williamr@2: /* williamr@4: * Portions Copyright (c) 2008 Nokia Corporation and/or its subsidiary(-ies). All rights reserved. williamr@4: * williamr@2: * Copyright (c) 1996,1997 williamr@2: * Silicon Graphics Computer Systems, Inc. williamr@2: * williamr@2: * Copyright (c) 1997 williamr@2: * Moscow Center for SPARC Technology williamr@2: * williamr@4: * Copyright (c) 1999 williamr@2: * Boris Fomitchev williamr@2: * williamr@2: * This material is provided "as is", with absolutely no warranty expressed williamr@2: * or implied. Any use is at your own risk. williamr@2: * williamr@4: * Permission to use or copy this software for any purpose is hereby granted williamr@2: * without fee, provided the above notices are retained on all copies. williamr@2: * Permission to modify the code and to distribute modified code is granted, williamr@2: * provided the above notices are retained, and a notice that the code was williamr@2: * modified is included with the above copyright notice. williamr@2: * williamr@2: */ williamr@2: williamr@2: /* NOTE: This is an internal header file, included by other STL headers. williamr@2: * You should not attempt to use it directly. williamr@2: */ williamr@2: williamr@2: // rope<_CharT,_Alloc> is a sequence of _CharT. williamr@2: // Ropes appear to be mutable, but update operations williamr@2: // really copy enough of the data structure to leave the original williamr@2: // valid. Thus ropes can be logically copied by just copying williamr@2: // a pointer value. williamr@2: williamr@2: #ifndef _STLP_INTERNAL_ROPE_H williamr@4: #define _STLP_INTERNAL_ROPE_H williamr@2: williamr@4: #ifndef _STLP_INTERNAL_ALGOBASE_H williamr@2: # include <stl/_algobase.h> williamr@4: #endif williamr@2: williamr@4: #ifndef _STLP_IOSFWD williamr@2: # include <iosfwd> williamr@4: #endif williamr@2: williamr@4: #ifndef _STLP_INTERNAL_ALLOC_H williamr@2: # include <stl/_alloc.h> williamr@4: #endif williamr@2: williamr@4: #ifndef _STLP_INTERNAL_ITERATOR_H williamr@2: # include <stl/_iterator.h> williamr@4: #endif williamr@2: williamr@4: #ifndef _STLP_INTERNAL_ALGO_H williamr@2: # include <stl/_algo.h> williamr@4: #endif williamr@2: williamr@4: #ifndef _STLP_INTERNAL_FUNCTION_BASE_H williamr@4: # include <stl/_function_base.h> williamr@4: #endif williamr@2: williamr@4: #ifndef _STLP_INTERNAL_NUMERIC_H williamr@2: # include <stl/_numeric.h> williamr@4: #endif williamr@2: williamr@4: #ifndef _STLP_INTERNAL_HASH_FUN_H williamr@2: # include <stl/_hash_fun.h> williamr@4: #endif williamr@2: williamr@4: #ifndef _STLP_CHAR_TRAITS_H williamr@4: # include <stl/char_traits.h> williamr@4: #endif williamr@2: williamr@4: #ifndef _STLP_INTERNAL_THREADS_H williamr@4: # include <stl/_threads.h> williamr@4: #endif williamr@4: williamr@4: #ifdef _STLP_SGI_THREADS williamr@4: # include <mutex.h> williamr@4: #endif williamr@4: williamr@4: #ifndef _STLP_DONT_SUPPORT_REBIND_MEMBER_TEMPLATE williamr@4: # define _STLP_CREATE_ALLOCATOR(__atype,__a, _Tp) (_Alloc_traits<_Tp,__atype>::create_allocator(__a)) williamr@4: #elif defined(__MRC__)||defined(__SC__) williamr@4: # define _STLP_CREATE_ALLOCATOR(__atype,__a, _Tp) __stl_alloc_create<_Tp,__atype>(__a,(_Tp*)0) williamr@4: #else williamr@4: # define _STLP_CREATE_ALLOCATOR(__atype,__a, _Tp) __stl_alloc_create(__a,(_Tp*)0) williamr@4: #endif williamr@2: williamr@2: _STLP_BEGIN_NAMESPACE williamr@2: williamr@2: // First a lot of forward declarations. The standard seems to require williamr@2: // much stricter "declaration before use" than many of the implementations williamr@2: // that preceded it. williamr@2: template<class _CharT, _STLP_DEFAULT_ALLOCATOR_SELECT(_CharT) > class rope; williamr@2: template<class _CharT, class _Alloc> struct _Rope_RopeConcatenation; williamr@2: template<class _CharT, class _Alloc> struct _Rope_RopeRep; williamr@2: template<class _CharT, class _Alloc> struct _Rope_RopeLeaf; williamr@2: template<class _CharT, class _Alloc> struct _Rope_RopeFunction; williamr@2: template<class _CharT, class _Alloc> struct _Rope_RopeSubstring; williamr@2: template<class _CharT, class _Alloc> class _Rope_iterator; williamr@2: template<class _CharT, class _Alloc> class _Rope_const_iterator; williamr@2: template<class _CharT, class _Alloc> class _Rope_char_ref_proxy; williamr@2: template<class _CharT, class _Alloc> class _Rope_char_ptr_proxy; williamr@2: williamr@4: _STLP_MOVE_TO_PRIV_NAMESPACE williamr@4: williamr@4: // Some helpers, so we can use the power algorithm on ropes. williamr@2: // See below for why this isn't local to the implementation. williamr@2: williamr@2: // This uses a nonstandard refcount convention. williamr@2: // The result has refcount 0. williamr@2: template<class _CharT, class _Alloc> williamr@2: struct _Rope_Concat_fn williamr@2: : public binary_function<rope<_CharT,_Alloc>, rope<_CharT,_Alloc>, williamr@4: rope<_CharT,_Alloc> > { williamr@2: rope<_CharT,_Alloc> operator() (const rope<_CharT,_Alloc>& __x, williamr@2: const rope<_CharT,_Alloc>& __y) { williamr@2: return __x + __y; williamr@2: } williamr@2: }; williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline williamr@2: rope<_CharT,_Alloc> williamr@2: __identity_element(_Rope_Concat_fn<_CharT, _Alloc>) williamr@4: { return rope<_CharT,_Alloc>(); } williamr@4: williamr@4: _STLP_MOVE_TO_STD_NAMESPACE williamr@4: williamr@4: // Store an eos williamr@4: template <class _CharT> williamr@4: inline void _S_construct_null_aux(_CharT *__p, const __true_type&) williamr@4: { *__p = 0; } williamr@4: williamr@4: template <class _CharT> williamr@4: inline void _S_construct_null_aux(_CharT *__p, const __false_type&) williamr@4: { _STLP_STD::_Construct(__p); } williamr@4: williamr@4: template <class _CharT> williamr@4: inline void _S_construct_null(_CharT *__p) { williamr@4: typedef typename _IsIntegral<_CharT>::_Ret _Char_Is_Integral; williamr@4: _S_construct_null_aux(__p, _Char_Is_Integral()); williamr@2: } williamr@2: williamr@2: // char_producers are logically functions that generate a section of williamr@4: // a string. These can be converted to ropes. The resulting rope williamr@2: // invokes the char_producer on demand. This allows, for example, williamr@2: // files to be viewed as ropes without reading the entire file. williamr@2: template <class _CharT> williamr@2: class char_producer { williamr@2: public: williamr@4: virtual ~char_producer() {} williamr@4: virtual void operator()(size_t __start_pos, size_t __len, williamr@2: _CharT* __buffer) = 0; williamr@2: // Buffer should really be an arbitrary output iterator. williamr@2: // That way we could flatten directly into an ostream, etc. williamr@2: // This is thoroughly impossible, since iterator types don't williamr@2: // have runtime descriptions. williamr@2: }; williamr@2: williamr@2: // Sequence buffers: williamr@2: // williamr@2: // Sequence must provide an append operation that appends an williamr@2: // array to the sequence. Sequence buffers are useful only if williamr@2: // appending an entire array is cheaper than appending element by element. williamr@2: // This is true for many string representations. williamr@2: // This should perhaps inherit from ostream<sequence::value_type> williamr@2: // and be implemented correspondingly, so that they can be used williamr@2: // for formatted. For the sake of portability, we don't do this yet. williamr@2: // williamr@2: // For now, sequence buffers behave as output iterators. But they also williamr@2: // behave a little like basic_ostringstream<sequence::value_type> and a williamr@2: // little like containers. williamr@2: williamr@2: template<class _Sequence williamr@2: # if !(defined (_STLP_NON_TYPE_TMPL_PARAM_BUG) || \ williamr@2: defined ( _STLP_NO_DEFAULT_NON_TYPE_PARAM )) williamr@4: , size_t _Buf_sz = 100 williamr@2: # if defined(__sgi) && !defined(__GNUC__) williamr@4: # define __TYPEDEF_WORKAROUND williamr@4: ,class _V = typename _Sequence::value_type williamr@2: # endif /* __sgi */ williamr@2: # endif /* _STLP_NON_TYPE_TMPL_PARAM_BUG */ williamr@4: > williamr@2: // The 3rd parameter works around a common compiler bug. williamr@2: class sequence_buffer : public iterator <output_iterator_tag, void, void, void, void> { williamr@2: public: williamr@4: # ifndef __TYPEDEF_WORKAROUND williamr@2: typedef typename _Sequence::value_type value_type; williamr@2: typedef sequence_buffer<_Sequence williamr@2: # if !(defined (_STLP_NON_TYPE_TMPL_PARAM_BUG) || \ williamr@2: defined ( _STLP_NO_DEFAULT_NON_TYPE_PARAM )) williamr@2: , _Buf_sz williamr@2: > _Self; williamr@2: # else /* _STLP_NON_TYPE_TMPL_PARAM_BUG */ williamr@2: > _Self; williamr@4: enum { _Buf_sz = 100}; williamr@2: # endif /* _STLP_NON_TYPE_TMPL_PARAM_BUG */ williamr@2: // # endif williamr@4: # else /* __TYPEDEF_WORKAROUND */ williamr@2: typedef _V value_type; williamr@2: typedef sequence_buffer<_Sequence, _Buf_sz, _V> _Self; williamr@4: # endif /* __TYPEDEF_WORKAROUND */ williamr@2: protected: williamr@2: _Sequence* _M_prefix; williamr@2: value_type _M_buffer[_Buf_sz]; williamr@2: size_t _M_buf_count; williamr@2: public: williamr@2: void flush() { williamr@2: _M_prefix->append(_M_buffer, _M_buffer + _M_buf_count); williamr@2: _M_buf_count = 0; williamr@2: } williamr@2: ~sequence_buffer() { flush(); } williamr@2: sequence_buffer() : _M_prefix(0), _M_buf_count(0) {} williamr@2: sequence_buffer(const _Self& __x) { williamr@2: _M_prefix = __x._M_prefix; williamr@2: _M_buf_count = __x._M_buf_count; williamr@2: copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer); williamr@2: } williamr@2: sequence_buffer(_Self& __x) { williamr@2: __x.flush(); williamr@2: _M_prefix = __x._M_prefix; williamr@2: _M_buf_count = 0; williamr@2: } williamr@2: sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {} williamr@2: _Self& operator= (_Self& __x) { williamr@2: __x.flush(); williamr@2: _M_prefix = __x._M_prefix; williamr@2: _M_buf_count = 0; williamr@2: return *this; williamr@2: } williamr@2: _Self& operator= (const _Self& __x) { williamr@2: _M_prefix = __x._M_prefix; williamr@2: _M_buf_count = __x._M_buf_count; williamr@2: copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer); williamr@2: return *this; williamr@2: } williamr@4: void push_back(value_type __x) { williamr@2: if (_M_buf_count < _Buf_sz) { williamr@2: _M_buffer[_M_buf_count] = __x; williamr@2: ++_M_buf_count; williamr@2: } else { williamr@2: flush(); williamr@2: _M_buffer[0] = __x; williamr@2: _M_buf_count = 1; williamr@2: } williamr@2: } williamr@4: void append(const value_type *__s, size_t __len) { williamr@2: if (__len + _M_buf_count <= _Buf_sz) { williamr@2: size_t __i = _M_buf_count; williamr@2: size_t __j = 0; williamr@2: for (; __j < __len; __i++, __j++) { williamr@2: _M_buffer[__i] = __s[__j]; williamr@2: } williamr@2: _M_buf_count += __len; williamr@2: } else if (0 == _M_buf_count) { williamr@2: _M_prefix->append(__s, __s + __len); williamr@2: } else { williamr@2: flush(); williamr@2: append(__s, __len); williamr@2: } williamr@2: } williamr@4: _Self& write(const value_type *__s, size_t __len) { williamr@2: append(__s, __len); williamr@2: return *this; williamr@2: } williamr@4: _Self& put(value_type __x) { williamr@2: push_back(__x); williamr@2: return *this; williamr@2: } williamr@4: _Self& operator=(const value_type& __rhs) { williamr@2: push_back(__rhs); williamr@2: return *this; williamr@2: } williamr@2: _Self& operator*() { return *this; } williamr@2: _Self& operator++() { return *this; } williamr@2: _Self& operator++(int) { return *this; } williamr@2: }; williamr@2: williamr@2: // The following should be treated as private, at least for now. williamr@2: template<class _CharT> williamr@2: class _Rope_char_consumer { williamr@4: #if !defined (_STLP_MEMBER_TEMPLATES) williamr@2: public: williamr@4: //Without member templates we have to use run-time parameterization. williamr@2: // The symmetry with char_producer is accidental and temporary. williamr@4: virtual ~_Rope_char_consumer() {} williamr@2: virtual bool operator()(const _CharT* __buffer, size_t __len) = 0; williamr@4: #endif williamr@2: }; williamr@2: williamr@2: // williamr@2: // What follows should really be local to rope. Unfortunately, williamr@2: // that doesn't work, since it makes it impossible to define generic williamr@2: // equality on rope iterators. According to the draft standard, the williamr@2: // template parameters for such an equality operator cannot be inferred williamr@2: // from the occurence of a member class as a parameter. williamr@2: // (SGI compilers in fact allow this, but the __result wouldn't be williamr@2: // portable.) williamr@2: // Similarly, some of the static member functions are member functions williamr@2: // only to avoid polluting the global namespace, and to circumvent williamr@2: // restrictions on type inference for template functions. williamr@2: // williamr@2: williamr@2: // williamr@2: // The internal data structure for representing a rope. This is williamr@2: // private to the implementation. A rope is really just a pointer williamr@2: // to one of these. williamr@2: // williamr@2: // A few basic functions for manipulating this data structure williamr@2: // are members of _RopeRep. Most of the more complex algorithms williamr@2: // are implemented as rope members. williamr@2: // williamr@2: // Some of the static member functions of _RopeRep have identically williamr@2: // named functions in rope that simply invoke the _RopeRep versions. williamr@2: // williamr@2: williamr@2: template<class _CharT, class _Alloc> williamr@2: struct _Rope_RopeRep williamr@2: : public _Refcount_Base williamr@2: { williamr@2: typedef _Rope_RopeRep<_CharT, _Alloc> _Self; williamr@2: public: williamr@4: // williamr@4: // GAB: 11/09/05 williamr@4: // williamr@4: // "__ROPE_DEPTH_SIZE" is set to one more then the "__ROPE_MAX_DEPTH". williamr@4: // This was originally just an addition of "__ROPE_MAX_DEPTH + 1" williamr@4: // but this addition causes the sunpro compiler to complain about williamr@4: // multiple declarations during the initialization of "_S_min_len". williamr@4: // Changed to be a fixed value and the sunpro compiler appears to williamr@4: // be happy??? williamr@4: // williamr@2: # define __ROPE_MAX_DEPTH 45 williamr@4: # define __ROPE_DEPTH_SIZE 46 // __ROPE_MAX_DEPTH + 1 williamr@2: enum { _S_max_rope_depth = __ROPE_MAX_DEPTH }; williamr@2: enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function}; williamr@2: // Apparently needed by VC++ williamr@2: // The data fields of leaves are allocated with some williamr@2: // extra space, to accomodate future growth and for basic williamr@2: // character types, to hold a trailing eos character. williamr@2: enum { _S_alloc_granularity = 8 }; williamr@2: williamr@2: _Tag _M_tag:8; williamr@2: bool _M_is_balanced:8; williamr@2: williamr@2: _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) williamr@4: typedef typename _Alloc_traits<_CharT,_Alloc>::allocator_type allocator_type; williamr@4: williamr@2: allocator_type get_allocator() const { return allocator_type(_M_size); } williamr@2: williamr@2: unsigned char _M_depth; williamr@4: _CharT* _STLP_VOLATILE _M_c_string; williamr@4: _STLP_PRIV _STLP_alloc_proxy<size_t, _CharT, allocator_type> _M_size; williamr@2: williamr@2: # ifdef _STLP_NO_ARROW_OPERATOR williamr@2: _Rope_RopeRep() : _Refcount_Base(1), _M_size(allocator_type(), 0) {} williamr@2: # endif williamr@2: williamr@2: /* Flattened version of string, if needed. */ williamr@2: /* typically 0. */ williamr@2: /* If it's not 0, then the memory is owned */ williamr@2: /* by this node. */ williamr@2: /* In the case of a leaf, this may point to */ williamr@2: /* the same memory as the data field. */ williamr@4: _Rope_RopeRep(_Tag __t, unsigned char __d, bool __b, size_t _p_size, williamr@2: allocator_type __a) : williamr@2: _Refcount_Base(1), williamr@2: _M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0), _M_size(__a, _p_size) williamr@2: { } williamr@2: williamr@4: typedef typename _AreSameUnCVTypes<_CharT, char>::_Ret _IsChar; williamr@4: # ifdef _STLP_HAS_WCHAR_T williamr@4: typedef typename _AreSameUnCVTypes<_CharT, wchar_t>::_Ret _IsWCharT; williamr@4: # else williamr@4: typedef __false_type _IsWCharT; williamr@4: # endif williamr@4: williamr@4: typedef typename _Lor2<_IsChar, _IsWCharT>::_Ret _IsBasicCharType; williamr@4: williamr@4: #if 0 williamr@4: /* Please tell why this code is necessary if you uncomment it. williamr@4: * Problem with it is that rope implementation expect that _S_rounded_up_size(n) williamr@4: * returns a size > n in order to store the terminating null charater. When williamr@4: * instanciation type is not a char or wchar_t this is not guaranty resulting in williamr@4: * memory overrun. williamr@4: */ williamr@4: static size_t _S_rounded_up_size_aux(size_t __n, __true_type const& /*_IsBasicCharType*/) { williamr@2: // Allow slop for in-place expansion. williamr@4: return (__n + _S_alloc_granularity) & ~(_S_alloc_granularity - 1); williamr@2: } williamr@2: williamr@4: static size_t _S_rounded_up_size_aux(size_t __n, __false_type const& /*_IsBasicCharType*/) { williamr@4: // Allow slop for in-place expansion. williamr@4: return (__n + _S_alloc_granularity - 1) & ~(_S_alloc_granularity - 1); williamr@4: } williamr@4: #endif williamr@4: // fbp : moved from RopeLeaf williamr@4: static size_t _S_rounded_up_size(size_t __n) williamr@4: //{ return _S_rounded_up_size_aux(__n, _IsBasicCharType()); } williamr@4: { return (__n + _S_alloc_granularity) & ~(_S_alloc_granularity - 1); } williamr@4: williamr@4: static void _S_free_string( _CharT* __s, size_t __len, williamr@2: allocator_type __a) { williamr@4: _STLP_STD::_Destroy_Range(__s, __s + __len); williamr@2: // This has to be a static member, so this gets a bit messy williamr@4: # ifndef _STLP_DONT_SUPPORT_REBIND_MEMBER_TEMPLATE williamr@4: __a.deallocate(__s, _S_rounded_up_size(__len)); //*ty 03/24/2001 - restored not to use __stl_alloc_rebind() since it is not defined under _STLP_MEMBER_TEMPLATE_CLASSES williamr@2: # else williamr@2: __stl_alloc_rebind (__a, (_CharT*)0).deallocate(__s, _S_rounded_up_size(__len)); williamr@2: # endif williamr@2: } williamr@4: williamr@2: // Deallocate data section of a leaf. williamr@2: // This shouldn't be a member function. williamr@2: // But its hard to do anything else at the williamr@2: // moment, because it's templatized w.r.t. williamr@2: // an allocator. williamr@2: // Does nothing if __GC is defined. williamr@2: void _M_free_c_string(); williamr@2: void _M_free_tree(); williamr@2: // Deallocate t. Assumes t is not 0. williamr@4: void _M_unref_nonnil() { williamr@4: if (_M_decr() == 0) _M_free_tree(); williamr@2: } williamr@4: void _M_ref_nonnil() { williamr@2: _M_incr(); williamr@2: } williamr@4: static void _S_unref(_Self* __t) { williamr@2: if (0 != __t) { williamr@2: __t->_M_unref_nonnil(); williamr@2: } williamr@2: } williamr@4: static void _S_ref(_Self* __t) { williamr@2: if (0 != __t) __t->_M_incr(); williamr@2: } williamr@4: //static void _S_free_if_unref(_Self* __t) { williamr@4: // if (0 != __t && 0 == __t->_M_ref_count) __t->_M_free_tree(); williamr@4: //} williamr@4: }; williamr@2: williamr@2: template<class _CharT, class _Alloc> williamr@2: struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> { williamr@2: public: williamr@4: _CharT* _M_data; /* Not necessarily 0 terminated. */ williamr@2: /* The allocated size is */ williamr@2: /* _S_rounded_up_size(size), except */ williamr@2: /* in the GC case, in which it */ williamr@2: /* doesn't matter. */ williamr@4: private: williamr@4: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; williamr@4: typedef typename _RopeRep::_IsBasicCharType _IsBasicCharType; williamr@4: void _M_init(__true_type const& /*_IsBasicCharType*/) { williamr@4: this->_M_c_string = _M_data; williamr@4: } williamr@4: void _M_init(__false_type const& /*_IsBasicCharType*/) {} williamr@4: williamr@4: public: williamr@2: _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) williamr@4: typedef typename _RopeRep::allocator_type allocator_type; williamr@4: williamr@4: _Rope_RopeLeaf( _CharT* __d, size_t _p_size, allocator_type __a) williamr@4: : _Rope_RopeRep<_CharT,_Alloc>(_RopeRep::_S_leaf, 0, true, _p_size, __a), williamr@4: _M_data(__d) { williamr@2: _STLP_ASSERT(_p_size > 0) williamr@4: _M_init(_IsBasicCharType()); williamr@2: } williamr@2: williamr@2: # ifdef _STLP_NO_ARROW_OPERATOR williamr@2: _Rope_RopeLeaf() {} williamr@2: _Rope_RopeLeaf(const _Rope_RopeLeaf<_CharT, _Alloc>& ) {} williamr@2: # endif williamr@4: williamr@2: // The constructor assumes that d has been allocated with williamr@2: // the proper allocator and the properly padded size. williamr@2: // In contrast, the destructor deallocates the data: williamr@2: ~_Rope_RopeLeaf() { williamr@2: if (_M_data != this->_M_c_string) { williamr@2: this->_M_free_c_string(); williamr@2: } williamr@4: _RopeRep::_S_free_string(_M_data, this->_M_size._M_data, this->get_allocator()); williamr@2: } williamr@2: }; williamr@2: williamr@2: template<class _CharT, class _Alloc> williamr@4: struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT, _Alloc> { williamr@4: private: williamr@4: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; williamr@4: williamr@2: public: williamr@4: _RopeRep* _M_left; williamr@4: _RopeRep* _M_right; williamr@2: _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) williamr@4: typedef typename _RopeRep::allocator_type allocator_type; williamr@4: _Rope_RopeConcatenation(_RopeRep* __l, _RopeRep* __r, allocator_type __a) williamr@4: : _Rope_RopeRep<_CharT,_Alloc>(_RopeRep::_S_concat, williamr@4: (max)(__l->_M_depth, __r->_M_depth) + 1, false, williamr@4: __l->_M_size._M_data + __r->_M_size._M_data, __a), _M_left(__l), _M_right(__r) williamr@2: {} williamr@2: # ifdef _STLP_NO_ARROW_OPERATOR williamr@2: _Rope_RopeConcatenation() {} williamr@2: _Rope_RopeConcatenation(const _Rope_RopeConcatenation<_CharT, _Alloc>&) {} williamr@2: # endif williamr@2: williamr@2: ~_Rope_RopeConcatenation() { williamr@2: this->_M_free_c_string(); williamr@2: _M_left->_M_unref_nonnil(); williamr@2: _M_right->_M_unref_nonnil(); williamr@2: } williamr@2: }; williamr@2: williamr@4: template <class _CharT, class _Alloc> williamr@4: struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT, _Alloc> { williamr@4: private: williamr@4: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; williamr@2: public: williamr@2: char_producer<_CharT>* _M_fn; williamr@4: /* williamr@4: * Char_producer is owned by the williamr@4: * rope and should be explicitly williamr@4: * deleted when the rope becomes williamr@4: * inaccessible. williamr@4: */ williamr@4: bool _M_delete_when_done; williamr@2: _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) williamr@2: typedef typename _Rope_RopeRep<_CharT,_Alloc>::allocator_type allocator_type; williamr@2: # ifdef _STLP_NO_ARROW_OPERATOR williamr@2: _Rope_RopeFunction() {} williamr@2: _Rope_RopeFunction(const _Rope_RopeFunction<_CharT, _Alloc>& ) {} williamr@2: # endif williamr@2: williamr@2: _Rope_RopeFunction(char_producer<_CharT>* __f, size_t _p_size, williamr@2: bool __d, allocator_type __a) williamr@4: : _Rope_RopeRep<_CharT,_Alloc>(_RopeRep::_S_function, 0, true, _p_size, __a), _M_fn(__f) williamr@2: , _M_delete_when_done(__d) williamr@4: { _STLP_ASSERT(_p_size > 0) } williamr@4: williamr@2: ~_Rope_RopeFunction() { williamr@2: this->_M_free_c_string(); williamr@2: if (_M_delete_when_done) { williamr@2: delete _M_fn; williamr@2: } williamr@2: } williamr@2: }; williamr@4: williamr@4: /* williamr@4: * Substring results are usually represented using just williamr@4: * concatenation nodes. But in the case of very long flat ropes williamr@4: * or ropes with a functional representation that isn't practical. williamr@4: * In that case, we represent the __result as a special case of williamr@4: * RopeFunction, whose char_producer points back to the rope itself. williamr@4: * In all cases except repeated substring operations and williamr@4: * deallocation, we treat the __result as a RopeFunction. williamr@4: */ williamr@2: template<class _CharT, class _Alloc> williamr@4: struct _Rope_RopeSubstring : public char_producer<_CharT>, public _Rope_RopeFunction<_CharT,_Alloc> { williamr@2: public: williamr@2: // XXX this whole class should be rewritten. williamr@4: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; williamr@4: _RopeRep *_M_base; // not 0 williamr@2: size_t _M_start; williamr@4: /* virtual */ void operator()(size_t __start_pos, size_t __req_len, williamr@4: _CharT* __buffer) { williamr@4: typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction; williamr@4: typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf; williamr@4: switch (_M_base->_M_tag) { williamr@4: case _RopeRep::_S_function: williamr@4: case _RopeRep::_S_substringfn: williamr@2: { williamr@2: char_producer<_CharT>* __fn = williamr@4: __STATIC_CAST(_RopeFunction*, _M_base)->_M_fn; williamr@2: _STLP_ASSERT(__start_pos + __req_len <= this->_M_size._M_data) williamr@2: _STLP_ASSERT(_M_start + this->_M_size._M_data <= _M_base->_M_size._M_data) williamr@2: (*__fn)(__start_pos + _M_start, __req_len, __buffer); williamr@2: } williamr@2: break; williamr@4: case _RopeRep::_S_leaf: williamr@2: { williamr@4: _CharT* __s = williamr@4: __STATIC_CAST(_RopeLeaf*, _M_base)->_M_data; williamr@4: _STLP_PRIV __ucopy_n(__s + __start_pos + _M_start, __req_len, __buffer); williamr@2: } williamr@2: break; williamr@2: default: williamr@2: _STLP_ASSERT(false) williamr@2: ; williamr@2: } williamr@2: } williamr@2: williamr@2: _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) williamr@4: typedef typename _RopeRep::allocator_type allocator_type; williamr@2: williamr@4: _Rope_RopeSubstring(_RopeRep* __b, size_t __s, size_t __l, allocator_type __a) williamr@2: : _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a), williamr@4: _M_base(__b), _M_start(__s) { williamr@2: _STLP_ASSERT(__l > 0) williamr@2: _STLP_ASSERT(__s + __l <= __b->_M_size._M_data) williamr@2: _M_base->_M_ref_nonnil(); williamr@4: this->_M_tag = _RopeRep::_S_substringfn; williamr@2: } williamr@2: virtual ~_Rope_RopeSubstring() williamr@4: { _M_base->_M_unref_nonnil(); } williamr@2: }; williamr@2: williamr@4: /* williamr@4: * Self-destructing pointers to Rope_rep. williamr@4: * These are not conventional smart pointers. Their williamr@4: * only purpose in life is to ensure that unref is called williamr@4: * on the pointer either at normal exit or if an exception williamr@4: * is raised. It is the caller's responsibility to williamr@4: * adjust reference counts when these pointers are initialized williamr@4: * or assigned to. (This convention significantly reduces williamr@4: * the number of potentially expensive reference count williamr@4: * updates.) williamr@4: */ williamr@2: template<class _CharT, class _Alloc> williamr@2: struct _Rope_self_destruct_ptr { williamr@2: _Rope_RopeRep<_CharT,_Alloc>* _M_ptr; williamr@4: ~_Rope_self_destruct_ptr() williamr@2: { _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); } williamr@2: # ifdef _STLP_USE_EXCEPTIONS williamr@4: _Rope_self_destruct_ptr() : _M_ptr(0) {} williamr@2: # else williamr@4: _Rope_self_destruct_ptr() {} williamr@2: # endif williamr@2: _Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {} williamr@2: _Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; } williamr@2: _Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; } williamr@2: operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; } williamr@4: _Rope_self_destruct_ptr<_CharT, _Alloc>& williamr@2: operator= (_Rope_RopeRep<_CharT,_Alloc>* __x) williamr@2: { _M_ptr = __x; return *this; } williamr@2: }; williamr@2: williamr@4: /* williamr@4: * Dereferencing a nonconst iterator has to return something williamr@4: * that behaves almost like a reference. It's not possible to williamr@4: * return an actual reference since assignment requires extra williamr@4: * work. And we would get into the same problems as with the williamr@4: * CD2 version of basic_string. williamr@4: */ williamr@2: template<class _CharT, class _Alloc> williamr@2: class _Rope_char_ref_proxy { williamr@2: typedef _Rope_char_ref_proxy<_CharT, _Alloc> _Self; williamr@2: friend class rope<_CharT,_Alloc>; williamr@2: friend class _Rope_iterator<_CharT,_Alloc>; williamr@2: friend class _Rope_char_ptr_proxy<_CharT,_Alloc>; williamr@2: typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr; williamr@2: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; williamr@2: typedef rope<_CharT,_Alloc> _My_rope; williamr@2: size_t _M_pos; williamr@2: _CharT _M_current; williamr@2: bool _M_current_valid; williamr@2: _My_rope* _M_root; // The whole rope. williamr@2: public: williamr@2: _Rope_char_ref_proxy(_My_rope* __r, size_t __p) : williamr@2: _M_pos(__p), _M_current_valid(false), _M_root(__r) {} williamr@2: _Rope_char_ref_proxy(const _Self& __x) : williamr@2: _M_pos(__x._M_pos), _M_current_valid(false), _M_root(__x._M_root) {} williamr@2: // Don't preserve cache if the reference can outlive the williamr@2: // expression. We claim that's not possible without calling williamr@2: // a copy constructor or generating reference to a proxy williamr@2: // reference. We declare the latter to have undefined semantics. williamr@4: _Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c) williamr@4: : _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {} williamr@2: inline operator _CharT () const; williamr@2: _Self& operator= (_CharT __c); williamr@2: _Rope_char_ptr_proxy<_CharT, _Alloc> operator& () const; williamr@2: _Self& operator= (const _Self& __c) { williamr@4: return operator=((_CharT)__c); williamr@2: } williamr@2: }; williamr@2: williamr@2: #ifdef _STLP_FUNCTION_TMPL_PARTIAL_ORDER williamr@2: template<class _CharT, class __Alloc> williamr@2: inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a, williamr@2: _Rope_char_ref_proxy <_CharT, __Alloc > __b) { williamr@2: _CharT __tmp = __a; williamr@2: __a = __b; williamr@2: __b = __tmp; williamr@2: } williamr@2: #else williamr@2: // There is no really acceptable way to handle this. The default williamr@2: // definition of swap doesn't work for proxy references. williamr@2: // It can't really be made to work, even with ugly hacks, since williamr@2: // the only unusual operation it uses is the copy constructor, which williamr@2: // is needed for other purposes. We provide a macro for williamr@2: // full specializations, and instantiate the most common case. williamr@2: # define _ROPE_SWAP_SPECIALIZATION(_CharT, __Alloc) \ williamr@2: inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a, \ williamr@2: _Rope_char_ref_proxy <_CharT, __Alloc > __b) { \ williamr@2: _CharT __tmp = __a; \ williamr@2: __a = __b; \ williamr@2: __b = __tmp; \ williamr@2: } williamr@2: williamr@2: _ROPE_SWAP_SPECIALIZATION(char,_STLP_DEFAULT_ALLOCATOR(char) ) williamr@2: williamr@4: # ifndef _STLP_NO_WCHAR_T williamr@4: _ROPE_SWAP_SPECIALIZATION(wchar_t,_STLP_DEFAULT_ALLOCATOR(wchar_t) ) williamr@4: # endif williamr@4: williamr@2: #endif /* !_STLP_FUNCTION_TMPL_PARTIAL_ORDER */ williamr@2: williamr@4: template<class _CharT, class _Alloc> williamr@2: class _Rope_char_ptr_proxy { williamr@2: // XXX this class should be rewritten. williamr@2: public: williamr@2: typedef _Rope_char_ptr_proxy<_CharT, _Alloc> _Self; williamr@2: friend class _Rope_char_ref_proxy<_CharT,_Alloc>; williamr@2: size_t _M_pos; williamr@2: rope<_CharT,_Alloc>* _M_root; // The whole rope. williamr@2: williamr@4: _Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x) williamr@2: : _M_pos(__x._M_pos), _M_root(__x._M_root) {} williamr@2: _Rope_char_ptr_proxy(const _Self& __x) williamr@2: : _M_pos(__x._M_pos), _M_root(__x._M_root) {} williamr@2: _Rope_char_ptr_proxy() {} williamr@2: _Rope_char_ptr_proxy(_CharT* __x) : _M_pos(0), _M_root(0) { williamr@2: _STLP_ASSERT(0 == __x) williamr@2: } williamr@4: _Self& operator= (const _Self& __x) { williamr@2: _M_pos = __x._M_pos; williamr@2: _M_root = __x._M_root; williamr@2: return *this; williamr@2: } williamr@2: williamr@2: _Rope_char_ref_proxy<_CharT,_Alloc> operator*() const { williamr@2: return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos); williamr@2: } williamr@2: }; williamr@2: williamr@2: williamr@4: /* williamr@4: * Rope iterators: williamr@4: * Unlike in the C version, we cache only part of the stack williamr@4: * for rope iterators, since they must be efficiently copyable. williamr@4: * When we run out of cache, we have to reconstruct the iterator williamr@4: * value. williamr@4: * Pointers from iterators are not included in reference counts. williamr@4: * Iterators are assumed to be thread private. Ropes can williamr@4: * be shared. williamr@4: */ williamr@2: template<class _CharT, class _Alloc> williamr@2: class _Rope_iterator_base williamr@2: /* : public random_access_iterator<_CharT, ptrdiff_t> */ williamr@2: { williamr@2: friend class rope<_CharT,_Alloc>; williamr@2: typedef _Rope_iterator_base<_CharT, _Alloc> _Self; williamr@4: typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcat; williamr@2: public: williamr@2: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; williamr@4: williamr@4: enum { _S_path_cache_len = 4 }; // Must be <= 9 because of _M_path_direction. williamr@2: enum { _S_iterator_buf_len = 15 }; williamr@2: size_t _M_current_pos; williamr@4: // The whole rope. williamr@4: _RopeRep* _M_root; williamr@4: // Starting position for current leaf williamr@4: size_t _M_leaf_pos; williamr@4: // Buffer possibly containing current char. williamr@4: _CharT* _M_buf_start; williamr@4: // Pointer to current char in buffer, != 0 ==> buffer valid. williamr@4: _CharT* _M_buf_ptr; williamr@2: // One past __last valid char in buffer. williamr@4: _CharT* _M_buf_end; williamr@4: williamr@2: // What follows is the path cache. We go out of our williamr@2: // way to make this compact. williamr@2: // Path_end contains the bottom section of the path from williamr@2: // the root to the current leaf. williamr@4: struct { williamr@4: # if defined (__BORLANDC__) && (__BORLANDC__ < 0x560) williamr@4: _RopeRep const*_M_data[4]; williamr@4: # else williamr@4: _RopeRep const*_M_data[_S_path_cache_len]; williamr@4: # endif williamr@4: } _M_path_end; williamr@4: // Last valid __pos in path_end; williamr@4: // _M_path_end[0] ... _M_path_end[_M_leaf_index-1] williamr@2: // point to concatenation nodes. williamr@4: int _M_leaf_index; williamr@4: // (_M_path_directions >> __i) & 1 is 1 williamr@4: // if we got from _M_path_end[leaf_index - __i - 1] williamr@2: // to _M_path_end[leaf_index - __i] by going to the williamr@2: // __right. Assumes path_cache_len <= 9. williamr@4: unsigned char _M_path_directions; williamr@2: // Short buffer for surrounding chars. williamr@4: // This is useful primarily for williamr@2: // RopeFunctions. We put the buffer williamr@2: // here to avoid locking in the williamr@2: // multithreaded case. williamr@2: // The cached path is generally assumed to be valid williamr@2: // only if the buffer is valid. williamr@4: struct { williamr@4: # if defined (__BORLANDC__) && (__BORLANDC__ < 0x560) williamr@4: _CharT _M_data[15]; williamr@4: # else williamr@4: _CharT _M_data[_S_iterator_buf_len]; williamr@4: # endif williamr@4: } _M_tmp_buf; williamr@4: williamr@4: // Set buffer contents given path cache. williamr@2: static void _S_setbuf(_Rope_iterator_base<_CharT, _Alloc>& __x); williamr@4: // Set buffer contents and path cache. williamr@2: static void _S_setcache(_Rope_iterator_base<_CharT, _Alloc>& __x); williamr@4: // As above, but assumes path cache is valid for previous posn. williamr@2: static void _S_setcache_for_incr(_Rope_iterator_base<_CharT, _Alloc>& __x); williamr@2: _Rope_iterator_base() {} williamr@2: _Rope_iterator_base(_RopeRep* __root, size_t __pos) williamr@2: : _M_current_pos(__pos),_M_root(__root), _M_buf_ptr(0) {} williamr@2: void _M_incr(size_t __n); williamr@2: void _M_decr(size_t __n); williamr@2: public: williamr@2: size_t index() const { return _M_current_pos; } williamr@4: private: williamr@4: void _M_copy_buf(const _Self& __x) { williamr@4: _M_tmp_buf = __x._M_tmp_buf; williamr@4: if (__x._M_buf_start == __x._M_tmp_buf._M_data) { williamr@4: _M_buf_start = _M_tmp_buf._M_data; williamr@4: _M_buf_end = _M_buf_start + (__x._M_buf_end - __x._M_buf_start); williamr@4: _M_buf_ptr = _M_buf_start + (__x._M_buf_ptr - __x._M_buf_start); williamr@2: } else { williamr@4: _M_buf_end = __x._M_buf_end; williamr@2: } williamr@2: } williamr@4: williamr@4: public: williamr@4: _Rope_iterator_base(const _Self& __x) : williamr@4: _M_current_pos(__x._M_current_pos), williamr@4: _M_root(__x._M_root), williamr@4: _M_leaf_pos( __x._M_leaf_pos ), williamr@4: _M_buf_start(__x._M_buf_start), williamr@4: _M_buf_ptr(__x._M_buf_ptr), williamr@4: _M_path_end(__x._M_path_end), williamr@4: _M_leaf_index(__x._M_leaf_index), williamr@4: _M_path_directions(__x._M_path_directions) williamr@4: { williamr@4: if (0 != __x._M_buf_ptr) { williamr@4: _M_copy_buf(__x); williamr@4: } williamr@4: } williamr@4: _Self& operator = (const _Self& __x) williamr@4: { williamr@4: _M_current_pos = __x._M_current_pos; williamr@4: _M_root = __x._M_root; williamr@4: _M_buf_start = __x._M_buf_start; williamr@4: _M_buf_ptr = __x._M_buf_ptr; williamr@4: _M_path_end = __x._M_path_end; williamr@4: _M_leaf_index = __x._M_leaf_index; williamr@4: _M_path_directions = __x._M_path_directions; williamr@4: _M_leaf_pos = __x._M_leaf_pos; williamr@4: if (0 != __x._M_buf_ptr) { williamr@4: _M_copy_buf(__x); williamr@4: } williamr@4: return *this; williamr@4: } williamr@2: }; williamr@2: williamr@2: template<class _CharT, class _Alloc> class _Rope_iterator; williamr@2: williamr@2: template<class _CharT, class _Alloc> williamr@2: class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> { williamr@2: friend class rope<_CharT,_Alloc>; williamr@2: typedef _Rope_const_iterator<_CharT, _Alloc> _Self; williamr@2: typedef _Rope_iterator_base<_CharT,_Alloc> _Base; williamr@2: // protected: williamr@2: public: williamr@2: # ifndef _STLP_HAS_NO_NAMESPACES williamr@2: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; williamr@2: // The one from the base class may not be directly visible. williamr@2: # endif williamr@2: _Rope_const_iterator(const _RopeRep* __root, size_t __pos): williamr@4: _Rope_iterator_base<_CharT,_Alloc>(__CONST_CAST(_RopeRep*,__root), __pos) williamr@2: // Only nonconst iterators modify root ref count williamr@2: {} williamr@2: public: williamr@2: typedef _CharT reference; // Really a value. Returning a reference williamr@4: // Would be a mess, since it would have williamr@4: // to be included in refcount. williamr@2: typedef const _CharT* pointer; williamr@2: typedef _CharT value_type; williamr@2: typedef ptrdiff_t difference_type; williamr@2: typedef random_access_iterator_tag iterator_category; williamr@2: williamr@2: public: williamr@4: _Rope_const_iterator() {} williamr@2: _Rope_const_iterator(const _Self& __x) : williamr@2: _Rope_iterator_base<_CharT,_Alloc>(__x) { } williamr@4: _Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x): williamr@2: _Rope_iterator_base<_CharT,_Alloc>(__x) {} williamr@2: _Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) : williamr@2: _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr._M_data, __pos) {} williamr@2: _Self& operator= (const _Self& __x) { williamr@4: _Base::operator=(__x); williamr@4: return *this; williamr@2: } williamr@2: reference operator*() { williamr@4: if (0 == this->_M_buf_ptr) williamr@4: #if !defined (__DMC__) williamr@4: _Rope_iterator_base<_CharT, _Alloc>::_S_setcache(*this); williamr@4: #else williamr@4: { _Rope_iterator_base<_CharT, _Alloc>* __x = this; _S_setcache(*__x); } williamr@4: #endif williamr@2: return *(this->_M_buf_ptr); williamr@2: } williamr@2: _Self& operator++() { williamr@4: _CharT* __next; williamr@2: if (0 != this->_M_buf_ptr && (__next = this->_M_buf_ptr + 1) < this->_M_buf_end) { williamr@2: this->_M_buf_ptr = __next; williamr@2: ++this->_M_current_pos; williamr@2: } else { williamr@2: this->_M_incr(1); williamr@2: } williamr@2: return *this; williamr@2: } williamr@2: _Self& operator+=(ptrdiff_t __n) { williamr@2: if (__n >= 0) { williamr@2: this->_M_incr(__n); williamr@2: } else { williamr@2: this->_M_decr(-__n); williamr@2: } williamr@2: return *this; williamr@2: } williamr@2: _Self& operator--() { williamr@2: this->_M_decr(1); williamr@2: return *this; williamr@2: } williamr@2: _Self& operator-=(ptrdiff_t __n) { williamr@2: if (__n >= 0) { williamr@2: this->_M_decr(__n); williamr@2: } else { williamr@2: this->_M_incr(-__n); williamr@2: } williamr@2: return *this; williamr@2: } williamr@2: _Self operator++(int) { williamr@2: size_t __old_pos = this->_M_current_pos; williamr@2: this->_M_incr(1); williamr@2: return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos); williamr@2: // This makes a subsequent dereference expensive. williamr@2: // Perhaps we should instead copy the iterator williamr@2: // if it has a valid cache? williamr@2: } williamr@2: _Self operator--(int) { williamr@2: size_t __old_pos = this->_M_current_pos; williamr@2: this->_M_decr(1); williamr@2: return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos); williamr@2: } williamr@2: inline reference operator[](size_t __n); williamr@2: }; williamr@2: williamr@2: template<class _CharT, class _Alloc> williamr@2: class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> { williamr@2: friend class rope<_CharT,_Alloc>; williamr@2: typedef _Rope_iterator<_CharT, _Alloc> _Self; williamr@2: typedef _Rope_iterator_base<_CharT,_Alloc> _Base; williamr@2: typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep; williamr@4: williamr@2: public: williamr@2: rope<_CharT,_Alloc>* _M_root_rope; williamr@2: // root is treated as a cached version of this, williamr@2: // and is used to detect changes to the underlying williamr@2: // rope. williamr@2: // Root is included in the reference count. williamr@2: // This is necessary so that we can detect changes reliably. williamr@2: // Unfortunately, it requires careful bookkeeping for the williamr@2: // nonGC case. williamr@2: _Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos); williamr@4: williamr@2: void _M_check(); williamr@2: public: williamr@2: typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference; williamr@2: typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer; williamr@2: typedef _CharT value_type; williamr@2: typedef ptrdiff_t difference_type; williamr@2: typedef random_access_iterator_tag iterator_category; williamr@2: public: williamr@4: ~_Rope_iterator() { //*TY 5/6/00 - added dtor to balance reference count williamr@2: _RopeRep::_S_unref(this->_M_root); williamr@2: } williamr@4: williamr@2: rope<_CharT,_Alloc>& container() { return *_M_root_rope; } williamr@2: _Rope_iterator() { williamr@2: this->_M_root = 0; // Needed for reference counting. williamr@4: } williamr@2: _Rope_iterator(const _Self& __x) : williamr@2: _Rope_iterator_base<_CharT,_Alloc>(__x) { williamr@2: _M_root_rope = __x._M_root_rope; williamr@2: _RopeRep::_S_ref(this->_M_root); williamr@2: } williamr@2: _Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos); williamr@2: _Self& operator= (const _Self& __x) { williamr@2: _RopeRep* __old = this->_M_root; williamr@2: _RopeRep::_S_ref(__x._M_root); williamr@4: _Base::operator=(__x); williamr@4: _M_root_rope = __x._M_root_rope; williamr@2: _RopeRep::_S_unref(__old); williamr@4: return *this; williamr@2: } williamr@2: reference operator*() { williamr@2: _M_check(); williamr@2: if (0 == this->_M_buf_ptr) { williamr@4: return reference(_M_root_rope, this->_M_current_pos); williamr@2: } else { williamr@4: return reference(_M_root_rope, this->_M_current_pos, *(this->_M_buf_ptr)); williamr@2: } williamr@2: } williamr@2: _Self& operator++() { williamr@2: this->_M_incr(1); williamr@2: return *this; williamr@2: } williamr@2: _Self& operator+=(ptrdiff_t __n) { williamr@2: if (__n >= 0) { williamr@2: this->_M_incr(__n); williamr@2: } else { williamr@2: this->_M_decr(-__n); williamr@2: } williamr@2: return *this; williamr@2: } williamr@2: _Self& operator--() { williamr@2: this->_M_decr(1); williamr@2: return *this; williamr@2: } williamr@2: _Self& operator-=(ptrdiff_t __n) { williamr@2: if (__n >= 0) { williamr@2: this->_M_decr(__n); williamr@2: } else { williamr@2: this->_M_incr(-__n); williamr@2: } williamr@2: return *this; williamr@2: } williamr@2: _Self operator++(int) { williamr@2: size_t __old_pos = this->_M_current_pos; williamr@2: this->_M_incr(1); williamr@4: return _Self(_M_root_rope, __old_pos); williamr@2: } williamr@2: _Self operator--(int) { williamr@2: size_t __old_pos = this->_M_current_pos; williamr@2: this->_M_decr(1); williamr@4: return _Self(_M_root_rope, __old_pos); williamr@2: } williamr@2: reference operator[](ptrdiff_t __n) { williamr@4: return reference(_M_root_rope, this->_M_current_pos + __n); williamr@2: } williamr@2: }; williamr@2: williamr@2: # ifdef _STLP_USE_OLD_HP_ITERATOR_QUERIES williamr@2: template <class _CharT, class _Alloc> williamr@2: inline random_access_iterator_tag williamr@2: iterator_category(const _Rope_iterator<_CharT,_Alloc>&) { return random_access_iterator_tag();} williamr@2: template <class _CharT, class _Alloc> williamr@2: inline _CharT* value_type(const _Rope_iterator<_CharT,_Alloc>&) { return 0; } williamr@2: template <class _CharT, class _Alloc> williamr@2: inline ptrdiff_t* distance_type(const _Rope_iterator<_CharT,_Alloc>&) { return 0; } williamr@2: template <class _CharT, class _Alloc> williamr@2: inline random_access_iterator_tag williamr@2: iterator_category(const _Rope_const_iterator<_CharT,_Alloc>&) { return random_access_iterator_tag(); } williamr@2: template <class _CharT, class _Alloc> williamr@2: inline _CharT* value_type(const _Rope_const_iterator<_CharT,_Alloc>&) { return 0; } williamr@2: template <class _CharT, class _Alloc> williamr@2: inline ptrdiff_t* distance_type(const _Rope_const_iterator<_CharT,_Alloc>&) { return 0; } williamr@4: #endif /* _STLP_USE_OLD_HP_ITERATOR_QUERIES */ williamr@4: williamr@4: template <class _CharT, class _Alloc, class _CharConsumer> williamr@4: bool _S_apply_to_pieces(_CharConsumer& __c, williamr@4: _Rope_RopeRep<_CharT, _Alloc> *__r, williamr@4: size_t __begin, size_t __end); williamr@4: // begin and end are assumed to be in range. williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@4: class rope williamr@4: #if defined (_STLP_USE_PARTIAL_SPEC_WORKAROUND) williamr@4: : public __stlport_class<rope<_CharT, _Alloc> > williamr@4: #endif williamr@4: { williamr@2: typedef rope<_CharT,_Alloc> _Self; williamr@2: public: williamr@2: typedef _CharT value_type; williamr@2: typedef ptrdiff_t difference_type; williamr@2: typedef size_t size_type; williamr@2: typedef _CharT const_reference; williamr@2: typedef const _CharT* const_pointer; williamr@2: typedef _Rope_iterator<_CharT,_Alloc> iterator; williamr@2: typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator; williamr@2: typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference; williamr@2: typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer; williamr@4: williamr@2: friend class _Rope_iterator<_CharT,_Alloc>; williamr@2: friend class _Rope_const_iterator<_CharT,_Alloc>; williamr@2: friend struct _Rope_RopeRep<_CharT,_Alloc>; williamr@2: friend class _Rope_iterator_base<_CharT,_Alloc>; williamr@2: friend class _Rope_char_ptr_proxy<_CharT,_Alloc>; williamr@2: friend class _Rope_char_ref_proxy<_CharT,_Alloc>; williamr@2: friend struct _Rope_RopeSubstring<_CharT,_Alloc>; williamr@2: williamr@2: _STLP_DECLARE_RANDOM_ACCESS_REVERSE_ITERATORS; williamr@4: williamr@2: protected: williamr@4: typedef _CharT* _Cstrptr; williamr@4: williamr@2: static _CharT _S_empty_c_str[1]; williamr@4: williamr@2: enum { _S_copy_max = 23 }; williamr@2: // For strings shorter than _S_copy_max, we copy to williamr@2: // concatenate. williamr@4: williamr@4: typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep; williamr@4: typedef typename _RopeRep::_IsBasicCharType _IsBasicCharType; williamr@4: williamr@2: public: williamr@2: _STLP_FORCE_ALLOCATORS(_CharT, _Alloc) williamr@2: typedef typename _Alloc_traits<_CharT,_Alloc>::allocator_type allocator_type; williamr@4: williamr@2: public: williamr@2: // The only data member of a rope: williamr@4: _STLP_PRIV _STLP_alloc_proxy<_RopeRep*, _CharT, allocator_type> _M_tree_ptr; williamr@2: williamr@4: public: williamr@4: allocator_type get_allocator() const { return allocator_type(_M_tree_ptr); } williamr@4: williamr@4: public: williamr@2: typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation; williamr@2: typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf; williamr@2: typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction; williamr@2: typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring; williamr@2: williamr@2: // Retrieve a character at the indicated position. williamr@2: static _CharT _S_fetch(_RopeRep* __r, size_type __pos); williamr@2: williamr@2: // Obtain a pointer to the character at the indicated position. williamr@2: // The pointer can be used to change the character. williamr@2: // If such a pointer cannot be produced, as is frequently the williamr@2: // case, 0 is returned instead. williamr@2: // (Returns nonzero only if all nodes in the path have a refcount williamr@2: // of 1.) williamr@2: static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos); williamr@2: williamr@4: static void _S_unref(_RopeRep* __t) { williamr@2: _RopeRep::_S_unref(__t); williamr@2: } williamr@4: static void _S_ref(_RopeRep* __t) { williamr@2: _RopeRep::_S_ref(__t); williamr@2: } williamr@2: williamr@2: typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr; williamr@2: williamr@2: // _Result is counted in refcount. williamr@2: static _RopeRep* _S_substring(_RopeRep* __base, williamr@2: size_t __start, size_t __endp1); williamr@2: williamr@2: static _RopeRep* _S_concat_char_iter(_RopeRep* __r, williamr@2: const _CharT* __iter, size_t __slen); williamr@2: // Concatenate rope and char ptr, copying __s. williamr@2: // Should really take an arbitrary iterator. williamr@2: // Result is counted in refcount. williamr@2: static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r, williamr@4: const _CharT* __iter, size_t __slen); williamr@2: // As above, but one reference to __r is about to be williamr@2: // destroyed. Thus the pieces may be recycled if all williamr@2: // relevent reference counts are 1. williamr@2: williamr@2: // General concatenation on _RopeRep. _Result williamr@2: // has refcount of 1. Adjusts argument refcounts. williamr@4: static _RopeRep* _S_concat_rep(_RopeRep* __left, _RopeRep* __right); williamr@2: williamr@2: public: williamr@4: #if defined (_STLP_MEMBER_TEMPLATES) williamr@4: template <class _CharConsumer> williamr@4: #else williamr@4: typedef _Rope_char_consumer<_CharT> _CharConsumer; williamr@4: #endif williamr@4: void apply_to_pieces(size_t __begin, size_t __end, williamr@4: _CharConsumer& __c) const williamr@4: { _S_apply_to_pieces(__c, _M_tree_ptr._M_data, __begin, __end); } williamr@2: williamr@2: protected: williamr@2: williamr@4: static size_t _S_rounded_up_size(size_t __n) williamr@4: { return _RopeRep::_S_rounded_up_size(__n); } williamr@2: williamr@2: // Allocate and construct a RopeLeaf using the supplied allocator williamr@2: // Takes ownership of s instead of copying. williamr@4: static _RopeLeaf* _S_new_RopeLeaf(_CharT *__s, williamr@4: size_t _p_size, allocator_type __a) { williamr@4: _RopeLeaf* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a, williamr@4: _RopeLeaf).allocate(1); williamr@2: _STLP_TRY { williamr@2: _STLP_PLACEMENT_NEW(__space) _RopeLeaf(__s, _p_size, __a); williamr@2: } williamr@4: _STLP_UNWIND(_STLP_CREATE_ALLOCATOR(allocator_type,__a, williamr@4: _RopeLeaf).deallocate(__space, 1)) williamr@4: return __space; williamr@2: } williamr@2: williamr@4: static _RopeConcatenation* _S_new_RopeConcatenation(_RopeRep* __left, _RopeRep* __right, williamr@4: allocator_type __a) { williamr@4: _RopeConcatenation* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a, williamr@4: _RopeConcatenation).allocate(1); williamr@2: return _STLP_PLACEMENT_NEW(__space) _RopeConcatenation(__left, __right, __a); williamr@2: } williamr@2: williamr@2: static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f, williamr@4: size_t _p_size, bool __d, allocator_type __a) { williamr@4: _RopeFunction* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a, williamr@4: _RopeFunction).allocate(1); williamr@2: return _STLP_PLACEMENT_NEW(__space) _RopeFunction(__f, _p_size, __d, __a); williamr@2: } williamr@2: williamr@4: static _RopeSubstring* _S_new_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s, williamr@4: size_t __l, allocator_type __a) { williamr@4: _RopeSubstring* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a, williamr@4: _RopeSubstring).allocate(1); williamr@2: return _STLP_PLACEMENT_NEW(__space) _RopeSubstring(__b, __s, __l, __a); williamr@2: } williamr@2: williamr@2: static williamr@2: _RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s, williamr@4: size_t _p_size, allocator_type __a) { williamr@2: if (0 == _p_size) return 0; williamr@2: williamr@2: _CharT* __buf = _STLP_CREATE_ALLOCATOR(allocator_type,__a, _CharT).allocate(_S_rounded_up_size(_p_size)); williamr@2: williamr@4: _STLP_PRIV __ucopy_n(__s, _p_size, __buf); williamr@4: _S_construct_null(__buf + _p_size); williamr@2: williamr@2: _STLP_TRY { williamr@2: return _S_new_RopeLeaf(__buf, _p_size, __a); williamr@2: } williamr@2: _STLP_UNWIND(_RopeRep::_S_free_string(__buf, _p_size, __a)) williamr@4: _STLP_RET_AFTER_THROW(0) williamr@2: } williamr@4: williamr@2: williamr@2: // Concatenation of nonempty strings. williamr@2: // Always builds a concatenation node. williamr@2: // Rebalances if the result is too deep. williamr@2: // Result has refcount 1. williamr@2: // Does not increment left and right ref counts even though williamr@2: // they are referenced. williamr@2: static _RopeRep* williamr@2: _S_tree_concat(_RopeRep* __left, _RopeRep* __right); williamr@2: williamr@2: // Concatenation helper functions williamr@2: static _RopeLeaf* williamr@2: _S_leaf_concat_char_iter(_RopeLeaf* __r, williamr@2: const _CharT* __iter, size_t __slen); williamr@2: // Concatenate by copying leaf. williamr@2: // should take an arbitrary iterator williamr@2: // result has refcount 1. williamr@2: static _RopeLeaf* _S_destr_leaf_concat_char_iter williamr@2: (_RopeLeaf* __r, const _CharT* __iter, size_t __slen); williamr@2: // A version that potentially clobbers __r if __r->_M_ref_count == 1. williamr@2: williamr@2: williamr@2: // A helper function for exponentiating strings. williamr@2: // This uses a nonstandard refcount convention. williamr@2: // The result has refcount 0. williamr@4: typedef _STLP_PRIV _Rope_Concat_fn<_CharT,_Alloc> _Concat_fn; williamr@4: #if !defined (__GNUC__) || (__GNUC__ < 3) williamr@4: friend _Concat_fn; williamr@4: #else williamr@4: friend struct _STLP_PRIV _Rope_Concat_fn<_CharT,_Alloc>; williamr@4: #endif williamr@2: williamr@2: public: williamr@2: static size_t _S_char_ptr_len(const _CharT* __s) { williamr@4: return char_traits<_CharT>::length(__s); williamr@2: } williamr@2: williamr@2: public: /* for operators */ williamr@2: rope(_RopeRep* __t, const allocator_type& __a = allocator_type()) williamr@2: : _M_tree_ptr(__a, __t) { } williamr@2: private: williamr@2: // Copy __r to the _CharT buffer. williamr@2: // Returns __buffer + __r->_M_size._M_data. williamr@2: // Assumes that buffer is uninitialized. williamr@2: static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer); williamr@2: williamr@2: // Again, with explicit starting position and length. williamr@2: // Assumes that buffer is uninitialized. williamr@2: static _CharT* _S_flatten(_RopeRep* __r, williamr@2: size_t __start, size_t __len, williamr@2: _CharT* __buffer); williamr@2: williamr@2: // fbp : HP aCC prohibits access to protected min_len from within static methods ( ?? ) williamr@2: public: williamr@4: static const unsigned long _S_min_len[__ROPE_DEPTH_SIZE]; williamr@2: protected: williamr@2: static bool _S_is_balanced(_RopeRep* __r) williamr@2: { return (__r->_M_size._M_data >= _S_min_len[__r->_M_depth]); } williamr@2: williamr@4: static bool _S_is_almost_balanced(_RopeRep* __r) { williamr@4: return (__r->_M_depth == 0 || williamr@4: __r->_M_size._M_data >= _S_min_len[__r->_M_depth - 1]); williamr@4: } williamr@2: williamr@4: static bool _S_is_roughly_balanced(_RopeRep* __r) { williamr@4: return (__r->_M_depth <= 1 || williamr@4: __r->_M_size._M_data >= _S_min_len[__r->_M_depth - 2]); williamr@4: } williamr@2: williamr@2: // Assumes the result is not empty. williamr@2: static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left, williamr@4: _RopeRep* __right) { williamr@2: _RopeRep* __result = _S_concat_rep(__left, __right); williamr@2: if (_S_is_balanced(__result)) __result->_M_is_balanced = true; williamr@2: return __result; williamr@2: } williamr@2: williamr@2: // The basic rebalancing operation. Logically copies the williamr@2: // rope. The result has refcount of 1. The client will williamr@2: // usually decrement the reference count of __r. williamr@2: // The result is within height 2 of balanced by the above williamr@2: // definition. williamr@2: static _RopeRep* _S_balance(_RopeRep* __r); williamr@2: williamr@2: // Add all unbalanced subtrees to the forest of balanceed trees. williamr@2: // Used only by balance. williamr@2: static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest); williamr@4: williamr@2: // Add __r to forest, assuming __r is already balanced. williamr@2: static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest); williamr@2: williamr@4: #ifdef _STLP_DEBUG williamr@2: // Print to stdout, exposing structure williamr@2: static void _S_dump(_RopeRep* __r, int __indent = 0); williamr@4: #endif williamr@2: williamr@2: // Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp. williamr@2: static int _S_compare(const _RopeRep* __x, const _RopeRep* __y); williamr@2: williamr@4: void _STLP_FUNCTION_THROWS _M_throw_out_of_range() const; williamr@4: williamr@4: void _M_reset(_RopeRep* __r) { williamr@4: //if (__r != _M_tree_ptr._M_data) { williamr@4: _S_unref(_M_tree_ptr._M_data); williamr@4: _M_tree_ptr._M_data = __r; williamr@4: //} williamr@4: } williamr@4: williamr@2: public: williamr@2: bool empty() const { return 0 == _M_tree_ptr._M_data; } williamr@2: williamr@2: // Comparison member function. This is public only for those williamr@2: // clients that need a ternary comparison. Others williamr@2: // should use the comparison operators below. williamr@2: int compare(const _Self& __y) const { williamr@2: return _S_compare(_M_tree_ptr._M_data, __y._M_tree_ptr._M_data); williamr@2: } williamr@2: williamr@2: rope(const _CharT* __s, const allocator_type& __a = allocator_type()) williamr@4: : _M_tree_ptr(__a, _S_RopeLeaf_from_unowned_char_ptr(__s, _S_char_ptr_len(__s),__a)) williamr@4: {} williamr@2: williamr@2: rope(const _CharT* __s, size_t __len, williamr@2: const allocator_type& __a = allocator_type()) williamr@4: : _M_tree_ptr(__a, (_S_RopeLeaf_from_unowned_char_ptr(__s, __len, __a))) williamr@4: {} williamr@2: williamr@2: // Should perhaps be templatized with respect to the iterator type williamr@2: // and use Sequence_buffer. (It should perhaps use sequence_buffer williamr@2: // even now.) williamr@2: rope(const _CharT *__s, const _CharT *__e, williamr@2: const allocator_type& __a = allocator_type()) williamr@4: : _M_tree_ptr(__a, _S_RopeLeaf_from_unowned_char_ptr(__s, __e - __s, __a)) williamr@4: {} williamr@2: williamr@2: rope(const const_iterator& __s, const const_iterator& __e, williamr@2: const allocator_type& __a = allocator_type()) williamr@2: : _M_tree_ptr(__a, _S_substring(__s._M_root, __s._M_current_pos, williamr@2: __e._M_current_pos)) williamr@4: {} williamr@2: williamr@2: rope(const iterator& __s, const iterator& __e, williamr@2: const allocator_type& __a = allocator_type()) williamr@2: : _M_tree_ptr(__a, _S_substring(__s._M_root, __s._M_current_pos, williamr@2: __e._M_current_pos)) williamr@4: {} williamr@2: williamr@2: rope(_CharT __c, const allocator_type& __a = allocator_type()) williamr@4: : _M_tree_ptr(__a, (_RopeRep*)0) { williamr@2: _CharT* __buf = _M_tree_ptr.allocate(_S_rounded_up_size(1)); williamr@2: williamr@4: _Copy_Construct(__buf, __c); williamr@4: _S_construct_null(__buf + 1); williamr@4: williamr@2: _STLP_TRY { williamr@2: _M_tree_ptr._M_data = _S_new_RopeLeaf(__buf, 1, __a); williamr@2: } williamr@2: _STLP_UNWIND(_RopeRep::_S_free_string(__buf, 1, __a)) williamr@4: } williamr@2: williamr@4: rope(size_t __n, _CharT __c, williamr@2: const allocator_type& __a = allocator_type()): williamr@2: _M_tree_ptr(__a, (_RopeRep*)0) { williamr@4: if (0 == __n) williamr@4: return; williamr@4: williamr@2: rope<_CharT,_Alloc> __result; williamr@2: # define __exponentiate_threshold size_t(32) williamr@2: _RopeRep* __remainder; williamr@2: rope<_CharT,_Alloc> __remainder_rope; williamr@4: williamr@2: // gcc-2.7.2 bugs williamr@4: typedef _STLP_PRIV _Rope_Concat_fn<_CharT,_Alloc> _Concat_fn; williamr@4: williamr@2: size_t __exponent = __n / __exponentiate_threshold; williamr@2: size_t __rest = __n % __exponentiate_threshold; williamr@2: if (0 == __rest) { williamr@2: __remainder = 0; williamr@2: } else { williamr@2: _CharT* __rest_buffer = _M_tree_ptr.allocate(_S_rounded_up_size(__rest)); williamr@2: uninitialized_fill_n(__rest_buffer, __rest, __c); williamr@4: _S_construct_null(__rest_buffer + __rest); williamr@2: _STLP_TRY { williamr@4: __remainder = _S_new_RopeLeaf(__rest_buffer, __rest, __a); williamr@2: } williamr@2: _STLP_UNWIND(_RopeRep::_S_free_string(__rest_buffer, __rest, __a)) williamr@4: } williamr@2: __remainder_rope._M_tree_ptr._M_data = __remainder; williamr@2: if (__exponent != 0) { williamr@4: _CharT* __base_buffer = _M_tree_ptr.allocate(_S_rounded_up_size(__exponentiate_threshold)); williamr@2: _RopeLeaf* __base_leaf; williamr@2: rope<_CharT,_Alloc> __base_rope; williamr@2: uninitialized_fill_n(__base_buffer, __exponentiate_threshold, __c); williamr@4: _S_construct_null(__base_buffer + __exponentiate_threshold); williamr@2: _STLP_TRY { williamr@4: __base_leaf = _S_new_RopeLeaf(__base_buffer, williamr@2: __exponentiate_threshold, __a); williamr@2: } williamr@4: _STLP_UNWIND(_RopeRep::_S_free_string(__base_buffer, williamr@2: __exponentiate_threshold, __a)) williamr@4: __base_rope._M_tree_ptr._M_data = __base_leaf; williamr@2: if (1 == __exponent) { williamr@4: __result = __base_rope; williamr@4: // One each for base_rope and __result williamr@4: //_STLP_ASSERT(2 == __result._M_tree_ptr._M_data->_M_ref_count) williamr@2: } else { williamr@4: __result = _STLP_PRIV __power(__base_rope, __exponent, _Concat_fn()); williamr@2: } williamr@2: if (0 != __remainder) { williamr@4: __result += __remainder_rope; williamr@2: } williamr@2: } else { williamr@2: __result = __remainder_rope; williamr@2: } williamr@2: _M_tree_ptr._M_data = __result._M_tree_ptr._M_data; williamr@2: _M_tree_ptr._M_data->_M_ref_nonnil(); williamr@2: # undef __exponentiate_threshold williamr@2: } williamr@2: williamr@2: rope(const allocator_type& __a = allocator_type()) williamr@2: : _M_tree_ptr(__a, (_RopeRep*)0) {} williamr@2: williamr@2: // Construct a rope from a function that can compute its members williamr@2: rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn, williamr@2: const allocator_type& __a = allocator_type()) williamr@4: : _M_tree_ptr(__a, (_RopeRep*)0) { williamr@2: _M_tree_ptr._M_data = (0 == __len) ? williamr@2: 0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a); williamr@2: } williamr@2: williamr@2: rope(const _Self& __x) williamr@4: : _M_tree_ptr(__x._M_tree_ptr, __x._M_tree_ptr._M_data) { williamr@2: _S_ref(_M_tree_ptr._M_data); williamr@2: } williamr@2: williamr@4: rope(__move_source<_Self> __src) williamr@4: : _M_tree_ptr(__src.get()._M_tree_ptr, __src.get()._M_tree_ptr._M_data) { williamr@4: __src.get()._M_tree_ptr._M_data = 0; williamr@4: } williamr@4: williamr@4: ~rope() { williamr@2: _S_unref(_M_tree_ptr._M_data); williamr@2: } williamr@2: williamr@4: _Self& operator=(const _Self& __x) { williamr@2: _STLP_ASSERT(get_allocator() == __x.get_allocator()) williamr@4: _S_ref(__x._M_tree_ptr._M_data); williamr@4: _M_reset(__x._M_tree_ptr._M_data); williamr@4: return *this; williamr@2: } williamr@4: williamr@4: void clear() { williamr@2: _S_unref(_M_tree_ptr._M_data); williamr@2: _M_tree_ptr._M_data = 0; williamr@2: } williamr@4: void push_back(_CharT __x) { williamr@4: _M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, &__x, 1)); williamr@2: } williamr@2: williamr@4: void pop_back() { williamr@2: _RopeRep* __old = _M_tree_ptr._M_data; williamr@4: _M_tree_ptr._M_data = williamr@2: _S_substring(_M_tree_ptr._M_data, 0, _M_tree_ptr._M_data->_M_size._M_data - 1); williamr@2: _S_unref(__old); williamr@2: } williamr@2: williamr@4: _CharT back() const { williamr@2: return _S_fetch(_M_tree_ptr._M_data, _M_tree_ptr._M_data->_M_size._M_data - 1); williamr@2: } williamr@2: williamr@4: void push_front(_CharT __x) { williamr@2: _RopeRep* __old = _M_tree_ptr._M_data; williamr@2: _RopeRep* __left = williamr@4: _S_RopeLeaf_from_unowned_char_ptr(&__x, 1, _M_tree_ptr); williamr@2: _STLP_TRY { williamr@2: _M_tree_ptr._M_data = _S_concat_rep(__left, _M_tree_ptr._M_data); williamr@2: _S_unref(__old); williamr@2: _S_unref(__left); williamr@2: } williamr@2: _STLP_UNWIND(_S_unref(__left)) williamr@4: } williamr@2: williamr@4: void pop_front() { williamr@2: _RopeRep* __old = _M_tree_ptr._M_data; williamr@2: _M_tree_ptr._M_data = _S_substring(_M_tree_ptr._M_data, 1, _M_tree_ptr._M_data->_M_size._M_data); williamr@2: _S_unref(__old); williamr@2: } williamr@2: williamr@4: _CharT front() const { williamr@2: return _S_fetch(_M_tree_ptr._M_data, 0); williamr@2: } williamr@2: williamr@4: void balance() { williamr@2: _RopeRep* __old = _M_tree_ptr._M_data; williamr@2: _M_tree_ptr._M_data = _S_balance(_M_tree_ptr._M_data); williamr@2: _S_unref(__old); williamr@2: } williamr@2: williamr@2: void copy(_CharT* __buffer) const { williamr@4: _STLP_STD::_Destroy_Range(__buffer, __buffer + size()); williamr@2: _S_flatten(_M_tree_ptr._M_data, __buffer); williamr@2: } williamr@2: williamr@4: /* williamr@4: * This is the copy function from the standard, but williamr@4: * with the arguments reordered to make it consistent with the williamr@4: * rest of the interface. williamr@4: * Note that this guaranteed not to compile if the draft standard williamr@4: * order is assumed. williamr@4: */ williamr@4: size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const { williamr@2: size_t _p_size = size(); williamr@2: size_t __len = (__pos + __n > _p_size? _p_size - __pos : __n); williamr@2: williamr@4: _STLP_STD::_Destroy_Range(__buffer, __buffer + __len); williamr@2: _S_flatten(_M_tree_ptr._M_data, __pos, __len, __buffer); williamr@2: return __len; williamr@2: } williamr@2: williamr@4: # ifdef _STLP_DEBUG williamr@2: // Print to stdout, exposing structure. May be useful for williamr@2: // performance debugging. williamr@2: void dump() { williamr@2: _S_dump(_M_tree_ptr._M_data); williamr@2: } williamr@4: # endif williamr@2: williamr@2: // Convert to 0 terminated string in new allocated memory. williamr@2: // Embedded 0s in the input do not terminate the copy. williamr@2: const _CharT* c_str() const; williamr@2: williamr@4: // As above, but also use the flattened representation as the williamr@2: // the new rope representation. williamr@2: const _CharT* replace_with_c_str(); williamr@2: williamr@2: // Reclaim memory for the c_str generated flattened string. williamr@2: // Intentionally undocumented, since it's hard to say when this williamr@2: // is safe for multiple threads. williamr@2: void delete_c_str () { williamr@2: if (0 == _M_tree_ptr._M_data) return; williamr@4: if (_RopeRep::_S_leaf == _M_tree_ptr._M_data->_M_tag && williamr@4: ((_RopeLeaf*)_M_tree_ptr._M_data)->_M_data == williamr@2: _M_tree_ptr._M_data->_M_c_string) { williamr@2: // Representation shared williamr@2: return; williamr@2: } williamr@2: _M_tree_ptr._M_data->_M_free_c_string(); williamr@2: _M_tree_ptr._M_data->_M_c_string = 0; williamr@2: } williamr@2: williamr@2: _CharT operator[] (size_type __pos) const { williamr@2: return _S_fetch(_M_tree_ptr._M_data, __pos); williamr@2: } williamr@2: williamr@2: _CharT at(size_type __pos) const { williamr@4: if (__pos >= size()) _M_throw_out_of_range(); williamr@2: return (*this)[__pos]; williamr@2: } williamr@2: williamr@2: const_iterator begin() const { williamr@2: return(const_iterator(_M_tree_ptr._M_data, 0)); williamr@2: } williamr@2: williamr@2: // An easy way to get a const iterator from a non-const container. williamr@2: const_iterator const_begin() const { williamr@2: return(const_iterator(_M_tree_ptr._M_data, 0)); williamr@2: } williamr@2: williamr@2: const_iterator end() const { williamr@2: return(const_iterator(_M_tree_ptr._M_data, size())); williamr@2: } williamr@2: williamr@2: const_iterator const_end() const { williamr@2: return(const_iterator(_M_tree_ptr._M_data, size())); williamr@2: } williamr@2: williamr@4: size_type size() const { williamr@2: return(0 == _M_tree_ptr._M_data? 0 : _M_tree_ptr._M_data->_M_size._M_data); williamr@2: } williamr@2: williamr@2: size_type length() const { williamr@2: return size(); williamr@2: } williamr@2: williamr@2: size_type max_size() const { williamr@2: return _S_min_len[__ROPE_MAX_DEPTH-1] - 1; williamr@4: // Guarantees that the result can be sufficiently williamr@2: // balanced. Longer ropes will probably still work, williamr@2: // but it's harder to make guarantees. williamr@2: } williamr@2: williamr@2: const_reverse_iterator rbegin() const { williamr@2: return const_reverse_iterator(end()); williamr@2: } williamr@2: williamr@2: const_reverse_iterator const_rbegin() const { williamr@2: return const_reverse_iterator(end()); williamr@2: } williamr@2: williamr@2: const_reverse_iterator rend() const { williamr@2: return const_reverse_iterator(begin()); williamr@2: } williamr@2: williamr@2: const_reverse_iterator const_rend() const { williamr@2: return const_reverse_iterator(begin()); williamr@2: } williamr@2: // The symmetric cases are intentionally omitted, since they're presumed williamr@2: // to be less common, and we don't handle them as well. williamr@2: williamr@2: // The following should really be templatized. williamr@2: // The first argument should be an input iterator or williamr@2: // forward iterator with value_type _CharT. williamr@2: _Self& append(const _CharT* __iter, size_t __n) { williamr@4: _M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, __iter, __n)); williamr@2: return *this; williamr@2: } williamr@2: williamr@2: _Self& append(const _CharT* __c_string) { williamr@2: size_t __len = _S_char_ptr_len(__c_string); williamr@2: append(__c_string, __len); williamr@4: return *this; williamr@2: } williamr@2: williamr@2: _Self& append(const _CharT* __s, const _CharT* __e) { williamr@4: _M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, __s, __e - __s)); williamr@2: return *this; williamr@2: } williamr@2: williamr@2: _Self& append(const_iterator __s, const_iterator __e) { williamr@2: _STLP_ASSERT(__s._M_root == __e._M_root) williamr@2: _STLP_ASSERT(get_allocator() == __s._M_root->get_allocator()) williamr@4: _Self_destruct_ptr __appendee(_S_substring(__s._M_root, __s._M_current_pos, __e._M_current_pos)); williamr@4: _M_reset(_S_concat_rep(_M_tree_ptr._M_data, (_RopeRep*)__appendee)); williamr@2: return *this; williamr@2: } williamr@2: williamr@2: _Self& append(_CharT __c) { williamr@4: _M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, &__c, 1)); williamr@2: return *this; williamr@2: } williamr@2: williamr@2: _Self& append() { return append(_CharT()); } // XXX why? williamr@2: williamr@2: _Self& append(const _Self& __y) { williamr@2: _STLP_ASSERT(__y.get_allocator() == get_allocator()) williamr@4: _M_reset(_S_concat_rep(_M_tree_ptr._M_data, __y._M_tree_ptr._M_data)); williamr@2: return *this; williamr@2: } williamr@2: williamr@2: _Self& append(size_t __n, _CharT __c) { williamr@2: rope<_CharT,_Alloc> __last(__n, __c); williamr@2: return append(__last); williamr@2: } williamr@2: williamr@2: void swap(_Self& __b) { williamr@4: _M_tree_ptr.swap(__b._M_tree_ptr); williamr@2: } williamr@2: williamr@2: protected: williamr@2: // Result is included in refcount. williamr@2: static _RopeRep* replace(_RopeRep* __old, size_t __pos1, williamr@2: size_t __pos2, _RopeRep* __r) { williamr@2: if (0 == __old) { _S_ref(__r); return __r; } williamr@4: _Self_destruct_ptr __left(_S_substring(__old, 0, __pos1)); williamr@4: _Self_destruct_ptr __right(_S_substring(__old, __pos2, __old->_M_size._M_data)); williamr@4: _STLP_MPWFIX_TRY //*TY 06/01/2000 - williamr@2: _RopeRep* __result; williamr@2: williamr@2: if (0 == __r) { williamr@2: __result = _S_concat_rep(__left, __right); williamr@2: } else { williamr@2: _STLP_ASSERT(__old->get_allocator() == __r->get_allocator()) williamr@2: _Self_destruct_ptr __left_result(_S_concat_rep(__left, __r)); williamr@2: __result = _S_concat_rep(__left_result, __right); williamr@2: } williamr@2: return __result; williamr@4: _STLP_MPWFIX_CATCH //*TY 06/01/2000 - williamr@2: } williamr@2: williamr@2: public: williamr@2: void insert(size_t __p, const _Self& __r) { williamr@4: if (__p > size()) _M_throw_out_of_range(); williamr@2: _STLP_ASSERT(get_allocator() == __r.get_allocator()) williamr@4: _M_reset(replace(_M_tree_ptr._M_data, __p, __p, __r._M_tree_ptr._M_data)); williamr@2: } williamr@2: williamr@2: void insert(size_t __p, size_t __n, _CharT __c) { williamr@2: rope<_CharT,_Alloc> __r(__n,__c); williamr@2: insert(__p, __r); williamr@2: } williamr@2: williamr@2: void insert(size_t __p, const _CharT* __i, size_t __n) { williamr@4: if (__p > size()) _M_throw_out_of_range(); williamr@2: _Self_destruct_ptr __left(_S_substring(_M_tree_ptr._M_data, 0, __p)); williamr@2: _Self_destruct_ptr __right(_S_substring(_M_tree_ptr._M_data, __p, size())); williamr@2: _Self_destruct_ptr __left_result( williamr@2: _S_concat_char_iter(__left, __i, __n)); williamr@2: // _S_ destr_concat_char_iter should be safe here. williamr@2: // But as it stands it's probably not a win, since __left williamr@2: // is likely to have additional references. williamr@4: _M_reset(_S_concat_rep(__left_result, __right)); williamr@2: } williamr@2: williamr@2: void insert(size_t __p, const _CharT* __c_string) { williamr@2: insert(__p, __c_string, _S_char_ptr_len(__c_string)); williamr@2: } williamr@2: williamr@2: void insert(size_t __p, _CharT __c) { williamr@2: insert(__p, &__c, 1); williamr@2: } williamr@2: williamr@2: void insert(size_t __p) { williamr@2: _CharT __c = _CharT(); williamr@2: insert(__p, &__c, 1); williamr@2: } williamr@2: williamr@2: void insert(size_t __p, const _CharT* __i, const _CharT* __j) { williamr@2: _Self __r(__i, __j); williamr@2: insert(__p, __r); williamr@2: } williamr@2: williamr@2: void insert(size_t __p, const const_iterator& __i, williamr@4: const const_iterator& __j) { williamr@2: _Self __r(__i, __j); williamr@2: insert(__p, __r); williamr@2: } williamr@2: williamr@2: void insert(size_t __p, const iterator& __i, williamr@4: const iterator& __j) { williamr@2: _Self __r(__i, __j); williamr@2: insert(__p, __r); williamr@2: } williamr@2: williamr@2: // (position, length) versions of replace operations: williamr@2: void replace(size_t __p, size_t __n, const _Self& __r) { williamr@4: if (__p > size()) _M_throw_out_of_range(); williamr@4: _M_reset(replace(_M_tree_ptr._M_data, __p, __p + __n, __r._M_tree_ptr._M_data)); williamr@2: } williamr@2: williamr@4: void replace(size_t __p, size_t __n, williamr@2: const _CharT* __i, size_t __i_len) { williamr@2: _Self __r(__i, __i_len); williamr@2: replace(__p, __n, __r); williamr@2: } williamr@2: williamr@2: void replace(size_t __p, size_t __n, _CharT __c) { williamr@2: _Self __r(__c); williamr@2: replace(__p, __n, __r); williamr@2: } williamr@2: williamr@2: void replace(size_t __p, size_t __n, const _CharT* __c_string) { williamr@2: _Self __r(__c_string); williamr@2: replace(__p, __n, __r); williamr@2: } williamr@2: williamr@4: void replace(size_t __p, size_t __n, williamr@2: const _CharT* __i, const _CharT* __j) { williamr@2: _Self __r(__i, __j); williamr@2: replace(__p, __n, __r); williamr@2: } williamr@2: williamr@2: void replace(size_t __p, size_t __n, williamr@2: const const_iterator& __i, const const_iterator& __j) { williamr@2: _Self __r(__i, __j); williamr@2: replace(__p, __n, __r); williamr@2: } williamr@2: williamr@2: void replace(size_t __p, size_t __n, williamr@2: const iterator& __i, const iterator& __j) { williamr@2: _Self __r(__i, __j); williamr@2: replace(__p, __n, __r); williamr@2: } williamr@2: williamr@2: // Single character variants: williamr@2: void replace(size_t __p, _CharT __c) { williamr@4: if (__p > size()) _M_throw_out_of_range(); williamr@2: iterator __i(this, __p); williamr@2: *__i = __c; williamr@2: } williamr@2: williamr@2: void replace(size_t __p, const _Self& __r) { williamr@2: replace(__p, 1, __r); williamr@2: } williamr@2: williamr@2: void replace(size_t __p, const _CharT* __i, size_t __i_len) { williamr@2: replace(__p, 1, __i, __i_len); williamr@2: } williamr@2: williamr@2: void replace(size_t __p, const _CharT* __c_string) { williamr@2: replace(__p, 1, __c_string); williamr@2: } williamr@2: williamr@2: void replace(size_t __p, const _CharT* __i, const _CharT* __j) { williamr@2: replace(__p, 1, __i, __j); williamr@2: } williamr@2: williamr@2: void replace(size_t __p, const const_iterator& __i, williamr@4: const const_iterator& __j) { williamr@2: replace(__p, 1, __i, __j); williamr@2: } williamr@2: williamr@2: void replace(size_t __p, const iterator& __i, williamr@4: const iterator& __j) { williamr@2: replace(__p, 1, __i, __j); williamr@2: } williamr@2: williamr@2: // Erase, (position, size) variant. williamr@2: void erase(size_t __p, size_t __n) { williamr@4: if (__p > size()) _M_throw_out_of_range(); williamr@4: _M_reset(replace(_M_tree_ptr._M_data, __p, __p + __n, 0)); williamr@2: } williamr@2: williamr@2: // Erase, single character williamr@2: void erase(size_t __p) { williamr@2: erase(__p, __p + 1); williamr@2: } williamr@2: williamr@4: // Insert, iterator variants. williamr@2: iterator insert(const iterator& __p, const _Self& __r) williamr@2: { insert(__p.index(), __r); return __p; } williamr@2: iterator insert(const iterator& __p, size_t __n, _CharT __c) williamr@2: { insert(__p.index(), __n, __c); return __p; } williamr@4: iterator insert(const iterator& __p, _CharT __c) williamr@2: { insert(__p.index(), __c); return __p; } williamr@4: iterator insert(const iterator& __p ) williamr@2: { insert(__p.index()); return __p; } williamr@4: iterator insert(const iterator& __p, const _CharT* c_string) williamr@2: { insert(__p.index(), c_string); return __p; } williamr@2: iterator insert(const iterator& __p, const _CharT* __i, size_t __n) williamr@2: { insert(__p.index(), __i, __n); return __p; } williamr@4: iterator insert(const iterator& __p, const _CharT* __i, williamr@2: const _CharT* __j) williamr@2: { insert(__p.index(), __i, __j); return __p; } williamr@2: iterator insert(const iterator& __p, williamr@2: const const_iterator& __i, const const_iterator& __j) williamr@2: { insert(__p.index(), __i, __j); return __p; } williamr@2: iterator insert(const iterator& __p, williamr@2: const iterator& __i, const iterator& __j) williamr@2: { insert(__p.index(), __i, __j); return __p; } williamr@2: williamr@2: // Replace, range variants. williamr@2: void replace(const iterator& __p, const iterator& __q, williamr@2: const _Self& __r) williamr@2: { replace(__p.index(), __q.index() - __p.index(), __r); } williamr@2: void replace(const iterator& __p, const iterator& __q, _CharT __c) williamr@2: { replace(__p.index(), __q.index() - __p.index(), __c); } williamr@2: void replace(const iterator& __p, const iterator& __q, williamr@2: const _CharT* __c_string) williamr@2: { replace(__p.index(), __q.index() - __p.index(), __c_string); } williamr@2: void replace(const iterator& __p, const iterator& __q, williamr@2: const _CharT* __i, size_t __n) williamr@2: { replace(__p.index(), __q.index() - __p.index(), __i, __n); } williamr@2: void replace(const iterator& __p, const iterator& __q, williamr@2: const _CharT* __i, const _CharT* __j) williamr@2: { replace(__p.index(), __q.index() - __p.index(), __i, __j); } williamr@2: void replace(const iterator& __p, const iterator& __q, williamr@2: const const_iterator& __i, const const_iterator& __j) williamr@2: { replace(__p.index(), __q.index() - __p.index(), __i, __j); } williamr@2: void replace(const iterator& __p, const iterator& __q, williamr@2: const iterator& __i, const iterator& __j) williamr@2: { replace(__p.index(), __q.index() - __p.index(), __i, __j); } williamr@2: williamr@2: // Replace, iterator variants. williamr@2: void replace(const iterator& __p, const _Self& __r) williamr@2: { replace(__p.index(), __r); } williamr@2: void replace(const iterator& __p, _CharT __c) williamr@2: { replace(__p.index(), __c); } williamr@2: void replace(const iterator& __p, const _CharT* __c_string) williamr@2: { replace(__p.index(), __c_string); } williamr@2: void replace(const iterator& __p, const _CharT* __i, size_t __n) williamr@2: { replace(__p.index(), __i, __n); } williamr@2: void replace(const iterator& __p, const _CharT* __i, const _CharT* __j) williamr@2: { replace(__p.index(), __i, __j); } williamr@4: void replace(const iterator& __p, const_iterator __i, williamr@2: const_iterator __j) williamr@2: { replace(__p.index(), __i, __j); } williamr@2: void replace(const iterator& __p, iterator __i, iterator __j) williamr@2: { replace(__p.index(), __i, __j); } williamr@2: williamr@2: // Iterator and range variants of erase williamr@2: iterator erase(const iterator& __p, const iterator& __q) { williamr@2: size_t __p_index = __p.index(); williamr@2: erase(__p_index, __q.index() - __p_index); williamr@2: return iterator(this, __p_index); williamr@2: } williamr@2: iterator erase(const iterator& __p) { williamr@2: size_t __p_index = __p.index(); williamr@2: erase(__p_index, 1); williamr@2: return iterator(this, __p_index); williamr@2: } williamr@2: williamr@2: _Self substr(size_t __start, size_t __len = 1) const { williamr@4: if (__start > size()) _M_throw_out_of_range(); williamr@4: return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __start, __start + __len)); williamr@2: } williamr@2: williamr@2: _Self substr(iterator __start, iterator __end) const { williamr@4: return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __start.index(), __end.index())); williamr@2: } williamr@4: williamr@2: _Self substr(iterator __start) const { williamr@2: size_t __pos = __start.index(); williamr@4: return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __pos, __pos + 1)); williamr@2: } williamr@4: williamr@2: _Self substr(const_iterator __start, const_iterator __end) const { williamr@2: // This might eventually take advantage of the cache in the williamr@2: // iterator. williamr@4: return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __start.index(), __end.index())); williamr@2: } williamr@2: williamr@2: rope<_CharT,_Alloc> substr(const_iterator __start) { williamr@2: size_t __pos = __start.index(); williamr@4: return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __pos, __pos + 1)); williamr@2: } williamr@2: williamr@4: #include <stl/_string_npos.h> williamr@2: williamr@4: size_type find(const _Self& __s, size_type __pos = 0) const { williamr@4: if (__pos >= size()) williamr@4: # ifndef _STLP_OLD_ROPE_SEMANTICS williamr@4: return npos; williamr@4: # else williamr@4: return size(); williamr@4: # endif williamr@2: williamr@4: size_type __result_pos; williamr@4: const_iterator __result = search(const_begin() + (ptrdiff_t)__pos, const_end(), __s.begin(), __s.end() ); williamr@4: __result_pos = __result.index(); williamr@4: # ifndef _STLP_OLD_ROPE_SEMANTICS williamr@4: if (__result_pos == size()) __result_pos = npos; williamr@4: # endif williamr@4: return __result_pos; williamr@4: } williamr@2: size_type find(_CharT __c, size_type __pos = 0) const; williamr@2: size_type find(const _CharT* __s, size_type __pos = 0) const { williamr@2: size_type __result_pos; williamr@2: const_iterator __result = search(const_begin() + (ptrdiff_t)__pos, const_end(), williamr@2: __s, __s + _S_char_ptr_len(__s)); williamr@2: __result_pos = __result.index(); williamr@4: # ifndef _STLP_OLD_ROPE_SEMANTICS williamr@2: if (__result_pos == size()) __result_pos = npos; williamr@4: # endif williamr@2: return __result_pos; williamr@2: } williamr@2: williamr@2: iterator mutable_begin() { williamr@2: return(iterator(this, 0)); williamr@2: } williamr@2: williamr@2: iterator mutable_end() { williamr@2: return(iterator(this, size())); williamr@2: } williamr@2: williamr@2: reverse_iterator mutable_rbegin() { williamr@2: return reverse_iterator(mutable_end()); williamr@2: } williamr@2: williamr@2: reverse_iterator mutable_rend() { williamr@2: return reverse_iterator(mutable_begin()); williamr@2: } williamr@2: williamr@2: reference mutable_reference_at(size_type __pos) { williamr@2: return reference(this, __pos); williamr@2: } williamr@2: williamr@4: # ifdef __STD_STUFF williamr@2: reference operator[] (size_type __pos) { williamr@2: return reference(this, __pos); williamr@2: } williamr@2: williamr@2: reference at(size_type __pos) { williamr@4: if (__pos >= size()) _M_throw_out_of_range(); williamr@2: return (*this)[__pos]; williamr@2: } williamr@2: williamr@2: void resize(size_type, _CharT) {} williamr@2: void resize(size_type) {} williamr@2: void reserve(size_type = 0) {} williamr@2: size_type capacity() const { williamr@2: return max_size(); williamr@2: } williamr@2: williamr@2: // Stuff below this line is dangerous because it's error prone. williamr@2: // I would really like to get rid of it. williamr@2: // copy function with funny arg ordering. williamr@4: size_type copy(_CharT* __buffer, size_type __n, williamr@2: size_type __pos = 0) const { williamr@2: return copy(__pos, __n, __buffer); williamr@2: } williamr@2: williamr@2: iterator end() { return mutable_end(); } williamr@2: williamr@2: iterator begin() { return mutable_begin(); } williamr@2: williamr@2: reverse_iterator rend() { return mutable_rend(); } williamr@2: williamr@2: reverse_iterator rbegin() { return mutable_rbegin(); } williamr@2: williamr@4: # else williamr@2: williamr@2: const_iterator end() { return const_end(); } williamr@2: williamr@2: const_iterator begin() { return const_begin(); } williamr@2: williamr@2: const_reverse_iterator rend() { return const_rend(); } williamr@4: williamr@2: const_reverse_iterator rbegin() { return const_rbegin(); } williamr@2: williamr@4: # endif williamr@4: }; //class rope williamr@2: williamr@4: #if !defined (_STLP_STATIC_CONST_INIT_BUG) williamr@4: # if defined (__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ == 96) williamr@4: template <class _CharT, class _Alloc> williamr@4: const size_t rope<_CharT, _Alloc>::npos = ~(size_t) 0; williamr@4: # endif williamr@4: #endif williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@4: inline _CharT williamr@2: _Rope_const_iterator< _CharT, _Alloc>::operator[](size_t __n) williamr@4: { return rope<_CharT,_Alloc>::_S_fetch(this->_M_root, this->_M_current_pos + __n); } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x, williamr@2: const _Rope_const_iterator<_CharT,_Alloc>& __y) { williamr@4: return (__x._M_current_pos == __y._M_current_pos && williamr@2: __x._M_root == __y._M_root); williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_const_iterator<_CharT,_Alloc>& __y) williamr@4: { return (__x._M_current_pos < __y._M_current_pos); } williamr@2: williamr@2: #ifdef _STLP_USE_SEPARATE_RELOPS_NAMESPACE williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator!= (const _Rope_const_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_const_iterator<_CharT,_Alloc>& __y) williamr@4: { return !(__x == __y); } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator> (const _Rope_const_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_const_iterator<_CharT,_Alloc>& __y) williamr@4: { return __y < __x; } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator<= (const _Rope_const_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_const_iterator<_CharT,_Alloc>& __y) williamr@4: { return !(__y < __x); } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator>= (const _Rope_const_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_const_iterator<_CharT,_Alloc>& __y) williamr@4: { return !(__x < __y); } williamr@2: williamr@2: #endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */ williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_const_iterator<_CharT,_Alloc>& __y) williamr@4: { return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; } williamr@2: williamr@4: #if !defined( __MWERKS__ ) || __MWERKS__ >= 0x2000 // dwa 8/21/97 - "ambiguous access to overloaded function" bug. williamr@2: template <class _CharT, class _Alloc> williamr@2: inline _Rope_const_iterator<_CharT,_Alloc> williamr@4: operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) williamr@4: { return _Rope_const_iterator<_CharT,_Alloc>(__x._M_root, __x._M_current_pos - __n); } williamr@2: # endif williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline _Rope_const_iterator<_CharT,_Alloc> williamr@4: operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n) williamr@4: { return _Rope_const_iterator<_CharT,_Alloc>(__x._M_root, __x._M_current_pos + __n); } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline _Rope_const_iterator<_CharT,_Alloc> williamr@4: operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x) williamr@4: { return _Rope_const_iterator<_CharT,_Alloc>(__x._M_root, __x._M_current_pos + __n); } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x, williamr@2: const _Rope_iterator<_CharT,_Alloc>& __y) { williamr@4: return (__x._M_current_pos == __y._M_current_pos && williamr@2: __x._M_root_rope == __y._M_root_rope); williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_iterator<_CharT,_Alloc>& __y) williamr@4: { return (__x._M_current_pos < __y._M_current_pos); } williamr@2: williamr@4: #if defined (_STLP_USE_SEPARATE_RELOPS_NAMESPACE) williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator!= (const _Rope_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_iterator<_CharT,_Alloc>& __y) williamr@4: { return !(__x == __y); } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator> (const _Rope_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_iterator<_CharT,_Alloc>& __y) williamr@4: { return __y < __x; } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator<= (const _Rope_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_iterator<_CharT,_Alloc>& __y) williamr@4: { return !(__y < __x); } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator>= (const _Rope_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_iterator<_CharT,_Alloc>& __y) williamr@4: { return !(__x < __y); } williamr@2: #endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */ williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x, williamr@4: const _Rope_iterator<_CharT,_Alloc>& __y) williamr@4: { return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; } williamr@2: williamr@4: #if !defined( __MWERKS__ ) || __MWERKS__ >= 0x2000 // dwa 8/21/97 - "ambiguous access to overloaded function" bug. williamr@2: template <class _CharT, class _Alloc> williamr@2: inline _Rope_iterator<_CharT,_Alloc> williamr@2: operator-(const _Rope_iterator<_CharT,_Alloc>& __x, williamr@2: ptrdiff_t __n) { williamr@4: return _Rope_iterator<_CharT,_Alloc>(__x._M_root_rope, __x._M_current_pos - __n); williamr@2: } williamr@2: # endif williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline _Rope_iterator<_CharT,_Alloc> williamr@2: operator+(const _Rope_iterator<_CharT,_Alloc>& __x, williamr@2: ptrdiff_t __n) { williamr@4: return _Rope_iterator<_CharT,_Alloc>(__x._M_root_rope, __x._M_current_pos + __n); williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline _Rope_iterator<_CharT,_Alloc> williamr@2: operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) { williamr@4: return _Rope_iterator<_CharT,_Alloc>(__x._M_root_rope, __x._M_current_pos + __n); williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@4: inline rope<_CharT,_Alloc> williamr@2: operator+ (const rope<_CharT,_Alloc>& __left, williamr@4: const rope<_CharT,_Alloc>& __right) { williamr@2: _STLP_ASSERT(__left.get_allocator() == __right.get_allocator()) williamr@2: return rope<_CharT,_Alloc>(rope<_CharT,_Alloc>::_S_concat_rep(__left._M_tree_ptr._M_data, __right._M_tree_ptr._M_data)); williamr@4: // Inlining this should make it possible to keep __left and __right in registers. williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@4: inline rope<_CharT,_Alloc>& williamr@4: operator+= (rope<_CharT,_Alloc>& __left, williamr@4: const rope<_CharT,_Alloc>& __right) { williamr@2: __left.append(__right); williamr@2: return __left; williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@4: inline rope<_CharT,_Alloc> williamr@2: operator+ (const rope<_CharT,_Alloc>& __left, williamr@2: const _CharT* __right) { williamr@2: size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right); williamr@4: return rope<_CharT,_Alloc>(rope<_CharT,_Alloc>::_S_concat_char_iter(__left._M_tree_ptr._M_data, __right, __rlen)); williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@4: inline rope<_CharT,_Alloc>& williamr@2: operator+= (rope<_CharT,_Alloc>& __left, williamr@2: const _CharT* __right) { williamr@2: __left.append(__right); williamr@2: return __left; williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@4: inline rope<_CharT,_Alloc> williamr@4: operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) { williamr@4: return rope<_CharT,_Alloc>(rope<_CharT,_Alloc>::_S_concat_char_iter(__left._M_tree_ptr._M_data, &__right, 1)); williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@4: inline rope<_CharT,_Alloc>& williamr@4: operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) { williamr@2: __left.append(__right); williamr@2: return __left; williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool williamr@4: operator< (const rope<_CharT,_Alloc>& __left, williamr@2: const rope<_CharT,_Alloc>& __right) { williamr@2: return __left.compare(__right) < 0; williamr@2: } williamr@4: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool williamr@4: operator== (const rope<_CharT,_Alloc>& __left, williamr@2: const rope<_CharT,_Alloc>& __right) { williamr@2: return __left.compare(__right) == 0; williamr@2: } williamr@2: williamr@2: #ifdef _STLP_USE_SEPARATE_RELOPS_NAMESPACE williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool williamr@2: operator!= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { williamr@2: return !(__x == __y); williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool williamr@2: operator> (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { williamr@2: return __y < __x; williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool williamr@2: operator<= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { williamr@2: return !(__y < __x); williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool williamr@2: operator>= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) { williamr@2: return !(__x < __y); williamr@2: } williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator!= (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x, williamr@2: const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) { williamr@2: return !(__x == __y); williamr@2: } williamr@2: williamr@2: #endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */ williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@2: inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x, williamr@2: const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) { williamr@2: return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root); williamr@2: } williamr@2: williamr@4: #if !defined (_STLP_USE_NO_IOSTREAMS) williamr@2: template<class _CharT, class _Traits, class _Alloc> williamr@4: basic_ostream<_CharT, _Traits>& operator<< (basic_ostream<_CharT, _Traits>& __o, williamr@2: const rope<_CharT, _Alloc>& __r); williamr@2: #endif williamr@4: williamr@2: typedef rope<char, _STLP_DEFAULT_ALLOCATOR(char) > crope; williamr@4: #if defined (_STLP_HAS_WCHAR_T) williamr@2: typedef rope<wchar_t, _STLP_DEFAULT_ALLOCATOR(wchar_t) > wrope; williamr@4: #endif williamr@2: williamr@2: inline crope::reference __mutable_reference_at(crope& __c, size_t __i) williamr@4: { return __c.mutable_reference_at(__i); } williamr@2: williamr@4: #if defined (_STLP_HAS_WCHAR_T) williamr@2: inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i) williamr@4: { return __c.mutable_reference_at(__i); } williamr@4: #endif williamr@2: williamr@4: #if defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER) williamr@2: template <class _CharT, class _Alloc> williamr@4: inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y) williamr@4: { __x.swap(__y); } williamr@2: #else williamr@2: williamr@2: inline void swap(crope& __x, crope& __y) { __x.swap(__y); } williamr@4: # ifdef _STLP_HAS_WCHAR_T // dwa 8/21/97 williamr@2: inline void swap(wrope& __x, wrope& __y) { __x.swap(__y); } williamr@2: # endif williamr@2: williamr@2: #endif /* _STLP_FUNCTION_TMPL_PARTIAL_ORDER */ williamr@2: williamr@2: williamr@2: // Hash functions should probably be revisited later: williamr@4: _STLP_TEMPLATE_NULL struct hash<crope> { williamr@4: size_t operator()(const crope& __str) const { williamr@2: size_t _p_size = __str.size(); williamr@2: williamr@2: if (0 == _p_size) return 0; williamr@2: return 13*__str[0] + 5*__str[_p_size - 1] + _p_size; williamr@2: } williamr@2: }; williamr@2: williamr@4: #if defined (_STLP_HAS_WCHAR_T) // dwa 8/21/97 williamr@4: _STLP_TEMPLATE_NULL struct hash<wrope> { williamr@4: size_t operator()(const wrope& __str) const { williamr@2: size_t _p_size = __str.size(); williamr@2: williamr@2: if (0 == _p_size) return 0; williamr@2: return 13*__str[0] + 5*__str[_p_size - 1] + _p_size; williamr@2: } williamr@2: }; williamr@2: #endif williamr@2: williamr@4: #if (!defined (_STLP_MSVC) || (_STLP_MSVC >= 1310)) williamr@2: // I couldn't get this to work with VC++ williamr@2: template<class _CharT,class _Alloc> williamr@4: # if defined (__DMC__) && !defined (__PUT_STATIC_DATA_MEMBERS_HERE) williamr@4: extern williamr@4: # endif williamr@4: void _Rope_rotate(_Rope_iterator<_CharT, _Alloc> __first, williamr@4: _Rope_iterator<_CharT, _Alloc> __middle, williamr@4: _Rope_iterator<_CharT, _Alloc> __last); williamr@2: williamr@4: inline void rotate(_Rope_iterator<char, _STLP_DEFAULT_ALLOCATOR(char) > __first, williamr@4: _Rope_iterator<char, _STLP_DEFAULT_ALLOCATOR(char) > __middle, williamr@4: _Rope_iterator<char, _STLP_DEFAULT_ALLOCATOR(char) > __last) williamr@4: { _Rope_rotate(__first, __middle, __last); } williamr@2: #endif williamr@2: williamr@2: template <class _CharT, class _Alloc> williamr@4: inline _Rope_char_ref_proxy<_CharT, _Alloc>::operator _CharT () const { williamr@2: if (_M_current_valid) { williamr@4: return _M_current; williamr@2: } else { williamr@2: return _My_rope::_S_fetch(_M_root->_M_tree_ptr._M_data, _M_pos); williamr@2: } williamr@2: } williamr@4: williamr@4: #if defined (_STLP_CLASS_PARTIAL_SPECIALIZATION) williamr@4: template <class _CharT, class _Alloc> williamr@4: struct __move_traits<rope<_CharT, _Alloc> > { williamr@4: typedef __stlp_movable implemented; williamr@4: //Completness depends on the allocator: williamr@4: typedef typename __move_traits<_Alloc>::complete complete; williamr@4: }; williamr@4: #endif williamr@4: williamr@2: _STLP_END_NAMESPACE williamr@2: williamr@4: #if !defined (_STLP_LINK_TIME_INSTANTIATION) williamr@2: # include <stl/_rope.c> williamr@4: #endif williamr@2: williamr@4: #endif /* _STLP_INTERNAL_ROPE_H */ williamr@2: williamr@2: // Local Variables: williamr@2: // mode:C++ williamr@2: // End: