Attempt to represent the S^2->S^3 header reorganisation as a series of "hg rename" operations
2 /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL
5 /* ====================================================================
6 * Copyright (c) 1999-2004 The OpenSSL Project. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
34 * 6. Redistributions of any form whatsoever must retain the following
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
58 /* ====================================================================
59 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
60 * ECDH support in OpenSSL originally developed by
61 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
64 #ifndef HEADER_ENGINE_H
65 #define HEADER_ENGINE_H
67 #if (defined(__SYMBIAN32__) && !defined(SYMBIAN))
71 #include <openssl/opensslconf.h>
73 #ifdef OPENSSL_NO_ENGINE
74 #error ENGINE is disabled.
77 #ifndef OPENSSL_NO_DEPRECATED
78 #include <openssl/bn.h>
79 #ifndef OPENSSL_NO_RSA
80 #include <openssl/rsa.h>
82 #ifndef OPENSSL_NO_DSA
83 #include <openssl/dsa.h>
86 #include <openssl/dh.h>
88 #ifndef OPENSSL_NO_ECDH
89 #include <openssl/ecdh.h>
91 #ifndef OPENSSL_NO_ECDSA
92 #include <openssl/ecdsa.h>
94 #include <openssl/rand.h>
95 #include <openssl/store.h>
96 #include <openssl/ui.h>
97 #include <openssl/err.h>
100 #include <openssl/ossl_typ.h>
101 #include <openssl/symhacks.h>
107 /* These flags are used to control combinations of algorithm (methods)
108 * by bitwise "OR"ing. */
109 #define ENGINE_METHOD_RSA (unsigned int)0x0001
110 #define ENGINE_METHOD_DSA (unsigned int)0x0002
111 #define ENGINE_METHOD_DH (unsigned int)0x0004
112 #define ENGINE_METHOD_RAND (unsigned int)0x0008
113 #define ENGINE_METHOD_ECDH (unsigned int)0x0010
114 #define ENGINE_METHOD_ECDSA (unsigned int)0x0020
115 #define ENGINE_METHOD_CIPHERS (unsigned int)0x0040
116 #define ENGINE_METHOD_DIGESTS (unsigned int)0x0080
117 #define ENGINE_METHOD_STORE (unsigned int)0x0100
118 /* Obvious all-or-nothing cases. */
119 #define ENGINE_METHOD_ALL (unsigned int)0xFFFF
120 #define ENGINE_METHOD_NONE (unsigned int)0x0000
122 /* This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used
123 * internally to control registration of ENGINE implementations, and can be set
124 * by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to
125 * initialise registered ENGINEs if they are not already initialised. */
126 #define ENGINE_TABLE_FLAG_NOINIT (unsigned int)0x0001
128 /* ENGINE flags that can be set by ENGINE_set_flags(). */
129 /* #define ENGINE_FLAGS_MALLOCED 0x0001 */ /* Not used */
131 /* This flag is for ENGINEs that wish to handle the various 'CMD'-related
132 * control commands on their own. Without this flag, ENGINE_ctrl() handles these
133 * control commands on behalf of the ENGINE using their "cmd_defns" data. */
134 #define ENGINE_FLAGS_MANUAL_CMD_CTRL (int)0x0002
136 /* This flag is for ENGINEs who return new duplicate structures when found via
137 * "ENGINE_by_id()". When an ENGINE must store state (eg. if ENGINE_ctrl()
138 * commands are called in sequence as part of some stateful process like
139 * key-generation setup and execution), it can set this flag - then each attempt
140 * to obtain the ENGINE will result in it being copied into a new structure.
141 * Normally, ENGINEs don't declare this flag so ENGINE_by_id() just increments
142 * the existing ENGINE's structural reference count. */
143 #define ENGINE_FLAGS_BY_ID_COPY (int)0x0004
145 /* ENGINEs can support their own command types, and these flags are used in
146 * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input each
147 * command expects. Currently only numeric and string input is supported. If a
148 * control command supports none of the _NUMERIC, _STRING, or _NO_INPUT options,
149 * then it is regarded as an "internal" control command - and not for use in
150 * config setting situations. As such, they're not available to the
151 * ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl() access. Changes to
152 * this list of 'command types' should be reflected carefully in
153 * ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string(). */
155 /* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */
156 #define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001
157 /* accepts string input (cast from 'void*' to 'const char *', 4th parameter to
159 #define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002
160 /* Indicates that the control command takes *no* input. Ie. the control command
161 * is unparameterised. */
162 #define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004
163 /* Indicates that the control command is internal. This control command won't
164 * be shown in any output, and is only usable through the ENGINE_ctrl_cmd()
166 #define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008
168 /* NB: These 3 control commands are deprecated and should not be used. ENGINEs
169 * relying on these commands should compile conditional support for
170 * compatibility (eg. if these symbols are defined) but should also migrate the
171 * same functionality to their own ENGINE-specific control functions that can be
172 * "discovered" by calling applications. The fact these control commands
173 * wouldn't be "executable" (ie. usable by text-based config) doesn't change the
174 * fact that application code can find and use them without requiring per-ENGINE
177 /* These flags are used to tell the ctrl function what should be done.
178 * All command numbers are shared between all engines, even if some don't
179 * make sense to some engines. In such a case, they do nothing but return
180 * the error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED. */
181 #define ENGINE_CTRL_SET_LOGSTREAM 1
182 #define ENGINE_CTRL_SET_PASSWORD_CALLBACK 2
183 #define ENGINE_CTRL_HUP 3 /* Close and reinitialise any
184 handles/connections etc. */
185 #define ENGINE_CTRL_SET_USER_INTERFACE 4 /* Alternative to callback */
186 #define ENGINE_CTRL_SET_CALLBACK_DATA 5 /* User-specific data, used
187 when calling the password
188 callback and the user
190 #define ENGINE_CTRL_LOAD_CONFIGURATION 6 /* Load a configuration, given
191 a string that represents a
193 #define ENGINE_CTRL_LOAD_SECTION 7 /* Load data from a given
194 section in the already loaded
197 /* These control commands allow an application to deal with an arbitrary engine
198 * in a dynamic way. Warn: Negative return values indicate errors FOR THESE
199 * COMMANDS because zero is used to indicate 'end-of-list'. Other commands,
200 * including ENGINE-specific command types, return zero for an error.
202 * An ENGINE can choose to implement these ctrl functions, and can internally
203 * manage things however it chooses - it does so by setting the
204 * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise the
205 * ENGINE_ctrl() code handles this on the ENGINE's behalf using the cmd_defns
206 * data (set using ENGINE_set_cmd_defns()). This means an ENGINE's ctrl()
207 * handler need only implement its own commands - the above "meta" commands will
208 * be taken care of. */
210 /* Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not", then
211 * all the remaining control commands will return failure, so it is worth
212 * checking this first if the caller is trying to "discover" the engine's
213 * capabilities and doesn't want errors generated unnecessarily. */
214 #define ENGINE_CTRL_HAS_CTRL_FUNCTION 10
215 /* Returns a positive command number for the first command supported by the
216 * engine. Returns zero if no ctrl commands are supported. */
217 #define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11
218 /* The 'long' argument specifies a command implemented by the engine, and the
219 * return value is the next command supported, or zero if there are no more. */
220 #define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12
221 /* The 'void*' argument is a command name (cast from 'const char *'), and the
222 * return value is the command that corresponds to it. */
223 #define ENGINE_CTRL_GET_CMD_FROM_NAME 13
224 /* The next two allow a command to be converted into its corresponding string
225 * form. In each case, the 'long' argument supplies the command. In the NAME_LEN
226 * case, the return value is the length of the command name (not counting a
227 * trailing EOL). In the NAME case, the 'void*' argument must be a string buffer
228 * large enough, and it will be populated with the name of the command (WITH a
230 #define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14
231 #define ENGINE_CTRL_GET_NAME_FROM_CMD 15
232 /* The next two are similar but give a "short description" of a command. */
233 #define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16
234 #define ENGINE_CTRL_GET_DESC_FROM_CMD 17
235 /* With this command, the return value is the OR'd combination of
236 * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given
237 * engine-specific ctrl command expects. */
238 #define ENGINE_CTRL_GET_CMD_FLAGS 18
240 /* ENGINE implementations should start the numbering of their own control
241 * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc). */
242 #define ENGINE_CMD_BASE 200
244 /* NB: These 2 nCipher "chil" control commands are deprecated, and their
245 * functionality is now available through ENGINE-specific control commands
246 * (exposed through the above-mentioned 'CMD'-handling). Code using these 2
247 * commands should be migrated to the more general command handling before these
250 /* Flags specific to the nCipher "chil" engine */
251 #define ENGINE_CTRL_CHIL_SET_FORKCHECK 100
252 /* Depending on the value of the (long)i argument, this sets or
253 * unsets the SimpleForkCheck flag in the CHIL API to enable or
254 * disable checking and workarounds for applications that fork().
