epoc32/include/stdapis/boost/graph/transitive_closure.hpp
author William Roberts <williamr@symbian.org>
Wed, 31 Mar 2010 12:33:34 +0100
branchSymbian3
changeset 4 837f303aceeb
permissions -rw-r--r--
Current Symbian^3 public API header files (from PDK 3.0.h)
This is the epoc32/include tree with the "platform" subtrees removed, and
all but a selected few mbg and rsg files removed.
     1 // Copyright (C) 2001 Vladimir Prus <ghost@cs.msu.su>
     2 // Copyright (C) 2001 Jeremy Siek <jsiek@cs.indiana.edu>
     3 // Distributed under the Boost Software License, Version 1.0. (See
     4 // accompanying file LICENSE_1_0.txt or copy at
     5 // http://www.boost.org/LICENSE_1_0.txt)
     6 
     7 // NOTE: this final is generated by libs/graph/doc/transitive_closure.w
     8 
     9 #ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
    10 #define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
    11 
    12 #include <vector>
    13 #include <algorithm> // for std::min and std::max
    14 #include <functional>
    15 #include <boost/config.hpp>
    16 #include <boost/bind.hpp>
    17 #include <boost/graph/vector_as_graph.hpp>
    18 #include <boost/graph/strong_components.hpp>
    19 #include <boost/graph/topological_sort.hpp>
    20 #include <boost/graph/graph_concepts.hpp>
    21 #include <boost/graph/named_function_params.hpp>
    22 
    23 namespace boost
    24 {
    25 
    26   namespace detail
    27   {
    28     inline void
    29       union_successor_sets(const std::vector < std::size_t > &s1,
    30                            const std::vector < std::size_t > &s2,
    31                            std::vector < std::size_t > &s3)
    32     {
    33       BOOST_USING_STD_MIN();
    34       for (std::size_t k = 0; k < s1.size(); ++k)
    35         s3[k] = min BOOST_PREVENT_MACRO_SUBSTITUTION(s1[k], s2[k]);
    36     }
    37   }                             // namespace detail
    38 
    39   namespace detail
    40   {
    41     template < typename Container, typename ST = std::size_t,
    42       typename VT = typename Container::value_type >
    43       struct subscript_t:public std::unary_function < ST, VT >
    44     {
    45       typedef VT& result_type;
    46 
    47       subscript_t(Container & c):container(&c)
    48       {
    49       }
    50       VT & operator() (const ST & i) const
    51       {
    52         return (*container)[i];
    53       }
    54     protected:
    55         Container * container;
    56     };
    57     template < typename Container >
    58       subscript_t < Container > subscript(Container & c) {
    59       return subscript_t < Container > (c);
    60     }
    61   }                             // namespace detail
    62 
    63   template < typename Graph, typename GraphTC,
    64     typename G_to_TC_VertexMap,
    65     typename VertexIndexMap >
    66     void transitive_closure(const Graph & g, GraphTC & tc,
    67                             G_to_TC_VertexMap g_to_tc_map,
    68                             VertexIndexMap index_map)
    69   {
    70     if (num_vertices(g) == 0)
    71       return;
    72     typedef typename graph_traits < Graph >::vertex_descriptor vertex;
    73     typedef typename graph_traits < Graph >::edge_descriptor edge;
    74     typedef typename graph_traits < Graph >::vertex_iterator vertex_iterator;
    75     typedef typename property_traits < VertexIndexMap >::value_type size_type;
    76     typedef typename graph_traits <
    77       Graph >::adjacency_iterator adjacency_iterator;
    78 
    79     function_requires < VertexListGraphConcept < Graph > >();
    80     function_requires < AdjacencyGraphConcept < Graph > >();
