ifndef __ELFDEFS_H__ -#define __ELFDEFS_H__ - - -// ARMELF 3.1.2 -// Data Representation -typedef unsigned int Elf32_Addr; //Unsigned program address -typedef unsigned short Elf32_Half; //Unsigned medium integer -typedef unsigned int Elf32_Off; //Unsigned file offset -typedef signed int Elf32_Sword; //Signed large integer -typedef unsigned int Elf32_Word; //Unsigned large integer -typedef unsigned char UChar; //Unsigned small integer - -typedef char* MemAddr; -/* -3.2 ELF Header -Some object file control structures can grow, because the ELF header -contains their actual sizes. If the object file format changes, a -program may encounter control structures that are larger or smaller -than expected. Programs might therefore ignore extra information. The -treatment of missing information depends on context and will be -specified when and if extensions are defined. -*/ -#define EI_NIDENT 16 -typedef struct { - - // marks the file as an object file and provide machine-independent - // data with which to decode and interpret the file's contents. - unsigned char e_ident[EI_NIDENT]; - - // identifies the object file type. - Elf32_Half e_type; - - // specifies the required architecture for an individual file. - Elf32_Half e_machine; - - // identifies the object file version. - Elf32_Word e_version; - - // gives the virtual address to which the system first transfers - // control, thus starting the process. If the file has no associated - // entry point, this member holds zero. - Elf32_Addr e_entry; - - // holds the program header table's file offset in bytes. If the - // file has no program header table, this member holds zero. - Elf32_Off e_phoff; - - // holds the section header table's file offset in bytes. If the - // file has no section header table, this member holds zero. - Elf32_Off e_shoff; - - // holds processor-specific flags associated with the file. Flag - // names take the form EF_machine_flag. - Elf32_Word e_flags; - - // holds the ELF header's size in bytes. - Elf32_Half e_ehsize; - - // holds the size in bytes of one entry in the file's program - // header table; all entries are the same size. - Elf32_Half e_phentsize; - - // holds the number of entries in the program header table. - // Thus the product of e_phentsize and e_phnum gives the table's - // size in bytes. If a file has no program header table, e_phnum - // holds the value zero. - Elf32_Half e_phnum; - - // holds a section header's size in bytes. A section header is - // one entry in the section header table; all entries are the same size. - Elf32_Half e_shentsize; - - // holds the number of entries in the section header table. Thus - // the product of e_shentsize and e_shnum gives the section header - // table's size in bytes. If a file has no section header table, - // e_shnum holds the value zero. - Elf32_Half e_shnum; - - // holds the section header table index of the entry associated - // with the section name string table. If the file has no section - // name string table, this member holds the value SHN_UNDEF. - Elf32_Half e_shstrndx; - -} Elf32_Ehdr; - -// values for e_type -#define ET_NONE 0 // No file type -#define ET_REL 1 // Re-locatable -#define ET_EXEC 2 // Executable file -#define ET_DYN 3 // Shared object -#define ET_CORE 4 // Core file -#define ET_LOPROC 0xff00 // Processor-specific -#define ET_HIPROC 0xffff // Processor-specific - -//values for e_machine -#define EM_NONE 0 // No machine -#define EM_M32 1 // AT&T WE 32100 -#define EM_SPARC 2 // SPARC -#define EM_386 3 // Intel Architecture -#define EM_68K 4 // Moto 68000 -#define EM_88K 5 // Moto 88000 -#define EM_860 7 // Intel 80860 -#define EM_MIPS 8 // MIPS RS3000 Big-Endian -#define EM_MIPS_RS4_BE 10 // MIPS RS4000 Big-Endian -//#define RESERVED 11-16 Reserved for future use -#define EM_ARM 40 //ARM/Thumb Architecture - -// values for e_version -#define EV_NONE 0 // Invalid version -#define EV_CURRENT 1 // Current version - -// ELF Identification -#define EI_MAG0 0 // File identification -#define EI_MAG1 1 // File identification -#define EI_MAG2 2 // File identification -#define EI_MAG3 3 // File identification -#define EI_CLASS 4 // File class -#define EI_DATA 5 // Data encoding -#define EI_VERSION 6 // File version -#define EI_PAD 7 // Start of padding bytes - -// values for e_ident[0-3] -#define ELFMAG0 0x7f // e_ident[EI_MAG0] -#define ELFMAG1 'E' // e_ident[EI_MAG1] -#define ELFMAG2 'L' // e_ident[EI_MAG2] -#define ELFMAG3 'F' // e_ident[EI_MAG3] - -// values for e_ident[EI_CLASS]- identifies the file's class, or capacity. -#define ELFCLASSNONE 0 // Invalid class -#define ELFCLASS32 1 // 32-bit objects -#define ELFCLASS64 2 // 64-bit objects - -// values for e_ident[EI_DATA] - specifies the data encoding of the -// processor-specific data in the object file. -#define ELFDATANONE 0 // Invalid data encoding -#define ELFDATA2LSB 1 // 2's complement , with LSB at lowest address. -#define ELFDATA2MSB 2 // 2's complement , with MSB at lowest address. - -// ARM/THUMB specific values for e_flags - -// e_entry contains a program-loader entry point -#define EF_ARM_HASENTRY 0x02 -// Each subsection of the symbol table is sorted by symbol value -#define EF_ARM_SYMSARESORTED 0x04 -// Symbols in dynamic symbol tables that are defined in sections -// included in program segment n have st_shndx = n+ 1. -#define EF_ARM_DYNSYMSUSESEGIDX 0x8 -// Mapping symbols precede other local symbols in the symbol table -#define EF_ARM_MAPSYMSFIRST 0x10 -// This masks an 8-bit version number, the version of the ARM EABI to -// which this ELF file conforms. This EABI is version 2. A value of 0 -// denotes unknown conformance. (current version is 0x02000000) -#define EF_ARM_EABIMASK 0xFF000000 - -#define EF_ARM_EABI_VERSION 0x02000000 -#define EF_ARM_BPABI_VERSION 0x04000000 - -/* -3.3 Sections - -An object file's section header table lets one locate all the file's -sections. The section header table is an array of Elf32_Shdr -structures as described below. A section header table index is a -subscript into this array. The ELF header's e_shoff member gives the -byte offset from the beginning of the file to the section header -table; e_shnum tells how many entries the section header table -contains; e_shentsize gives the size in bytes of each entry. -*/ - -// Some section header table indexes are reserved; an object file will -// not have sections for these special indexes. - -// marks an undefined, missing, irrelevant, or otherwise meaningless -// section reference. -#define SHN_UNDEF 0 -// specifies the lower bound of the range of reserved indexes. -#define SHN_LORESERVE 0xff00 -// SHN_LOPROC-SHN_HIPRO - this inclusive range reserved for -// processor-specific semantics. -#define SHN_LOPROC 0xff00 -#define SHN_HIPROC 0xff1f -// Specifies absolute values for the corresponding reference. -// For example, symbols defined relative to section number SHN_ABS have -// absolute values and are not affected by relocation. -#define SHN_ABS 0xfff1 -// Symbols defined relative to this section are common symbols, -// such as FORTRAN COMMON or unallocated C external variables. -#define SHN_COMMON 0xfff2 -// specifies the upper bound of the range of reserved indexes. -#define SHN_HIRESERVE 0xffff - -typedef struct { - - // specifies the name of the section. Its value is an index into the - // section header string table section [see String Tablebelow], - // giving the location of a null-terminated string. - Elf32_Word sh_name; - - // categorizes the section's contents and semantics. Section types - // and their descriptions appear below. - Elf32_Word sh_type; - - // Sections support 1-bit flags that describe miscellaneous - // attributes. Flag definitions appear below. - Elf32_Word sh_flags; - - // If the section will appear in the memory image of a process, this - // member gives the address at which the section's first byte should - // reside. Otherwise, the member contains 0. - Elf32_Addr sh_addr; - - // gives the byte offset from the beginning of the file to the first - // byte in the section.One section type, SHT_NOBITS described below, - // occupies no space in the file, and its sh_offset member locates - // the conceptual placement in the file. - Elf32_Off sh_offset; - - // gives the section's size in bytes. Unless the section type is - // SHT_NOBITS, the section occupies sh_size bytes in the file. A - // section of type SHT_NOBITS may have a non-zero size, but it - // occupies no space in the file. - Elf32_Word sh_size; - - // holds a section header table index link, whose interpretation - // depends on the section type. A table below describes the values. - Elf32_Word sh_link; - - // holds extra information, whose interpretation depends on the - // section type. A table below describes the values. - Elf32_Word sh_info; - - // Some sections have address alignment constraints. For example, if - // a section holds a doubleword, the system must ensure double-word - // alignment for the entire section. That is, the value of sh_addr - // must be congruent to 0, modulo the value of - // sh_addralign. Currently, only 0 and positive integral powers of - // two are allowed. Values 0 and 1 mean the section has no alignment - // constraints. - Elf32_Word sh_addralign; - - // Some sections hold a table of fixed-size entries, such as a - // symbol table. For such a section, this member gives the size in - // bytes of each entry. The member contains 0 if the section does - // not hold a table of fixedsize entries. A section header's sh_type - // member specifies the section's semantics. - Elf32_Word sh_entsize; - -} Elf32_Shdr; - -// values for sh_type - -#define SHT_NULL 0 // marks the section header as inactive; it does - // not have an associated section. Other members of the section - // header have undefined values. -#define SHT_PROGBITS 1 // The section holds information defined by the - // program, whose format and meaning are determined solely by the - // program. -#define SHT_SYMTAB 2 //These sections hold a symbol table. -#define SHT_STRTAB 3 // The section holds a string table. -#define SHT_RELA 4 // The section holds relocation entries with - // explicit addends, such as type Elf32_Rela for the 32-bit class of - // object files. An object file may have multiple relocation - // sections. See Relocationbelow for details. -#define SHT_HASH 5 // The section holds a symbol hash table. -#define SHT_DYNAMIC 6 // The section holds information for dynamic - // linking. -#define SHT_NOTE 7 // This section holds information that marks the - // file in some way. -#define SHT_NOBITS 8 // A section of this type occupies no space in - // the file but otherwise resembles SHT_PROGBITS. Although this - // section contains no bytes, the sh_offset member contains the - // conceptual file offset. -#define SHT_REL 9 // The section holds relocation entries without - // explicit addends, such as type Elf32_Rel for the 32-bit class of - // object files. An object file may have multiple relocation - // sections. See Relocationbelow for details. -#define SHT_SHLIB 10 // This section type is reserved but has - // unspecified semantics. -#define SHT_DYNSYM 11 // This section hold dynamic symbol information -// SHT_LOPROC through SHT_HIPROC - Values in this inclusive range are -// reserved for processor-specific semantics. -#define SHT_LOPROC 0x70000000 -#define SHT_ARM_EXIDX 0x70000001 -#define SHT_HIPROC 0x7fffffff -// Section types between SHT_LOUSER and SHT_HIUSER may be used by the -// application, without conflicting with current or future -// system-defined section types. -#define SHT_LOUSER 0x80000000 // This value specifies the lower bound - // of the range of indexes reserved for application programs. -#define SHT_HIUSER 0xffffffff // This value specifies the upper bound - // of the range of indexes reserved for application programs. - -// values for sh_flags - -// The section contains data that should be writable during process execution -#define SHF_WRITE 0x1 -// The section occupies memory during process execution. Some control -// sections do not reside in the memory image of an object file; this -// attribute is off for those sections -#define SHF_ALLOC 0x2 -// The section contains executable machine instructions. -#define SHF_EXECINSTR 0x4 -// Bits in this mask are reserved for processor-specific semantics. -#define SHF_MASKPROC 0xf0000000 - - -typedef struct { - - // holds an index into the object file's symbol string table, which - // holds the character representations of the symbol names. - Elf32_Word st_name; - - // gives the value of the associated symbol. Depending on the - // context this may be an absolute value, an address, and so on - Elf32_Addr st_value; - - // Many symbols have associated sizes. For example, a data object's - // size is the number of bytes contained in the object. This member - // holds 0 if the symbol has no size or an unknown size. - Elf32_Word st_size; - - // This member specifies the symbol's type and binding - // attributes. The following code shows how to manipulate the - // values. -#define ELF32_ST_BIND(i) ((i)>>4) -#define ELF32_ST_TYPE(i) ((i)&0xf) -#define ELF32_ST_INFO(b,t) (((b)<<4)+((t)&0xf)) - unsigned char st_info; - - // This member currently holds 0 and has no defined meaning. - unsigned char st_other; - - -#define ELF32_ST_VISIBILITY(o) ((o)&0x3) -#define ELF64_ST_VISIBILITY(o) ((o)&0x3) - - // Every symbol table entry is defined in relation to some section; - // this member holds the relevant section header table index. - Elf32_Half st_shndx; - -} Elf32_Sym; - -// Local symbols are not visible outside the object file containing -// their definition. Local symbols of the same name may exist in -// multiple files without interfering with each other. -#define STB_LOCAL 0 -// Global symbols are visible to all object files being combined. One -// file's definition of a global symbol will satisfy another file's -// undefined reference to the same global symbol. -#define STB_GLOBAL 1 -// Weak symbols resemble global symbols, but their definitions have -// lower precedence. Undefined weak symbols (weak references) may have -// processor- or OS-specific semantics -#define STB_WEAK 2 -// STB_LOPROC through STB_HIPROC - values in this inclusive range are -// reserved for processor-specific semantics. -#define STB_LOPROC 13 -#define STB_HIPROC 15 - -// The symbol's type is not specified. -#define STT_NOTYPE 0 -// The symbol is associated with a data object, such as a variable, an -// array, and so on. -#define STT_OBJECT 1 -// The symbol is associated with a function or other executable code. -#define STT_FUNC 2 -// The symbol is associated with a section. Symbol table entries of -// this type exist primarily for relocation and normally have -// STB_LOCAL binding. -#define STT_SECTION 3 -// A file symbol has STB_LOCAL binding, its section index is SHN_A BS, -// and it precedes the other STB_LOCAL symbols for the file, if it is -// present. -#define STT_FILE 4 -// Values in this inclusive range are reserved for processor-specific -// semantics. If a symbol's value refers to a specific location within -// a section, its section index member, st_shndx, holds an index into -// the section header table. As the section moves during relocation, -// the symbol's value changes as well, and references to the symbol -// continue to point to the same location in the program. Some special -// section index values give other semantics. -#define STT_LOPROC 13 -#define STT_HIPROC 15 - -/* -STV_DEFAULT -The visibility of symbols with the STV_DEFAULT attribute is as specified by the symbol's -binding type. That is, global and weak symbols are visible outside of their defining -component, the executable file or shared object. Local symbols are hidden. Global and weak - symbols can also be preempted, that is, they may by interposed by definitions of the same - name in another component. - -STV_PROTECTED -A symbol defined in the current component is protected if it is visible in other components - but cannot be preempted. Any reference to such a symbol from within the defining component - must be resolved to the definition in that component, even if there is a definition in - another component that would interpose by the default rules. A symbol with STB_LOCAL binding - will not have STV_PROTECTED visibility. - -STV_HIDDEN -A symbol defined in the current component is hidden if its name is not visible to other - components. Such a symbol is necessarily protected. This attribute is used to control - the external interface of a component. An object named by such a symbol may still be - referenced from another component if its address is passed outside. - -A hidden symbol contained in a relocatable object is either removed or converted to -STB_LOCAL binding by the link-editor when the relocatable object is included in an - executable file or shared object. - -STV_INTERNAL -This visibility attribute is currently reserved. -*/ -#define STV_DEFAULT 0 -#define STV_INTERNAL 1 -#define STV_HIDDEN 2 -#define STV_PROTECTED 3 - -// Relocation Entries - -typedef struct { - - // r_offset gives the location at which to apply the relocation - // action. For a relocatable file, the value is the byte offset from - // the beginning of the section to the storage unit affected by the - // relocation. For an executable file or a shared object, the value - // is the virtual address of the storage unit affected by the - // relocation. - Elf32_Addr r_offset; - - // r_info gives both the symbol table index with respect to which - // the relocation must be made, and the type of relocation to - // apply. For example, a call instruction's relocation entry would - // hold the symbol table index of the function being called. If the - // index is STN_UNDEF, the undefined symbol index, the relocation - // uses 0 as the symbol value. Relocation types are - // processor-specific; descriptions of their behavior appear in - // section 4.5, Relocation types. When the text in section 4.5 - // refers to a relocation entry's relocation type or symbol table - // index, it means the result of applying ELF32_R_TYPE or - // ELF32_R_SYM, respectively, to the entry's r_info member. - -#define ELF32_R_SYM(i) ((i)>>8) -#define ELF32_R_TYPE(i) ((unsigned char)(i)) -#define ELF32_R_INFO(s,t) (((s)<<8)+(unsigned char)(t)) - - Elf32_Word r_info; -} Elf32_Rel; - -typedef struct { - Elf32_Addr r_offset; - Elf32_Word r_info; - Elf32_Sword r_addend; -} Elf32_Rela; - -// Program Header - -typedef struct { - - // p_type tells what kind of segment this array element describes or - // how to interpret the array element's information. Type values and - // their meanings are given below. - Elf32_Word p_type; - - // p_offset gives the offset from the start of the file at which the - // first byte of the segment resides. - Elf32_Off p_offset; - - // p_vaddr gives the virtual address at which the first byte of the - // segment resides in memory. - Elf32_Addr p_vaddr; - - // p_paddr - On systems for which physical addressing is relevant, - // this member is reserved for the segment's physical address. This - // member requires operating system specific information. - Elf32_Addr p_paddr; - - // p_filesz gives the number of bytes in the file image of the - // segment; it may be zero. - Elf32_Word p_filesz; - - // p_memsz gives the number of bytes in the memory image of the - // segment; it may be zero. - Elf32_Word p_memsz; - - // p_flags gives flags relevant to the segment. Defined flag values - // are given below. - Elf32_Word p_flags; - - // p_align - Loadable process segments must have congruent values - // for p_vaddr and p_offset, modulo the page size. This member gives - // the value to which the segments are aligned in memory and in the - // file. Values 0 and 1 mean that no alignment is - // required. Otherwise, p_align should be a positive, integral power - // of 2, and p_vaddr should equal p_offset, modulo p_align. - Elf32_Word p_align; - -} Elf32_Phdr; - -// Segment types - values for p_type - -// The array element is unused; other members' values are -// undefined. This type lets the program header table have ignored -// entries. -#define PT_NULL 0 -// The array element specifies a loadable segment, described by -// p_filesz and p_memsz (for additional explanation, see -// PT_LOAD below). -#define PT_LOAD 1 -// The array element specifies dynamic linking information. See -// subsection 4.7. -#define PT_DYNAMIC 2 -// The array element specifies the location and size of a -// null-terminated pathname to invoke as an interpreter. -#define PT_INTERP 3 -// The array element specifies the location and size of auxiliary -// information. -#define PT_NOTE 4 -// This segment type is reserved but has unspecified semantics. -#define PT_SHLIB 5 -// The array element, if present, specifies the location and size of -// the program header table itself (for additional explanation, see -// PT_ PHDR below). -#define PT_PHDR 6 -// Values in the inclusive [PT_LOPROC, PT_HIPROC] range are reserved -// for processor-specific semantics. -#define PT_LOPROC 0x70000000 -#define PT_HIPROC 0x7fffffff - -// values for p_flags -// The segment may be executed. -#define PF_X 1 -// The segment may be written to. -#define PF_W 2 -// The segment may be read. -#define PF_R 4 -// Reserved for processor-specific purposes (see 4.6, Program -// headers). -#define PF_MASKPROC 0xf0000000 -#define PF_ARM_ENTRY 0x80000000 - - -// Relocation types - -// ELF defines two sorts of relocation directive, SHT_REL, and -// SHT_RELA. Both identify: -// -// o A section containing the storage unit - byte, half-word, word, or -// instruction - being relocated. -// o An offset within the section - or the address within an -// executable program - of the storage unit itself. -// o A symbol,the value of which helps to define a new value for the -// storage unit. -// o A relocation typethat defines the computation to be -// performed. Computations are performed using 2's complement, 32-bit, -// unsigned arithmetic with silent overflow. -// o An addend, that also helps to define a new value for the storage -// unit. -// -// The addend may be encoded wholly in a field of the storage unit -// being relocated - relocation sort SHT_REL - or partly there and -// partly in the addendfield of the relocation directive - relocation -// sort SHT_RELA. Tables below describe the computation associated -// with each relocation type, using the following notation: -// -// A - denotes the addend used to compute the new value of the storage -// unit being relocated. -// - It is the value extracted from the storage unit being relocated -// (relocation directives of sort SHT_REL) or the sum of that -// value and the r_addend field of the relocation directive (sort -// SHT_RELA). -// - If it has a unit, the unit is bytes. An encoded address or -// offset value is converted to bytes on extraction from a storage -// unit and re-encoded on insertion into a storage unit. -// -// P - denotes the place (section offset or address of the storage -// unit) being re-located. It is the sum of the r_offset field of -// the relocation directive and the base address of the section -// being re-located. -// -// S - denotes the value of the symbol whose symbol table index is -// given in the r_info field of the relocation directive. -// -// B - denotes the base address of the consolidated section in which -// the symbol is defined. For relocations of type R_ARM_SBREL32, -// this is the least static data address (the static base). -// -// relocation types 0-16 are generic -// Name Type Field Computation -//==================================================================== -#define R_ARM_NONE 0 // Any No relocation. -#define R_ARM_PC24 1 // ARM B/BL S - P + A -#define R_ARM_ABS32 2 // 32-bit word S + A -#define R_ARM_REL32 3 // 32-bit word S - P + A -#define R_ARM_PC13 4 // ARM LDR r, [pc,...] S - P + A -#define R_ARM_ABS16 5 // 16-bit half-word S + A -#define R_ARM_ABS12 6 // ARM LDR/STR S + A -#define R_ARM_THM_ABS5 7 // Thumb LDR/STR S + A -#define R_ARM_ABS8 8 // 8-bit byte S + A -#define R_ARM_SBREL32 9 // 32-bit word S - B + A -#define R_ARM_THM_PC22 10 // Thumb BL pair S - P + A -#define R_ARM_THM_PC8 11 // Thumb LDR r, [pc,...] S - P + A -#define R_ARM_AMP_VCALL9 12 // AMP VCALL Obsolete - SA-1500 -#define R_ARM_SWI24 13 // ARM SWI S + A -#define R_ARM_THM_SWI8 14 // Thumb SWI S + A -#define R_ARM_XPC25 15 // ARM BLX S - P + A -#define R_ARM_THM_XPC22 16 // Thumb BLX pair S - P + A - -// relocation types 17-31 are reserved for ARM Linux -#define R_ARM_GLOB_DAT 21 // PLT related S + A -#define R_ARM_JUMP_SLOT 22 // PLT related S + A -#define R_ARM_RELATIVE 23 // 32-bit word B(S) + A - -#define R_ARM_GOT_BREL 26 // - -#define R_ARM_ALU_PCREL_7_0 32 // ARM ADD/SUB (S - P + A) & 0x000000FF -#define R_ARM_ALU_PCREL_15_8 33 // ARM ADD/SUB (S - P + A) & 0x0000FF00 -#define R_ARM_ALU_PCREL_23_15 34 // ARM ADD/SUB (S - P + A) & 0x00FF0000 -#define R_ARM_LDR_SBREL_11_0 35 // ARM ADD/SUB (S - B + A) & 0x00000FFF -#define R_ARM_ALU_SBREL_19_12 36 // ARM ADD/SUB (S - B + A) & 0x000FF000 -#define R_ARM_ALU_SBREL_27_20 37 // ARM ADD/SUB (S - B + A) & 0x0FF00000 - -// Dynamic relocation types - -// A small set of relocation types supports relocating executable ELF -// files. They are used only in a relocation section embedded in a -// dynamic segment (see section 4.7, Dynamic linking and -// relocation). They cannot be used in a relocation section in a -// re-locatable ELF file. In Figure 4-13 below: -// -// .S is the displacement from its statically linked virtual address -// of the segment containing the symbol definition. -// -// .P is the displacement from its statically linked virtual address -// of the segment containing the place to be relocated. -// -// .SB is the displacement of the segment pointed to by the static -// base (PF_ARM_SB is set in the p_flags field of this segment's -// program header - see 4.6, Program headers). - - -// types 249 - 255 are dynamic relocation types and are only used in dynamic sections -#define R_ARM_RXPC25 249 // ARM BLX (.S - .P) + A - // For calls between program segments. -#define R_ARM_RSBREL32 250 // Word (.S - .SB) + A - // For an offset from SB, the static base. -#define R_ARM_THM_RPC22 251 // Thumb BL/BLX pair (.S - .P) + A - // For calls between program segments. -#define R_ARM_RREL32 252 // Word (.S - .P) + A - // For on offset between two segments. -#define R_ARM_RABS32 253 // Word .S + A - // For the address of a location in the target segment. -#define R_ARM_RPC24 254 // ARM B/BL (.S - .P) + A - // For calls between program segments. -#define R_ARM_RBASE 255 // None Identifies the segment being relocated by - // the following relocation directives. -// DYNAMIC SEGMENT -// The dynamic segment begins with a dynamic section containing an array of structures of type: -typedef struct Elf32_Dyn { - Elf32_Sword d_tag; - Elf32_Word d_val; -} Elf32_Dyn; - -// This entry marks the end of the dynamic array. mandatory -#define DT_NULL 0 -// Index in the string table of the name of a needed library. multiple -#define DT_NEEDED 1 -// These entries are unused by versions 1-2 of the ARM EABI. unused -#define DT_PLTRELSZ 2 -#define DT_PLTGOT 3 -// The offset of the hash table section in the dynamic segment. mandatory -#define DT_HASH 4 -// The offset of the string table section in the dynamic segment. mandatory -#define DT_STRTAB 5 -// The offset of the symbol table section in the dynamic segment. mandatory -#define DT_SYMTAB 6 -// The offset in the dynamic segment of an SHT_RELA relocation -// section, Its bytesize,and the byte size of an ARMRELA-type -// relocation entry. optional -#define DT_RELA 7 -#define DT_RELASZ 8 -#define DT_RELAENT 9 -// The byte size of the string table section. mandatory -#define DT_STRSZ 10 -// The byte size of an ARM symbol table entry. mandatory -#define DT_SYMENT 11 -// These entries are unused by versions 1-2 of the ARM EABI. unused -#define DT_INIT 12 -#define DT_FINI 13 -// The Index in the string table of the name of this shared object. mandatory -#define DT_SONAME 14 -// Unused by the ARM EABI. unused -#define DT_RPATH 15 -#define DT_SYMBOLIC 16 -//The offset in the dynamic segment of an SHT_REL relocation section, -//Its bytesize, and the byte size of an ARMREL-type relocation -//entry. optional -#define DT_REL 17 -#define DT_RELSZ 18 -#define DT_RELENT 19 -// These entries are unused by versions 1-2 of the ARM EABI. unused -#define DT_PLTREL 20 -#define DT_DEBUG 21 -#define DT_TEXTREL 22 -#define DT_JMPREL 23 -#define DT_BIND_NOW 24 -#define DT_INIT_ARRAY 25 -#define DT_FINI_ARRAY 26 -#define DT_INIT_ARRAYSZ 27 -#define DT_FINI_ARRAYSZ 28 - -#define DT_VERSYM 0x6ffffff0 /* see section 3.3.3.1 in bpabi*/ -#define DT_RELCOUNT 0x6ffffffa -#define DT_VERDEF 0x6ffffffc /* Address of version definition - table */ -#define DT_VERDEFNUM 0x6ffffffd /* Number of version definitions */ -#define DT_VERNEED 0x6ffffffe /* Address of table with needed - versions */ -#define DT_VERNEEDNUM 0x6fffffff /* Number of needed versions */ - -// Values in this range are reserved to the ARM EABI. unused -#define DT_LOPROC 0x70000000 -#define DT_HIPROC 0x7fffffff -#define DT_ARM_RESERVED1 0x70000000 -/* Number of entries in the dynamic symbol table, including the initial dummy symbol. */ -#define DT_ARM_SYMTABSZ_21 0x70000000 // For RVCT 2.1 -#define DT_ARM_SYMTABSZ 0x70000001 // The DT_ARM_SYMTABSZ tag value has been changed from RVCT2.2 -/* Holds the address of the pre-emption map for platforms that use the DLL static binding model. */ -#define DT_ARM_PREEMPTMAP 0x70000002 -#define DT_ARM_RESERVED2 0x70000003 -#define DT_ARM_PLTGOTBASE 0x70000004 -#define DT_ARM_PLTGOTLIMIT 0x70000005 - -// What the hash table looks like in the dynamic segment -typedef struct Elf32_HashTable { - Elf32_Word nBuckets; - Elf32_Word nChains; - // Elf32_Word bucket[nBuckets]; - // Elf32_Word chain[nChains]; -} Elf32_HashTable; - - -typedef struct -{ - Elf32_Half vd_version; /* Version revision */ - Elf32_Half vd_flags; /* Version information */ - Elf32_Half vd_ndx; /* Version Index */ - Elf32_Half vd_cnt; /* Number of associated aux entries */ - Elf32_Word vd_hash; /* Version name hash value */ - Elf32_Word vd_aux; /* Offset in bytes to verdaux array */ - Elf32_Word vd_next; /* Offset in bytes to next verdef - entry */ -} Elf32_Verdef; - -typedef struct -{ - Elf32_Word vda_name; /* Version or dependency names */ - Elf32_Word vda_next; /* Offset in bytes to next verdaux - entry */ -} Elf32_Verdaux; - - -typedef struct -{ - Elf32_Half vn_version; /* Version of structure */ - Elf32_Half vn_cnt; /* Number of associated aux entries */ - Elf32_Word vn_file; /* Offset of filename for this - dependency */ - Elf32_Word vn_aux; /* Offset in bytes to vernaux array */ - Elf32_Word vn_next; /* Offset in bytes to next verneed - entry */ -} Elf32_Verneed; - -typedef struct { - Elf32_Word vna_hash; - Elf32_Half vna_flags; - Elf32_Half vna_other; - Elf32_Word vna_name; - Elf32_Word vna_next; -} Elf32_Vernaux; - - -enum ESegmentType -{ - ESegmentUndefined = SHN_UNDEF, // undefined or meaningless section/segment reference - ESegmentRO, // Read Only (text) segment - ESegmentRW, // Read Write (data) segment - ESegmentDynamic, // Dynamic segment - ESegmentABS = SHN_ABS, // Symbols defined relative to section number SHN_ABS have - // absolute values and are not affected by relocation. - ESegmentCommon = SHN_COMMON, // Symbols defined relative to section number SHN_ABS have - // absolute values and are not affected by relocation. -}; - -#endif