256 #define ENGINE_CTRL_CHIL_NO_LOCKING 101
257 /* This prevents the initialisation function from providing mutex
258 * callbacks to the nCipher library. */
260 /* If an ENGINE supports its own specific control commands and wishes the
261 * framework to handle the above 'ENGINE_CMD_***'-manipulation commands on its
262 * behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN entries
263 * to ENGINE_set_cmd_defns(). It should also implement a ctrl() handler that
264 * supports the stated commands (ie. the "cmd_num" entries as described by the
265 * array). NB: The array must be ordered in increasing order of cmd_num.
266 * "null-terminated" means that the last ENGINE_CMD_DEFN element has cmd_num set
267 * to zero and/or cmd_name set to NULL. */
268 typedef struct ENGINE_CMD_DEFN_st
270 unsigned int cmd_num; /* The command number */
271 const char *cmd_name; /* The command name itself */
272 const char *cmd_desc; /* A short description of the command */
273 unsigned int cmd_flags; /* The input the command expects */
276 /* Generic function pointer */
277 typedef int (*ENGINE_GEN_FUNC_PTR)(void);
278 /* Generic function pointer taking no arguments */
279 typedef int (*ENGINE_GEN_INT_FUNC_PTR)(ENGINE *);
280 /* Specific control function pointer */
281 typedef int (*ENGINE_CTRL_FUNC_PTR)(ENGINE *, int, long, void *, void (*f)(void));
282 /* Generic load_key function pointer */
283 typedef EVP_PKEY * (*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *,
284 UI_METHOD *ui_method, void *callback_data);
285 /* These callback types are for an ENGINE's handler for cipher and digest logic.
286 * These handlers have these prototypes;
287 * int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid);
288 * int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid);
289 * Looking at how to implement these handlers in the case of cipher support, if
290 * the framework wants the EVP_CIPHER for 'nid', it will call;
291 * foo(e, &p_evp_cipher, NULL, nid); (return zero for failure)
292 * If the framework wants a list of supported 'nid's, it will call;
293 * foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error)
295 /* Returns to a pointer to the array of supported cipher 'nid's. If the second
296 * parameter is non-NULL it is set to the size of the returned array. */
297 typedef int (*ENGINE_CIPHERS_PTR)(ENGINE *, const EVP_CIPHER **, const int **, int);
298 typedef int (*ENGINE_DIGESTS_PTR)(ENGINE *, const EVP_MD **, const int **, int);
300 /* STRUCTURE functions ... all of these functions deal with pointers to ENGINE
301 * structures where the pointers have a "structural reference". This means that
302 * their reference is to allowed access to the structure but it does not imply
303 * that the structure is functional. To simply increment or decrement the
304 * structural reference count, use ENGINE_by_id and ENGINE_free. NB: This is not
305 * required when iterating using ENGINE_get_next as it will automatically
306 * decrement the structural reference count of the "current" ENGINE and
307 * increment the structural reference count of the ENGINE it returns (unless it
310 /* Get the first/last "ENGINE" type available. */
311 IMPORT_C ENGINE *ENGINE_get_first(void);
312 IMPORT_C ENGINE *ENGINE_get_last(void);
313 /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */
314 IMPORT_C ENGINE *ENGINE_get_next(ENGINE *e);
315 IMPORT_C ENGINE *ENGINE_get_prev(ENGINE *e);
316 /* Add another "ENGINE" type into the array. */
317 IMPORT_C int ENGINE_add(ENGINE *e);
318 /* Remove an existing "ENGINE" type from the array. */
319 IMPORT_C int ENGINE_remove(ENGINE *e);
320 /* Retrieve an engine from the list by its unique "id" value. */
321 IMPORT_C ENGINE *ENGINE_by_id(const char *id);
322 /* Add all the built-in engines. */
323 IMPORT_C void ENGINE_load_openssl(void);
324 IMPORT_C void ENGINE_load_dynamic(void);
325 #ifndef OPENSSL_NO_STATIC_ENGINE
326 #ifndef OPENSSL_NO_GMP
327 void ENGINE_load_gmp(void);
330 IMPORT_C void ENGINE_load_cryptodev(void);
331 IMPORT_C void ENGINE_load_builtin_engines(void);
333 /* Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation
334 * "registry" handling. */
335 IMPORT_C unsigned int ENGINE_get_table_flags(void);
336 IMPORT_C void ENGINE_set_table_flags(unsigned int flags);
338 /* Manage registration of ENGINEs per "table". For each type, there are 3
340 * ENGINE_register_***(e) - registers the implementation from 'e' (if it has one)
341 * ENGINE_unregister_***(e) - unregister the implementation from 'e'
342 * ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list
343 * Cleanup is automatically registered from each table when required, so
344 * ENGINE_cleanup() will reverse any "register" operations. */
346 IMPORT_C int ENGINE_register_RSA(ENGINE *e);
347 IMPORT_C void ENGINE_unregister_RSA(ENGINE *e);
348 IMPORT_C void ENGINE_register_all_RSA(void);
350 IMPORT_C int ENGINE_register_DSA(ENGINE *e);
351 IMPORT_C void ENGINE_unregister_DSA(ENGINE *e);
352 IMPORT_C void ENGINE_register_all_DSA(void);
355 IMPORT_C int ENGINE_register_DH(ENGINE *e);
356 IMPORT_C void ENGINE_unregister_DH(ENGINE *e);
357 IMPORT_C void ENGINE_register_all_DH(void);
359 IMPORT_C int ENGINE_register_RAND(ENGINE *e);
360 IMPORT_C void ENGINE_unregister_RAND(ENGINE *e);
361 IMPORT_C void ENGINE_register_all_RAND(void);
363 IMPORT_C int ENGINE_register_STORE(ENGINE *e);
364 IMPORT_C void ENGINE_unregister_STORE(ENGINE *e);
365 IMPORT_C void ENGINE_register_all_STORE(void);
367 IMPORT_C int ENGINE_register_ciphers(ENGINE *e);
368 IMPORT_C void ENGINE_unregister_ciphers(ENGINE *e);
369 IMPORT_C void ENGINE_register_all_ciphers(void);
371 IMPORT_C int ENGINE_register_digests(ENGINE *e);
372 IMPORT_C void ENGINE_unregister_digests(ENGINE *e);
373 IMPORT_C void ENGINE_register_all_digests(void);
375 /* These functions register all support from the above categories. Note, use of
376 * these functions can result in static linkage of code your application may not
377 * need. If you only need a subset of functionality, consider using more
378 * selective initialisation. */
379 IMPORT_C int ENGINE_register_complete(ENGINE *e);
380 IMPORT_C int ENGINE_register_all_complete(void);
382 /* Send parametrised control commands to the engine. The possibilities to send
383 * down an integer, a pointer to data or a function pointer are provided. Any of
384 * the parameters may or may not be NULL, depending on the command number. In
385 * actuality, this function only requires a structural (rather than functional)
386 * reference to an engine, but many control commands may require the engine be
387 * functional. The caller should be aware of trying commands that require an
388 * operational ENGINE, and only use functional references in such situations. */
389 IMPORT_C int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void));
391 /* This function tests if an ENGINE-specific command is usable as a "setting".
392 * Eg. in an application's config file that gets processed through
393 * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to
394 * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl(). */
395 IMPORT_C int ENGINE_cmd_is_executable(ENGINE *e, int cmd);
397 /* This function works like ENGINE_ctrl() with the exception of taking a
398 * command name instead of a command number, and can handle optional commands.
399 * See the comment on ENGINE_ctrl_cmd_string() for an explanation on how to
400 * use the cmd_name and cmd_optional. */
401 IMPORT_C int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name,
402 long i, void *p, void (*f)(void), int cmd_optional);
404 /* This function passes a command-name and argument to an ENGINE. The cmd_name
405 * is converted to a command number and the control command is called using
406 * 'arg' as an argument (unless the ENGINE doesn't support such a command, in
407 * which case no control command is called). The command is checked for input
408 * flags, and if necessary the argument will be converted to a numeric value. If
409 * cmd_optional is non-zero, then if the ENGINE doesn't support the given
410 * cmd_name the return value will be success anyway. This function is intended
411 * for applications to use so that users (or config files) can supply
412 * engine-specific config data to the ENGINE at run-time to control behaviour of
413 * specific engines. As such, it shouldn't be used for calling ENGINE_ctrl()
414 * functions that return data, deal with binary data, or that are otherwise
415 * supposed to be used directly through ENGINE_ctrl() in application code. Any
416 * "return" data from an ENGINE_ctrl() operation in this function will be lost -
417 * the return value is interpreted as failure if the return value is zero,
418 * success otherwise, and this function returns a boolean value as a result. In
419 * other words, vendors of 'ENGINE'-enabled devices should write ENGINE
420 * implementations with parameterisations that work in this scheme, so that
421 * compliant ENGINE-based applications can work consistently with the same
422 * configuration for the same ENGINE-enabled devices, across applications. */
423 IMPORT_C int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg,
426 /* These functions are useful for manufacturing new ENGINE structures. They
427 * don't address reference counting at all - one uses them to populate an ENGINE
428 * structure with personalised implementations of things prior to using it
429 * directly or adding it to the builtin ENGINE list in OpenSSL. These are also
430 * here so that the ENGINE structure doesn't have to be exposed and break binary
432 IMPORT_C ENGINE *ENGINE_new(void);
433 IMPORT_C int ENGINE_free(ENGINE *e);
434 IMPORT_C int ENGINE_up_ref(ENGINE *e);
435 IMPORT_C int ENGINE_set_id(ENGINE *e, const char *id);
436 IMPORT_C int ENGINE_set_name(ENGINE *e, const char *name);
437 IMPORT_C int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth);
438 IMPORT_C int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth);
439 IMPORT_C int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth);
440 IMPORT_C int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth);
441 IMPORT_C int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *store_meth);
442 IMPORT_C int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f);
443 IMPORT_C int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f);
444 IMPORT_C int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f);
445 IMPORT_C int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f);
446 IMPORT_C int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f);
447 IMPORT_C int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f);
448 IMPORT_C int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f);
449 IMPORT_C int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f);
450 IMPORT_C int ENGINE_set_flags(ENGINE *e, int flags);
451 IMPORT_C int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns);
452 /* These functions allow control over any per-structure ENGINE data. */
453 IMPORT_C int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func,
454 CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func);
455 IMPORT_C int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg);
456 IMPORT_C void *ENGINE_get_ex_data(const ENGINE *e, int idx);
458 /* This function cleans up anything that needs it. Eg. the ENGINE_add() function
459 * automatically ensures the list cleanup function is registered to be called
460 * from ENGINE_cleanup(). Similarly, all ENGINE_register_*** functions ensure
461 * ENGINE_cleanup() will clean up after them. */
462 IMPORT_C void ENGINE_cleanup(void);
464 /* These return values from within the ENGINE structure. These can be useful
465 * with functional references as well as structural references - it depends
466 * which you obtained. Using the result for functional purposes if you only
467 * obtained a structural reference may be problematic! */
468 IMPORT_C const char *ENGINE_get_id(const ENGINE *e);
469 IMPORT_C const char *ENGINE_get_name(const ENGINE *e);
470 IMPORT_C const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e);
471 IMPORT_C const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e);
472 IMPORT_C const DH_METHOD *ENGINE_get_DH(const ENGINE *e);
473 IMPORT_C const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e);
474 IMPORT_C const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e);
475 IMPORT_C ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e);
476 IMPORT_C ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e);
477 IMPORT_C ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e);
478 IMPORT_C ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e);
479 IMPORT_C ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e);
480 IMPORT_C ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e);
481 IMPORT_C ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e);
482 IMPORT_C ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e);
483 IMPORT_C const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid);
484 IMPORT_C const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid);
485 IMPORT_C const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e);
486 IMPORT_C int ENGINE_get_flags(const ENGINE *e);
488 /* FUNCTIONAL functions. These functions deal with ENGINE structures
489 * that have (or will) be initialised for use. Broadly speaking, the
490 * structural functions are useful for iterating the list of available
491 * engine types, creating new engine types, and other "list" operations.
492 * These functions actually deal with ENGINEs that are to be used. As
493 * such these functions can fail (if applicable) when particular
494 * engines are unavailable - eg. if a hardware accelerator is not
495 * attached or not functioning correctly. Each ENGINE has 2 reference
496 * counts; structural and functional. Every time a functional reference
497 * is obtained or released, a corresponding structural reference is
498 * automatically obtained or released too. */
500 /* Initialise a engine type for use (or up its reference count if it's
501 * already in use). This will fail if the engine is not currently
502 * operational and cannot initialise. */
503 IMPORT_C int ENGINE_init(ENGINE *e);
504 /* Free a functional reference to a engine type. This does not require
505 * a corresponding call to ENGINE_free as it also releases a structural
507 IMPORT_C int ENGINE_finish(ENGINE *e);
509 /* The following functions handle keys that are stored in some secondary
510 * location, handled by the engine. The storage may be on a card or
512 IMPORT_C EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id,
513 UI_METHOD *ui_method, void *callback_data);
514 IMPORT_C EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id,
515 UI_METHOD *ui_method, void *callback_data);
517 /* This returns a pointer for the current ENGINE structure that
518 * is (by default) performing any RSA operations. The value returned
519 * is an incremented reference, so it should be free'd (ENGINE_finish)
520 * before it is discarded. */
521 IMPORT_C ENGINE *ENGINE_get_default_RSA(void);
522 /* Same for the other "methods" */
523 IMPORT_C ENGINE *ENGINE_get_default_DSA(void);
524 IMPORT_C ENGINE *ENGINE_get_default_DH(void);
525 IMPORT_C ENGINE *ENGINE_get_default_RAND(void);
526 /* These functions can be used to get a functional reference to perform
527 * ciphering or digesting corresponding to "nid". */
528 IMPORT_C ENGINE *ENGINE_get_cipher_engine(int nid);
529 IMPORT_C ENGINE *ENGINE_get_digest_engine(int nid);
531 /* This sets a new default ENGINE structure for performing RSA
532 * operations. If the result is non-zero (success) then the ENGINE
533 * structure will have had its reference count up'd so the caller
534 * should still free their own reference 'e'. */
535 IMPORT_C int ENGINE_set_default_RSA(ENGINE *e);
536 IMPORT_C int ENGINE_set_default_string(ENGINE *e, const char *def_list);
537 /* Same for the other "methods" */
538 IMPORT_C int ENGINE_set_default_DSA(ENGINE *e);
539 int ENGINE_set_default_ECDH(ENGINE *e);
540 int ENGINE_set_default_ECDSA(ENGINE *e);
541 IMPORT_C int ENGINE_set_default_DH(ENGINE *e);
542 IMPORT_C int ENGINE_set_default_RAND(ENGINE *e);
543 IMPORT_C int ENGINE_set_default_ciphers(ENGINE *e);
544 IMPORT_C int ENGINE_set_default_digests(ENGINE *e);
546 /* The combination "set" - the flags are bitwise "OR"d from the
547 * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()"
548 * function, this function can result in unnecessary static linkage. If your
549 * application requires only specific functionality, consider using more
550 * selective functions. */
551 IMPORT_C int ENGINE_set_default(ENGINE *e, unsigned int flags);
553 IMPORT_C void ENGINE_add_conf_module(void);
555 /* Deprecated functions ... */
556 /* int ENGINE_clear_defaults(void); */
558 /**************************/
559 /* DYNAMIC ENGINE SUPPORT */
560 /**************************/
562 /* Binary/behaviour compatibility levels */
563 #define OSSL_DYNAMIC_VERSION (unsigned long)0x00020000
564 /* Binary versions older than this are too old for us (whether we're a loader or
566 #define OSSL_DYNAMIC_OLDEST (unsigned long)0x00020000
568 /* When compiling an ENGINE entirely as an external shared library, loadable by
569 * the "dynamic" ENGINE, these types are needed. The 'dynamic_fns' structure
570 * type provides the calling application's (or library's) error functionality
571 * and memory management function pointers to the loaded library. These should
572 * be used/set in the loaded library code so that the loading application's
573 * 'state' will be used/changed in all operations. The 'static_state' pointer
574 * allows the loaded library to know if it shares the same static data as the
575 * calling application (or library), and thus whether these callbacks need to be
577 typedef void *(*dyn_MEM_malloc_cb)(size_t);
578 typedef void *(*dyn_MEM_realloc_cb)(void *, size_t);
579 typedef void (*dyn_MEM_free_cb)(void *);
580 typedef struct st_dynamic_MEM_fns {
581 dyn_MEM_malloc_cb malloc_cb;
582 dyn_MEM_realloc_cb realloc_cb;
583 dyn_MEM_free_cb free_cb;
585 /* FIXME: Perhaps the memory and locking code (crypto.h) should declare and use
586 * these types so we (and any other dependant code) can simplify a bit?? */
587 typedef void (*dyn_lock_locking_cb)(int,int,const char *,int);
588 typedef int (*dyn_lock_add_lock_cb)(int*,int,int,const char *,int);
589 typedef struct CRYPTO_dynlock_value *(*dyn_dynlock_create_cb)(
591 typedef void (*dyn_dynlock_lock_cb)(int,struct CRYPTO_dynlock_value *,
593 typedef void (*dyn_dynlock_destroy_cb)(struct CRYPTO_dynlock_value *,
595 typedef struct st_dynamic_LOCK_fns {
596 dyn_lock_locking_cb lock_locking_cb;
597 dyn_lock_add_lock_cb lock_add_lock_cb;
598 dyn_dynlock_create_cb dynlock_create_cb;
599 dyn_dynlock_lock_cb dynlock_lock_cb;
600 dyn_dynlock_destroy_cb dynlock_destroy_cb;
602 /* The top-level structure */
603 typedef struct st_dynamic_fns {
605 const ERR_FNS *err_fns;
606 const CRYPTO_EX_DATA_IMPL *ex_data_fns;
607 dynamic_MEM_fns mem_fns;
608 dynamic_LOCK_fns lock_fns;
611 /* The version checking function should be of this prototype. NB: The
612 * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading code.
613 * If this function returns zero, it indicates a (potential) version
614 * incompatibility and the loaded library doesn't believe it can proceed.
615 * Otherwise, the returned value is the (latest) version supported by the
616 * loading library. The loader may still decide that the loaded code's version
617 * is unsatisfactory and could veto the load. The function is expected to
618 * be implemented with the symbol name "v_check", and a default implementation
619 * can be fully instantiated with IMPLEMENT_DYNAMIC_CHECK_FN(). */
620 typedef unsigned long (*dynamic_v_check_fn)(unsigned long ossl_version);
621 #define IMPLEMENT_DYNAMIC_CHECK_FN() \
622 unsigned long v_check(unsigned long v) { \
623 if(v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \
626 /* This function is passed the ENGINE structure to initialise with its own
627 * function and command settings. It should not adjust the structural or
628 * functional reference counts. If this function returns zero, (a) the load will
629 * be aborted, (b) the previous ENGINE state will be memcpy'd back onto the
630 * structure, and (c) the shared library will be unloaded. So implementations
631 * should do their own internal cleanup in failure circumstances otherwise they
632 * could leak. The 'id' parameter, if non-NULL, represents the ENGINE id that
633 * the loader is looking for. If this is NULL, the shared library can choose to
634 * return failure or to initialise a 'default' ENGINE. If non-NULL, the shared
635 * library must initialise only an ENGINE matching the passed 'id'. The function
636 * is expected to be implemented with the symbol name "bind_engine". A standard
637 * implementation can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where
638 * the parameter 'fn' is a callback function that populates the ENGINE structure
639 * and returns an int value (zero for failure). 'fn' should have prototype;
640 * [static] int fn(ENGINE *e, const char *id); */
641 typedef int (*dynamic_bind_engine)(ENGINE *e, const char *id,
642 const dynamic_fns *fns);
643 #define IMPLEMENT_DYNAMIC_BIND_FN(fn) \
644 int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \
645 if(ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \
646 if(!CRYPTO_set_mem_functions(fns->mem_fns.malloc_cb, \
647 fns->mem_fns.realloc_cb, fns->mem_fns.free_cb)) \
649 CRYPTO_set_locking_callback(fns->lock_fns.lock_locking_cb); \
650 CRYPTO_set_add_lock_callback(fns->lock_fns.lock_add_lock_cb); \
651 CRYPTO_set_dynlock_create_callback(fns->lock_fns.dynlock_create_cb); \
652 CRYPTO_set_dynlock_lock_callback(fns->lock_fns.dynlock_lock_cb); \
653 CRYPTO_set_dynlock_destroy_callback(fns->lock_fns.dynlock_destroy_cb); \
654 if(!CRYPTO_set_ex_data_implementation(fns->ex_data_fns)) \
656 if(!ERR_set_implementation(fns->err_fns)) return 0; \
658 if(!fn(e,id)) return 0; \
661 /* If the loading application (or library) and the loaded ENGINE library share
662 * the same static data (eg. they're both dynamically linked to the same
663 * libcrypto.so) we need a way to avoid trying to set system callbacks - this
664 * would fail, and for the same reason that it's unnecessary to try. If the
665 * loaded ENGINE has (or gets from through the loader) its own copy of the
666 * libcrypto static data, we will need to set the callbacks. The easiest way to
667 * detect this is to have a function that returns a pointer to some static data
668 * and let the loading application and loaded ENGINE compare their respective
670 IMPORT_C void *ENGINE_get_static_state(void);
673 /* BEGIN ERROR CODES */
674 /* The following lines are auto generated by the script mkerr.pl. Any changes
675 * made after this point may be overwritten when the script is next run.
677 IMPORT_C void ERR_load_ENGINE_strings(void);
679 /* Error codes for the ENGINE functions. */
681 /* Function codes. */
682 #define ENGINE_F_DYNAMIC_CTRL 180
683 #define ENGINE_F_DYNAMIC_GET_DATA_CTX 181
684 #define ENGINE_F_DYNAMIC_LOAD 182
685 #define ENGINE_F_DYNAMIC_SET_DATA_CTX 183
686 #define ENGINE_F_ENGINE_ADD 105
687 #define ENGINE_F_ENGINE_BY_ID 106
688 #define ENGINE_F_ENGINE_CMD_IS_EXECUTABLE 170
689 #define ENGINE_F_ENGINE_CTRL 142
690 #define ENGINE_F_ENGINE_CTRL_CMD 178
691 #define ENGINE_F_ENGINE_CTRL_CMD_STRING 171
692 #define ENGINE_F_ENGINE_FINISH 107
693 #define ENGINE_F_ENGINE_FREE_UTIL 108
694 #define ENGINE_F_ENGINE_GET_CIPHER 185
695 #define ENGINE_F_ENGINE_GET_DEFAULT_TYPE 177
696 #define ENGINE_F_ENGINE_GET_DIGEST 186
697 #define ENGINE_F_ENGINE_GET_NEXT 115
698 #define ENGINE_F_ENGINE_GET_PREV 116
699 #define ENGINE_F_ENGINE_INIT 119
700 #define ENGINE_F_ENGINE_LIST_ADD 120
701 #define ENGINE_F_ENGINE_LIST_REMOVE 121
702 #define ENGINE_F_ENGINE_LOAD_PRIVATE_KEY 150
703 #define ENGINE_F_ENGINE_LOAD_PUBLIC_KEY 151
704 #define ENGINE_F_ENGINE_NEW 122
705 #define ENGINE_F_ENGINE_REMOVE 123
706 #define ENGINE_F_ENGINE_SET_DEFAULT_STRING 189
707 #define ENGINE_F_ENGINE_SET_DEFAULT_TYPE 126
708 #define ENGINE_F_ENGINE_SET_ID 129
709 #define ENGINE_F_ENGINE_SET_NAME 130
710 #define ENGINE_F_ENGINE_TABLE_REGISTER 184
711 #define ENGINE_F_ENGINE_UNLOAD_KEY 152
712 #define ENGINE_F_ENGINE_UNLOCKED_FINISH 191
713 #define ENGINE_F_ENGINE_UP_REF 190
714 #define ENGINE_F_INT_CTRL_HELPER 172
715 #define ENGINE_F_INT_ENGINE_CONFIGURE 188
716 #define ENGINE_F_INT_ENGINE_MODULE_INIT 187
717 #define ENGINE_F_LOG_MESSAGE 141
720 #define ENGINE_R_ALREADY_LOADED 100
721 #define ENGINE_R_ARGUMENT_IS_NOT_A_NUMBER 133
722 #define ENGINE_R_CMD_NOT_EXECUTABLE 134
723 #define ENGINE_R_COMMAND_TAKES_INPUT 135
724 #define ENGINE_R_COMMAND_TAKES_NO_INPUT 136
725 #define ENGINE_R_CONFLICTING_ENGINE_ID 103
726 #define ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED 119
727 #define ENGINE_R_DH_NOT_IMPLEMENTED 139
728 #define ENGINE_R_DSA_NOT_IMPLEMENTED 140
729 #define ENGINE_R_DSO_FAILURE 104
730 #define ENGINE_R_DSO_NOT_FOUND 132
731 #define ENGINE_R_ENGINES_SECTION_ERROR 148
732 #define ENGINE_R_ENGINE_IS_NOT_IN_LIST 105
733 #define ENGINE_R_ENGINE_SECTION_ERROR 149
734 #define ENGINE_R_FAILED_LOADING_PRIVATE_KEY 128
735 #define ENGINE_R_FAILED_LOADING_PUBLIC_KEY 129
736 #define ENGINE_R_FINISH_FAILED 106
737 #define ENGINE_R_GET_HANDLE_FAILED 107
738 #define ENGINE_R_ID_OR_NAME_MISSING 108
739 #define ENGINE_R_INIT_FAILED 109
740 #define ENGINE_R_INTERNAL_LIST_ERROR 110
741 #define ENGINE_R_INVALID_ARGUMENT 143
742 #define ENGINE_R_INVALID_CMD_NAME 137
743 #define ENGINE_R_INVALID_CMD_NUMBER 138
744 #define ENGINE_R_INVALID_INIT_VALUE 151
745 #define ENGINE_R_INVALID_STRING 150
746 #define ENGINE_R_NOT_INITIALISED 117
747 #define ENGINE_R_NOT_LOADED 112
748 #define ENGINE_R_NO_CONTROL_FUNCTION 120
749 #define ENGINE_R_NO_INDEX 144
750 #define ENGINE_R_NO_LOAD_FUNCTION 125
751 #define ENGINE_R_NO_REFERENCE 130
752 #define ENGINE_R_NO_SUCH_ENGINE 116
753 #define ENGINE_R_NO_UNLOAD_FUNCTION 126
754 #define ENGINE_R_PROVIDE_PARAMETERS 113
755 #define ENGINE_R_RSA_NOT_IMPLEMENTED 141
756 #define ENGINE_R_UNIMPLEMENTED_CIPHER 146
757 #define ENGINE_R_UNIMPLEMENTED_DIGEST 147
758 #define ENGINE_R_VERSION_INCOMPATIBILITY 145