    81     function_requires < VertexMutableGraphConcept < GraphTC > >();
    82     function_requires < EdgeMutableGraphConcept < GraphTC > >();
    83     function_requires < ReadablePropertyMapConcept < VertexIndexMap,
    84       vertex > >();
    85 
    86     typedef size_type cg_vertex;
    87     std::vector < cg_vertex > component_number_vec(num_vertices(g));
    88     iterator_property_map < cg_vertex *, VertexIndexMap, cg_vertex, cg_vertex& >
    89       component_number(&component_number_vec[0], index_map);
    90 
    91     int num_scc = strong_components(g, component_number,
    92                                     vertex_index_map(index_map));
    93 
    94     std::vector < std::vector < vertex > >components;
    95     build_component_lists(g, num_scc, component_number, components);
    96 
    97     typedef std::vector<std::vector<cg_vertex> > CG_t;
    98     CG_t CG(num_scc);
    99     for (cg_vertex s = 0; s < components.size(); ++s) {
   100       std::vector < cg_vertex > adj;
   101       for (size_type i = 0; i < components[s].size(); ++i) {
   102         vertex u = components[s][i];
   103         adjacency_iterator v, v_end;
   104         for (tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) {
   105           cg_vertex t = component_number[*v];
   106           if (s != t)           // Avoid loops in the condensation graph
   107             adj.push_back(t);
   108         }
   109       }
   110       std::sort(adj.begin(), adj.end());
   111       typename std::vector<cg_vertex>::iterator di =
   112         std::unique(adj.begin(), adj.end());
   113       if (di != adj.end())
   114         adj.erase(di, adj.end());
   115       CG[s] = adj;
   116     }
   117 
   118     std::vector<cg_vertex> topo_order;
   119     std::vector<cg_vertex> topo_number(num_vertices(CG));
   120     topological_sort(CG, std::back_inserter(topo_order),
   121                      vertex_index_map(identity_property_map()));
   122     std::reverse(topo_order.begin(), topo_order.end());
   123     size_type n = 0;
   124     for (typename std::vector<cg_vertex>::iterator iter = topo_order.begin();
   125          iter != topo_order.end(); ++iter)
   126       topo_number[*iter] = n++;
   127 
   128     for (size_type i = 0; i < num_vertices(CG); ++i)
   129       std::sort(CG[i].begin(), CG[i].end(),
   130                 boost::bind(std::less<cg_vertex>(),
   131                             boost::bind(detail::subscript(topo_number), _1),
   132                             boost::bind(detail::subscript(topo_number), _2)));
   133 
   134     std::vector<std::vector<cg_vertex> > chains;
   135     {
   136       std::vector<cg_vertex> in_a_chain(num_vertices(CG));
   137       for (typename std::vector<cg_vertex>::iterator i = topo_order.begin();
   138            i != topo_order.end(); ++i) {
   139         cg_vertex v = *i;
   140         if (!in_a_chain[v]) {
   141           chains.resize(chains.size() + 1);
   142           std::vector<cg_vertex>& chain = chains.back();
   143           for (;;) {
   144             chain.push_back(v);
   145             in_a_chain[v] = true;
   146             typename graph_traits<CG_t>::adjacency_iterator adj_first, adj_last;
   147             tie(adj_first, adj_last) = adjacent_vertices(v, CG);
   148             typename graph_traits<CG_t>::adjacency_iterator next
   149               = std::find_if(adj_first, adj_last,
   150                              std::not1(detail::subscript(in_a_chain)));
   151             if (next != adj_last)
   152               v = *next;
   153             else
   154               break;            // end of chain, dead-end
   155 
   156           }
   157         }
   158       }
   159     }
   160     std::vector<size_type> chain_number(num_vertices(CG));
   161     std::vector<size_type> pos_in_chain(num_vertices(CG));
   162     for (size_type i = 0; i < chains.size(); ++i)
   163       for (size_type j = 0; j < chains[i].size(); ++j) {
   164         cg_vertex v = chains[i][j];
   165         chain_number[v] = i;
   166         pos_in_chain[v] = j;
   167       }
   168 
   169     cg_vertex inf = (std::numeric_limits< cg_vertex >::max)();
   170     std::vector<std::vector<cg_vertex> > successors(num_vertices(CG),
   171                                                     std::vector<cg_vertex>
   172                                                     (chains.size(), inf));
   173     for (typename std::vector<cg_vertex>::reverse_iterator
   174            i = topo_order.rbegin(); i != topo_order.rend(); ++i) {
   175       cg_vertex u = *i;
   176       typename graph_traits<CG_t>::adjacency_iterator adj, adj_last;
   177       for (tie(adj, adj_last) = adjacent_vertices(u, CG);
   178            adj != adj_last; ++adj) {
   179         cg_vertex v = *adj;
   180         if (topo_number[v] < successors[u][chain_number[v]]) {
   181           // Succ(u) = Succ(u) U Succ(v)
   182           detail::union_successor_sets(successors[u], successors[v],
   183                                        successors[u]);
   184           // Succ(u) = Succ(u) U {v}
   185           successors[u][chain_number[v]] = topo_number[v];
   186         }
   187       }
   188     }
   189 
   190     for (size_type i = 0; i < CG.size(); ++i)
   191       CG[i].clear();
   192     for (size_type i = 0; i < CG.size(); ++i)
   193       for (size_type j = 0; j < chains.size(); ++j) {
   194         size_type topo_num = successors[i][j];
   195         if (topo_num < inf) {
   196           cg_vertex v = topo_order[topo_num];
   197           for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k)
   198             CG[i].push_back(chains[j][k]);
   199         }
   200       }
   201 
   202 
   203     // Add vertices to the transitive closure graph
   204     typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex;
   205     {
   206       vertex_iterator i, i_end;
   207       for (tie(i, i_end) = vertices(g); i != i_end; ++i)
   208         g_to_tc_map[*i] = add_vertex(tc);
   209     }
   210     // Add edges between all the vertices in two adjacent SCCs
   211     typename graph_traits<CG_t>::vertex_iterator si, si_end;
   212     for (tie(si, si_end) = vertices(CG); si != si_end; ++si) {
   213       cg_vertex s = *si;
   214       typename graph_traits<CG_t>::adjacency_iterator i, i_end;
   215       for (tie(i, i_end) = adjacent_vertices(s, CG); i != i_end; ++i) {
   216         cg_vertex t = *i;
   217         for (size_type k = 0; k < components[s].size(); ++k)
   218           for (size_type l = 0; l < components[t].size(); ++l)
   219             add_edge(g_to_tc_map[components[s][k]],
   220                      g_to_tc_map[components[t][l]], tc);
   221       }
   222     }
   223     // Add edges connecting all vertices in a SCC
   224     for (size_type i = 0; i < components.size(); ++i)
   225       if (components[i].size() > 1)
   226         for (size_type k = 0; k < components[i].size(); ++k)
   227           for (size_type l = 0; l < components[i].size(); ++l) {
   228             vertex u = components[i][k], v = components[i][l];
   229             add_edge(g_to_tc_map[u], g_to_tc_map[v], tc);
   230           }
   231 
   232     // Find loopbacks in the original graph.
   233     // Need to add it to transitive closure.
   234     {
   235       vertex_iterator i, i_end;
   236       for (tie(i, i_end) = vertices(g); i != i_end; ++i)
   237         {
   238           adjacency_iterator ab, ae;
   239           for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab)
   240             {
   241               if (*ab == *i)
   242                 if (components[component_number[*i]].size() == 1)
   243                   add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc);
   244             }
   245         }
   246     }
   247   }
   248 
   249   template <typename Graph, typename GraphTC>
   250   void transitive_closure(const Graph & g, GraphTC & tc)
   251   {
   252     if (num_vertices(g) == 0)
   253       return;
   254     typedef typename property_map<Graph, vertex_index_t>::const_type
   255       VertexIndexMap;
   256     VertexIndexMap index_map = get(vertex_index, g);
   257 
   258     typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex;
   259     std::vector<tc_vertex> to_tc_vec(num_vertices(g));
   260     iterator_property_map < tc_vertex *, VertexIndexMap, tc_vertex, tc_vertex&>
   261       g_to_tc_map(&to_tc_vec[0], index_map);
   262 
   263     transitive_closure(g, tc, g_to_tc_map, index_map);
   264   }
   265 
   266   namespace detail
   267   {
   268     template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap,
   269       typename VertexIndexMap>
   270     void transitive_closure_dispatch
   271       (const Graph & g, GraphTC & tc,
   272        G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map)
   273     {
   274       typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex;
   275       typename std::vector < tc_vertex >::size_type
   276         n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1;
   277       std::vector < tc_vertex > to_tc_vec(n);
   278 
   279       transitive_closure
   280         (g, tc,
   281          choose_param(g_to_tc_map, make_iterator_property_map
   282                       (to_tc_vec.begin(), index_map, to_tc_vec[0])),
   283          index_map);
   284     }
   285   }                             // namespace detail
   286 
   287   template < typename Graph, typename GraphTC,
   288     typename P, typename T, typename R >
   289     void transitive_closure(const Graph & g, GraphTC & tc,
   290                             const bgl_named_params < P, T, R > &params)
   291   {
   292     if (num_vertices(g) == 0)
   293       return;
   294     detail::transitive_closure_dispatch
   295       (g, tc, get_param(params, orig_to_copy_t()),
   296        choose_const_pmap(get_param(params, vertex_index), g, vertex_index) );
   297   }
   298 
   299 
   300   template < typename G > void warshall_transitive_closure(G & g)
   301   {
   302     typedef typename graph_traits < G >::vertex_descriptor vertex;
   303     typedef typename graph_traits < G >::vertex_iterator vertex_iterator;
   304 
   305     function_requires < AdjacencyMatrixConcept < G > >();
   306     function_requires < EdgeMutableGraphConcept < G > >();
   307 
   308     // Matrix form:
   309     // for k
   310     //  for i
   311     //    if A[i,k]
   312     //      for j
   313     //        A[i,j] = A[i,j] | A[k,j]
   314     vertex_iterator ki, ke, ii, ie, ji, je;
   315     for (tie(ki, ke) = vertices(g); ki != ke; ++ki)
   316       for (tie(ii, ie) = vertices(g); ii != ie; ++ii)
   317         if (edge(*ii, *ki, g).second)
   318           for (tie(ji, je) = vertices(g); ji != je; ++ji)
   319             if (!edge(*ii, *ji, g).second && edge(*ki, *ji, g).second) {
   320               add_edge(*ii, *ji, g);
   321             }
   322   }
   323 
   324 
   325   template < typename G > void warren_transitive_closure(G & g)
   326   {
   327     using namespace boost;
   328     typedef typename graph_traits < G >::vertex_descriptor vertex;
   329     typedef typename graph_traits < G >::vertex_iterator vertex_iterator;
   330 
   331     function_requires < AdjacencyMatrixConcept < G > >();
   332     function_requires < EdgeMutableGraphConcept < G > >();
   333 
   334     // Make sure second loop will work
   335     if (num_vertices(g) == 0)
   336       return;
   337 
   338     // for i = 2 to n
   339     //    for k = 1 to i - 1
   340     //      if A[i,k]
   341     //        for j = 1 to n
   342     //          A[i,j] = A[i,j] | A[k,j]
   343 
   344     vertex_iterator ic, ie, jc, je, kc, ke;
   345     for (tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic)
   346       for (tie(kc, ke) = vertices(g); *kc != *ic; ++kc)
   347         if (edge(*ic, *kc, g).second)
   348           for (tie(jc, je) = vertices(g); jc != je; ++jc)
   349             if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
   350               add_edge(*ic, *jc, g);
   351             }
   352     //  for i = 1 to n - 1
   353     //    for k = i + 1 to n
   354     //      if A[i,k]
   355     //        for j = 1 to n
   356     //          A[i,j] = A[i,j] | A[k,j]
   357 
   358     for (tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic)
   359       for (kc = ic, ke = ie, ++kc; kc != ke; ++kc)
   360         if (edge(*ic, *kc, g).second)
   361           for (tie(jc, je) = vertices(g); jc != je; ++jc)
   362             if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
   363               add_edge(*ic, *jc, g);
   364             }
   365   }
   366 
   367 
   368 }                               // namespace boost
   369 
   370 #endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP