diff -r 666f914201fb -r 2fe1408b6811 epoc32/include/stdapis/boost/graph/transitive_closure.hpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/epoc32/include/stdapis/boost/graph/transitive_closure.hpp Tue Mar 16 16:12:26 2010 +0000 @@ -0,0 +1,370 @@ +// Copyright (C) 2001 Vladimir Prus +// Copyright (C) 2001 Jeremy Siek +// Distributed under the Boost Software License, Version 1.0. (See +// accompanying file LICENSE_1_0.txt or copy at +// http://www.boost.org/LICENSE_1_0.txt) + +// NOTE: this final is generated by libs/graph/doc/transitive_closure.w + +#ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP +#define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP + +#include +#include // for std::min and std::max +#include +#include +#include +#include +#include +#include +#include +#include + +namespace boost +{ + + namespace detail + { + inline void + union_successor_sets(const std::vector < std::size_t > &s1, + const std::vector < std::size_t > &s2, + std::vector < std::size_t > &s3) + { + BOOST_USING_STD_MIN(); + for (std::size_t k = 0; k < s1.size(); ++k) + s3[k] = min BOOST_PREVENT_MACRO_SUBSTITUTION(s1[k], s2[k]); + } + } // namespace detail + + namespace detail + { + template < typename Container, typename ST = std::size_t, + typename VT = typename Container::value_type > + struct subscript_t:public std::unary_function < ST, VT > + { + typedef VT& result_type; + + subscript_t(Container & c):container(&c) + { + } + VT & operator() (const ST & i) const + { + return (*container)[i]; + } + protected: + Container * container; + }; + template < typename Container > + subscript_t < Container > subscript(Container & c) { + return subscript_t < Container > (c); + } + } // namespace detail + + template < typename Graph, typename GraphTC, + typename G_to_TC_VertexMap, + typename VertexIndexMap > + void transitive_closure(const Graph & g, GraphTC & tc, + G_to_TC_VertexMap g_to_tc_map, + VertexIndexMap index_map) + { + if (num_vertices(g) == 0) + return; + typedef typename graph_traits < Graph >::vertex_descriptor vertex; + typedef typename graph_traits < Graph >::edge_descriptor edge; + typedef typename graph_traits < Graph >::vertex_iterator vertex_iterator; + typedef typename property_traits < VertexIndexMap >::value_type size_type; + typedef typename graph_traits < + Graph >::adjacency_iterator adjacency_iterator; + + function_requires < VertexListGraphConcept < Graph > >(); + function_requires < AdjacencyGraphConcept < Graph > >(); + function_requires < VertexMutableGraphConcept < GraphTC > >(); + function_requires < EdgeMutableGraphConcept < GraphTC > >(); + function_requires < ReadablePropertyMapConcept < VertexIndexMap, + vertex > >(); + + typedef size_type cg_vertex; + std::vector < cg_vertex > component_number_vec(num_vertices(g)); + iterator_property_map < cg_vertex *, VertexIndexMap, cg_vertex, cg_vertex& > + component_number(&component_number_vec[0], index_map); + + int num_scc = strong_components(g, component_number, + vertex_index_map(index_map)); + + std::vector < std::vector < vertex > >components; + build_component_lists(g, num_scc, component_number, components); + + typedef std::vector > CG_t; + CG_t CG(num_scc); + for (cg_vertex s = 0; s < components.size(); ++s) { + std::vector < cg_vertex > adj; + for (size_type i = 0; i < components[s].size(); ++i) { + vertex u = components[s][i]; + adjacency_iterator v, v_end; + for (tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) { + cg_vertex t = component_number[*v]; + if (s != t) // Avoid loops in the condensation graph + adj.push_back(t); + } + } + std::sort(adj.begin(), adj.end()); + typename std::vector::iterator di = + std::unique(adj.begin(), adj.end()); + if (di != adj.end()) + adj.erase(di, adj.end()); + CG[s] = adj; + } + + std::vector topo_order; + std::vector topo_number(num_vertices(CG)); + topological_sort(CG, std::back_inserter(topo_order), + vertex_index_map(identity_property_map())); + std::reverse(topo_order.begin(), topo_order.end()); + size_type n = 0; + for (typename std::vector::iterator iter = topo_order.begin(); + iter != topo_order.end(); ++iter) + topo_number[*iter] = n++; + + for (size_type i = 0; i < num_vertices(CG); ++i) + std::sort(CG[i].begin(), CG[i].end(), + boost::bind(std::less(), + boost::bind(detail::subscript(topo_number), _1), + boost::bind(detail::subscript(topo_number), _2))); + + std::vector > chains; + { + std::vector in_a_chain(num_vertices(CG)); + for (typename std::vector::iterator i = topo_order.begin(); + i != topo_order.end(); ++i) { + cg_vertex v = *i; + if (!in_a_chain[v]) { + chains.resize(chains.size() + 1); + std::vector& chain = chains.back(); + for (;;) { + chain.push_back(v); + in_a_chain[v] = true; + typename graph_traits::adjacency_iterator adj_first, adj_last; + tie(adj_first, adj_last) = adjacent_vertices(v, CG); + typename graph_traits::adjacency_iterator next + = std::find_if(adj_first, adj_last, + std::not1(detail::subscript(in_a_chain))); + if (next != adj_last) + v = *next; + else + break; // end of chain, dead-end + + } + } + } + } + std::vector chain_number(num_vertices(CG)); + std::vector pos_in_chain(num_vertices(CG)); + for (size_type i = 0; i < chains.size(); ++i) + for (size_type j = 0; j < chains[i].size(); ++j) { + cg_vertex v = chains[i][j]; + chain_number[v] = i; + pos_in_chain[v] = j; + } + + cg_vertex inf = (std::numeric_limits< cg_vertex >::max)(); + std::vector > successors(num_vertices(CG), + std::vector + (chains.size(), inf)); + for (typename std::vector::reverse_iterator + i = topo_order.rbegin(); i != topo_order.rend(); ++i) { + cg_vertex u = *i; + typename graph_traits::adjacency_iterator adj, adj_last; + for (tie(adj, adj_last) = adjacent_vertices(u, CG); + adj != adj_last; ++adj) { + cg_vertex v = *adj; + if (topo_number[v] < successors[u][chain_number[v]]) { + // Succ(u) = Succ(u) U Succ(v) + detail::union_successor_sets(successors[u], successors[v], + successors[u]); + // Succ(u) = Succ(u) U {v} + successors[u][chain_number[v]] = topo_number[v]; + } + } + } + + for (size_type i = 0; i < CG.size(); ++i) + CG[i].clear(); + for (size_type i = 0; i < CG.size(); ++i) + for (size_type j = 0; j < chains.size(); ++j) { + size_type topo_num = successors[i][j]; + if (topo_num < inf) { + cg_vertex v = topo_order[topo_num]; + for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k) + CG[i].push_back(chains[j][k]); + } + } + + + // Add vertices to the transitive closure graph + typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex; + { + vertex_iterator i, i_end; + for (tie(i, i_end) = vertices(g); i != i_end; ++i) + g_to_tc_map[*i] = add_vertex(tc); + } + // Add edges between all the vertices in two adjacent SCCs + typename graph_traits::vertex_iterator si, si_end; + for (tie(si, si_end) = vertices(CG); si != si_end; ++si) { + cg_vertex s = *si; + typename graph_traits::adjacency_iterator i, i_end; + for (tie(i, i_end) = adjacent_vertices(s, CG); i != i_end; ++i) { + cg_vertex t = *i; + for (size_type k = 0; k < components[s].size(); ++k) + for (size_type l = 0; l < components[t].size(); ++l) + add_edge(g_to_tc_map[components[s][k]], + g_to_tc_map[components[t][l]], tc); + } + } + // Add edges connecting all vertices in a SCC + for (size_type i = 0; i < components.size(); ++i) + if (components[i].size() > 1) + for (size_type k = 0; k < components[i].size(); ++k) + for (size_type l = 0; l < components[i].size(); ++l) { + vertex u = components[i][k], v = components[i][l]; + add_edge(g_to_tc_map[u], g_to_tc_map[v], tc); + } + + // Find loopbacks in the original graph. + // Need to add it to transitive closure. + { + vertex_iterator i, i_end; + for (tie(i, i_end) = vertices(g); i != i_end; ++i) + { + adjacency_iterator ab, ae; + for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab) + { + if (*ab == *i) + if (components[component_number[*i]].size() == 1) + add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc); + } + } + } + } + + template + void transitive_closure(const Graph & g, GraphTC & tc) + { + if (num_vertices(g) == 0) + return; + typedef typename property_map::const_type + VertexIndexMap; + VertexIndexMap index_map = get(vertex_index, g); + + typedef typename graph_traits::vertex_descriptor tc_vertex; + std::vector to_tc_vec(num_vertices(g)); + iterator_property_map < tc_vertex *, VertexIndexMap, tc_vertex, tc_vertex&> + g_to_tc_map(&to_tc_vec[0], index_map); + + transitive_closure(g, tc, g_to_tc_map, index_map); + } + + namespace detail + { + template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap, + typename VertexIndexMap> + void transitive_closure_dispatch + (const Graph & g, GraphTC & tc, + G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map) + { + typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex; + typename std::vector < tc_vertex >::size_type + n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1; + std::vector < tc_vertex > to_tc_vec(n); + + transitive_closure + (g, tc, + choose_param(g_to_tc_map, make_iterator_property_map + (to_tc_vec.begin(), index_map, to_tc_vec[0])), + index_map); + } + } // namespace detail + + template < typename Graph, typename GraphTC, + typename P, typename T, typename R > + void transitive_closure(const Graph & g, GraphTC & tc, + const bgl_named_params < P, T, R > ¶ms) + { + if (num_vertices(g) == 0) + return; + detail::transitive_closure_dispatch + (g, tc, get_param(params, orig_to_copy_t()), + choose_const_pmap(get_param(params, vertex_index), g, vertex_index) ); + } + + + template < typename G > void warshall_transitive_closure(G & g) + { + typedef typename graph_traits < G >::vertex_descriptor vertex; + typedef typename graph_traits < G >::vertex_iterator vertex_iterator; + + function_requires < AdjacencyMatrixConcept < G > >(); + function_requires < EdgeMutableGraphConcept < G > >(); + + // Matrix form: + // for k + // for i + // if A[i,k] + // for j + // A[i,j] = A[i,j] | A[k,j] + vertex_iterator ki, ke, ii, ie, ji, je; + for (tie(ki, ke) = vertices(g); ki != ke; ++ki) + for (tie(ii, ie) = vertices(g); ii != ie; ++ii) + if (edge(*ii, *ki, g).second) + for (tie(ji, je) = vertices(g); ji != je; ++ji) + if (!edge(*ii, *ji, g).second && edge(*ki, *ji, g).second) { + add_edge(*ii, *ji, g); + } + } + + + template < typename G > void warren_transitive_closure(G & g) + { + using namespace boost; + typedef typename graph_traits < G >::vertex_descriptor vertex; + typedef typename graph_traits < G >::vertex_iterator vertex_iterator; + + function_requires < AdjacencyMatrixConcept < G > >(); + function_requires < EdgeMutableGraphConcept < G > >(); + + // Make sure second loop will work + if (num_vertices(g) == 0) + return; + + // for i = 2 to n + // for k = 1 to i - 1 + // if A[i,k] + // for j = 1 to n + // A[i,j] = A[i,j] | A[k,j] + + vertex_iterator ic, ie, jc, je, kc, ke; + for (tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic) + for (tie(kc, ke) = vertices(g); *kc != *ic; ++kc) + if (edge(*ic, *kc, g).second) + for (tie(jc, je) = vertices(g); jc != je; ++jc) + if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) { + add_edge(*ic, *jc, g); + } + // for i = 1 to n - 1 + // for k = i + 1 to n + // if A[i,k] + // for j = 1 to n + // A[i,j] = A[i,j] | A[k,j] + + for (tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic) + for (kc = ic, ke = ie, ++kc; kc != ke; ++kc) + if (edge(*ic, *kc, g).second) + for (tie(jc, je) = vertices(g); jc != je; ++jc) + if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) { + add_edge(*ic, *jc, g); + } + } + + +} // namespace boost + +#endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP