williamr@2: /* williamr@2: * williamr@2: * williamr@2: * Copyright (c) 1994 williamr@2: * Hewlett-Packard Company williamr@2: * williamr@2: * Copyright (c) 1996,1997 williamr@2: * Silicon Graphics Computer Systems, Inc. williamr@2: * williamr@2: * Copyright (c) 1997 williamr@2: * Moscow Center for SPARC Technology williamr@2: * williamr@4: * Copyright (c) 1999 williamr@2: * Boris Fomitchev williamr@2: * williamr@2: * This material is provided "as is", with absolutely no warranty expressed williamr@2: * or implied. Any use is at your own risk. williamr@2: * williamr@4: * Permission to use or copy this software for any purpose is hereby granted williamr@2: * without fee, provided the above notices are retained on all copies. williamr@2: * Permission to modify the code and to distribute modified code is granted, williamr@2: * provided the above notices are retained, and a notice that the code was williamr@2: * modified is included with the above copyright notice. williamr@2: * williamr@2: * Modified CRP 7/10/00 for improved conformance / efficiency on insert_unique / williamr@2: * insert_equal with valid hint -- efficiency is improved all around, and it is williamr@2: * should now be standard conforming for complexity on insert point immediately williamr@2: * after hint (amortized constant time). williamr@2: * williamr@2: */ williamr@2: #ifndef _STLP_TREE_C williamr@2: #define _STLP_TREE_C williamr@2: williamr@2: #ifndef _STLP_INTERNAL_TREE_H williamr@4: # include williamr@4: #endif williamr@4: williamr@4: #if defined (_STLP_DEBUG) williamr@4: # define _Rb_tree _STLP_NON_DBG_NAME(Rb_tree) williamr@2: #endif williamr@2: williamr@2: // fbp: these defines are for outline methods definitions. williamr@2: // needed for definitions to be portable. Should not be used in method bodies. williamr@4: #if defined (_STLP_NESTED_TYPE_PARAM_BUG) williamr@4: # define __iterator__ _Rb_tree_iterator<_Value, _STLP_HEADER_TYPENAME _Traits::_NonConstTraits> williamr@4: # define __size_type__ size_t williamr@2: # define iterator __iterator__ williamr@4: #else williamr@4: # define __iterator__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::iterator williamr@4: # define __size_type__ _STLP_TYPENAME_ON_RETURN_TYPE _Rb_tree<_Key, _Compare, _Value, _KeyOfValue, _Traits, _Alloc>::size_type williamr@2: #endif williamr@2: williamr@2: _STLP_BEGIN_NAMESPACE williamr@2: williamr@4: _STLP_MOVE_TO_PRIV_NAMESPACE williamr@4: williamr@4: #if defined (_STLP_EXPOSE_GLOBALS_IMPLEMENTATION) williamr@2: williamr@2: template void _STLP_CALL williamr@4: _Rb_global<_Dummy>::_Rotate_left(_Rb_tree_node_base* __x, williamr@4: _Rb_tree_node_base*& __root) { williamr@2: _Rb_tree_node_base* __y = __x->_M_right; williamr@2: __x->_M_right = __y->_M_left; williamr@4: if (__y->_M_left != 0) williamr@2: __y->_M_left->_M_parent = __x; williamr@2: __y->_M_parent = __x->_M_parent; williamr@2: williamr@2: if (__x == __root) williamr@2: __root = __y; williamr@2: else if (__x == __x->_M_parent->_M_left) williamr@2: __x->_M_parent->_M_left = __y; williamr@2: else williamr@2: __x->_M_parent->_M_right = __y; williamr@2: __y->_M_left = __x; williamr@2: __x->_M_parent = __y; williamr@2: } williamr@2: williamr@4: template void _STLP_CALL williamr@4: _Rb_global<_Dummy>::_Rotate_right(_Rb_tree_node_base* __x, williamr@4: _Rb_tree_node_base*& __root) { williamr@2: _Rb_tree_node_base* __y = __x->_M_left; williamr@2: __x->_M_left = __y->_M_right; williamr@2: if (__y->_M_right != 0) williamr@2: __y->_M_right->_M_parent = __x; williamr@2: __y->_M_parent = __x->_M_parent; williamr@2: williamr@2: if (__x == __root) williamr@2: __root = __y; williamr@2: else if (__x == __x->_M_parent->_M_right) williamr@2: __x->_M_parent->_M_right = __y; williamr@2: else williamr@2: __x->_M_parent->_M_left = __y; williamr@2: __y->_M_right = __x; williamr@2: __x->_M_parent = __y; williamr@2: } williamr@2: williamr@2: template void _STLP_CALL williamr@4: _Rb_global<_Dummy>::_Rebalance(_Rb_tree_node_base* __x, williamr@4: _Rb_tree_node_base*& __root) { williamr@2: __x->_M_color = _S_rb_tree_red; williamr@2: while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red) { williamr@2: if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left) { williamr@2: _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right; williamr@2: if (__y && __y->_M_color == _S_rb_tree_red) { williamr@2: __x->_M_parent->_M_color = _S_rb_tree_black; williamr@2: __y->_M_color = _S_rb_tree_black; williamr@2: __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; williamr@2: __x = __x->_M_parent->_M_parent; williamr@2: } williamr@2: else { williamr@2: if (__x == __x->_M_parent->_M_right) { williamr@2: __x = __x->_M_parent; williamr@2: _Rotate_left(__x, __root); williamr@2: } williamr@2: __x->_M_parent->_M_color = _S_rb_tree_black; williamr@2: __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; williamr@2: _Rotate_right(__x->_M_parent->_M_parent, __root); williamr@2: } williamr@2: } williamr@2: else { williamr@2: _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left; williamr@2: if (__y && __y->_M_color == _S_rb_tree_red) { williamr@2: __x->_M_parent->_M_color = _S_rb_tree_black; williamr@2: __y->_M_color = _S_rb_tree_black; williamr@2: __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; williamr@2: __x = __x->_M_parent->_M_parent; williamr@2: } williamr@2: else { williamr@2: if (__x == __x->_M_parent->_M_left) { williamr@2: __x = __x->_M_parent; williamr@2: _Rotate_right(__x, __root); williamr@2: } williamr@2: __x->_M_parent->_M_color = _S_rb_tree_black; williamr@2: __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red; williamr@2: _Rotate_left(__x->_M_parent->_M_parent, __root); williamr@2: } williamr@2: } williamr@2: } williamr@2: __root->_M_color = _S_rb_tree_black; williamr@2: } williamr@2: williamr@2: template _Rb_tree_node_base* _STLP_CALL williamr@2: _Rb_global<_Dummy>::_Rebalance_for_erase(_Rb_tree_node_base* __z, williamr@4: _Rb_tree_node_base*& __root, williamr@4: _Rb_tree_node_base*& __leftmost, williamr@4: _Rb_tree_node_base*& __rightmost) { williamr@2: _Rb_tree_node_base* __y = __z; williamr@4: _Rb_tree_node_base* __x; williamr@4: _Rb_tree_node_base* __x_parent; williamr@4: williamr@2: if (__y->_M_left == 0) // __z has at most one non-null child. y == z. williamr@2: __x = __y->_M_right; // __x might be null. williamr@4: else { williamr@2: if (__y->_M_right == 0) // __z has exactly one non-null child. y == z. williamr@2: __x = __y->_M_left; // __x is not null. williamr@2: else { // __z has two non-null children. Set __y to williamr@4: __y = _Rb_tree_node_base::_S_minimum(__y->_M_right); // __z's successor. __x might be null. williamr@2: __x = __y->_M_right; williamr@2: } williamr@4: } williamr@4: williamr@2: if (__y != __z) { // relink y in place of z. y is z's successor williamr@4: __z->_M_left->_M_parent = __y; williamr@2: __y->_M_left = __z->_M_left; williamr@2: if (__y != __z->_M_right) { williamr@2: __x_parent = __y->_M_parent; williamr@2: if (__x) __x->_M_parent = __y->_M_parent; williamr@2: __y->_M_parent->_M_left = __x; // __y must be a child of _M_left williamr@2: __y->_M_right = __z->_M_right; williamr@2: __z->_M_right->_M_parent = __y; williamr@2: } williamr@2: else williamr@4: __x_parent = __y; williamr@2: if (__root == __z) williamr@2: __root = __y; williamr@2: else if (__z->_M_parent->_M_left == __z) williamr@2: __z->_M_parent->_M_left = __y; williamr@4: else williamr@2: __z->_M_parent->_M_right = __y; williamr@2: __y->_M_parent = __z->_M_parent; williamr@2: _STLP_STD::swap(__y->_M_color, __z->_M_color); williamr@2: __y = __z; williamr@2: // __y now points to node to be actually deleted williamr@2: } williamr@2: else { // __y == __z williamr@2: __x_parent = __y->_M_parent; williamr@4: if (__x) __x->_M_parent = __y->_M_parent; williamr@2: if (__root == __z) williamr@2: __root = __x; williamr@4: else { williamr@2: if (__z->_M_parent->_M_left == __z) williamr@2: __z->_M_parent->_M_left = __x; williamr@2: else williamr@2: __z->_M_parent->_M_right = __x; williamr@4: } williamr@4: williamr@4: if (__leftmost == __z) { williamr@2: if (__z->_M_right == 0) // __z->_M_left must be null also williamr@2: __leftmost = __z->_M_parent; williamr@2: // makes __leftmost == _M_header if __z == __root williamr@2: else williamr@2: __leftmost = _Rb_tree_node_base::_S_minimum(__x); williamr@4: } williamr@4: if (__rightmost == __z) { williamr@2: if (__z->_M_left == 0) // __z->_M_right must be null also williamr@4: __rightmost = __z->_M_parent; williamr@2: // makes __rightmost == _M_header if __z == __root williamr@2: else // __x == __z->_M_left williamr@2: __rightmost = _Rb_tree_node_base::_S_maximum(__x); williamr@4: } williamr@2: } williamr@4: williamr@4: if (__y->_M_color != _S_rb_tree_red) { williamr@2: while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black)) williamr@2: if (__x == __x_parent->_M_left) { williamr@2: _Rb_tree_node_base* __w = __x_parent->_M_right; williamr@2: if (__w->_M_color == _S_rb_tree_red) { williamr@2: __w->_M_color = _S_rb_tree_black; williamr@2: __x_parent->_M_color = _S_rb_tree_red; williamr@2: _Rotate_left(__x_parent, __root); williamr@2: __w = __x_parent->_M_right; williamr@2: } williamr@4: if ((__w->_M_left == 0 || williamr@4: __w->_M_left->_M_color == _S_rb_tree_black) && (__w->_M_right == 0 || williamr@2: __w->_M_right->_M_color == _S_rb_tree_black)) { williamr@2: __w->_M_color = _S_rb_tree_red; williamr@2: __x = __x_parent; williamr@2: __x_parent = __x_parent->_M_parent; williamr@2: } else { williamr@4: if (__w->_M_right == 0 || williamr@2: __w->_M_right->_M_color == _S_rb_tree_black) { williamr@2: if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black; williamr@2: __w->_M_color = _S_rb_tree_red; williamr@2: _Rotate_right(__w, __root); williamr@2: __w = __x_parent->_M_right; williamr@2: } williamr@2: __w->_M_color = __x_parent->_M_color; williamr@2: __x_parent->_M_color = _S_rb_tree_black; williamr@2: if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black; williamr@2: _Rotate_left(__x_parent, __root); williamr@2: break; williamr@2: } williamr@2: } else { // same as above, with _M_right <-> _M_left. williamr@2: _Rb_tree_node_base* __w = __x_parent->_M_left; williamr@2: if (__w->_M_color == _S_rb_tree_red) { williamr@2: __w->_M_color = _S_rb_tree_black; williamr@2: __x_parent->_M_color = _S_rb_tree_red; williamr@2: _Rotate_right(__x_parent, __root); williamr@2: __w = __x_parent->_M_left; williamr@2: } williamr@4: if ((__w->_M_right == 0 || williamr@4: __w->_M_right->_M_color == _S_rb_tree_black) && (__w->_M_left == 0 || williamr@2: __w->_M_left->_M_color == _S_rb_tree_black)) { williamr@2: __w->_M_color = _S_rb_tree_red; williamr@2: __x = __x_parent; williamr@2: __x_parent = __x_parent->_M_parent; williamr@2: } else { williamr@4: if (__w->_M_left == 0 || williamr@2: __w->_M_left->_M_color == _S_rb_tree_black) { williamr@2: if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black; williamr@2: __w->_M_color = _S_rb_tree_red; williamr@2: _Rotate_left(__w, __root); williamr@2: __w = __x_parent->_M_left; williamr@2: } williamr@2: __w->_M_color = __x_parent->_M_color; williamr@2: __x_parent->_M_color = _S_rb_tree_black; williamr@2: if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black; williamr@2: _Rotate_right(__x_parent, __root); williamr@2: break; williamr@2: } williamr@2: } williamr@2: if (__x) __x->_M_color = _S_rb_tree_black; williamr@2: } williamr@2: return __y; williamr@2: } williamr@2: williamr@2: template _Rb_tree_node_base* _STLP_CALL williamr@4: _Rb_global<_Dummy>::_M_decrement(_Rb_tree_node_base* _M_node) { williamr@2: if (_M_node->_M_color == _S_rb_tree_red && _M_node->_M_parent->_M_parent == _M_node) williamr@2: _M_node = _M_node->_M_right; williamr@2: else if (_M_node->_M_left != 0) { williamr@4: _M_node = _Rb_tree_node_base::_S_maximum(_M_node->_M_left); williamr@2: } williamr@2: else { williamr@2: _Base_ptr __y = _M_node->_M_parent; williamr@2: while (_M_node == __y->_M_left) { williamr@2: _M_node = __y; williamr@2: __y = __y->_M_parent; williamr@2: } williamr@2: _M_node = __y; williamr@2: } williamr@2: return _M_node; williamr@2: } williamr@2: williamr@2: template _Rb_tree_node_base* _STLP_CALL williamr@4: _Rb_global<_Dummy>::_M_increment(_Rb_tree_node_base* _M_node) { williamr@2: if (_M_node->_M_right != 0) { williamr@4: _M_node = _Rb_tree_node_base::_S_minimum(_M_node->_M_right); williamr@2: } williamr@2: else { williamr@2: _Base_ptr __y = _M_node->_M_parent; williamr@2: while (_M_node == __y->_M_right) { williamr@2: _M_node = __y; williamr@2: __y = __y->_M_parent; williamr@2: } williamr@4: // check special case: This is necessary if _M_node is the williamr@4: // _M_head and the tree contains only a single node __y. In williamr@4: // that case parent, left and right all point to __y! williamr@2: if (_M_node->_M_right != __y) williamr@2: _M_node = __y; williamr@2: } williamr@2: return _M_node; williamr@2: } williamr@2: williamr@4: #endif /* _STLP_EXPOSE_GLOBALS_IMPLEMENTATION */ williamr@2: williamr@2: williamr@4: template williamr@4: _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>& williamr@4: _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::operator=( williamr@4: const _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>& __x) { williamr@2: if (this != &__x) { williamr@4: // Note that _Key may be a constant type. williamr@2: clear(); williamr@2: _M_node_count = 0; williamr@4: _M_key_compare = __x._M_key_compare; williamr@2: if (__x._M_root() == 0) { williamr@2: _M_root() = 0; williamr@4: _M_leftmost() = &this->_M_header._M_data; williamr@4: _M_rightmost() = &this->_M_header._M_data; williamr@2: } williamr@2: else { williamr@4: _M_root() = _M_copy(__x._M_root(), &this->_M_header._M_data); williamr@2: _M_leftmost() = _S_minimum(_M_root()); williamr@2: _M_rightmost() = _S_maximum(_M_root()); williamr@2: _M_node_count = __x._M_node_count; williamr@2: } williamr@2: } williamr@2: return *this; williamr@2: } williamr@2: williamr@4: // CRP 7/10/00 inserted argument __on_right, which is another hint (meant to williamr@4: // act like __on_left and ignore a portion of the if conditions -- specify williamr@4: // __on_right != 0 to bypass comparison as false or __on_left != 0 to bypass williamr@2: // comparison as true) williamr@4: template williamr@4: __iterator__ williamr@4: _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_insert(_Rb_tree_node_base * __parent, williamr@4: const _Value& __val, williamr@4: _Rb_tree_node_base * __on_left, williamr@4: _Rb_tree_node_base * __on_right) { williamr@4: // We do not create the node here as, depending on tests, we might call williamr@4: // _M_key_compare that can throw an exception. williamr@4: _Base_ptr __new_node; williamr@2: williamr@4: if ( __parent == &this->_M_header._M_data ) { williamr@4: __new_node = _M_create_node(__val); williamr@4: _S_left(__parent) = __new_node; // also makes _M_leftmost() = __new_node williamr@4: _M_root() = __new_node; williamr@4: _M_rightmost() = __new_node; williamr@4: } williamr@4: else if ( __on_right == 0 && // If __on_right != 0, the remainder fails to false williamr@4: ( __on_left != 0 || // If __on_left != 0, the remainder succeeds to true williamr@4: _M_key_compare( _KeyOfValue()(__val), _S_key(__parent) ) ) ) { williamr@4: __new_node = _M_create_node(__val); williamr@4: _S_left(__parent) = __new_node; williamr@4: if (__parent == _M_leftmost()) williamr@4: _M_leftmost() = __new_node; // maintain _M_leftmost() pointing to min node williamr@2: } williamr@2: else { williamr@4: __new_node = _M_create_node(__val); williamr@4: _S_right(__parent) = __new_node; williamr@4: if (__parent == _M_rightmost()) williamr@4: _M_rightmost() = __new_node; // maintain _M_rightmost() pointing to max node williamr@2: } williamr@4: _S_parent(__new_node) = __parent; williamr@4: _Rb_global_inst::_Rebalance(__new_node, this->_M_header._M_data._M_parent); williamr@2: ++_M_node_count; williamr@4: return iterator(__new_node); williamr@2: } williamr@2: williamr@4: template williamr@4: __iterator__ williamr@4: _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(const _Value& __val) { williamr@4: _Base_ptr __y = &this->_M_header._M_data; williamr@4: _Base_ptr __x = _M_root(); williamr@2: while (__x != 0) { williamr@2: __y = __x; williamr@4: if (_M_key_compare(_KeyOfValue()(__val), _S_key(__x))) { williamr@4: __x = _S_left(__x); williamr@4: } williamr@4: else williamr@4: __x = _S_right(__x); williamr@2: } williamr@4: return _M_insert(__y, __val, __x); williamr@2: } williamr@2: williamr@2: williamr@4: template williamr@4: pair<__iterator__, bool> williamr@4: _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(const _Value& __val) { williamr@4: _Base_ptr __y = &this->_M_header._M_data; williamr@4: _Base_ptr __x = _M_root(); williamr@2: bool __comp = true; williamr@2: while (__x != 0) { williamr@2: __y = __x; williamr@4: __comp = _M_key_compare(_KeyOfValue()(__val), _S_key(__x)); williamr@2: __x = __comp ? _S_left(__x) : _S_right(__x); williamr@2: } williamr@4: iterator __j = iterator(__y); williamr@4: if (__comp) { williamr@4: if (__j == begin()) williamr@4: return pair(_M_insert(__y, __val, /* __x*/ __y), true); williamr@2: else williamr@2: --__j; williamr@4: } williamr@4: if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__val))) { williamr@4: return pair(_M_insert(__y, __val, __x), true); williamr@4: } williamr@2: return pair(__j, false); williamr@2: } williamr@2: williamr@2: // Modifications CRP 7/10/00 as noted to improve conformance and williamr@2: // efficiency. williamr@4: template williamr@4: __iterator__ williamr@4: _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_unique(iterator __position, williamr@4: const _Value& __val) { williamr@4: if (__position._M_node == this->_M_header._M_data._M_left) { // begin() williamr@2: williamr@2: // if the container is empty, fall back on insert_unique. williamr@4: if (empty()) williamr@4: return insert_unique(__val).first; williamr@2: williamr@4: if (_M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node))) { williamr@4: return _M_insert(__position._M_node, __val, __position._M_node); williamr@4: } williamr@4: // first argument just needs to be non-null williamr@4: else { williamr@4: bool __comp_pos_v = _M_key_compare( _S_key(__position._M_node), _KeyOfValue()(__val) ); williamr@4: williamr@4: if (__comp_pos_v == false) // compare > and compare < both false so compare equal williamr@4: return __position; williamr@4: //Below __comp_pos_v == true williamr@4: williamr@4: // Standard-conformance - does the insertion point fall immediately AFTER williamr@4: // the hint? williamr@4: iterator __after = __position; williamr@4: ++__after; williamr@4: williamr@4: // Check for only one member -- in that case, __position points to itself, williamr@4: // and attempting to increment will cause an infinite loop. williamr@4: if (__after._M_node == &this->_M_header._M_data) williamr@4: // Check guarantees exactly one member, so comparison was already williamr@4: // performed and we know the result; skip repeating it in _M_insert williamr@4: // by specifying a non-zero fourth argument. williamr@4: return _M_insert(__position._M_node, __val, 0, __position._M_node); williamr@4: williamr@4: // All other cases: williamr@4: williamr@4: // Optimization to catch insert-equivalent -- save comparison results, williamr@4: // and we get this for free. williamr@4: if (_M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) )) { williamr@4: if (_S_right(__position._M_node) == 0) williamr@4: return _M_insert(__position._M_node, __val, 0, __position._M_node); williamr@4: else williamr@4: return _M_insert(__after._M_node, __val, __after._M_node); williamr@4: } williamr@4: else { williamr@4: return insert_unique(__val).first; williamr@4: } williamr@4: } williamr@4: } williamr@4: else if (__position._M_node == &this->_M_header._M_data) { // end() williamr@4: if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__val))) { williamr@4: // pass along to _M_insert that it can skip comparing williamr@4: // v, Key ; since compare Key, v was true, compare v, Key must be false. williamr@4: return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null williamr@4: } williamr@2: else williamr@4: return insert_unique(__val).first; williamr@4: } williamr@4: else { williamr@4: iterator __before = __position; williamr@4: --__before; williamr@2: williamr@4: bool __comp_v_pos = _M_key_compare(_KeyOfValue()(__val), _S_key(__position._M_node)); williamr@2: williamr@4: if (__comp_v_pos williamr@4: && _M_key_compare( _S_key(__before._M_node), _KeyOfValue()(__val) )) { williamr@4: williamr@4: if (_S_right(__before._M_node) == 0) williamr@4: return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null williamr@4: else williamr@4: return _M_insert(__position._M_node, __val, __position._M_node); williamr@4: // first argument just needs to be non-null williamr@4: } williamr@4: else { williamr@4: // Does the insertion point fall immediately AFTER the hint? williamr@4: iterator __after = __position; williamr@4: ++__after; williamr@4: // Optimization to catch equivalent cases and avoid unnecessary comparisons williamr@4: bool __comp_pos_v = !__comp_v_pos; // Stored this result earlier williamr@4: // If the earlier comparison was true, this comparison doesn't need to be williamr@4: // performed because it must be false. However, if the earlier comparison williamr@4: // was false, we need to perform this one because in the equal case, both will williamr@4: // be false. williamr@4: if (!__comp_v_pos) { williamr@4: __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)); williamr@2: } williamr@2: williamr@4: if ( (!__comp_v_pos) // comp_v_pos true implies comp_v_pos false williamr@4: && __comp_pos_v williamr@4: && (__after._M_node == &this->_M_header._M_data || williamr@4: _M_key_compare( _KeyOfValue()(__val), _S_key(__after._M_node) ))) { williamr@4: if (_S_right(__position._M_node) == 0) williamr@4: return _M_insert(__position._M_node, __val, 0, __position._M_node); williamr@4: else williamr@4: return _M_insert(__after._M_node, __val, __after._M_node); williamr@4: } else { williamr@4: // Test for equivalent case williamr@4: if (__comp_v_pos == __comp_pos_v) williamr@4: return __position; williamr@4: else williamr@4: return insert_unique(__val).first; williamr@2: } williamr@4: } williamr@2: } williamr@2: } williamr@2: williamr@4: template williamr@4: __iterator__ williamr@4: _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::insert_equal(iterator __position, williamr@4: const _Value& __val) { williamr@4: if (__position._M_node == this->_M_header._M_data._M_left) { // begin() williamr@2: williamr@2: // Check for zero members williamr@2: if (size() <= 0) williamr@4: return insert_equal(__val); williamr@2: williamr@4: if (!_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val))) williamr@4: return _M_insert(__position._M_node, __val, __position._M_node); williamr@4: else { williamr@2: // Check for only one member williamr@2: if (__position._M_node->_M_left == __position._M_node) williamr@2: // Unlike insert_unique, can't avoid doing a comparison here. williamr@4: return _M_insert(__position._M_node, __val); williamr@4: williamr@2: // All other cases: williamr@2: // Standard-conformance - does the insertion point fall immediately AFTER williamr@2: // the hint? williamr@2: iterator __after = __position; williamr@2: ++__after; williamr@4: williamr@2: // Already know that compare(pos, v) must be true! williamr@2: // Therefore, we want to know if compare(after, v) is false. williamr@2: // (i.e., we now pos < v, now we want to know if v <= after) williamr@2: // If not, invalid hint. williamr@4: if ( __after._M_node == &this->_M_header._M_data || williamr@4: !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) { williamr@2: if (_S_right(__position._M_node) == 0) williamr@4: return _M_insert(__position._M_node, __val, 0, __position._M_node); williamr@2: else williamr@4: return _M_insert(__after._M_node, __val, __after._M_node); williamr@4: } williamr@4: else { // Invalid hint williamr@4: return insert_equal(__val); williamr@4: } williamr@2: } williamr@4: } williamr@4: else if (__position._M_node == &this->_M_header._M_data) { // end() williamr@4: if (!_M_key_compare(_KeyOfValue()(__val), _S_key(_M_rightmost()))) williamr@4: return _M_insert(_M_rightmost(), __val, 0, __position._M_node); // Last argument only needs to be non-null williamr@4: else { williamr@4: return insert_equal(__val); williamr@4: } williamr@4: } williamr@4: else { williamr@2: iterator __before = __position; williamr@2: --__before; williamr@2: // store the result of the comparison between pos and v so williamr@2: // that we don't have to do it again later. Note that this reverses the shortcut williamr@2: // on the if, possibly harming efficiency in comparisons; I think the harm will williamr@2: // be negligible, and to do what I want to do (save the result of a comparison so williamr@2: // that it can be re-used) there is no alternative. Test here is for before <= v <= pos. williamr@4: bool __comp_pos_v = _M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__val)); williamr@4: if (!__comp_pos_v && williamr@4: !_M_key_compare(_KeyOfValue()(__val), _S_key(__before._M_node))) { williamr@2: if (_S_right(__before._M_node) == 0) williamr@4: return _M_insert(__before._M_node, __val, 0, __before._M_node); // Last argument only needs to be non-null williamr@2: else williamr@4: return _M_insert(__position._M_node, __val, __position._M_node); williamr@4: } williamr@4: else { williamr@2: // Does the insertion point fall immediately AFTER the hint? williamr@2: // Test for pos < v <= after williamr@2: iterator __after = __position; williamr@2: ++__after; williamr@4: williamr@4: if (__comp_pos_v && williamr@4: ( __after._M_node == &this->_M_header._M_data || williamr@4: !_M_key_compare( _S_key(__after._M_node), _KeyOfValue()(__val) ) ) ) { williamr@2: if (_S_right(__position._M_node) == 0) williamr@4: return _M_insert(__position._M_node, __val, 0, __position._M_node); williamr@2: else williamr@4: return _M_insert(__after._M_node, __val, __after._M_node); williamr@4: } williamr@4: else { // Invalid hint williamr@4: return insert_equal(__val); williamr@4: } williamr@2: } williamr@2: } williamr@2: } williamr@2: williamr@4: template williamr@4: _Rb_tree_node_base* williamr@4: _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc> ::_M_copy(_Rb_tree_node_base* __x, williamr@4: _Rb_tree_node_base* __p) { williamr@4: // structural copy. __x and __p must be non-null. williamr@4: _Base_ptr __top = _M_clone_node(__x); williamr@4: _S_parent(__top) = __p; williamr@4: williamr@2: _STLP_TRY { williamr@4: if (_S_right(__x)) williamr@4: _S_right(__top) = _M_copy(_S_right(__x), __top); williamr@2: __p = __top; williamr@2: __x = _S_left(__x); williamr@2: williamr@2: while (__x != 0) { williamr@4: _Base_ptr __y = _M_clone_node(__x); williamr@4: _S_left(__p) = __y; williamr@4: _S_parent(__y) = __p; williamr@4: if (_S_right(__x)) williamr@4: _S_right(__y) = _M_copy(_S_right(__x), __y); williamr@2: __p = __y; williamr@2: __x = _S_left(__x); williamr@2: } williamr@2: } williamr@4: _STLP_UNWIND(_M_erase(__top)) williamr@2: williamr@2: return __top; williamr@2: } williamr@2: williamr@2: // this has to stay out-of-line : it's recursive williamr@4: template williamr@4: void williamr@4: _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::_M_erase(_Rb_tree_node_base *__x) { williamr@4: // erase without rebalancing williamr@2: while (__x != 0) { williamr@2: _M_erase(_S_right(__x)); williamr@4: _Base_ptr __y = _S_left(__x); williamr@4: _STLP_STD::_Destroy(&_S_value(__x)); williamr@4: this->_M_header.deallocate(__STATIC_CAST(_Link_type, __x),1); williamr@2: __x = __y; williamr@2: } williamr@2: } williamr@2: williamr@4: #if defined (_STLP_DEBUG) williamr@4: inline int williamr@4: __black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root) { williamr@2: if (__node == 0) williamr@2: return 0; williamr@2: else { williamr@2: int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0; williamr@2: if (__node == __root) williamr@2: return __bc; williamr@2: else williamr@2: return __bc + __black_count(__node->_M_parent, __root); williamr@2: } williamr@2: } williamr@2: williamr@4: template williamr@4: bool _Rb_tree<_Key,_Compare,_Value,_KeyOfValue,_Traits,_Alloc>::__rb_verify() const { williamr@2: if (_M_node_count == 0 || begin() == end()) williamr@4: return ((_M_node_count == 0) && williamr@4: (begin() == end()) && williamr@4: (this->_M_header._M_data._M_left == &this->_M_header._M_data) && williamr@4: (this->_M_header._M_data._M_right == &this->_M_header._M_data)); williamr@4: williamr@2: int __len = __black_count(_M_leftmost(), _M_root()); williamr@2: for (const_iterator __it = begin(); __it != end(); ++__it) { williamr@4: _Base_ptr __x = __it._M_node; williamr@4: _Base_ptr __L = _S_left(__x); williamr@4: _Base_ptr __R = _S_right(__x); williamr@2: williamr@2: if (__x->_M_color == _S_rb_tree_red) williamr@2: if ((__L && __L->_M_color == _S_rb_tree_red) || williamr@2: (__R && __R->_M_color == _S_rb_tree_red)) williamr@2: return false; williamr@2: williamr@2: if (__L && _M_key_compare(_S_key(__x), _S_key(__L))) williamr@2: return false; williamr@2: if (__R && _M_key_compare(_S_key(__R), _S_key(__x))) williamr@2: return false; williamr@2: williamr@2: if (!__L && !__R && __black_count(__x, _M_root()) != __len) williamr@2: return false; williamr@2: } williamr@2: williamr@2: if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root())) williamr@2: return false; williamr@2: if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root())) williamr@2: return false; williamr@2: williamr@2: return true; williamr@2: } williamr@4: #endif /* _STLP_DEBUG */ williamr@4: williamr@4: _STLP_MOVE_TO_STD_NAMESPACE williamr@2: _STLP_END_NAMESPACE williamr@2: williamr@4: #undef _Rb_tree williamr@4: #undef __iterator__ williamr@4: #undef iterator williamr@4: #undef __size_type__ williamr@2: williamr@2: #endif /* _STLP_TREE_C */ williamr@2: williamr@2: // Local Variables: williamr@2: // mode:C++ williamr@2: // End: