epoc32/include/e32cmn.h
author William Roberts <williamr@symbian.org>
Wed, 31 Mar 2010 12:33:34 +0100
branchSymbian3
changeset 4 837f303aceeb
parent 2 2fe1408b6811
permissions -rw-r--r--
Current Symbian^3 public API header files (from PDK 3.0.h)
This is the epoc32/include tree with the "platform" subtrees removed, and
all but a selected few mbg and rsg files removed.
     1 // Copyright (c) 1994-2009 Nokia Corporation and/or its subsidiary(-ies).
     2 // All rights reserved.
     3 // This component and the accompanying materials are made available
     4 // under the terms of the License "Eclipse Public License v1.0"
     5 // which accompanies this distribution, and is available
     6 // at the URL "http://www.eclipse.org/legal/epl-v10.html".
     7 //
     8 // Initial Contributors:
     9 // Nokia Corporation - initial contribution.
    10 //
    11 // Contributors:
    12 //
    13 // Description:
    14 // e32\include\e32cmn.h
    15 // 
    16 //
    17 
    18 #ifndef __E32CMN_H__
    19 #define __E32CMN_H__
    20 #include <e32const.h>
    21 
    22 extern "C" {
    23 /**
    24 @publishedAll
    25 @released
    26 
    27 A Nanokernel utility function that compares two memory buffers for equality.
    28 
    29 The two buffers are considered equal only if:
    30 
    31 1. the buffers have the same length
    32 
    33 and
    34  
    35 2. the binary content of both buffers is the same.
    36 
    37 @param aLeft     The start address of the first buffer in the comparison.
    38 @param aLeftLen  The length of the first buffer in the comparison.
    39 @param aRight    The start address of the second buffer in the comparison.
    40 @param aRightLen The length of the second buffer in the comparison.
    41 
    42 @return Zero if both buffers are equal; non-zero, otherwise.
    43 
    44 @panic USER 88        In debug mode only, if aLeftL is negative, 
    45                       and the function is called on the user side.
    46 @panic KERN-COMMON 88 In debug mode only, if aLeftL is negative,
    47                       and the function is called on the kernel side.
    48 @panic USER 89        In debug mode only, if aRightL is negative, 
    49                       and the function is called on the user side.
    50 @panic KERN-COMMON 89 In debug mode only, if aRightL is negative,
    51                       and the function is called on the kernel side.
    52 */
    53 IMPORT_C TInt memcompare(const TUint8* aLeft, TInt aLeftLen, const TUint8* aRight, TInt aRightLen);
    54 
    55 
    56 
    57 
    58 /**
    59 @publishedAll
    60 @released
    61 
    62 A Nanokernel utility function that moves (copies) bytes in memory.
    63 
    64 The function assumes that the addresses are aligned on word boundaries,
    65 and that the length value is a multiple of 4.
    66 
    67 @param aTrg    The target address.
    68 @param aSrc    The source address.
    69 @param aLength The number of bytes to be moved.
    70 
    71 @return The target address.
    72 
    73 @panic USER 91        In debug mode only, if aLength is not a multiple of 4,
    74                       and the function is called on the user side.
    75 @panic KERN-COMMON 91 In debug mode only, if aLength is not a multiple of 4,
    76                       and the function is called on the kernel side.
    77 @panic USER 92        In debug mode only, if aSrc is not aligned on a word boundary,
    78                       and the function is called on the user side.
    79 @panic KERN-COMMON 92 In debug mode only, if aSrc is not aligned on a word boundary,
    80                       and the function is called on the kernel side.
    81 @panic USER 93        In debug mode only, if aTrg is not aligned on a word boundary,
    82                       and the function is called on the user side.
    83 @panic KERN-COMMON 93 In debug mode only, if aTrg is not aligned on a word boundary,
    84                       and the function is called on the kernel side.
    85 */
    86 IMPORT_C TAny* wordmove(TAny* aTrg, const TAny* aSrc, unsigned int aLength);
    87 
    88 
    89 
    90 
    91 /**
    92 @publishedAll
    93 @released
    94 
    95 A Nanokernel utility function that sets the specified number of bytes
    96 to binary zero.
    97 
    98 @param aTrg    The start address.
    99 @param aLength The number of bytes to be set.
   100 
   101 @return The target address.
   102 */
   103 IMPORT_C TAny* memclr(TAny* aTrg, unsigned int aLength);
   104 }
   105 
   106 
   107 
   108 
   109 #ifndef __TOOLS__
   110 extern "C" {
   111 /**
   112 @publishedAll
   113 @released
   114 
   115 A Nanokernel utility function that sets all of the specified number of bytes to
   116 the specified fill value.
   117 
   118 @param aTrg    The start address.
   119 @param aValue  The fill value (the first or junior byte).
   120 @param aLength The number of bytes to be set.
   121 
   122 @return The target address.
   123 */
   124 	IMPORT_C TAny* memset(TAny* aTrg, TInt aValue, unsigned int aLength);
   125 
   126 
   127 
   128 
   129 /**
   130 @publishedAll
   131 @released
   132 
   133 A Nanokernel utility function that copies bytes in memory.
   134 
   135 @param aTrg    The target address.
   136 @param aSrc    The source address.
   137 @param aLength The number of bytes to be moved.
   138 
   139 @return The target address.
   140 */
   141 	IMPORT_C TAny* memcpy(TAny* aTrg, const TAny* aSrc, unsigned int aLength);
   142 
   143 
   144 
   145 
   146 /**
   147 @publishedAll
   148 @released
   149 
   150 A Nanokernel utility function that moves (copies) bytes in memory.
   151 
   152 @param aTrg    The target address.
   153 @param aSrc    The source address.
   154 @param aLength The number of bytes to be moved.
   155 
   156 @return The target address.
   157 */
   158 	IMPORT_C TAny* memmove(TAny* aTrg, const TAny* aSrc, unsigned int aLength);
   159 }
   160 #else
   161 #include <string.h>
   162 #endif
   163 
   164 
   165 
   166 
   167 /** 
   168 @publishedAll
   169 @released
   170 
   171 Tests whether the specified value is less than or equal to the
   172 specified upper limit.
   173 
   174 @param aVal   The value to be tested.
   175 @param aLimit The upper limit.
   176 
   177 @return True, if the value is less than or equal to the specified upper limit;
   178         false, otherwise.
   179 */
   180 inline TInt Lim(TInt aVal,TUint aLimit)
   181 	{return(((TUint)aVal)<=aLimit);}
   182 
   183 
   184 
   185 
   186 /** 
   187 @publishedAll
   188 @released
   189 
   190 Tests whether the specified value is strictly less than the
   191 specified upper limit.
   192 
   193 @param aVal   The value to be tested.
   194 @param aLimit The upper limit.
   195 
   196 @return True, if the value is strictly less than the specified upper limit;
   197         false, otherwise.
   198 */
   199 inline TInt LimX(TInt aVal,TUint aLimit)
   200 	{return(((TUint)aVal)<aLimit);}
   201 
   202 
   203 
   204 
   205 /** 
   206 @publishedAll
   207 @released
   208 
   209 Returns the smaller of two values.
   210 
   211 @param aLeft  The first value to be compared.
   212 @param aRight The second value to be compared.
   213 
   214 @return The smaller value.
   215 */
   216 template <class T>
   217 inline T Min(T aLeft,T aRight)
   218 	{return(aLeft<aRight ? aLeft : aRight);}
   219 
   220 
   221 
   222 
   223 /**
   224 @publishedAll
   225 @released
   226 
   227 Returns the smaller of two objects, where the right hand object is a treated
   228 as a TInt for the  purpose of comparison.
   229 
   230 @param aLeft  The first value to be compared.
   231 @param aRight The second value to be compared.
   232 
   233 @return The smaller value.
   234 */
   235 template <class T>
   236 inline T Min(T aLeft,TUint aRight)
   237 	{return(aLeft<(TInt)aRight ? aLeft : (T)aRight);}
   238 
   239 
   240 
   241 
   242 /** 
   243 @publishedAll
   244 @released
   245 
   246 Returns the larger of two values.
   247 
   248 @param aLeft  The first value to be compared.
   249 @param aRight The second value to be compared.
   250 
   251 @return The larger value.
   252 */
   253 template <class T>
   254 inline T Max(T aLeft,T aRight)
   255 	{return(aLeft<aRight ? aRight : aLeft);}
   256 
   257 
   258 
   259 
   260 /**
   261 @publishedAll
   262 @released
   263 
   264 Returns the larger of two objects, where the right hand object is a treated
   265 as a TInt for the  purpose of comparison.
   266 
   267 @param aLeft  The first value to be compared.
   268 @param aRight The second value to be compared.
   269 
   270 @return The larger value.
   271 */
   272 template <class T>
   273 inline T Max(T aLeft,TUint aRight)
   274 	{return(aLeft<(TInt)aRight ? (TInt)aRight : aLeft);}
   275 
   276 
   277 
   278 
   279 /**
   280 @publishedAll
   281 @released
   282 
   283 Returns an absolute value.
   284 
   285 @param aVal The source value.
   286 
   287 @return The absolute value
   288 */
   289 template <class T>
   290 inline T Abs(T aVal)
   291 	{return(aVal<0 ? -aVal : aVal);}
   292 
   293 
   294 
   295 
   296 /** 
   297 @publishedAll
   298 @released
   299 
   300 Determines whether a specified value lies within a defined range of values.
   301 
   302 @param aMin The lower value of the range.
   303 @param aVal The value to be compared.
   304 @param aMax The higher value of the range.
   305 
   306 @return True, if the specified value lies within the range; false, otherwise.
   307 */
   308 template <class T>
   309 inline TBool Rng(T aMin,T aVal,T aMax)
   310 	{return(aVal>=aMin && aVal<=aMax);}
   311 
   312 
   313 
   314 
   315 /**
   316 @publishedAll
   317 @released
   318 
   319 Adds a value to a pointer.
   320 
   321 @param aPtr Pointer to an object of type T.
   322 @param aVal The value to be added.
   323 
   324 @return The resulting pointer value, as a pointer to a type T.
   325 */
   326 template <class T,class S>
   327 inline T* PtrAdd(T* aPtr,S aVal)
   328 	{return((T*)(((TUint8*)aPtr)+aVal));}
   329 
   330 
   331 
   332 
   333 /**
   334 @publishedAll
   335 @released
   336 
   337 Subtracts a value from a pointer.
   338 
   339 @param aPtr Pointer to an object of type T.
   340 @param aVal The value to be added.
   341 
   342 @return The resulting pointer value, as a pointer to a type T.
   343 */
   344 template <class T,class S>
   345 inline T* PtrSub(T* aPtr,S aVal)
   346 	{return((T*)(((TUint8*)aPtr)-aVal));}
   347 
   348 
   349 
   350 
   351 /**
   352 @publishedAll
   353 @released
   354 
   355 Aligns the specified value onto a 2-byte boundary.
   356 
   357 @param aValue The value to be aligned.
   358 
   359 @return The aligned value. 
   360 */
   361 template <class T>
   362 inline T Align2(T aValue)
   363 	{return((T)((((TUint)aValue)+sizeof(TUint16)-1)&~(sizeof(TUint16)-1)));}
   364 
   365 
   366 
   367 
   368 /**
   369 @publishedAll
   370 @released
   371 
   372 Aligns the specified value onto a 4-byte boundary.
   373 
   374 @param aValue The value to be aligned.
   375 
   376 @return The aligned value. 
   377 */
   378 template <class T>
   379 inline T Align4(T aValue)
   380 	{return((T)((((TUint)aValue)+sizeof(TUint32)-1)&~(sizeof(TUint32)-1)));}
   381 
   382 
   383 
   384 
   385 /**
   386 @publishedAll
   387 @released
   388 
   389 A templated class which encapsulates a reference to an object within a wrapper.
   390 
   391 The wrapper object can be passed to a function as a value type. This allows 
   392 a reference to be passed to a function as a value type.
   393 
   394 This wrapper object is commonly termed a value reference.
   395 */
   396 template <class T>
   397 class TRefByValue
   398 	{
   399 public:
   400 	inline TRefByValue(T& aRef);
   401 	inline operator T&();
   402 private:
   403 	TRefByValue& operator=(TRefByValue aRef);
   404 private:
   405 	T &iRef;
   406 	};
   407 
   408 
   409 
   410 
   411 #if !defined (__KERNEL_MODE__)
   412 class TDesC16;	// forward declaration for TChar member functions
   413 class TPtrC16;	// forward declaration for TChar member functions
   414 #endif
   415 
   416 
   417 
   418 
   419 /**
   420 @publishedAll
   421 @released
   422 
   423 Holds a character value and provides a number of utility functions to
   424 manipulate it and test its properties.
   425 
   426 For example, there are functions to convert the character 
   427 to uppercase and test whether or not it is a control character.
   428 
   429 The character value is stored as a 32-bit unsigned integer. The shorthand 
   430 "TChar value" is used to describe the character value wrapped by a TChar 
   431 object.
   432 
   433 TChar can be used to represent Unicode values outside plane 0 (that is, the 
   434 extended Unicode range from 0x10000 to 0xFFFFF). This differentiates it from 
   435 TText which can only be used for 16-bit Unicode character values.
   436 
   437 @see TText
   438 */
   439 class TChar
   440 	{
   441 public:
   442 
   443 	
   444     /**
   445     General Unicode character category.
   446 
   447     The high nibble encodes the major category (Mark, Number, etc.) and a low 
   448     nibble encodes the subdivisions of that category.
   449 
   450     The category codes can be used in three ways:
   451     
   452     (i) as unique constants: there is one for each Unicode category, with a
   453     name of the form
   454     @code
   455     E<XX>Category
   456     @endcode
   457     where
   458     @code
   459     <XX>
   460     @endcode
   461     is the category name given by
   462     the Unicode database (e.g., the constant ELuCategory is used for lowercase
   463     letters, category Lu);
   464     
   465     (ii) as numbers in certain ranges: letter categories are all <= EMaxLetterCategory;
   466     
   467     (iii) as codes in which the upper nibble gives the category group
   468     (e.g., punctuation categories all yield TRUE for
   469     the test (category & 0xF0) ==EPunctuationGroup).
   470     */
   471 	enum TCategory
   472 		{
   473         /**
   474         Alphabetic letters.
   475 	
   476         Includes ELuCategory, ELlCategory and ELtCategory.
   477         */
   478 		EAlphaGroup = 0x00,								
   479         
   480         
   481         /**
   482         Other letters.
   483 	
   484         Includes ELoCategory.
   485         */
   486 		ELetterOtherGroup = 0x10,						
   487         
   488         
   489         /**
   490         Letter modifiers.
   491 	
   492         Includes ELmCategory.
   493         */
   494 		ELetterModifierGroup = 0x20,					
   495         
   496         
   497         /**
   498         Marks group.
   499 	
   500         Includes EMnCategory, EMcCategory and EMeCategory.
   501         */
   502 		EMarkGroup = 0x30,
   503         
   504         
   505         /**
   506         Numbers group.
   507 	
   508 	    Includes ENdCategory, ENlCategory and ENoCategory.
   509 	    */
   510 		ENumberGroup = 0x40,
   511         
   512         
   513         /**
   514         Punctuation group.
   515 	
   516 	    IncludesEPcCategory, PdCategory, EpeCategory, EPsCategory and EPoCategory.
   517 	    */
   518 		EPunctuationGroup = 0x50,
   519         
   520         
   521         /**
   522         Symbols group.
   523 	
   524         Includes ESmCategory, EScCategory, ESkCategory and ESoCategory.
   525         */
   526 		ESymbolGroup = 0x60,
   527         
   528         
   529         /**
   530         Separators group.
   531 	
   532         Includes EZsCategory, EZlCategory and EZlpCategory.
   533         */
   534 		ESeparatorGroup = 0x70,
   535         
   536         
   537         /**
   538         Control, format, private use, unassigned.
   539 	
   540      	Includes ECcCategory, ECtCategory, ECsCategory,
   541      	ECoCategory and ECnCategory.
   542      	*/
   543 		EControlGroup = 0x80,
   544 	    
   545 	    
   546 	    /**
   547 	    The highest possible groups category.
   548 	    */
   549 		EMaxAssignedGroup = 0xE0,
   550         
   551         
   552         /**
   553         Unassigned to any other group.
   554         */
   555 		EUnassignedGroup = 0xF0,
   556 
   557 
   558         /**
   559         Letter, Uppercase.
   560         */
   561 		ELuCategory = EAlphaGroup | 0,					
   562         
   563         
   564         /**
   565         Letter, Lowercase.
   566         */
   567 		ELlCategory = EAlphaGroup | 1,					
   568 	    
   569 	    
   570 	    /**
   571 	    Letter, Titlecase.
   572 	    */
   573 		ELtCategory = EAlphaGroup | 2,					
   574      	
   575      	
   576      	/**
   577      	Letter, Other.
   578      	*/
   579 		ELoCategory = ELetterOtherGroup | 0,			
   580 	    
   581 	    
   582 	    /**
   583 	    The highest possible (non-modifier) letter category.
   584 	    */
   585 		EMaxLetterCategory = ELetterOtherGroup | 0x0F,	
   586 
   587 	    /**
   588 	    Letter, Modifier.
   589 	    */
   590 		ELmCategory = ELetterModifierGroup | 0,			
   591 	    
   592 	    
   593 	    /**
   594 	    The highest possible letter category.
   595 	    */
   596 		EMaxLetterOrLetterModifierCategory = ELetterModifierGroup | 0x0F, 
   597 
   598 	    /**
   599 	    Mark, Non-Spacing
   600 	    */
   601 		EMnCategory = EMarkGroup | 0,					
   602         
   603         
   604         /**
   605         Mark, Combining.
   606         */
   607 		EMcCategory = EMarkGroup | 1,					
   608         
   609         
   610         /**
   611         Mark, Enclosing.
   612         */
   613 		EMeCategory = EMarkGroup | 2,					
   614         
   615         
   616         /**
   617         Number, Decimal Digit.
   618         */
   619 		ENdCategory = ENumberGroup | 0,					
   620         
   621         
   622         /**
   623         Number, Letter.
   624         */
   625 		ENlCategory = ENumberGroup | 1,					
   626         
   627         
   628         /**
   629         Number, Other.
   630         */
   631 		ENoCategory = ENumberGroup | 2,					
   632         
   633         
   634         /**
   635         Punctuation, Connector.
   636         */
   637 		EPcCategory = EPunctuationGroup | 0,			
   638         
   639         
   640         /**
   641         Punctuation, Dash.
   642         */
   643 		EPdCategory = EPunctuationGroup | 1,			
   644         
   645         
   646         /**
   647         Punctuation, Open.
   648         */
   649 		EPsCategory = EPunctuationGroup | 2,			
   650         
   651         
   652         /**
   653         Punctuation, Close.
   654         */
   655 		EPeCategory = EPunctuationGroup | 3,
   656 		
   657 		
   658 		/**
   659 		Punctuation, Initial Quote
   660 		*/			
   661 		EPiCategory = EPunctuationGroup | 4,			
   662 		
   663 		
   664 		/**
   665 		Punctuation, Final Quote
   666 		*/
   667 		EPfCategory = EPunctuationGroup | 5,			
   668         
   669         
   670         /**
   671         Punctuation, Other.
   672         */
   673 		EPoCategory = EPunctuationGroup | 6,			
   674         
   675         
   676         /**
   677         Symbol, Math.
   678         */
   679 		ESmCategory = ESymbolGroup | 0,					
   680         
   681         
   682         /**
   683         Symbol, Currency.
   684         */
   685 		EScCategory = ESymbolGroup | 1,					
   686         
   687         
   688         /**
   689         Symbol, Modifier.
   690         */
   691 		ESkCategory = ESymbolGroup | 2,					
   692         
   693         
   694         /**
   695         Symbol, Other.
   696         */
   697 		ESoCategory = ESymbolGroup | 3,					
   698         
   699         
   700         /**
   701         The highest possible graphic character category.
   702         */
   703 		EMaxGraphicCategory = ESymbolGroup | 0x0F,		
   704 
   705 
   706         /**
   707         Separator, Space.
   708         */
   709 		EZsCategory = ESeparatorGroup | 0,				
   710 
   711 
   712         /**
   713         The highest possible printable character category.
   714         */
   715 		EMaxPrintableCategory = EZsCategory,			
   716 
   717 
   718         /**
   719         Separator, Line.
   720         */
   721 		EZlCategory = ESeparatorGroup | 1,				
   722 
   723 
   724         /**
   725         Separator, Paragraph.
   726         */
   727 		EZpCategory = ESeparatorGroup | 2,				
   728 
   729 
   730         /**
   731         Other, Control.
   732         */
   733 		ECcCategory = EControlGroup | 0,				
   734 
   735 
   736         /**
   737         Other, Format.
   738         */
   739 		ECfCategory = EControlGroup | 1,				
   740 
   741 
   742         /**
   743         The highest possible category for assigned 16-bit characters; does not
   744         include surrogates, which are interpreted as pairs and have no meaning
   745         on their own.
   746         */
   747 		EMaxAssignedCategory = EMaxAssignedGroup | 0x0F,
   748 														
   749 
   750         /**
   751         Other, Surrogate.
   752         */
   753 		ECsCategory = EUnassignedGroup | 0,				
   754         
   755         
   756         /**
   757         Other, Private Use.
   758         */
   759 		ECoCategory = EUnassignedGroup | 1,				
   760         
   761         
   762         /**
   763         Other, Not Assigned.
   764         */
   765 		ECnCategory = EUnassignedGroup | 2				
   766 		};
   767 
   768 	
   769     /**
   770     The bi-directional Unicode character category.
   771 
   772     For more information on the bi-directional algorithm, see Unicode Technical 
   773     Report No. 9 available at: http://www.unicode.org/unicode/reports/tr9.
   774     */
   775 	enum TBdCategory
   776 		{
   777 	    /**
   778 	    Left to right.
   779 	    */
   780 		ELeftToRight,				// L Left-to-Right 
   781 	   
   782 	   
   783 	    /**
   784 	    Left to right embedding.
   785 	    */
   786 		ELeftToRightEmbedding,		// LRE Left-to-Right Embedding 
   787 	   
   788 	   
   789 	    /**
   790 	    Left-to-Right Override.
   791 	    */
   792 		ELeftToRightOverride,		// LRO Left-to-Right Override 
   793 	   
   794 	   
   795 	    /**
   796 	    Right to left.
   797 	    */
   798 		ERightToLeft,				// R Right-to-Left 
   799 	   
   800 	   
   801 	    /**
   802 	    Right to left Arabic.
   803 	    */
   804 		ERightToLeftArabic,			// AL Right-to-Left Arabic 
   805 	   
   806 	   
   807 	    /**
   808 	    Right to left embedding.
   809 	    */
   810 		ERightToLeftEmbedding,		// RLE Right-to-Left Embedding 
   811 	   
   812 	   
   813 	    /**
   814 	    Right-to-Left Override.
   815 	    */
   816 		ERightToLeftOverride,		// RLO Right-to-Left Override 
   817 	   
   818 	   
   819 	    /**
   820 	    Pop Directional Format.
   821 	    */
   822 		EPopDirectionalFormat,		// PDF Pop Directional Format 
   823 	   
   824 	   
   825 	    /**
   826 	    European number.
   827 	    */
   828 		EEuropeanNumber,			// EN European Number 
   829 	   
   830 	   
   831 	    /**
   832 	    European number separator.
   833 	    */
   834 		EEuropeanNumberSeparator,	// ES European Number Separator 
   835 	   
   836 	   
   837 	    /**
   838 	    European number terminator.
   839 	    */
   840 		EEuropeanNumberTerminator,	// ET European Number Terminator 
   841 	   
   842 	   
   843 	    /**
   844 	    Arabic number.
   845 	    */
   846 		EArabicNumber,				// AN Arabic Number 
   847 	   
   848 	   
   849 	    /**
   850 	    Common number separator.
   851 	    */
   852 		ECommonNumberSeparator,		// CS Common Number Separator 
   853 	   
   854 	   
   855 	    /**
   856 	    Non Spacing Mark.
   857 	    */
   858 		ENonSpacingMark,			// NSM Non-Spacing Mark 
   859 	   
   860 	   
   861 	    /**
   862 	    Boundary Neutral.
   863 	    */
   864 		EBoundaryNeutral,			// BN Boundary Neutral 
   865 	   
   866 	   
   867 	    /**
   868 	    Paragraph Separator.
   869 	    */
   870 		EParagraphSeparator,		// B Paragraph Separator 
   871 	   
   872 	   
   873 	    /**
   874 	    Segment separator.
   875 	    */
   876 		ESegmentSeparator,			// S Segment Separator 
   877 
   878 		
   879 		/**
   880 		Whitespace
   881 		*/
   882 		EWhitespace,				// WS Whitespace 
   883 
   884 
   885 	    /**
   886 	    Other neutrals; all other characters: punctuation, symbols.
   887 	    */
   888 		EOtherNeutral				// ON Other Neutrals 
   889 		};
   890 
   891 
   892 	/**
   893     Notional character width as known to East Asian (Chinese, Japanese,
   894     Korean (CJK)) coding systems.
   895     */
   896 	enum TCjkWidth
   897 		{
   898 	    /**
   899 	    Includes 'ambiguous width' defined in Unicode Technical Report 11: East Asian Width
   900 	    */
   901 		ENeutralWidth,			
   902 	    
   903 	    
   904 	    /**
   905 	    Character which occupies a single cell.
   906 	    */
   907 		EHalfWidth,				// other categories are as defined in the report
   908         
   909         
   910         /**
   911         Character which occupies 2 cells.
   912         */
   913 		EFullWidth,
   914         
   915         
   916         /**
   917         Characters that are always narrow and have explicit full-width
   918         counterparts. All of ASCII is an example of East Asian Narrow
   919         characters.
   920         */
   921 		ENarrow,
   922 	    
   923 	    /**
   924 	    Characters that are always wide. This category includes characters that
   925 	    have explicit half-width counterparts.
   926 	    */
   927 		EWide
   928 		};
   929 
   930 
   931 	/**
   932 	@deprecated
   933     
   934     Encoding systems used by the translation functions.
   935     */
   936   	enum TEncoding
   937   		{
   938   		/**
   939   		The Unicode encoding.
   940   		*/
   941   		EUnicode,
   942         
   943         
   944         /**
   945         The shift-JIS encoding (used in Japan).
   946         */
   947   		EShiftJIS		
   948   		};
   949 
   950 
   951 	/**
   952 	Flags defining operations to be performed using TChar::Fold().
   953 	
   954 	The flag values are passed to the Fold() funtion.
   955 
   956 	@see TChar::Fold
   957 	*/
   958 	enum
   959 		{
   960 		/**
   961 		Convert characters to their lower case form if any.
   962 		*/
   963 		EFoldCase = 1,			
   964 
   965 
   966 		/**
   967 		Strip accents
   968      	*/
   969 		EFoldAccents = 2,		
   970 
   971 
   972 		/**
   973 		Convert digits representing values 0..9 to characters '0'..'9'
   974      	*/
   975 		EFoldDigits = 4,		
   976 
   977 
   978 		/**
   979 		Convert all spaces (ordinary, fixed-width, ideographic, etc.) to ' '
   980      	*/
   981 		EFoldSpaces = 8,		
   982 
   983 
   984 		/**
   985 		Convert hiragana to katakana.
   986      	*/
   987 		EFoldKana = 16,			
   988 
   989 
   990 		/**
   991 	    Fold fullwidth and halfwidth variants to their standard forms
   992      	*/
   993 		EFoldWidth = 32,		
   994 
   995 
   996 		/**
   997 		Perform standard folding operations, i.e.those done by Fold() with no argument
   998      	*/
   999 		EFoldStandard = EFoldCase | EFoldAccents | EFoldDigits | EFoldSpaces,
  1000 
  1001 
  1002         /**
  1003         Perform all possible folding operations
  1004         */
  1005 		EFoldAll = -1	
  1006 		};
  1007 
  1008 
  1009 	struct TCharInfo
  1010     /**
  1011     A structure to hold information about a Unicode character.
  1012     
  1013     An object of this type is passed to TChar::GetInfo().
  1014  
  1015     @see TChar::GetInfo
  1016     */
  1017 		{
  1018 	    /**
  1019 	    General category.
  1020 	    */
  1021 		TCategory iCategory;				
  1022         
  1023         
  1024         /**
  1025         Bi-directional category.
  1026         */
  1027 		TBdCategory iBdCategory;			
  1028         
  1029         
  1030         /**
  1031         Combining class: number (currently) in the range 0..234
  1032         */
  1033 		TInt iCombiningClass;				
  1034         
  1035         
  1036         /**
  1037         Lower case form.
  1038         */
  1039 		TUint iLowerCase;					
  1040         
  1041         
  1042         /**
  1043         Upper case form.
  1044         */
  1045 		TUint iUpperCase;					
  1046         
  1047         
  1048         /**
  1049         Title case form.
  1050         */
  1051 		TUint iTitleCase;					
  1052         
  1053         
  1054         /**
  1055         True, if the character is mirrored.
  1056         */
  1057 		TBool iMirrored;					
  1058         
  1059         
  1060         /**
  1061         Integer numeric value: -1 if none, -2 if a fraction.
  1062         */
  1063 		TInt iNumericValue;					
  1064 		};
  1065 
  1066 	inline TChar();
  1067 	inline TChar(TUint aChar);
  1068 	inline TChar& operator-=(TUint aChar);
  1069 	inline TChar& operator+=(TUint aChar);
  1070 	inline TChar operator-(TUint aChar);
  1071 	inline TChar operator+(TUint aChar);
  1072 	inline operator TUint() const;
  1073 #ifndef __KERNEL_MODE__
  1074 	inline void Fold();
  1075 	inline void LowerCase();
  1076 	inline void UpperCase();
  1077 	inline TBool Eos() const;
  1078 	IMPORT_C TUint GetUpperCase() const;
  1079 	IMPORT_C TUint GetLowerCase() const;
  1080 	IMPORT_C TBool IsLower() const;
  1081 	IMPORT_C TBool IsUpper() const;
  1082 	IMPORT_C TBool IsAlpha() const;
  1083 	IMPORT_C TBool IsDigit() const;
  1084 	IMPORT_C TBool IsAlphaDigit() const;
  1085 	IMPORT_C TBool IsHexDigit() const;
  1086 	IMPORT_C TBool IsSpace() const;
  1087 	IMPORT_C TBool IsPunctuation() const;
  1088 	IMPORT_C TBool IsGraph() const;
  1089 	IMPORT_C TBool IsPrint() const;
  1090 	IMPORT_C TBool IsControl() const;
  1091 	inline void Fold(TInt aFlags);
  1092 	inline void TitleCase();
  1093 	IMPORT_C TUint GetTitleCase() const;
  1094 	IMPORT_C TBool IsTitle() const;
  1095 	IMPORT_C TBool IsAssigned() const;
  1096 	IMPORT_C void GetInfo(TCharInfo& aInfo) const;
  1097 	IMPORT_C TCategory GetCategory() const;
  1098 	IMPORT_C TBdCategory GetBdCategory() const;
  1099 	IMPORT_C TInt GetCombiningClass() const;
  1100 	IMPORT_C TBool IsMirrored() const;
  1101 	IMPORT_C TInt GetNumericValue() const;
  1102 	IMPORT_C TCjkWidth GetCjkWidth() const;
  1103 	IMPORT_C static TBool Compose(TUint& aResult,const TDesC16& aSource);
  1104 	IMPORT_C TBool Decompose(TPtrC16& aResult) const;
  1105 
  1106 protected:
  1107 	inline void SetChar(TUint aChar);
  1108 #endif
  1109 private:
  1110 	TUint iChar;
  1111 	__DECLARE_TEST;
  1112 	};
  1113 
  1114 #include <e32des8.h>
  1115 #ifndef __KERNEL_MODE__
  1116 #include <e32des16.h>
  1117 #endif
  1118 
  1119 
  1120 
  1121 
  1122 #if defined(_UNICODE) && !defined(__KERNEL_MODE__)
  1123 #define __Size (sizeof(TUint)/sizeof(TUint16))
  1124 /**
  1125 @publishedAll
  1126 @released
  1127 
  1128 Defines a build-independent non-modifiable descriptor.
  1129 
  1130 A 16-bit build variant is generated for a Unicode, non-kernel
  1131 mode build.
  1132 
  1133 A build-independent type should always be used unless an explicit 8-bit 
  1134 or 16-bit type is required.
  1135 
  1136 @see TDesC8
  1137 @see TDesC16
  1138 */
  1139 typedef TDesC16 TDesC;
  1140 
  1141 
  1142 
  1143 
  1144 /**
  1145 @publishedAll
  1146 @released
  1147 
  1148 Defines a build-independent non-modifiable pointer descriptor.
  1149 
  1150 A 16-bit build variant is generated for a Unicode, non-kernel
  1151 mode build.
  1152 
  1153 A build-independent type should always be used unless an explicit 8-bit 
  1154 or 16-bit type is required.
  1155 
  1156 @see TPtrC8
  1157 @see TPtrC16
  1158 */
  1159 typedef TPtrC16 TPtrC;
  1160 
  1161 
  1162 
  1163 
  1164 /**
  1165 @publishedAll
  1166 @released
  1167 
  1168 Defines a build-independent modifiable descriptor.
  1169 
  1170 A 16-bit build variant is generated for a Unicode, non-kernel
  1171 mode build.
  1172 
  1173 A build-independent type should always be used unless an explicit 8-bit 
  1174 or 16-bit type is required.
  1175 
  1176 @see TDes8
  1177 @see TDes16
  1178 */
  1179 typedef TDes16 TDes;
  1180 
  1181 
  1182 
  1183 
  1184 /**
  1185 @publishedAll
  1186 @released
  1187 
  1188 Defines a build-independent modifiable pointer descriptor.
  1189 
  1190 A 16-bit build variant is generated for a Unicode, non-kernel
  1191 mode build.
  1192 
  1193 A build-independent type should always be used unless an explicit 8-bit 
  1194 or 16-bit type is required.
  1195 
  1196 @see TPtr8
  1197 @see TPtr16
  1198 */
  1199 typedef TPtr16 TPtr;
  1200 
  1201 
  1202 
  1203 
  1204 #ifndef __KERNEL_MODE__
  1205 /**
  1206 @publishedAll
  1207 @released
  1208 
  1209 Defines a build-independent heap descriptor. 
  1210 
  1211 A 16-bit build variant is generated for a Unicode, non-kernel
  1212 mode build.
  1213 
  1214 A build-independent type should always be used unless an explicit 8-bit 
  1215 or 16-bit type is required.
  1216 
  1217 @see HBufC8
  1218 @see HBufC16
  1219 */
  1220 typedef HBufC16 HBufC;
  1221 
  1222 
  1223 
  1224 
  1225 /** 
  1226 @publishedAll
  1227 @released
  1228 
  1229 Defines a build-independent descriptor overflow handler.
  1230 
  1231 A 16-bit build variant is generated for a Unicode, non-kernel
  1232 mode build.
  1233 
  1234 A build-independent type should always be used unless an explicit 8-bit 
  1235 or 16-bit type is required.
  1236 
  1237 @see TDes8Overflow
  1238 @see TDes16Overflow
  1239 */
  1240 typedef TDes16Overflow TDesOverflow;
  1241 
  1242 
  1243 /** 
  1244 @publishedAll
  1245 @released
  1246 
  1247 Defines a build-independent resizable buffer descriptor.
  1248 
  1249 A 16-bit build variant is generated for a Unicode, non-kernel mode build.
  1250 
  1251 A build-independent type should always be used unless an explicit 8-bit 
  1252 or 16-bit type is required.
  1253 
  1254 @see RBuf8
  1255 @see RBuf16
  1256 */
  1257 typedef RBuf16 RBuf;
  1258 
  1259 #endif
  1260 #else
  1261 #define __Size (sizeof(TUint)/sizeof(TUint8))
  1262 
  1263 
  1264 
  1265 
  1266 /**
  1267 @publishedAll
  1268 @released
  1269 
  1270 Defines a build-independent non-modifiable descriptor.
  1271 
  1272 An 8-bit build variant is generated for a non-Unicode build.
  1273 
  1274 This build-independent type should always be used unless an explicit 8-bit 
  1275 or 16-bit build variant is required.
  1276 
  1277 @see TDesC8
  1278 @see TDesC16
  1279 */
  1280 typedef TDesC8 TDesC;
  1281 
  1282 
  1283 
  1284 
  1285 /**
  1286 @publishedAll
  1287 @released
  1288 
  1289 Defines a build-independent non-modifiable pointer descriptor.
  1290 
  1291 An 8-bit build variant is generated for a non-Unicode build.
  1292 
  1293 This build-independent type should always be used unless an explicit 8-bit 
  1294 or 16-bit build variant is required.
  1295 
  1296 @see TPtrC8
  1297 @see TPtrC16
  1298 */
  1299 typedef TPtrC8 TPtrC;
  1300 
  1301 
  1302 
  1303 
  1304 /**
  1305 @publishedAll
  1306 @released
  1307 
  1308 Defines a build-independent modifiable descriptor.
  1309 
  1310 An 8-bit build variant is generated for a non-Unicode build.
  1311 
  1312 This build-independent type should always be used unless an explicit 8-bit 
  1313 or 16-bit build variant is required.
  1314 
  1315 @see TDes8
  1316 @see TDes16
  1317 */
  1318 typedef TDes8 TDes;
  1319 
  1320 
  1321 
  1322 
  1323 /**
  1324 @publishedAll
  1325 @released
  1326 
  1327 Defines a build-independent modifiable pointer descriptor.
  1328 
  1329 An 8-bit build variant is generated for a non-Unicode build.
  1330 
  1331 This build-independent type should always be used unless an explicit 8-bit 
  1332 or 16-bit build variant is required.
  1333 
  1334 @see TPtr8
  1335 @see TPtr16
  1336 */
  1337 typedef TPtr8 TPtr;
  1338 #ifndef __KERNEL_MODE__
  1339 
  1340 
  1341 
  1342 
  1343 /**
  1344 @publishedAll
  1345 @released
  1346 
  1347 Defines a build-independent heap descriptor.
  1348 
  1349 An 8-bit build variant is generated for a non-Unicode, non-kernel
  1350 mode build.
  1351 
  1352 This build-independent type should always be used unless an explicit 8-bit 
  1353 or 16-bit build variant is required.
  1354 
  1355 @see HBufC8
  1356 @see HBufC16
  1357 */
  1358 typedef HBufC8 HBufC;
  1359 
  1360 
  1361 
  1362 
  1363 /**
  1364 @publishedAll
  1365 @released
  1366 
  1367 Defines a build-independent descriptor overflow handler. 
  1368 
  1369 An 8-bit build variant is generated for a non-Unicode, non-kernel
  1370 mode build.
  1371 
  1372 This build-independent type should always be used unless an explicit 8-bit 
  1373 or 16-bit build variant is required.
  1374 
  1375 @see TDes8Overflow
  1376 @see TDes16Overflow
  1377 */
  1378 typedef TDes8Overflow TDesOverflow;
  1379 
  1380 
  1381 /**
  1382 @publishedAll
  1383 @released
  1384 
  1385 Defines a build-independent resizable buffer descriptor.
  1386 
  1387 An 8-bit build variant is generated for a non-Unicode, non-kernel mode build.
  1388 
  1389 This build-independent type should always be used unless an explicit 8-bit 
  1390 or 16-bit build variant is required.
  1391 
  1392 @see RBuf8
  1393 @see RBuf16
  1394 */
  1395 typedef RBuf8 RBuf;
  1396 
  1397 #endif
  1398 #endif
  1399 
  1400 
  1401 #if defined(_UNICODE) && !defined(__KERNEL_MODE__)
  1402 typedef TBufCBase16 TBufCBase;
  1403 #else
  1404 typedef TBufCBase8 TBufCBase;
  1405 #endif
  1406 
  1407 /**
  1408 @publishedAll
  1409 @released
  1410 
  1411 A build-independent non-modifiable buffer descriptor.
  1412 
  1413 This is a descriptor class which provides a buffer of fixed length for
  1414 containing and accessing TUint16 or TUint8 data, depending on the build.
  1415 
  1416 The class intended for instantiation. The data that the descriptor represents 
  1417 is part of the descriptor object itself.
  1418 
  1419 The class is templated, based on an integer value which defines the size of 
  1420 the descriptor's data area.
  1421 
  1422 The data is intended to be accessed, but not modified; however, it can be 
  1423 completely replaced using the assignment operators of this class. The base 
  1424 class provides the functions through which the data is accessed.
  1425 
  1426 This class derives from TBufCBase16 for a Unicode, non-kernel build, but
  1427 derives from TBufCBase8 for a non-Unicode build.
  1428 
  1429 @see TDesC
  1430 @see TDesC8
  1431 @see TDesC16
  1432 @see TPtr
  1433 @see TPtr8
  1434 @see TPtr16
  1435 @see TBufC8
  1436 @see TBufC16
  1437 */
  1438 template <TInt S>
  1439 #if defined(_UNICODE) && !defined(__KERNEL_MODE__)
  1440 class TBufC : public TBufCBase16
  1441 #else
  1442 class TBufC : public TBufCBase8
  1443 #endif
  1444 	{
  1445 public:
  1446 	inline TBufC();
  1447 	inline TBufC(const TText* aString);
  1448 	inline TBufC(const TDesC& aDes);
  1449 	inline TBufC<S>& operator=(const TText* aString);
  1450 	inline TBufC<S>& operator=(const TDesC& aDes);
  1451 	inline TPtr Des();
  1452 private:
  1453 	TText iBuf[__Align(S)];
  1454 	};
  1455 
  1456 
  1457 
  1458 /**
  1459 @publishedAll
  1460 @released
  1461 
  1462 A build-independent modifiable buffer descriptor.
  1463 
  1464 This is a descriptor class which provides a buffer of fixed length for
  1465 containing, accessing and manipulating TUint16 or TUint8 data, depending
  1466 on the build.
  1467 
  1468 The class is intended for instantiation. The data that the descriptor represents 
  1469 is part of the descriptor object itself.
  1470 
  1471 The class is templated, based on an integer value which determines the size 
  1472 of the data area created as part of the buffer descriptor object; this is 
  1473 also the maximum length of the descriptor.
  1474 
  1475 The data is intended to be both accessed and modified. The base classes provide 
  1476 the functions through which the data is accessed.
  1477 
  1478 This class derives from TBufCBase16 for a Unicode, non-kernel build, but
  1479 derives from TBufCBase8 for a non-Unicode build.
  1480 
  1481 @see TDesC
  1482 @see TDesC8
  1483 @see TDesC16
  1484 @see TDes
  1485 @see TDes8
  1486 @see TDes16
  1487 @see TPtr
  1488 @see TPtr8
  1489 @see TPtr16
  1490 */
  1491 template <TInt S>
  1492 #if defined(_UNICODE) && !defined(__KERNEL_MODE__)
  1493 class TBuf : public TBufBase16
  1494 #else
  1495 class TBuf : public TBufBase8
  1496 #endif
  1497 	{
  1498 public:
  1499 	inline TBuf();
  1500 	inline explicit TBuf(TInt aLength);
  1501 	inline TBuf(const TText* aString);
  1502 	inline TBuf(const TDesC& aDes);
  1503 	inline TBuf<S>& operator=(const TText* aString);
  1504 	inline TBuf<S>& operator=(const TDesC& aDes);
  1505 	inline TBuf<S>& operator=(const TBuf<S>& aBuf);
  1506 private:
  1507 	TText iBuf[__Align(S)];
  1508 	};
  1509 
  1510 
  1511 
  1512 
  1513 /**
  1514 @publishedAll
  1515 @released
  1516 
  1517 Value reference used in operator TLitC::__TRefDesC().
  1518 
  1519 @see TRefByValue
  1520 */
  1521 typedef TRefByValue<const TDesC> __TRefDesC;
  1522 
  1523 
  1524 
  1525 
  1526 /**
  1527 @publishedAll
  1528 @released
  1529 
  1530 Encapsulates literal text.
  1531 
  1532 This is always constructed using an _LIT macro.
  1533 
  1534 This class is build independent; i.e. for a non-Unicode build, an 8-bit build
  1535 variant is generated; for a Unicode build, a 16 bit build variant is generated.
  1536 
  1537 The class has no explicit constructors. See the _LIT macro definition.
  1538 */
  1539 template <TInt S>
  1540 class TLitC
  1541 	{
  1542 public:
  1543     /**
  1544     @internalComponent
  1545     */
  1546 	enum {BufferSize=S-1};
  1547 	inline const TDesC* operator&() const;
  1548 	inline operator const TDesC&() const;
  1549 	inline const TDesC& operator()() const;
  1550 	inline operator const __TRefDesC() const;
  1551 public:
  1552 #if !defined(_UNICODE) || defined(__KERNEL_MODE__)
  1553 
  1554     /**
  1555     @internalComponent
  1556     */
  1557 	typedef TUint8 __TText;
  1558 #elif defined(__GCC32__)
  1559 
  1560     /**
  1561     @internalComponent
  1562     */
  1563 	typedef wchar_t __TText;
  1564 #elif defined(__VC32__)
  1565 
  1566 	/**
  1567     @internalComponent
  1568     */
  1569 	typedef TUint16 __TText;
  1570 
  1571 #elif defined(__CW32__)
  1572 
  1573     /**
  1574     @internalComponent
  1575     */
  1576 	typedef TUint16 __TText;
  1577 #elif !defined(__TText_defined)
  1578 #error  no typedef for __TText
  1579 #endif
  1580 public:
  1581     /**
  1582     @internalComponent
  1583     */
  1584 	TUint iTypeLength;
  1585 
  1586     /**
  1587     @internalComponent
  1588     */
  1589 	__TText iBuf[__Align(S)];
  1590 	};
  1591 
  1592 
  1593 /**
  1594 @publishedAll
  1595 @released
  1596 
  1597 Defines an empty or null literal descriptor.
  1598 
  1599 This is the build independent form.
  1600 An 8 bit build variant is generated for a non-Unicode build;
  1601 a 16 bit build variant is generated for a Unicode build.
  1602 */
  1603 _LIT(KNullDesC,"");
  1604 
  1605 
  1606 
  1607 /**
  1608 @publishedAll
  1609 @released
  1610 
  1611 Defines an empty or null literal descriptor for use with 8-bit descriptors.
  1612 */
  1613 _LIT8(KNullDesC8,"");
  1614 #ifndef __KERNEL_MODE__
  1615 
  1616 
  1617 
  1618 /**
  1619 @publishedAll
  1620 @released
  1621 
  1622 Defines an empty or null literal descriptor for use with 16-bit descriptors
  1623 */
  1624 _LIT16(KNullDesC16,"");
  1625 #endif
  1626 
  1627 
  1628 
  1629 
  1630 /**
  1631 @publishedAll
  1632 @released
  1633 
  1634 Packages a non-modifiable pointer descriptor which represents an object of 
  1635 specific type.
  1636 
  1637 The template parameter defines the type of object.
  1638 
  1639 The object represented by the packaged pointer descriptor is accessible through 
  1640 the package but cannot be changed. */
  1641 template <class T>
  1642 class TPckgC : public TPtrC8
  1643 	{
  1644 public:
  1645 	inline TPckgC(const T& aRef);
  1646 	inline const T& operator()() const;
  1647 private:
  1648 	TPckgC<T>& operator=(const TPckgC<T>& aRef);
  1649 	};
  1650 
  1651 
  1652 
  1653 
  1654 /**
  1655 @publishedAll
  1656 @released
  1657 
  1658 Packages a modifiable pointer descriptor which represents an object of specific 
  1659 type.
  1660 
  1661 The template parameter defines the type of object.
  1662 
  1663 The object represented by the packaged pointer descriptor is accessible through 
  1664 the package.
  1665 */
  1666 template <class T>
  1667 class TPckg : public TPtr8
  1668 	{
  1669 public:
  1670 	inline TPckg(const T& aRef);
  1671 	inline T& operator()();
  1672 private:
  1673 	TPckg<T>& operator=(const TPckg<T>& aRef);
  1674 	};
  1675 
  1676 
  1677 
  1678 
  1679 /**
  1680 @publishedAll
  1681 @released
  1682 
  1683 Packages an object into a modifiable buffer descriptor.
  1684 
  1685 The template parameter defines the type of object to be packaged.
  1686 
  1687 The package provides a type safe way of transferring an object or data structure 
  1688 which is contained within a modifiable buffer descriptor. Typically, a package 
  1689 is used for passing data via inter thread communication.
  1690 
  1691 The contained object is accessible through the package.
  1692 */
  1693 template <class T>
  1694 class TPckgBuf : public TAlignedBuf8<sizeof(T)>
  1695 	{
  1696 public:
  1697 	inline TPckgBuf();
  1698 	inline TPckgBuf(const T& aRef);
  1699 	inline TPckgBuf& operator=(const TPckgBuf<T>& aRef);
  1700 	inline T& operator=(const T& aRef);
  1701 	inline T& operator()();
  1702 	inline const T& operator()() const;
  1703 	};
  1704 
  1705 
  1706 
  1707 
  1708 /**
  1709 @publishedAll
  1710 @released
  1711 
  1712 Defines a modifiable buffer descriptor that can contain the name of a reference 
  1713 counting object.
  1714 
  1715 @see TBuf
  1716 @see CObject
  1717 */
  1718 typedef TBuf<KMaxName> TName;
  1719 
  1720 
  1721 /**
  1722 @publishedAll
  1723 @released
  1724 
  1725 Defines a modifiable buffer descriptor that can contain the full name of a 
  1726 reference counting object.
  1727 
  1728 @see TBuf
  1729 @see CObject
  1730 */
  1731 typedef TBuf<KMaxFullName> TFullName;
  1732 
  1733 
  1734 
  1735 /**
  1736 @publishedAll
  1737 @released
  1738 
  1739 Defines a modifiable buffer descriptor to contain the category name identifying
  1740 the cause of thread or process termination. The buffer takes a maximum length
  1741 of KMaxExitCategoryName.
  1742 
  1743 @see RThread::ExitCategory
  1744 @see RThread::ExitCategory
  1745 */
  1746 typedef TBuf<KMaxExitCategoryName> TExitCategoryName;
  1747 
  1748 
  1749 
  1750 /**
  1751 @publishedAll
  1752 @released
  1753 
  1754 A buffer that can contain the name of a file.
  1755 The name can have a maximum length of KMaxFileName
  1756 (currently 256 but check the definition of KMaxFileName).
  1757 
  1758 @see KMaxFileName
  1759 */
  1760 typedef TBuf<KMaxFileName> TFileName;
  1761 
  1762 
  1763 
  1764 /**
  1765 @publishedAll
  1766 @released
  1767 
  1768 A buffer that can contain the name of a path.
  1769 The name can have a maximum length of KMaxPath
  1770 (currently 256 but check the definition of KMaxPath).
  1771 
  1772 @see KMaxPath
  1773 */
  1774 typedef TBuf<KMaxPath> TPath;
  1775 
  1776 
  1777 
  1778 
  1779 /**
  1780 @publishedAll
  1781 @released
  1782 
  1783 Version name type.
  1784 
  1785 This is a buffer descriptor with a maximum length of KMaxVersionName.
  1786 A TVersion object returns the formatted character representation of its version
  1787 information in a descriptor of this type.
  1788 
  1789 @see TVersion
  1790 */
  1791 typedef TBuf<KMaxVersionName> TVersionName;
  1792 
  1793 
  1794 
  1795 
  1796 /**
  1797 @publishedAll
  1798 @released
  1799 
  1800 Defines a modifiable buffer descriptor for the text form of the UID.
  1801 The descriptor has a maximum length of KMaxUidName and is used to contain
  1802 the standard text format returned by the function TUid::Name().
  1803 
  1804 @see TUid::Name
  1805 */
  1806 typedef TBuf<KMaxUidName> TUidName;
  1807 
  1808 
  1809 
  1810 
  1811 /**
  1812 @publishedAll
  1813 @released
  1814 
  1815 Defines a null UID
  1816 */
  1817 #define KNullUid TUid::Null()
  1818 
  1819 
  1820 
  1821 
  1822 /**
  1823 @publishedAll
  1824 @released
  1825 
  1826 A globally unique 32-bit number.
  1827 */
  1828 class TUid
  1829 	{
  1830 public:
  1831 #ifndef __KERNEL_MODE__
  1832 	IMPORT_C TBool operator==(const TUid& aUid) const;
  1833 	IMPORT_C TBool operator!=(const TUid& aUid) const;
  1834 	IMPORT_C TUidName Name() const;
  1835 #endif
  1836 	static inline TUid Uid(TInt aUid);
  1837 	static inline TUid Null();
  1838 public:
  1839 	/**
  1840 	The 32-bit integer UID value.
  1841 	*/
  1842 	TInt32 iUid;
  1843 	};
  1844 
  1845 
  1846 
  1847 
  1848 /**
  1849 @publishedAll
  1850 @released
  1851 
  1852 Encapsulates a set of three unique identifiers (UIDs) which, in combination, 
  1853 identify a system object such as a GUI application or a DLL. The three
  1854 component UIDs are referred to as UID1, UID2 and UID3.
  1855 
  1856 An object of this type is referred to as a compound identifier or a UID type.
  1857 */
  1858 class TUidType
  1859 	{
  1860 public:
  1861 #ifndef __KERNEL_MODE__
  1862 	IMPORT_C TUidType();
  1863 	IMPORT_C TUidType(TUid aUid1);
  1864 	IMPORT_C TUidType(TUid aUid1,TUid aUid2);
  1865 	IMPORT_C TUidType(TUid aUid1,TUid aUid2,TUid aUid3);
  1866 	IMPORT_C TBool operator==(const TUidType& aUidType) const;
  1867 	IMPORT_C TBool operator!=(const TUidType& aUidType) const;
  1868 	IMPORT_C const TUid& operator[](TInt anIndex) const;
  1869 	IMPORT_C TUid MostDerived() const;
  1870 	IMPORT_C TBool IsPresent(TUid aUid) const;
  1871 	IMPORT_C TBool IsValid() const;
  1872 private:
  1873 #endif
  1874 	TUid iUid[KMaxCheckedUid];
  1875 	};
  1876 
  1877 
  1878 
  1879 
  1880 /**
  1881 A class used to represent the Secure ID of a process or executable image.
  1882 
  1883 Constructors and conversion operators are provided to enable conversion
  1884 of this class to and from both TUint32 and TUid objects.
  1885 
  1886 Because this class has non-default constructors, compilers will not initialise
  1887 this objects at compile time, instead code will be generated to construct the object
  1888 at run-time. This is wastefull, and Symbian OS DLLs are not permitted to have
  1889 such uninitialised data. To overcome these problems a macro is provided to construct
  1890 a const object which behaves like a TSecureId. This is _LIT_SECURE_ID.
  1891 This macro should be used where it is desirable to define const TSecureId objects,
  1892 like in header files. E.g. Instead of writing:
  1893 @code
  1894 	const TSecureId MyId=0x1234567
  1895 @endcode
  1896 use
  1897 @code
  1898 	_LIT_SECURE_ID(MyId,0x1234567)
  1899 @endcode
  1900 
  1901 @publishedAll
  1902 @released
  1903 
  1904 @see _LIT_SECURE_ID
  1905 */
  1906 class TSecureId
  1907 	{
  1908 public:
  1909 	inline TSecureId();
  1910 	inline TSecureId(TUint32 aId);
  1911 	inline operator TUint32() const;
  1912 	inline TSecureId(TUid aId);
  1913 	inline operator TUid() const;
  1914 public:
  1915 	TUint32 iId;
  1916 	};
  1917 
  1918 
  1919 
  1920 
  1921 /**
  1922 A class used to represent the Vendor ID of a process or executable image
  1923 
  1924 Constructors and conversion operators are provided to enable conversion
  1925 of this class to and from both TUint32 and TUid objects.
  1926 
  1927 Because this class has non-default constructors, compilers will not initialise
  1928 this objects at compile time, instead code will be generated to construct the object
  1929 at run-time. This is wastefull, and Symbian OS DLLs are not permitted to have
  1930 such uninitialised data. To overcome these problems a macro is provided to construct
  1931 a const object which behaves like a TSecureId. This is _LIT_VENDOR_ID.
  1932 This macro should be used where it is desirable to define const TSecureId objects,
  1933 like in header files. E.g. Instead of writing:
  1934 @code
  1935 	const TVendorId MyId=0x1234567
  1936 @endcode
  1937 use
  1938 @code
  1939 	_LIT_VENDOR_ID(MyId,0x1234567)
  1940 @endcode
  1941 
  1942 @publishedAll
  1943 @released
  1944 
  1945 @see _LIT_VENDOR_ID
  1946 */
  1947 class TVendorId
  1948 	{
  1949 public:
  1950 	inline TVendorId();
  1951 	inline TVendorId(TUint32 aId);
  1952 	inline operator TUint32() const;
  1953 	inline TVendorId(TUid aId);
  1954 	inline operator TUid() const;
  1955 public:
  1956 	TUint32 iId;
  1957 	};
  1958 
  1959 
  1960 
  1961 /**
  1962 Structure for compile-time definition of a secure ID
  1963 @internalComponent
  1964 */
  1965 class SSecureId
  1966 	{
  1967 public:
  1968 	inline const TSecureId* operator&() const;
  1969 	inline operator const TSecureId&() const;
  1970 	inline operator TUint32() const;
  1971 	inline operator TUid() const;
  1972 public:
  1973 	TUint32 iId;
  1974 	};
  1975 
  1976 
  1977 	
  1978 	
  1979 /**
  1980 Structure for compile-time definition of a vendor ID
  1981 @internalComponent
  1982 */
  1983 class SVendorId
  1984 	{
  1985 public:
  1986 	inline const TVendorId* operator&() const;
  1987 	inline operator const TVendorId&() const;
  1988 	inline operator TUint32() const;
  1989 	inline operator TUid() const;
  1990 public:
  1991 	TUint32 iId;
  1992 	};
  1993 
  1994 
  1995 
  1996 
  1997 /**
  1998 Macro for compile-time definition of a secure ID
  1999 @param name Name to use for secure ID
  2000 @param value Value of secure ID
  2001 @publishedAll
  2002 @released
  2003 */
  2004 #define _LIT_SECURE_ID(name,value) const SSecureId name={value}
  2005 
  2006 
  2007 
  2008 
  2009 /**
  2010 Macro for compile-time definition of a vendor ID
  2011 @param name Name to use for vendor ID
  2012 @param value Value of vendor ID
  2013 @publishedAll
  2014 @released
  2015 */
  2016 #define _LIT_VENDOR_ID(name,value) const SVendorId name={value}
  2017 
  2018 
  2019 
  2020 
  2021 /**
  2022 @publishedAll
  2023 @released
  2024 
  2025 Contains version information.
  2026 
  2027 A version is defined by a set of three numbers:
  2028 
  2029 1. the major version number, ranging from 0 to 127, inclusive
  2030 
  2031 2. the minor version number, ranging from 0 to 99 inclusive
  2032 
  2033 3. the build number, ranging from 0 to 32767 inclusive.
  2034 
  2035 The class provides a constructor for setting all three numbers.
  2036 It also provides a member function to build a character representation of
  2037 this information in a TVersionName descriptor.
  2038 
  2039 @see TVersionName
  2040 */
  2041 class TVersion
  2042 	{
  2043 public:
  2044 	IMPORT_C TVersion();
  2045 	IMPORT_C TVersion(TInt aMajor,TInt aMinor,TInt aBuild);
  2046 	IMPORT_C TVersionName Name() const;
  2047 public:
  2048     /**
  2049     The major version number.
  2050     */
  2051 	TInt8 iMajor;
  2052 
  2053 
  2054     /**
  2055     The minor version number.
  2056     */
  2057 	TInt8 iMinor;
  2058 
  2059 	
  2060 	/**
  2061 	The build number.
  2062 	*/
  2063 	TInt16 iBuild;
  2064 	};
  2065 
  2066 
  2067 
  2068 
  2069 /**
  2070 @publishedAll
  2071 @released
  2072 
  2073 Indicates the completion status of a request made to a service provider.
  2074 
  2075 When a thread makes a request, it passes a request status as a parameter. 
  2076 On completion, the provider signals the requesting thread's request semaphore 
  2077 and stores a completion code in the request status. Typically, this is KErrNone 
  2078 or one of the other system-wide error codes.
  2079 
  2080 This class is not intended for user derivation.
  2081 */
  2082 class TRequestStatus
  2083 	{
  2084 public:
  2085 	inline TRequestStatus();
  2086 	inline TRequestStatus(TInt aVal);
  2087 	inline TInt operator=(TInt aVal);
  2088 	inline TBool operator==(TInt aVal) const;
  2089 	inline TBool operator!=(TInt aVal) const;
  2090 	inline TBool operator>=(TInt aVal) const;
  2091 	inline TBool operator<=(TInt aVal) const;
  2092 	inline TBool operator>(TInt aVal) const;
  2093 	inline TBool operator<(TInt aVal) const;
  2094 	inline TInt Int() const;
  2095 private:
  2096 	enum
  2097 		{
  2098 		EActive				= 1,  //bit0
  2099 		ERequestPending		= 2,  //bit1
  2100 		};
  2101 	TInt iStatus;
  2102 	TUint iFlags;
  2103 	friend class CActive;
  2104 	friend class CActiveScheduler;
  2105 	friend class CServer2;
  2106 	};
  2107 
  2108 
  2109 
  2110 
  2111 class TSize;
  2112 /**
  2113 @publishedAll
  2114 @released
  2115 
  2116 Stores a two-dimensional point in Cartesian co-ordinates.
  2117 
  2118 Its data members (iX and iY) are public and can be manipulated directly, or 
  2119 by means of the functions provided. Functions are provided to set and manipulate 
  2120 the point, and to compare points for equality.
  2121 */
  2122 class TPoint
  2123 	{
  2124 public:
  2125 #ifndef __KERNEL_MODE__
  2126 	enum TUninitialized { EUninitialized };
  2127 	/**
  2128 	Constructs default point, initialising its iX and iY members to zero.
  2129 	*/
  2130 	TPoint(TUninitialized) {}
  2131 	inline TPoint();
  2132 	inline TPoint(TInt aX,TInt aY);
  2133 	IMPORT_C TBool operator==(const TPoint& aPoint) const;
  2134 	IMPORT_C TBool operator!=(const TPoint& aPoint) const;
  2135 	IMPORT_C TPoint& operator-=(const TPoint& aPoint);
  2136 	IMPORT_C TPoint& operator+=(const TPoint& aPoint);
  2137 	IMPORT_C TPoint& operator-=(const TSize& aSize);
  2138 	IMPORT_C TPoint& operator+=(const TSize& aSize);
  2139 	IMPORT_C TPoint operator-(const TPoint& aPoint) const;
  2140 	IMPORT_C TPoint operator+(const TPoint& aPoint) const;
  2141 	IMPORT_C TPoint operator-(const TSize& aSize) const;
  2142 	IMPORT_C TPoint operator+(const TSize& aSize) const;
  2143 	IMPORT_C TPoint operator-() const;
  2144 	IMPORT_C void SetXY(TInt aX,TInt aY);
  2145 	IMPORT_C TSize AsSize() const;
  2146 #endif
  2147 public:
  2148 	/**
  2149 	The x co-ordinate.
  2150 	*/
  2151 	TInt iX;
  2152 	/**
  2153 	The y co-ordinate.
  2154 	*/
  2155 	TInt iY;
  2156 	};
  2157 
  2158 
  2159 
  2160 
  2161 /**
  2162 @publishedAll
  2163 @prototype
  2164 
  2165 Stores a three-dimensional point in Cartesian or polar co-ordinates.
  2166 Its data members (iX, iY and iZ) are public and can be manipulated directly.
  2167 
  2168 */
  2169 class TPoint3D
  2170 	{
  2171 public:
  2172 #ifndef __KERNEL_MODE__
  2173 	enum TUninitialized { EUninitialized };
  2174 
  2175 	/**
  2176 	TUninitialized Constructor
  2177 	*/
  2178 	TPoint3D(TUninitialized) {}
  2179 	/**
  2180 	Constructs default TPoint3D, initialising its iX , iY and iZ members to zero.
  2181 	*/
  2182 	inline TPoint3D();
  2183 	/**
  2184 	Constructs  TPoint3D with the specified x,y  and z co-ordinates.
  2185 	*/
  2186 	inline TPoint3D(TInt aX,TInt aY,TInt aZ);
  2187 	/** 
  2188 	Copy Construct from TPoint , initialises Z co-ordinate to  Zero
  2189 	*/
  2190 	inline TPoint3D(const  TPoint& aPoint);
  2191 
  2192 	IMPORT_C TBool operator==(const TPoint3D& aPoint3D) const;
  2193 	IMPORT_C TBool operator!=(const TPoint3D& aPoint3D) const;
  2194 
  2195 	IMPORT_C TPoint3D& operator-=(const TPoint3D& aPoint3D);
  2196 	IMPORT_C TPoint3D& operator-=(const TPoint& aPoint);
  2197 
  2198 	IMPORT_C TPoint3D& operator+=(const TPoint3D& aPoint3D);	
  2199 	IMPORT_C TPoint3D& operator+=(const TPoint& aPoint);
  2200 
  2201 	IMPORT_C TPoint3D operator-(const TPoint3D& aPoint3D) const;
  2202 	IMPORT_C TPoint3D operator-(const TPoint& aPoint) const;	
  2203 
  2204 	IMPORT_C TPoint3D operator+(const TPoint3D& aPoint3D) const;
  2205 	IMPORT_C TPoint3D operator+(const TPoint& aPoint) const;
  2206 	/**
  2207     Unary minus operator. The operator returns the negation of this Point3D 
  2208 	*/
  2209 	IMPORT_C TPoint3D operator-() const;
  2210 	
  2211 	/**
  2212 	Set Method to set the xyz co-ordinates of TPoint3D
  2213 	*/
  2214 	IMPORT_C void SetXYZ(TInt aX,TInt aY,TInt aZ);
  2215 	
  2216 	/**
  2217 	TPoint3D from TPoint, sets the Z co-ordinate to  Zero
  2218 	*/
  2219 	IMPORT_C void SetPoint(const TPoint& aPoint);
  2220 
  2221 	/**
  2222 	Returns TPoint from TPoint3D
  2223 	*/
  2224 	IMPORT_C TPoint AsPoint() const;
  2225 #endif
  2226 public:
  2227 	/**
  2228 	The x co-ordinate.
  2229 	*/
  2230 	TInt iX;
  2231 	/**
  2232 	The y co-ordinate.
  2233 	*/
  2234 	TInt iY;
  2235 	/**
  2236 	The z co-ordinate.
  2237 	*/
  2238 	TInt iZ;
  2239 	};
  2240 
  2241 
  2242 
  2243 /**
  2244 @internalTechnology
  2245 @prototype For now, only intended to be used by TRwEvent and the Windows Server
  2246 
  2247 Stores the angular spherical coordinates (Phi,Theta) of a three-dimensional point.
  2248 
  2249 Its data members (iPhi, iTheta) are public and can be manipulated directly.
  2250 */
  2251 class TAngle3D
  2252 	{
  2253 public:
  2254 	/**
  2255 	The Phi co-ordinate (angle between X-axis and the line that links the projection of the point on the X-Y plane and the origin).
  2256 	*/
  2257 	TInt iPhi;
  2258 	/**
  2259 	The Theta co-ordinate (angle between the Z-axis and the line that links the point and the origin).
  2260 	*/
  2261 	TInt iTheta;
  2262 	};
  2263 
  2264 	
  2265 /**
  2266 @publishedAll
  2267 @released
  2268 
  2269 Stores a two-dimensional size as a width and a height value.
  2270 
  2271 Its data members are public and can be manipulated directly, or by means of 
  2272 the functions provided.
  2273 */
  2274 class TSize
  2275 	{
  2276 public:
  2277 #ifndef __KERNEL_MODE__
  2278 	enum TUninitialized { EUninitialized };
  2279 	/**
  2280 	Constructs the size object with its iWidth and iHeight members set to zero.
  2281 	*/
  2282 	TSize(TUninitialized) {}
  2283 	inline TSize();
  2284 	inline TSize(TInt aWidth,TInt aHeight);
  2285 	IMPORT_C TBool operator==(const TSize& aSize) const;
  2286 	IMPORT_C TBool operator!=(const TSize& aSize) const;
  2287 	IMPORT_C TSize& operator-=(const TSize& aSize);
  2288 	IMPORT_C TSize& operator-=(const TPoint& aPoint);
  2289 	IMPORT_C TSize& operator+=(const TSize& aSize);
  2290 	IMPORT_C TSize& operator+=(const TPoint& aPoint);
  2291 	IMPORT_C TSize operator-(const TSize& aSize) const;
  2292 	IMPORT_C TSize operator-(const TPoint& aPoint) const;
  2293 	IMPORT_C TSize operator+(const TSize& aSize) const;
  2294 	IMPORT_C TSize operator+(const TPoint& aPoint) const;
  2295 	IMPORT_C TSize operator-() const;
  2296 	IMPORT_C void SetSize(TInt aWidth,TInt aHeight);
  2297 	IMPORT_C TPoint AsPoint() const;
  2298 #endif
  2299 public:
  2300 	/**
  2301 	The width of this TSize object.
  2302 	*/
  2303 	TInt iWidth;
  2304 	/**
  2305 	The height of this TSize object.
  2306 	*/
  2307 	TInt iHeight;
  2308 	};
  2309 
  2310 
  2311 
  2312 
  2313 /**
  2314 @publishedAll
  2315 @released
  2316 
  2317 Information about a kernel object.
  2318 
  2319 This type of object is passed to RHandleBase::HandleInfo(). The function 
  2320 fetches information on the usage of the kernel object associated with that 
  2321 handle and stores the information in the THandleInfo object.
  2322 
  2323 The class contains four data members and no explicitly defined function
  2324 members.
  2325 */
  2326 class THandleInfo
  2327 	{
  2328 public:
  2329 	/**
  2330 	The number of times that the kernel object is open in the current process.
  2331 	*/
  2332 	TInt iNumOpenInProcess;
  2333 	
  2334 	/**
  2335 	The number of times that the kernel object is open in the current thread.
  2336 	*/
  2337 	TInt iNumOpenInThread;
  2338 	
  2339 	/**
  2340 	The number of processes which have a handle on the kernel object.
  2341 	*/
  2342 	TInt iNumProcesses;
  2343 	
  2344 	/**
  2345 	The number of threads which have a handle on the kernel object.
  2346 	*/
  2347 	TInt iNumThreads;
  2348 	};
  2349 
  2350 
  2351 
  2352 
  2353 /**
  2354 @internalComponent
  2355 */
  2356 class TFindHandle
  2357 	{
  2358 public:
  2359 	inline TFindHandle();
  2360 	inline TInt Handle() const;
  2361 #ifdef __KERNEL_MODE__
  2362 	inline TInt Index() const;
  2363 	inline TInt UniqueID() const;
  2364 	inline TUint64 ObjectID() const;
  2365 	inline void Set(TInt aIndex, TInt aUniqueId, TUint64 aObjectId);
  2366 #else
  2367 protected:
  2368 	inline void Reset();
  2369 #endif
  2370 private:
  2371 	TInt iHandle;
  2372 	TInt iSpare1;
  2373 	TInt iObjectIdLow;
  2374 	TInt iObjectIdHigh;
  2375 	};
  2376 
  2377 
  2378 
  2379 class RThread;
  2380 class TFindHandleBase;
  2381 class TFindSemaphore;
  2382 /**
  2383 @publishedAll
  2384 @released
  2385 
  2386 A handle to an object.
  2387 
  2388 The class encapsulates the basic behaviour of a handle, hiding the
  2389 handle-number which identifies the object which the handle represents.
  2390 
  2391 The class is abstract in the sense that a RHandleBase object is never
  2392 explicitly instantiated. It is always a base class to a concrete handle class;
  2393 for example, RSemaphore, RThread, RProcess, RCriticalSection etc.
  2394 */
  2395 class RHandleBase
  2396 	{
  2397 public:
  2398     /**
  2399     @publishedAll
  2400     @released
  2401 
  2402 	Read/Write attributes for the handle.
  2403     */
  2404     enum TAttributes
  2405 		{
  2406 		EReadAccess=0x1,
  2407 		EWriteAccess=0x2,
  2408 		EDirectReadAccess=0x4,
  2409 		EDirectWriteAccess=0x8,
  2410 		};
  2411 public:
  2412 	inline RHandleBase();
  2413 	inline TInt Handle() const;
  2414 	inline void SetHandle(TInt aHandle);
  2415 	inline TInt SetReturnedHandle(TInt aHandleOrError);	
  2416 	static void DoExtendedClose();
  2417 #ifndef __KERNEL_MODE__
  2418 	IMPORT_C void Close();
  2419 	IMPORT_C TName Name() const;
  2420 	IMPORT_C TFullName FullName() const;
  2421 	IMPORT_C void FullName(TDes& aName) const;
  2422 	IMPORT_C void SetHandleNC(TInt aHandle);
  2423 	IMPORT_C TInt Duplicate(const RThread& aSrc,TOwnerType aType=EOwnerProcess);
  2424 	IMPORT_C void HandleInfo(THandleInfo* anInfo);
  2425 	IMPORT_C TUint Attributes() const;
  2426 	IMPORT_C TInt BTraceId() const;
  2427 	IMPORT_C void NotifyDestruction(TRequestStatus& aStatus);	/**< @internalTechnology */
  2428 protected:
  2429 	inline RHandleBase(TInt aHandle);
  2430 	IMPORT_C TInt Open(const TFindHandleBase& aHandle,TOwnerType aType);
  2431 	static TInt SetReturnedHandle(TInt aHandleOrError,RHandleBase& aHandle);
  2432 	TInt OpenByName(const TDesC &aName,TOwnerType aOwnerType,TInt aObjectType);
  2433 #endif
  2434 private:
  2435 	static void DoExtendedCloseL();
  2436 protected:
  2437 	TInt iHandle;
  2438 	};
  2439 
  2440 
  2441 
  2442 
  2443 class RMessagePtr2;
  2444 /**
  2445 @publishedAll
  2446 @released
  2447 
  2448 A handle to a semaphore.
  2449 
  2450 The semaphore itself is a Kernel side object.
  2451 
  2452 As with all handles, they should be closed after use. RHandleBase provides 
  2453 the necessary Close() function, which should be called when the handle is 
  2454 no longer required.
  2455 
  2456 @see RHandleBase::Close
  2457 */
  2458 class RSemaphore : public RHandleBase
  2459 	{
  2460 public:
  2461 #ifndef __KERNEL_MODE__
  2462 	inline TInt Open(const TFindSemaphore& aFind,TOwnerType aType=EOwnerProcess);
  2463 	IMPORT_C TInt CreateLocal(TInt aCount,TOwnerType aType=EOwnerProcess);
  2464 	IMPORT_C TInt CreateGlobal(const TDesC& aName,TInt aCount,TOwnerType aType=EOwnerProcess);
  2465 	IMPORT_C TInt OpenGlobal(const TDesC& aName,TOwnerType aType=EOwnerProcess);
  2466 	IMPORT_C TInt Open(RMessagePtr2 aMessage,TInt aParam,TOwnerType aType=EOwnerProcess);
  2467 	IMPORT_C TInt Open(TInt aArgumentIndex, TOwnerType aType=EOwnerProcess);
  2468 	IMPORT_C void Wait();
  2469 	IMPORT_C TInt Wait(TInt aTimeout);	// timeout in microseconds
  2470 	IMPORT_C void Signal();
  2471 	IMPORT_C void Signal(TInt aCount);
  2472 #endif
  2473 	};
  2474 
  2475 
  2476 
  2477 
  2478 /**
  2479 @publishedAll
  2480 @released
  2481 
  2482 A fast semaphore.
  2483 
  2484 This is a layer over a standard semaphore, and only calls into the kernel side
  2485 if there is contention.
  2486 */
  2487 class RFastLock : public RSemaphore
  2488 	{
  2489 public:
  2490 	inline RFastLock();
  2491 	IMPORT_C TInt CreateLocal(TOwnerType aType=EOwnerProcess);
  2492 	IMPORT_C void Wait();
  2493 	IMPORT_C void Signal();
  2494 private:
  2495 	TInt iCount;
  2496 	};
  2497 
  2498 
  2499 
  2500 
  2501 /**
  2502 @publishedAll
  2503 @released
  2504 
  2505 A read-write lock.
  2506 
  2507 This is a lock for co-ordinating readers and writers to shared resources.
  2508 It is designed to allow multiple concurrent readers.
  2509 It is not a kernel side object and so does not inherit from RHandleBase.
  2510 */
  2511 class RReadWriteLock
  2512 	{
  2513 public:
  2514 	enum TReadWriteLockPriority
  2515 		{
  2516 		/** Pending writers always get the lock before pending readers */
  2517 		EWriterPriority,
  2518 		/** Lock is given alternately to pending readers and writers */
  2519 		EAlternatePriority,
  2520 		/** Pending readers always get the lock before pending writers - beware writer starvation! */
  2521 		EReaderPriority,
  2522 		};
  2523 	enum TReadWriteLockClientCategoryLimit
  2524 		{
  2525 		/** Maximum number of clients in each category: read locked, read lock pending, write lock pending */
  2526 		EReadWriteLockClientCategoryLimit = KMaxTUint16
  2527 		};
  2528 
  2529 public:
  2530 	inline RReadWriteLock();
  2531 	IMPORT_C TInt CreateLocal(TReadWriteLockPriority aPriority = EWriterPriority);
  2532 	IMPORT_C void Close();
  2533 
  2534 	IMPORT_C void ReadLock();
  2535 	IMPORT_C void WriteLock();
  2536 	IMPORT_C TBool TryReadLock();
  2537 	IMPORT_C TBool TryWriteLock();
  2538 	IMPORT_C TBool TryUpgradeReadLock();
  2539 	IMPORT_C void DowngradeWriteLock();
  2540 	IMPORT_C void Unlock();
  2541 
  2542 private:
  2543 	RReadWriteLock(const RReadWriteLock& aLock);
  2544 	RReadWriteLock& operator=(const RReadWriteLock& aLock);
  2545 
  2546 	TInt UnlockWriter();
  2547 	TInt UnlockAlternate();
  2548 	TInt UnlockReader();
  2549 
  2550 private:
  2551 	volatile TUint64 iValues; // Bits 0-15: readers; bit 16: writer; bits 32-47: readersPending; bits 48-63: writersPending
  2552 	TReadWriteLockPriority iPriority;
  2553 	RSemaphore iReaderSem;
  2554 	RSemaphore iWriterSem;
  2555 	TUint32 iSpare[4]; // Reserved for future development
  2556 	};
  2557 
  2558 
  2559 
  2560 
  2561 /**
  2562 @publishedAll
  2563 @released
  2564 
  2565 The user-side handle to a logical channel.
  2566 
  2567 The class provides functions that are used to open a channel
  2568 to a device driver, and to make requests. A device driver provides
  2569 a derived class to give the user-side a tailored interface to the driver.
  2570 */
  2571 class RBusLogicalChannel : public RHandleBase
  2572 	{
  2573 public:
  2574 	IMPORT_C TInt Open(RMessagePtr2 aMessage,TInt aParam,TOwnerType aType=EOwnerProcess);
  2575 	IMPORT_C TInt Open(TInt aArgumentIndex, TOwnerType aType=EOwnerProcess);
  2576 protected:
  2577 	inline TInt DoCreate(const TDesC& aDevice, const TVersion& aVer, TInt aUnit, const TDesC* aDriver, const TDesC8* anInfo, TOwnerType aType=EOwnerProcess, TBool aProtected=EFalse);
  2578 	IMPORT_C void DoCancel(TUint aReqMask);
  2579 	IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus);
  2580 	IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus,TAny* a1);
  2581 	IMPORT_C void DoRequest(TInt aReqNo,TRequestStatus& aStatus,TAny* a1,TAny* a2);
  2582 	IMPORT_C TInt DoControl(TInt aFunction);
  2583 	IMPORT_C TInt DoControl(TInt aFunction,TAny* a1);
  2584 	IMPORT_C TInt DoControl(TInt aFunction,TAny* a1,TAny* a2);
  2585 	inline TInt DoSvControl(TInt aFunction) { return DoControl(aFunction); }
  2586 	inline TInt DoSvControl(TInt aFunction,TAny* a1) { return DoControl(aFunction, a1); }
  2587 	inline TInt DoSvControl(TInt aFunction,TAny* a1,TAny* a2) { return DoControl(aFunction, a1, a2); }
  2588 private:
  2589 	IMPORT_C TInt DoCreate(const TDesC& aDevice, const TVersion& aVer, TInt aUnit, const TDesC* aDriver, const TDesC8* aInfo, TInt aType);
  2590 private:
  2591 	// Padding for Binary Compatibility purposes
  2592 	TInt iPadding1;
  2593 	TInt iPadding2;
  2594 	};
  2595 
  2596 
  2597 
  2598 
  2599 /**
  2600 @internalComponent
  2601 
  2602 Base class for memory allocators.
  2603 */
  2604 // Put pure virtual functions into a separate base class so that vptr is at same
  2605 // place in both GCC98r2 and EABI builds.
  2606 class MAllocator
  2607 	{
  2608 public:
  2609 	virtual TAny* Alloc(TInt aSize)=0;
  2610 	virtual void Free(TAny* aPtr)=0;
  2611 	virtual TAny* ReAlloc(TAny* aPtr, TInt aSize, TInt aMode=0)=0;
  2612 	virtual TInt AllocLen(const TAny* aCell) const =0;
  2613 	virtual TInt Compress()=0;
  2614 	virtual void Reset()=0;
  2615 	virtual TInt AllocSize(TInt& aTotalAllocSize) const =0;
  2616 	virtual TInt Available(TInt& aBiggestBlock) const =0;
  2617 	virtual TInt DebugFunction(TInt aFunc, TAny* a1=NULL, TAny* a2=NULL)=0;
  2618 	virtual TInt Extension_(TUint aExtensionId, TAny*& a0, TAny* a1)=0;
  2619 	};
  2620 
  2621 
  2622 
  2623 
  2624 /**
  2625 @publishedAll
  2626 @released
  2627 
  2628 Base class for heaps.
  2629 */
  2630 class RAllocator : public MAllocator
  2631 	{
  2632 public:
  2633 
  2634 
  2635     /**
  2636     A set of heap allocation failure flags.
  2637     
  2638     This enumeration indicates how to simulate heap allocation failure.
  2639 
  2640     @see RAllocator::__DbgSetAllocFail()
  2641     */
  2642 	enum TAllocFail {
  2643                     /**
  2644                     Attempts to allocate from this heap fail at a random rate;
  2645                     however, the interval pattern between failures is the same
  2646                     every time simulation is started.
  2647                     */
  2648 	                ERandom,
  2649 	                
  2650 	                
  2651                   	/**
  2652                   	Attempts to allocate from this heap fail at a random rate.
  2653                   	The interval pattern between failures may be different every
  2654                   	time the simulation is started.
  2655                   	*/
  2656 	                ETrueRandom,
  2657 	                
  2658 	                
  2659                     /**
  2660                     Attempts to allocate from this heap fail at a rate aRate;
  2661                     for example, if aRate is 3, allocation fails at every
  2662                     third attempt.
  2663                     */
  2664 	                EDeterministic,
  2665 
  2666 	                
  2667 	                /**
  2668 	                Cancels simulated heap allocation failure.
  2669 	                */
  2670 	                ENone,
  2671 	                
  2672 	                
  2673 	                /**
  2674 	                An allocation from this heap will fail after the next aRate - 1 
  2675 					allocation attempts. For example, if aRate = 1 then the next 
  2676 					attempt to allocate from this heap will fail.
  2677 	                */
  2678 	                EFailNext,
  2679 	                
  2680 	                /**
  2681 	                Cancels simulated heap allocation failure, and sets
  2682 	                the nesting level for all allocated cells to zero.
  2683 	                */
  2684 	                EReset,
  2685 
  2686                     /**
  2687                     aBurst allocations from this heap fail at a random rate;
  2688                     however, the interval pattern between failures is the same
  2689                     every time the simulation is started.
  2690                     */
  2691 	                EBurstRandom,
  2692 	                
  2693 	                
  2694                   	/**
  2695                   	aBurst allocations from this heap fail at a random rate.
  2696                   	The interval pattern between failures may be different every
  2697                   	time the simulation is started.
  2698                   	*/
  2699 	                EBurstTrueRandom,
  2700 	                
  2701 	                
  2702                     /**
  2703                     aBurst allocations from this heap fail at a rate aRate.
  2704                     For example, if aRate is 10 and aBurst is 2, then 2 allocations
  2705 					will fail at every tenth attempt.
  2706                     */
  2707 	                EBurstDeterministic,
  2708 
  2709 	                /**
  2710 	                aBurst allocations from this heap will fail after the next aRate - 1 
  2711 					allocation attempts have occurred. For example, if aRate = 1 and 
  2712 					aBurst = 3 then the next 3 attempts to allocate from this heap will fail.
  2713 	                */
  2714 	                EBurstFailNext,
  2715 
  2716 					/**
  2717 					Use this to determine how many times the current debug 
  2718 					failure mode has failed so far.
  2719 					@see RAllocator::__DbgCheckFailure()
  2720 					*/
  2721 					ECheckFailure,
  2722 	                };
  2723 	                
  2724 	                
  2725     /**
  2726     Heap debug checking type flag.
  2727     */
  2728 	enum TDbgHeapType {
  2729                       /**
  2730                       The heap is a user heap.
  2731                       */
  2732 	                  EUser,
  2733 	                  
  2734                       /**
  2735                       The heap is the Kernel heap.
  2736                       */	                  
  2737 	                  EKernel
  2738 	                  };
  2739 	                  
  2740 	                  
  2741 	enum TAllocDebugOp {ECount, EMarkStart, EMarkEnd, ECheck, ESetFail, ECopyDebugInfo, ESetBurstFail};
  2742 	
  2743 	
  2744 	/**
  2745 	Flags controlling reallocation.
  2746 	*/
  2747 	enum TReAllocMode {
  2748 	                  /**
  2749 	                  A reallocation of a cell must not change
  2750 	                  the start address of the cell.
  2751 	                  */
  2752 	                  ENeverMove=1,
  2753 	                  
  2754 	                  /**
  2755 	                  Allows the start address of the cell to change
  2756 	                  if the cell shrinks in size.
  2757 	                  */
  2758 	                  EAllowMoveOnShrink=2
  2759 	                  };
  2760 	                  
  2761 	                  
  2762 	enum TFlags {ESingleThreaded=1, EFixedSize=2, ETraceAllocs=4, EMonitorMemory=8,};
  2763 	struct SCheckInfo {TBool iAll; TInt iCount; const TDesC8* iFileName; TInt iLineNum;};
  2764 #ifndef SYMBIAN_ENABLE_SPLIT_HEADERS
  2765 	struct SRAllocatorBurstFail {TInt iBurst; TInt iRate; TInt iUnused[2];};
  2766 #endif
  2767 	enum {EMaxHandles=32};
  2768 
  2769 public:
  2770 	inline RAllocator();
  2771 #ifndef __KERNEL_MODE__
  2772 	IMPORT_C TInt Open();
  2773 	IMPORT_C void Close();
  2774 	IMPORT_C TAny* AllocZ(TInt aSize);
  2775 	IMPORT_C TAny* AllocZL(TInt aSize);
  2776 	IMPORT_C TAny* AllocL(TInt aSize);
  2777 	IMPORT_C TAny* AllocLC(TInt aSize);
  2778 	IMPORT_C void FreeZ(TAny*& aCell);
  2779 	IMPORT_C TAny* ReAllocL(TAny* aCell, TInt aSize, TInt aMode=0);
  2780 	IMPORT_C TInt Count() const;
  2781 	IMPORT_C TInt Count(TInt& aFreeCount) const;
  2782 #endif
  2783 	UIMPORT_C void Check() const;
  2784 	UIMPORT_C void __DbgMarkStart();
  2785 	UIMPORT_C TUint32 __DbgMarkEnd(TInt aCount);
  2786 	UIMPORT_C TInt __DbgMarkCheck(TBool aCountAll, TInt aCount, const TDesC8& aFileName, TInt aLineNum);
  2787 	inline void __DbgMarkCheck(TBool aCountAll, TInt aCount, const TUint8* aFileName, TInt aLineNum);
  2788 	UIMPORT_C void __DbgSetAllocFail(TAllocFail aType, TInt aRate);
  2789 	UIMPORT_C void __DbgSetBurstAllocFail(TAllocFail aType, TUint aRate, TUint aBurst);
  2790 	UIMPORT_C TUint __DbgCheckFailure();
  2791 protected:
  2792 	UIMPORT_C virtual TInt Extension_(TUint aExtensionId, TAny*& a0, TAny* a1);
  2793 #ifndef __KERNEL_MODE__
  2794 	IMPORT_C virtual void DoClose();
  2795 #endif
  2796 protected:
  2797 	TInt iAccessCount;
  2798 	TInt iHandleCount;
  2799 	TInt* iHandles;
  2800 	TUint32 iFlags;
  2801 	TInt iCellCount;
  2802 	TInt iTotalAllocSize;
  2803 	};
  2804 
  2805 
  2806 
  2807 
  2808 class UserHeap;
  2809 /**
  2810 @publishedAll
  2811 @released
  2812 
  2813 Represents the default implementation for a heap.
  2814 
  2815 The default implementation uses an address-ordered first fit type algorithm.
  2816 
  2817 The heap itself is contained in a chunk and may be the only occupant of the 
  2818 chunk or may share the chunk with the program stack.
  2819 
  2820 The class contains member functions for allocating, adjusting, freeing individual 
  2821 cells and generally managing the heap.
  2822 
  2823 The class is not a handle in the same sense that RChunk is a handle; i.e. 
  2824 there is no Kernel object which corresponds to the heap.
  2825 */
  2826 class RHeap : public RAllocator
  2827 	{
  2828 public:
  2829     /**
  2830     The structure of a heap cell header for a heap cell on the free list.
  2831     */
  2832 	struct SCell {
  2833 	             /**
  2834 	             The length of the cell, which includes the length of
  2835 	             this header.
  2836 	             */
  2837 	             TInt len; 
  2838 	             
  2839 	             
  2840 	             /**
  2841 	             A pointer to the next cell in the free list.
  2842 	             */
  2843 	             SCell* next;
  2844 	             };
  2845 
  2846 
  2847 	/**
  2848     The structure of a heap cell header for an allocated heap cell in a debug build.
  2849     */             
  2850 	struct SDebugCell {
  2851 	                  /**
  2852 	                  The length of the cell, which includes the length of
  2853                       this header.
  2854 	                  */
  2855 	                  TInt len;
  2856 	                  
  2857 	                  
  2858 	                  /**
  2859 	                  The nested level.
  2860 	                  */
  2861 	                  TInt nestingLevel;
  2862 	                  
  2863 	                  
  2864 	                  /**
  2865 	                  The cumulative number of allocated cells
  2866 	                  */
  2867 	                  TInt allocCount;
  2868 	                  };
  2869 
  2870 	/**
  2871     @internalComponent
  2872     */
  2873 	struct SHeapCellInfo { RHeap* iHeap; TInt iTotalAlloc;	TInt iTotalAllocSize; TInt iTotalFree; TInt iLevelAlloc; SDebugCell* iStranded; };
  2874 
  2875 	/**
  2876 	@internalComponent
  2877 	*/
  2878 	struct _s_align {char c; double d;};
  2879 
  2880 	/** 
  2881 	The default cell alignment.
  2882 	*/
  2883 	enum {ECellAlignment = sizeof(_s_align)-sizeof(double)};
  2884 	
  2885 	/**
  2886 	Size of a free cell header.
  2887 	*/
  2888 	enum {EFreeCellSize = sizeof(SCell)};
  2889 
  2890 
  2891 #ifdef _DEBUG
  2892     /**
  2893     Size of an allocated cell header in a debug build.
  2894     */
  2895 	enum {EAllocCellSize = sizeof(SDebugCell)};
  2896 #else
  2897     /**
  2898     Size of an allocated cell header in a release build.
  2899     */
  2900 	enum {EAllocCellSize = sizeof(SCell*)};
  2901 #endif
  2902 
  2903 
  2904     /**
  2905     @internalComponent
  2906     */
  2907 	enum TDebugOp {EWalk=128};
  2908 	
  2909 	
  2910     /**
  2911     @internalComponent
  2912     */
  2913 	enum TCellType
  2914 		{EGoodAllocatedCell, EGoodFreeCell, EBadAllocatedCellSize, EBadAllocatedCellAddress,
  2915 		EBadFreeCellAddress, EBadFreeCellSize};
  2916 
  2917 		
  2918     /**
  2919     @internalComponent
  2920     */
  2921 	enum TDebugHeapId {EUser=0, EKernel=1};
  2922     
  2923     /**
  2924     @internalComponent
  2925     */
  2926     enum TDefaultShrinkRatios {EShrinkRatio1=256, EShrinkRatioDflt=512};
  2927 
  2928 #ifndef SYMBIAN_ENABLE_SPLIT_HEADERS
  2929 	/**
  2930     @internalComponent
  2931     */
  2932 #else
  2933 private:
  2934 #endif
  2935     typedef void (*TWalkFunc)(TAny*, TCellType, TAny*, TInt);
  2936 
  2937 public:
  2938 	UIMPORT_C virtual TAny* Alloc(TInt aSize);
  2939 	UIMPORT_C virtual void Free(TAny* aPtr);
  2940 	UIMPORT_C virtual TAny* ReAlloc(TAny* aPtr, TInt aSize, TInt aMode=0);
  2941 	UIMPORT_C virtual TInt AllocLen(const TAny* aCell) const;
  2942 #ifndef __KERNEL_MODE__
  2943 	UIMPORT_C virtual TInt Compress();
  2944 	UIMPORT_C virtual void Reset();
  2945 	UIMPORT_C virtual TInt AllocSize(TInt& aTotalAllocSize) const;
  2946 	UIMPORT_C virtual TInt Available(TInt& aBiggestBlock) const;
  2947 #endif
  2948 	UIMPORT_C virtual TInt DebugFunction(TInt aFunc, TAny* a1=NULL, TAny* a2=NULL);
  2949 protected:
  2950 	UIMPORT_C virtual TInt Extension_(TUint aExtensionId, TAny*& a0, TAny* a1);
  2951 public:
  2952 	UIMPORT_C RHeap(TInt aMaxLength, TInt aAlign=0, TBool aSingleThread=ETrue);
  2953 	UIMPORT_C RHeap(TInt aChunkHandle, TInt aOffset, TInt aMinLength, TInt aMaxLength, TInt aGrowBy, TInt aAlign=0, TBool aSingleThread=EFalse);
  2954 	UIMPORT_C TAny* operator new(TUint aSize, TAny* aBase) __NO_THROW;
  2955 	inline void operator delete(TAny* aPtr, TAny* aBase);
  2956 	inline TUint8* Base() const;
  2957 	inline TInt Size() const;
  2958 	inline TInt MaxLength() const;
  2959 	inline TInt Align(TInt a) const;
  2960 	inline const TAny* Align(const TAny* a) const;
  2961 	inline TBool IsLastCell(const SCell* aCell) const;
  2962 	inline void Lock() const;
  2963 	inline void Unlock() const;
  2964 	inline TInt ChunkHandle() const;
  2965 protected:
  2966 	inline RHeap();
  2967 	void Initialise();
  2968 	SCell* DoAlloc(TInt aSize, SCell*& aLastFree);
  2969 	void DoFree(SCell* pC);
  2970 	TInt TryToGrowHeap(TInt aSize, SCell* aLastFree);
  2971 	inline void FindFollowingFreeCell(SCell* aCell, SCell*& pPrev, SCell*& aNext);
  2972 	TInt TryToGrowCell(SCell* pC, SCell* pP, SCell* pE, TInt aSize);
  2973 	TInt Reduce(SCell* aCell);
  2974 	UIMPORT_C SCell* GetAddress(const TAny* aCell) const;
  2975 	void CheckCell(const SCell* aCell) const;
  2976 	void Walk(TWalkFunc aFunc, TAny* aPtr);
  2977 	static void WalkCheckCell(TAny* aPtr, TCellType aType, TAny* aCell, TInt aLen);
  2978 	TInt DoCountAllocFree(TInt& aFree);
  2979 	TInt DoCheckHeap(SCheckInfo* aInfo);
  2980 	void DoMarkStart();
  2981 	TUint32 DoMarkEnd(TInt aExpected);
  2982 	void DoSetAllocFail(TAllocFail aType, TInt aRate);
  2983 	TBool CheckForSimulatedAllocFail();
  2984 	inline TInt SetBrk(TInt aBrk);
  2985 	inline TAny* ReAllocImpl(TAny* aPtr, TInt aSize, TInt aMode);
  2986 	void DoSetAllocFail(TAllocFail aType, TInt aRate, TUint aBurst);
  2987 protected:
  2988 	TInt iMinLength;
  2989 	TInt iMaxLength;
  2990 	TInt iOffset;
  2991 	TInt iGrowBy;
  2992 	TInt iChunkHandle;
  2993 	RFastLock iLock;
  2994 	TUint8* iBase;
  2995 	TUint8* iTop;
  2996 	TInt iAlign;
  2997 	TInt iMinCell;
  2998 	TInt iPageSize;
  2999 	SCell iFree;
  3000 protected:
  3001 	TInt iNestingLevel;
  3002 	TInt iAllocCount;
  3003 	TAllocFail iFailType;
  3004 	TInt iFailRate;
  3005 	TBool iFailed;
  3006 	TInt iFailAllocCount;
  3007 	TInt iRand;
  3008 	TAny* iTestData;
  3009 
  3010 	friend class UserHeap;
  3011 	};
  3012 
  3013 
  3014 
  3015 
  3016 
  3017 class OnlyCreateWithNull;
  3018 
  3019 /** @internalTechnology */
  3020 typedef void (OnlyCreateWithNull::* __NullPMF)();
  3021 
  3022 /** @internalTechnology */
  3023 class OnlyCreateWithNull
  3024 	{
  3025 public:
  3026 	inline OnlyCreateWithNull(__NullPMF /*aPointerToNull*/) {}
  3027 	};
  3028 
  3029 /**
  3030 @publishedAll
  3031 @released
  3032 
  3033 A handle to a message sent by the client to the server.
  3034 
  3035 A server's interaction with its clients is channelled through an RMessagePtr2
  3036 object, which acts as a handle to a message sent by the client.
  3037 The details of the original message are kept by the kernel allowing it enforce
  3038 correct usage of the member functions of this class.
  3039 
  3040 @see RMessage2
  3041 */
  3042 class RMessagePtr2
  3043 	{
  3044 public:
  3045 	inline RMessagePtr2();
  3046 	inline TBool IsNull() const;
  3047 	inline TInt Handle() const;
  3048 #ifndef __KERNEL_MODE__
  3049 	IMPORT_C void Complete(TInt aReason) const;
  3050 	IMPORT_C void Complete(RHandleBase aHandle) const;
  3051 	IMPORT_C TInt GetDesLength(TInt aParam) const;
  3052 	IMPORT_C TInt GetDesLengthL(TInt aParam) const;
  3053 	IMPORT_C TInt GetDesMaxLength(TInt aParam) const;
  3054 	IMPORT_C TInt GetDesMaxLengthL(TInt aParam) const;
  3055 	IMPORT_C void ReadL(TInt aParam,TDes8& aDes,TInt aOffset=0) const;
  3056 	IMPORT_C void ReadL(TInt aParam,TDes16 &aDes,TInt aOffset=0) const;
  3057 	IMPORT_C void WriteL(TInt aParam,const TDesC8& aDes,TInt aOffset=0) const;
  3058 	IMPORT_C void WriteL(TInt aParam,const TDesC16& aDes,TInt aOffset=0) const;
  3059 	IMPORT_C TInt Read(TInt aParam,TDes8& aDes,TInt aOffset=0) const;
  3060 	IMPORT_C TInt Read(TInt aParam,TDes16 &aDes,TInt aOffset=0) const;
  3061 	IMPORT_C TInt Write(TInt aParam,const TDesC8& aDes,TInt aOffset=0) const;
  3062 	IMPORT_C TInt Write(TInt aParam,const TDesC16& aDes,TInt aOffset=0) const;
  3063 	IMPORT_C void Panic(const TDesC& aCategory,TInt aReason) const;
  3064 	IMPORT_C void Kill(TInt aReason) const;
  3065 	IMPORT_C void Terminate(TInt aReason) const;
  3066 	IMPORT_C TInt SetProcessPriority(TProcessPriority aPriority) const;
  3067 	inline   void SetProcessPriorityL(TProcessPriority aPriority) const;
  3068 	IMPORT_C TInt Client(RThread& aClient, TOwnerType aOwnerType=EOwnerProcess) const;
  3069 	inline   void ClientL(RThread& aClient, TOwnerType aOwnerType=EOwnerProcess) const;
  3070 	IMPORT_C TUint ClientProcessFlags() const;
  3071 	IMPORT_C const TRequestStatus* ClientStatus() const;
  3072 	IMPORT_C TBool ClientIsRealtime() const;
  3073 	
  3074 	/**
  3075 	Return the Secure ID of the process which sent this message.
  3076 
  3077 	If an intended use of this method is to check that the Secure ID is
  3078 	a given value, then the use of a TSecurityPolicy object should be
  3079 	considered. E.g. Instead of something like:
  3080 
  3081 	@code
  3082 		RMessagePtr2& message;
  3083 		TInt error = message.SecureId()==KRequiredSecureId ? KErrNone : KErrPermissionDenied;
  3084 	@endcode
  3085 
  3086 	this could be used;
  3087 
  3088 	@code
  3089 		RMessagePtr2& message;
  3090 		static _LIT_SECURITY_POLICY_S0(mySidPolicy, KRequiredSecureId);
  3091 		TBool pass = mySidPolicy().CheckPolicy(message);
  3092 	@endcode
  3093 
  3094 	This has the benefit that the TSecurityPolicy::CheckPolicy methods are
  3095 	configured by the system wide Platform Security configuration. I.e. are
  3096 	capable of emitting diagnostic messages when a check fails and/or the
  3097 	check can be forced to always pass.
  3098 
  3099 	@see TSecurityPolicy::CheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic) const
  3100 	@see _LIT_SECURITY_POLICY_S0
  3101 
  3102 	@return The Secure ID.
  3103 
  3104 	@publishedAll
  3105 	@released
  3106 	*/
  3107 	IMPORT_C TSecureId SecureId() const;
  3108 
  3109 	/**
  3110 	Return the Vendor ID of the process which sent this message.
  3111 
  3112 	If an intended use of this method is to check that the Vendor ID is
  3113 	a given value, then the use of a TSecurityPolicy object should be
  3114 	considered. E.g. Instead of something like:
  3115 
  3116 	@code
  3117 		RMessagePtr2& message;
  3118 		TInt error = message.VendorId()==KRequiredVendorId ? KErrNone : KErrPermissionDenied;
  3119 	@endcode
  3120 
  3121 	this could be used;
  3122 
  3123 	@code
  3124 		RMessagePtr2& message;
  3125 		static _LIT_SECURITY_POLICY_V0(myVidPolicy, KRequiredVendorId);
  3126 		TBool pass = myVidPolicy().CheckPolicy(message);
  3127 	@endcode
  3128 
  3129 	This has the benefit that the TSecurityPolicy::CheckPolicy methods are
  3130 	configured by the system wide Platform Security configuration. I.e. are
  3131 	capable of emitting diagnostic messages when a check fails and/or the
  3132 	check can be forced to always pass.
  3133 
  3134 	@see TSecurityPolicy::CheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic) const
  3135 	@see _LIT_SECURITY_POLICY_V0
  3136 
  3137 	@return The Vendor ID.
  3138 	@publishedAll
  3139 	@released
  3140 	*/
  3141 	IMPORT_C TVendorId VendorId() const;
  3142 
  3143 	/**
  3144 	Check if the process which sent this message has a given capability.
  3145 
  3146 	When a check fails the action taken is determined by the system wide Platform Security
  3147 	configuration. If PlatSecDiagnostics is ON, then a diagnostic message is emitted.
  3148 	If PlatSecEnforcement is OFF, then this function will return ETrue even though the
  3149 	check failed.
  3150 
  3151 	@param aCapability The capability to test.
  3152 	@param aDiagnostic A string that will be emitted along with any diagnostic message
  3153 								that may be issued if the test finds the capability is not present.
  3154 								This string must be enclosed in the __PLATSEC_DIAGNOSTIC_STRING macro
  3155 								which enables it to be easily removed from the system.
  3156 	@return ETrue if process which sent this message has the capability, EFalse otherwise.
  3157 	@publishedAll
  3158 	@released
  3159 	*/
  3160 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3161 	inline TBool HasCapability(TCapability aCapability, const char* aDiagnostic=0) const;
  3162 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3163 	// Only available to NULL arguments
  3164 	inline TBool HasCapability(TCapability aCapability, OnlyCreateWithNull aDiagnostic=NULL) const;
  3165 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
  3166 	// For things using KSuppressPlatSecDiagnostic
  3167 	inline TBool HasCapability(TCapability aCapability, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3168 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
  3169 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3170 
  3171  	/**
  3172 	Check if the process which sent this message has a given capability.
  3173 
  3174 	When a check fails the action taken is determined by the system wide Platform Security
  3175 	configuration. If PlatSecDiagnostics is ON, then a diagnostic message is emitted.
  3176 	If PlatSecEnforcement is OFF, then this function will not leave even though the
  3177 	check failed.
  3178 
  3179  	@param aCapability The capability to test.
  3180  	@param aDiagnosticMessage A string that will be emitted along with any diagnostic message
  3181  								that may be issued if the test finds the capability is not present.
  3182  								This string must be enclosed in the __PLATSEC_DIAGNOSTIC_STRING macro
  3183  								which enables it to be easily removed from the system.
  3184  	@leave KErrPermissionDenied, if the process does not have the capability.
  3185  	@publishedAll
  3186  	@released
  3187  	*/
  3188 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3189  	inline void HasCapabilityL(TCapability aCapability, const char* aDiagnosticMessage=0) const;
  3190 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3191 	// Only available to NULL arguments
  3192  	inline void HasCapabilityL(TCapability aCapability, OnlyCreateWithNull aDiagnosticMessage=NULL) const;
  3193 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
  3194 	// For things using KSuppressPlatSecDiagnostic
  3195 	inline void HasCapabilityL(TCapability aCapability, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3196 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
  3197 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3198 
  3199 	/**
  3200 	Check if the process which sent this message has both of the given capabilities.
  3201 
  3202 	When a check fails the action taken is determined by the system wide Platform Security
  3203 	configuration. If PlatSecDiagnostics is ON, then a diagnostic message is emitted.
  3204 	If PlatSecEnforcement is OFF, then this function will return ETrue even though the
  3205 	check failed.
  3206 
  3207 	@param aCapability1 The first capability to test.
  3208 	@param aCapability2 The second capability to test.
  3209 	@param aDiagnostic A string that will be emitted along with any diagnostic message
  3210 								that may be issued if the test finds a capability is not present.
  3211 								This string should be enclosed in the __PLATSEC_DIAGNOSTIC_STRING macro
  3212 								which enables it to be easily removed from the system.
  3213 	@return ETrue if the process which sent this message has both the capabilities, EFalse otherwise.
  3214 	@publishedAll
  3215 	@released
  3216 	*/
  3217 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3218 	inline TBool HasCapability(TCapability aCapability1, TCapability aCapability2, const char* aDiagnostic=0) const;
  3219 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3220 	// Only available to NULL arguments
  3221 	inline TBool HasCapability(TCapability aCapability1, TCapability aCapability2, OnlyCreateWithNull aDiagnostic=NULL) const;
  3222 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
  3223 	// For things using KSuppressPlatSecDiagnostic
  3224 	inline TBool HasCapability(TCapability aCapability1, TCapability aCapability2, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3225 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
  3226 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3227 
  3228  	/**
  3229 	Check if the process which sent this message has both of the given capabilities.
  3230 
  3231 	When a check fails the action taken is determined by the system wide Platform Security
  3232 	configuration. If PlatSecDiagnostics is ON, then a diagnostic message is emitted.
  3233 	If PlatSecEnforcement is OFF, then this function will not leave even though the
  3234 	check failed.
  3235 
  3236  	@param aCapability1 The first capability to test.
  3237  	@param aCapability2 The second capability to test.
  3238  	@param aDiagnosticMessage A string that will be emitted along with any diagnostic message
  3239  								that may be issued if the test finds a capability is not present.
  3240  								This string should be enclosed in the __PLATSEC_DIAGNOSTIC_STRING macro
  3241  								which enables it to be easily removed from the system.
  3242  	@leave KErrPermissionDenied, if the process does not have the capabilities.
  3243  	@publishedAll
  3244  	@released
  3245  	*/
  3246 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3247 	inline void HasCapabilityL(TCapability aCapability1, TCapability aCapability2, const char* aDiagnosticMessage=0) const;
  3248 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3249 	// Only available to NULL arguments
  3250 	inline void HasCapabilityL(TCapability aCapability1, TCapability aCapability2, OnlyCreateWithNull aDiagnosticMessage=NULL) const;
  3251 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
  3252 	// For things using KSuppressPlatSecDiagnostic
  3253 	inline void HasCapabilityL(TCapability aCapability1, TCapability aCapability2, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3254 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
  3255 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3256 
  3257 	/**
  3258 	@deprecated Use SecureId()
  3259 	*/
  3260 	inline TUid Identity() const { return SecureId(); }
  3261 #endif
  3262 
  3263 private:
  3264 	// Implementations of functions with diagnostics
  3265 	IMPORT_C TBool DoHasCapability(TCapability aCapability, const char* aDiagnostic) const;
  3266 	IMPORT_C TBool DoHasCapability(TCapability aCapability) const;
  3267 	IMPORT_C TBool DoHasCapability(TCapability aCapability, TCapability aCapability2, const char* aDiagnostic) const;
  3268 	IMPORT_C TBool DoHasCapability(TCapability aCapability, TCapability aCapability2) const;
  3269 
  3270 protected:
  3271 	TInt iHandle;
  3272 	};
  3273 inline TBool operator==(RMessagePtr2 aLeft,RMessagePtr2 aRight);
  3274 inline TBool operator!=(RMessagePtr2 aLeft,RMessagePtr2 aRight);
  3275 
  3276 class CSession2;
  3277 
  3278 #define __IPC_V2_PRESENT__
  3279 
  3280 /**
  3281 @publishedAll
  3282 @released
  3283 
  3284 An object that encapsulates the details of a client request.
  3285 */
  3286 class RMessage2 : public RMessagePtr2
  3287 	{
  3288 	friend class CServer2;
  3289 public:
  3290 
  3291     /**
  3292     Defines internal message types.
  3293     */
  3294 	enum TSessionMessages {
  3295 	                      /**
  3296 	                      A message type used internally that means connect.
  3297 	                      */
  3298 	                      EConnect=-1,
  3299 	                      
  3300 	                      /**
  3301                           A message type used internally that means disconnect.
  3302 	                      */
  3303 	                      EDisConnect=-2
  3304 	                      };
  3305 public:
  3306 	inline RMessage2();
  3307 #ifndef __KERNEL_MODE__
  3308 	IMPORT_C explicit RMessage2(const RMessagePtr2& aPtr);
  3309 	void SetAuthorised() const; 
  3310 	void ClearAuthorised() const;
  3311 	TBool Authorised() const;
  3312 #endif
  3313 	inline TInt Function() const;
  3314 	inline TInt Int0() const;
  3315 	inline TInt Int1() const;
  3316 	inline TInt Int2() const;
  3317 	inline TInt Int3() const;
  3318 	inline const TAny* Ptr0() const;
  3319 	inline const TAny* Ptr1() const;
  3320 	inline const TAny* Ptr2() const;
  3321 	inline const TAny* Ptr3() const;
  3322 	inline CSession2* Session() const;
  3323 protected:
  3324     
  3325     /**
  3326     The request type.
  3327     */
  3328 	TInt iFunction;
  3329 	
  3330 	/**
  3331 	A copy of the message arguments.
  3332 	*/
  3333 	TInt iArgs[KMaxMessageArguments];
  3334 private:
  3335 	TInt iSpare1;
  3336 protected:
  3337     /**
  3338     @internalComponent
  3339     */
  3340 	const TAny* iSessionPtr;
  3341 private:
  3342 	mutable TInt iFlags;// Currently only used for *Authorised above
  3343 	TInt iSpare3;		// Reserved for future use
  3344 
  3345 	friend class RMessage;
  3346 	};
  3347 
  3348 
  3349 
  3350 
  3351 /**
  3352 @publishedAll
  3353 @released
  3354 
  3355 Defines an 8-bit modifiable buffer descriptor to contain passwords when dealing
  3356 with password security support in a file server session.
  3357 
  3358 The descriptor takes a maximum length of KMaxMediaPassword.
  3359 
  3360 @see KMaxMediaPassword
  3361 */
  3362 typedef TBuf8<KMaxMediaPassword> TMediaPassword;	// 128 bit
  3363 
  3364 
  3365 
  3366 /**
  3367 @publishedPartner
  3368 @prototype
  3369 A configuration flag for the shared chunk buffer configuration class (used by the multimedia device drivers). This being
  3370 set signifies that a buffer offset list follows the buffer configuration class. This list holds the offset of each buffer.
  3371 */
  3372 const TUint KScFlagBufOffsetListInUse=0x00000001;
  3373 
  3374 /**
  3375 @publishedPartner
  3376 @prototype
  3377 A configuration flag for the shared chunk buffer configuration class (used by the multimedia device drivers). This being
  3378 set is a suggestion that the shared chunk should be configured leaving guard pages around each buffers.
  3379 */
  3380 const TUint KScFlagUseGuardPages=0x00000002;
  3381 
  3382 /**
  3383 @publishedPartner
  3384 @prototype
  3385 The shared chunk buffer configuration class (used by the multimedia device drivers). This is used to hold information
  3386 on the current buffer configuration within a shared chunk.
  3387 */
  3388 class TSharedChunkBufConfigBase
  3389 	{
  3390 public:	
  3391 	inline TSharedChunkBufConfigBase();
  3392 public:
  3393 	/** The number of buffers. */
  3394 	TInt iNumBuffers;
  3395 	/** The size of each buffer in bytes. */
  3396 	TInt iBufferSizeInBytes;
  3397 	/** Reserved field. */
  3398 	TInt iReserved1;
  3399 	/** Shared chunk buffer flag settings. */
  3400 	TUint iFlags;
  3401 	};
  3402 
  3403 
  3404 /** Maximum size of capability set
  3405 
  3406 @internalTechnology
  3407 */
  3408 const TInt KCapabilitySetMaxSize = (((TInt)ECapability_HardLimit + 7)>>3);
  3409 
  3410 /** Maximum size of any future extension to TSecurityPolicy
  3411 
  3412 @internalTechnology
  3413 */
  3414 const TInt KMaxSecurityPolicySize = KCapabilitySetMaxSize + 3*sizeof(TUint32);
  3415 
  3416 
  3417 /** Class representing an arbitrary set of capabilities.
  3418 
  3419 This class can only contain capabilities supported by the current OS version.
  3420 
  3421 @publishedAll
  3422 @released
  3423 */
  3424 class TCapabilitySet
  3425 	{
  3426 public:
  3427 	inline TCapabilitySet();
  3428 	inline TCapabilitySet(TCapability aCapability);
  3429 	IMPORT_C TCapabilitySet(TCapability aCapability1, TCapability aCapability2);
  3430 	IMPORT_C void SetEmpty();
  3431 	inline void Set(TCapability aCapability);
  3432 	inline void Set(TCapability aCapability1, TCapability aCapability2);
  3433 	IMPORT_C void SetAllSupported();
  3434 	IMPORT_C void AddCapability(TCapability aCapability);
  3435 	IMPORT_C void RemoveCapability(TCapability aCapability);
  3436 	IMPORT_C void Union(const TCapabilitySet&  aCapabilities);
  3437 	IMPORT_C void Intersection(const TCapabilitySet& aCapabilities);
  3438 	IMPORT_C void Remove(const TCapabilitySet& aCapabilities);
  3439 	IMPORT_C TBool HasCapability(TCapability aCapability) const;
  3440 	IMPORT_C TBool HasCapabilities(const TCapabilitySet& aCapabilities) const;
  3441 
  3442 	/**
  3443 	Make this set consist of the capabilities which are disabled on this platform.
  3444 	@internalTechnology
  3445 	*/
  3446 	IMPORT_C void SetDisabled();
  3447 	/**
  3448 	@internalComponent
  3449 	*/
  3450 	TBool NotEmpty() const;
  3451 
  3452 private:
  3453 	TUint32 iCaps[KCapabilitySetMaxSize / sizeof(TUint32)];
  3454 	};
  3455 
  3456 #ifndef __SECURITY_INFO_DEFINED__
  3457 #define __SECURITY_INFO_DEFINED__
  3458 /**
  3459 @internalTechnology
  3460  */
  3461 struct SCapabilitySet
  3462 	{
  3463 	enum {ENCapW=2};
  3464 
  3465 	inline void AddCapability(TCapability aCap1) {((TCapabilitySet*)this)->AddCapability(aCap1);}
  3466 	inline void Remove(const SCapabilitySet& aCaps) {((TCapabilitySet*)this)->Remove(*((TCapabilitySet*)&aCaps));}
  3467 	inline TBool NotEmpty() const {return ((TCapabilitySet*)this)->NotEmpty();}
  3468 
  3469 	inline const TUint32& operator[] (TInt aIndex) const { return iCaps[aIndex]; }
  3470 	inline TUint32& operator[] (TInt aIndex) { return iCaps[aIndex]; }
  3471 
  3472 	TUint32 iCaps[ENCapW];
  3473 	};
  3474 
  3475 /**
  3476 @internalTechnology
  3477  */
  3478 struct SSecurityInfo
  3479 	{
  3480 	TUint32	iSecureId;
  3481 	TUint32	iVendorId;
  3482 	SCapabilitySet iCaps;	// Capabilities re. platform security
  3483 	};
  3484 
  3485 #endif
  3486 
  3487 /** Define this macro to reference the set of all capabilities.
  3488 	@internalTechnology
  3489 */
  3490 #ifdef __REFERENCE_ALL_SUPPORTED_CAPABILITIES__
  3491 
  3492 extern const SCapabilitySet AllSupportedCapabilities;
  3493 
  3494 #endif	//__REFERENCE_ALL_SUPPORTED_CAPABILITIES__
  3495 
  3496 /** Define this macro to include the set of all capabilities.
  3497 	@internalTechnology
  3498 */
  3499 #ifdef __INCLUDE_ALL_SUPPORTED_CAPABILITIES__
  3500 
  3501 /** The set of all capabilities.
  3502 	@internalTechnology
  3503 */
  3504 const SCapabilitySet AllSupportedCapabilities = {
  3505 		{
  3506 		ECapability_Limit<32  ? (TUint32)((1u<<(ECapability_Limit&31))-1u) : 0xffffffffu
  3507 		,
  3508 		ECapability_Limit>=32 ? (TUint32)((1u<<(ECapability_Limit&31))-1u) : 0u
  3509 		}
  3510 	};
  3511 
  3512 #endif	// __INCLUDE_ALL_SUPPORTED_CAPABILITIES__
  3513 
  3514 #ifndef __KERNEL_MODE__
  3515 class RProcess;
  3516 class RThread;
  3517 class RMessagePtr2;
  3518 class RSessionBase;
  3519 #else
  3520 class DProcess;
  3521 class DThread;
  3522 #endif
  3523 
  3524 /** Class representing all security attributes of a process or DLL.
  3525 	These comprise a set of capabilities, a Secure ID and a Vendor ID.
  3526 
  3527 @publishedAll
  3528 @released
  3529 */
  3530 class TSecurityInfo
  3531 	{
  3532 public:
  3533 	inline TSecurityInfo();
  3534 #ifdef __KERNEL_MODE__
  3535 	IMPORT_C TSecurityInfo(DProcess* aProcess);
  3536 	IMPORT_C TSecurityInfo(DThread* aThread);
  3537 #else
  3538 	IMPORT_C TSecurityInfo(RProcess aProcess);
  3539 	IMPORT_C TSecurityInfo(RThread aThread);
  3540 	IMPORT_C TSecurityInfo(RMessagePtr2 aMesPtr);
  3541 	inline void Set(RProcess aProcess);
  3542 	inline void Set(RThread aThread);
  3543 	inline void Set(RMessagePtr2 aMsgPtr);
  3544 	TInt Set(RSessionBase aSession); /**< @internalComponent */
  3545 	inline void SetToCurrentInfo();
  3546 	IMPORT_C void SetToCreatorInfo();
  3547 #endif //__KERNEL_MODE__
  3548 public:
  3549 	TSecureId		iSecureId;	/**< Secure ID */
  3550 	TVendorId		iVendorId;	/**< Vendor ID */
  3551 	TCapabilitySet	iCaps;		/**< Capability Set */
  3552 	};
  3553 
  3554 
  3555 /** Class representing a generic security policy
  3556 
  3557 This class can specify a security policy consisting of either:
  3558 
  3559 -#	A check for between 0 and 7 capabilities
  3560 -#	A check for a given Secure ID along with 0-3 capabilities
  3561 -#	A check for a given Vendor ID along with 0-3 capabilities
  3562 
  3563 If multiple capabilities are specified, all of them must be present for the
  3564 security check to succeed ('AND' relation).
  3565 
  3566 The envisaged use case for this class is to specify access rights to an object
  3567 managed either by the kernel or by a server but in principle owned by a client
  3568 and usable in a limited way by other clients. For example
  3569 - Publish and Subscribe properties
  3570 - DBMS databases
  3571 
  3572 In these cases the owning client would pass one (or more) of these objects to
  3573 the server to specify which security checks should be done on other clients
  3574 before allowing access to the object.
  3575 
  3576 To pass a TSecurityPolicy object via IPC, a client should obtain a descriptor
  3577 for the object using Package() and send this. When a server receives this descriptor
  3578 it should read the descriptor contents into a TSecurityPolicyBuf and then
  3579 Set() should be used to create a policy object from this.
  3580 
  3581 Because this class has non-default constructors, compilers will not initialise
  3582 this object at compile time, instead code will be generated to construct the object
  3583 at run-time. This is wasteful - and Symbian OS DLLs are not permitted to have
  3584 such uninitialised data. To overcome these problems a set of macros are provided to
  3585 construct a const object which behaves like a TSecurityPolicy. These are:
  3586 
  3587 _LIT_SECURITY_POLICY_C1 through _LIT_SECURITY_POLICY_C7,
  3588 _LIT_SECURITY_POLICY_S0 through _LIT_SECURITY_POLICY_S3 and
  3589 _LIT_SECURITY_POLICY_V0 through _LIT_SECURITY_POLICY_V3.
  3590 
  3591 Also, the macros _LIT_SECURITY_POLICY_PASS and _LIT_SECURITY_POLICY_FAIL are provided
  3592 in order to allow easy construction of a const object which can be used as a
  3593 TSecuityPolicy which always passes or always fails, respectively.
  3594 
  3595 If a security policy object is needed to be embedded in another class then the
  3596 TStaticSecurityPolicy structure can be used. This behaves in the same way as a
  3597 TSecurityPolicy object but may be initialised at compile time.
  3598 
  3599 @see TStaticSecurityPolicy
  3600 @see TSecurityPolicyBuf
  3601 @see _LIT_SECURITY_POLICY_PASS
  3602 @see _LIT_SECURITY_POLICY_FAIL
  3603 @see _LIT_SECURITY_POLICY_C1
  3604 @see _LIT_SECURITY_POLICY_C2 
  3605 @see _LIT_SECURITY_POLICY_C3 
  3606 @see _LIT_SECURITY_POLICY_C4 
  3607 @see _LIT_SECURITY_POLICY_C5 
  3608 @see _LIT_SECURITY_POLICY_C6 
  3609 @see _LIT_SECURITY_POLICY_C7 
  3610 @see _LIT_SECURITY_POLICY_S0 
  3611 @see _LIT_SECURITY_POLICY_S1 
  3612 @see _LIT_SECURITY_POLICY_S2 
  3613 @see _LIT_SECURITY_POLICY_S3 
  3614 @see _LIT_SECURITY_POLICY_V0 
  3615 @see _LIT_SECURITY_POLICY_V1 
  3616 @see _LIT_SECURITY_POLICY_V2 
  3617 @see _LIT_SECURITY_POLICY_V3 
  3618 
  3619 @publishedAll
  3620 @released
  3621 */
  3622 class TSecurityPolicy
  3623 	{
  3624 public:
  3625 	enum TSecPolicyType 
  3626 		{
  3627 		EAlwaysFail=0,
  3628 		EAlwaysPass=1,
  3629 		};
  3630 		
  3631 public:
  3632 	inline TSecurityPolicy();
  3633 	IMPORT_C TSecurityPolicy(TSecPolicyType aType);
  3634 	IMPORT_C TSecurityPolicy(TCapability aCap1, TCapability aCap2 = ECapability_None, TCapability aCap3 = ECapability_None);
  3635 	IMPORT_C TSecurityPolicy(TCapability aCap1, TCapability aCap2, TCapability aCap3, TCapability aCap4, TCapability aCap5 = ECapability_None, TCapability aCap6 = ECapability_None, TCapability aCap7 = ECapability_None);
  3636 	IMPORT_C TSecurityPolicy(TSecureId aSecureId, TCapability aCap1 = ECapability_None, TCapability aCap2 = ECapability_None, TCapability aCap3 = ECapability_None);
  3637 	IMPORT_C TSecurityPolicy(TVendorId aVendorId, TCapability aCap1 = ECapability_None, TCapability aCap2 = ECapability_None, TCapability aCap3 = ECapability_None);
  3638 	IMPORT_C TInt Set(const TDesC8& aDes);
  3639 	IMPORT_C TPtrC8 Package() const;
  3640 
  3641 #ifdef __KERNEL_MODE__
  3642 
  3643 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3644 	inline TBool CheckPolicy(DProcess* aProcess, const char* aDiagnostic=0) const;
  3645 	inline TBool CheckPolicy(DThread* aThread, const char* aDiagnostic=0) const;
  3646 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3647 	// Only available to NULL arguments
  3648 	inline TBool CheckPolicy(DProcess* aProcess, OnlyCreateWithNull aDiagnostic=NULL) const;
  3649 	inline TBool CheckPolicy(DThread* aThread, OnlyCreateWithNull aDiagnostic=NULL) const;
  3650 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3651 
  3652 #else // !__KERNEL_MODE__
  3653 
  3654 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3655 	inline TBool CheckPolicy(RProcess aProcess, const char* aDiagnostic=0) const;
  3656 	inline TBool CheckPolicy(RThread aThread, const char* aDiagnostic=0) const;
  3657 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic=0) const;
  3658 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, const char* aDiagnostic=0) const;
  3659 	inline TBool CheckPolicyCreator(const char* aDiagnostic=0) const;
  3660 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3661 	// Only available to NULL arguments
  3662 	inline TBool CheckPolicy(RProcess aProcess, OnlyCreateWithNull aDiagnostic=NULL) const;
  3663 	inline TBool CheckPolicy(RThread aThread, OnlyCreateWithNull aDiagnostic=NULL) const;
  3664 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, OnlyCreateWithNull aDiagnostic=NULL) const;
  3665 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, OnlyCreateWithNull aDiagnostic=NULL) const;
  3666 	inline TBool CheckPolicyCreator(OnlyCreateWithNull aDiagnostic=NULL) const;
  3667 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
  3668 	// For things using KSuppressPlatSecDiagnostic
  3669 	inline TBool CheckPolicy(RProcess aProcess, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3670 	inline TBool CheckPolicy(RThread aThread, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3671 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3672 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3673 	inline TBool CheckPolicyCreator(OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3674 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
  3675 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3676 	TInt CheckPolicy(RSessionBase aSession) const; /**< @internalComponent */
  3677 
  3678 #endif //__KERNEL_MODE__
  3679 
  3680 	TBool Validate() const;
  3681 
  3682 private:
  3683 #ifdef __KERNEL_MODE__
  3684 	IMPORT_C TBool DoCheckPolicy(DProcess* aProcess, const char* aDiagnostic) const;
  3685 	IMPORT_C TBool DoCheckPolicy(DProcess* aProcess) const;
  3686 	IMPORT_C TBool DoCheckPolicy(DThread* aThread, const char* aDiagnostic) const;
  3687 	IMPORT_C TBool DoCheckPolicy(DThread* aThread) const;
  3688 #else // !__KERNEL_MODE__
  3689 	IMPORT_C TBool DoCheckPolicy(RProcess aProcess, const char* aDiagnostic) const;
  3690 	IMPORT_C TBool DoCheckPolicy(RProcess aProcess) const;
  3691 	IMPORT_C TBool DoCheckPolicy(RThread aThread, const char* aDiagnostic) const;
  3692 	IMPORT_C TBool DoCheckPolicy(RThread aThread) const;
  3693 	IMPORT_C TBool DoCheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic) const;
  3694 	IMPORT_C TBool DoCheckPolicy(RMessagePtr2 aMsgPtr) const;
  3695 	IMPORT_C TBool DoCheckPolicyCreator(const char* aDiagnostic) const;
  3696 	IMPORT_C TBool DoCheckPolicyCreator() const;
  3697 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
  3698 	TBool DoCheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, const char* aDiagnostic) const;
  3699 #endif //__REMOVE_PLATSEC_DIAGNOSTICS__
  3700 	TBool DoCheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing) const;
  3701 #endif //__KERNEL_MODE__
  3702 
  3703 public:
  3704 	/** Constants to specify the type of TSecurityPolicy objects.
  3705 	*/
  3706 	enum TType
  3707 		{
  3708 		ETypeFail=0,	/**< Always fail*/
  3709 		ETypePass=1,	/**< Always pass*/
  3710 		ETypeC3=2,		/**< Up to 3 capabilities*/
  3711 		ETypeC7=3,		/**< Up to 7 capabilities*/
  3712 		ETypeS3=4,		/**< Secure ID and up to 3 capabilities*/
  3713 		ETypeV3=5,		/**< Vendor ID and up to 3 capabilities*/
  3714 
  3715 		/** The number of possible TSecurityPolicy types
  3716 		This is intended for internal Symbian use only.
  3717 		@internalTechnology
  3718 		*/
  3719 		ETypeLimit
  3720 
  3721 		// other values may be added to indicate expanded policy objects (future extensions)
  3722 		};
  3723 protected:
  3724 	TBool CheckPolicy(const SSecurityInfo& aSecInfo, SSecurityInfo& aMissing) const;
  3725 private:
  3726 	void ConstructAndCheck3(TCapability aCap1, TCapability aCap2, TCapability aCap3);
  3727 private:
  3728 	TUint8 iType;
  3729 	TUint8 iCaps[3];				// missing capabilities are set to 0xff
  3730 	union
  3731 		{
  3732 		TUint32 iSecureId;
  3733 		TUint32 iVendorId;
  3734 		TUint8 iExtraCaps[4];		// missing capabilities are set to 0xff
  3735 		};
  3736 	friend class TCompiledSecurityPolicy;
  3737 	};
  3738 
  3739 /** Provides a TPkcgBuf wrapper for a descriptorised TSecurityPolicy.  This a
  3740 suitable container for passing a security policy across IPC.
  3741 @publishedAll
  3742 @released
  3743 */
  3744 typedef TPckgBuf<TSecurityPolicy> TSecurityPolicyBuf;
  3745 
  3746 
  3747 /** Structure for compile-time initialisation of a security policy.
  3748 
  3749 This structure behaves in the same way as a TSecurityPolicy object but has
  3750 the advantage that it may be initialised at compile time. E.g.
  3751 the following line defines a security policy 'KSecurityPolictReadUserData'
  3752 which checks ReadUserData capability.
  3753 
  3754 @code
  3755 _LIT_SECURITY_POLICY_C1(KSecurityPolictReadUserData,ECapabilityReadUserData)
  3756 @endcode
  3757 
  3758 Or, an array of security policies may be created like this:
  3759 @code
  3760 static const TStaticSecurityPolicy MyPolicies[] = 
  3761 	{
  3762 	_INIT_SECURITY_POLICY_C1(ECapabilityReadUserData),
  3763 	_INIT_SECURITY_POLICY_PASS(),
  3764 	_INIT_SECURITY_POLICY_S0(0x1234567)
  3765 	}
  3766 @endcode
  3767 
  3768 This class should not be initialised directly, instead one of the following
  3769 macros should be used:
  3770 
  3771 -	_INIT_SECURITY_POLICY_PASS
  3772 -	_INIT_SECURITY_POLICY_FAIL
  3773 -	_INIT_SECURITY_POLICY_C1
  3774 -	_INIT_SECURITY_POLICY_C2
  3775 -	_INIT_SECURITY_POLICY_C3
  3776 -	_INIT_SECURITY_POLICY_C4
  3777 -	_INIT_SECURITY_POLICY_C5
  3778 -	_INIT_SECURITY_POLICY_C6
  3779 -	_INIT_SECURITY_POLICY_C7
  3780 -	_INIT_SECURITY_POLICY_S0
  3781 -	_INIT_SECURITY_POLICY_S1
  3782 -	_INIT_SECURITY_POLICY_S2
  3783 -	_INIT_SECURITY_POLICY_S3
  3784 -	_INIT_SECURITY_POLICY_V0
  3785 -	_INIT_SECURITY_POLICY_V1
  3786 -	_INIT_SECURITY_POLICY_V2
  3787 -	_INIT_SECURITY_POLICY_V3
  3788 -	_LIT_SECURITY_POLICY_PASS
  3789 -	_LIT_SECURITY_POLICY_FAIL
  3790 -	_LIT_SECURITY_POLICY_C1
  3791 -	_LIT_SECURITY_POLICY_C2
  3792 -	_LIT_SECURITY_POLICY_C3
  3793 -	_LIT_SECURITY_POLICY_C4
  3794 -	_LIT_SECURITY_POLICY_C5
  3795 -	_LIT_SECURITY_POLICY_C6
  3796 -	_LIT_SECURITY_POLICY_C7
  3797 -	_LIT_SECURITY_POLICY_S0
  3798 -	_LIT_SECURITY_POLICY_S1
  3799 -	_LIT_SECURITY_POLICY_S2
  3800 -	_LIT_SECURITY_POLICY_S3
  3801 -	_LIT_SECURITY_POLICY_V0
  3802 -	_LIT_SECURITY_POLICY_V1
  3803 -	_LIT_SECURITY_POLICY_V2
  3804 -	_LIT_SECURITY_POLICY_V3
  3805 
  3806 @see TSecurityPolicy
  3807 @publishedAll
  3808 @released
  3809 */
  3810 struct TStaticSecurityPolicy
  3811 	{
  3812 	inline const TSecurityPolicy* operator&() const;
  3813 	inline operator const TSecurityPolicy&() const;
  3814 	inline const TSecurityPolicy& operator()() const;
  3815 
  3816 #ifndef __KERNEL_MODE__
  3817 #ifndef __REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3818 	inline TBool CheckPolicy(RProcess aProcess, const char* aDiagnostic=0) const;
  3819 	inline TBool CheckPolicy(RThread aThread, const char* aDiagnostic=0) const;
  3820 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, const char* aDiagnostic=0) const;
  3821 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, const char* aDiagnostic=0) const;
  3822 	inline TBool CheckPolicyCreator(const char* aDiagnostic=0) const;
  3823 #else //__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3824 	// Only available to NULL arguments
  3825 	inline TBool CheckPolicy(RProcess aProcess, OnlyCreateWithNull aDiagnostic=NULL) const;
  3826 	inline TBool CheckPolicy(RThread aThread, OnlyCreateWithNull aDiagnostic=NULL) const;
  3827 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, OnlyCreateWithNull aDiagnostic=NULL) const;
  3828 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, OnlyCreateWithNull aDiagnostic=NULL) const;
  3829 	inline TBool CheckPolicyCreator(OnlyCreateWithNull aDiagnostic=NULL) const;
  3830 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
  3831 	// For things using KSuppressPlatSecDiagnostic
  3832 	inline TBool CheckPolicy(RProcess aProcess, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3833 	inline TBool CheckPolicy(RThread aThread, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3834 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3835 	inline TBool CheckPolicy(RMessagePtr2 aMsgPtr, TSecurityInfo& aMissing, OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3836 	inline TBool CheckPolicyCreator(OnlyCreateWithNull aDiagnostic, OnlyCreateWithNull aSuppress) const;
  3837 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
  3838 #endif // !__REMOVE_PLATSEC_DIAGNOSTIC_STRINGS__
  3839 #endif // !__KERNEL_MODE__
  3840 
  3841 	TUint32 iA;	/**< @internalComponent */
  3842 	TUint32 iB;	/**< @internalComponent */
  3843 	};
  3844 
  3845 	
  3846 /**
  3847 A dummy enum for use by the CAPABILITY_AS_TUINT8 macro
  3848 @internalComponent
  3849 */
  3850 enum __invalid_capability_value {};
  3851 
  3852 /**
  3853 A macro to cast a TCapability to a TUint8.
  3854 
  3855 If an invlid capability value is specified then, dependant on the compiler,
  3856 a compile time error or warning will be produced which includes the label
  3857 "__invalid_capability_value"
  3858 
  3859 @param cap The capability value
  3860 @internalComponent
  3861 */
  3862 #define CAPABILITY_AS_TUINT8(cap)											\
  3863 	((TUint8)(int)(															\
  3864 		(cap)==ECapability_None												\
  3865 		? (__invalid_capability_value(*)[1])(ECapability_None)								\
  3866 		: (__invalid_capability_value(*)[((TUint)(cap+1)<=(TUint)ECapability_Limit)?1:2])(cap)	\
  3867 	))
  3868 
  3869 
  3870 /**
  3871 A macro to construct a TUint32 from four TUint8s.  The TUint32 is in BigEndian
  3872 ordering useful for class layout rather than number generation.
  3873 
  3874 @param i1 The first TUint8
  3875 @param i2 The second TUint8
  3876 @param i3 The third TUint8
  3877 @param i4 The fourth TUint8
  3878 @internalComponent
  3879 */
  3880 #define FOUR_TUINT8(i1,i2,i3,i4) \
  3881 	(TUint32)(				\
  3882 		(TUint8)i1 		 | 	\
  3883 		(TUint8)i2 << 8  | 	\
  3884 		(TUint8)i3 << 16 | 	\
  3885 		(TUint8)i4 << 24	\
  3886 	)
  3887 
  3888 
  3889 /** Macro for compile-time initialisation of a security policy object that
  3890 always fails.  That is, checks against this policy will always fail,
  3891 irrespective of the security attributes of the item being checked.
  3892 
  3893 The object declared has an implicit conversion to const TSecurityPolicy&.
  3894 Taking the address of the object will return a const TSecurityPolicy*.
  3895 Explicit conversion to const TSecurityPolicy& may be effected by using the
  3896 function call operator n().
  3897 @publishedAll
  3898 @released
  3899 */
  3900 #define _INIT_SECURITY_POLICY_FAIL \
  3901 	{ 																		\
  3902 	FOUR_TUINT8(															\
  3903 		(TUint8)TSecurityPolicy::ETypeFail,									\
  3904 		(TUint8)0xff,														\
  3905 		(TUint8)0xff,														\
  3906 		(TUint8)0xff														\
  3907 	),																		\
  3908 	(TUint32)0xffffffff														\
  3909 	}
  3910 
  3911 
  3912 /** Macro for compile-time definition of a security policy object that always
  3913 fails.  That is, checks against this policy will always fail, irrespective of
  3914 the security attributes of the item being checked.
  3915 
  3916 The object declared has an implicit conversion to const TSecurityPolicy&.
  3917 Taking the address of the object will return a const TSecurityPolicy*.
  3918 Explicit conversion to const TSecurityPolicy& may be effected by using the
  3919 function call operator n().
  3920 @param	n	Name to use for policy object
  3921 @publishedAll
  3922 @released
  3923 */
  3924 #define	_LIT_SECURITY_POLICY_FAIL(n) const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_FAIL
  3925 
  3926 
  3927 /** Macro for compile-time initialisation of a security policy object that 
  3928 always passes.  That is, checks against this policy will always pass,
  3929 irrespective of the security attributes of the item being checked.
  3930 
  3931 The object declared has an implicit conversion to const TSecurityPolicy&.
  3932 Taking the address of the object will return a const TSecurityPolicy*.
  3933 Explicit conversion to const TSecurityPolicy& may be effected by using the
  3934 function call operator n().
  3935 @publishedAll
  3936 @released
  3937 */
  3938 #define _INIT_SECURITY_POLICY_PASS \
  3939 	{ 																		\
  3940 	FOUR_TUINT8(															\
  3941 		(TUint8)TSecurityPolicy::ETypePass,									\
  3942 		(TUint8)0xff,														\
  3943 		(TUint8)0xff,														\
  3944 		(TUint8)0xff														\
  3945 	),																		\
  3946 	(TUint32)0xffffffff														\
  3947 	}
  3948 
  3949 
  3950 /** Macro for compile-time definition of a security policy object that always
  3951 passes.  That is, checks against this policy will always pass, irrespective of
  3952 the security attributes of the item being checked.
  3953 
  3954 The object declared has an implicit conversion to const TSecurityPolicy&.
  3955 Taking the address of the object will return a const TSecurityPolicy*.
  3956 Explicit conversion to const TSecurityPolicy& may be effected by using the
  3957 function call operator n().
  3958 @param	n	Name to use for policy object
  3959 @publishedAll
  3960 @released
  3961 */
  3962 #define	_LIT_SECURITY_POLICY_PASS(n) const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_PASS
  3963 
  3964 
  3965 /** Macro for compile-time initialisation of a security policy object
  3966 The policy will check for seven capabilities.
  3967 
  3968 The object declared has an implicit conversion to const TSecurityPolicy&.
  3969 Taking the address of the object will return a const TSecurityPolicy*.
  3970 Explicit conversion to const TSecurityPolicy& may be effected by using the
  3971 function call operator n().
  3972 
  3973 If an invlid capability value is specified then, dependant on the compiler,
  3974 a compile time error or warning will be produced which includes the label
  3975 "__invalid_capability_value"
  3976 
  3977 @param	c1	The first capability to check (enumerator of TCapability)
  3978 @param	c2	The second capability to check (enumerator of TCapability)
  3979 @param	c3	The third capability to check (enumerator of TCapability)
  3980 @param	c4	The fourth capability to check (enumerator of TCapability)
  3981 @param	c5	The fifth capability to check (enumerator of TCapability)
  3982 @param	c6	The sixth capability to check (enumerator of TCapability)
  3983 @param	c7	The seventh capability to check (enumerator of TCapability)
  3984 
  3985 @publishedAll
  3986 @released
  3987 */
  3988 #define _INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,c5,c6,c7) \
  3989 	{ 																		\
  3990 	FOUR_TUINT8(															\
  3991 		(TUint8)TSecurityPolicy::ETypeC7,									\
  3992 		CAPABILITY_AS_TUINT8(c1),											\
  3993 		CAPABILITY_AS_TUINT8(c2),											\
  3994 		CAPABILITY_AS_TUINT8(c3)											\
  3995 	),																		\
  3996 	FOUR_TUINT8(															\
  3997 		CAPABILITY_AS_TUINT8(c4),											\
  3998 		CAPABILITY_AS_TUINT8(c5),											\
  3999 		CAPABILITY_AS_TUINT8(c6),											\
  4000 		CAPABILITY_AS_TUINT8(c7)											\
  4001 	)																		\
  4002 	}
  4003 
  4004 
  4005 /** Macro for compile-time definition of a security policy object
  4006 The policy will check for seven capabilities.
  4007 
  4008 The object declared has an implicit conversion to const TSecurityPolicy&.
  4009 Taking the address of the object will return a const TSecurityPolicy*.
  4010 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4011 function call operator n().
  4012 
  4013 If an invlid capability value is specified then, dependant on the compiler,
  4014 a compile time error or warning will be produced which includes the label
  4015 "__invalid_capability_value"
  4016 
  4017 @param	n	Name to use for policy object
  4018 @param	c1	The first capability to check (enumerator of TCapability)
  4019 @param	c2	The second capability to check (enumerator of TCapability)
  4020 @param	c3	The third capability to check (enumerator of TCapability)
  4021 @param	c4	The fourth capability to check (enumerator of TCapability)
  4022 @param	c5	The fifth capability to check (enumerator of TCapability)
  4023 @param	c6	The sixth capability to check (enumerator of TCapability)
  4024 @param	c7	The seventh capability to check (enumerator of TCapability)
  4025 
  4026 @publishedAll
  4027 @released
  4028 */
  4029 #define	_LIT_SECURITY_POLICY_C7(n,c1,c2,c3,c4,c5,c6,c7)						\
  4030 	const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,c5,c6,c7)
  4031 
  4032 
  4033 /** Macro for compile-time initialisation of a security policy object
  4034 The policy will check for six capabilities.
  4035 
  4036 The object declared has an implicit conversion to const TSecurityPolicy&.
  4037 Taking the address of the object will return a const TSecurityPolicy*.
  4038 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4039 function call operator n().
  4040 
  4041 If an invlid capability value is specified then, dependant on the compiler,
  4042 a compile time error or warning will be produced which includes the label
  4043 "__invalid_capability_value"
  4044 
  4045 @param	c1	The first capability to check (enumerator of TCapability)
  4046 @param	c2	The second capability to check (enumerator of TCapability)
  4047 @param	c3	The third capability to check (enumerator of TCapability)
  4048 @param	c4	The fourth capability to check (enumerator of TCapability)
  4049 @param	c5	The fifth capability to check (enumerator of TCapability)
  4050 @param	c6	The sixth capability to check (enumerator of TCapability)
  4051 
  4052 @publishedAll
  4053 @released
  4054 */
  4055 #define _INIT_SECURITY_POLICY_C6(c1,c2,c3,c4,c5,c6)  \
  4056 	_INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,c5,c6,ECapability_None)
  4057 
  4058 
  4059 /** Macro for compile-time definition of a security policy object
  4060 The policy will check for six capabilities.
  4061 
  4062 The object declared has an implicit conversion to const TSecurityPolicy&.
  4063 Taking the address of the object will return a const TSecurityPolicy*.
  4064 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4065 function call operator n().
  4066 
  4067 If an invlid capability value is specified then, dependant on the compiler,
  4068 a compile time error or warning will be produced which includes the label
  4069 "__invalid_capability_value"
  4070 
  4071 @param	n	Name to use for policy object
  4072 @param	c1	The first capability to check (enumerator of TCapability)
  4073 @param	c2	The second capability to check (enumerator of TCapability)
  4074 @param	c3	The third capability to check (enumerator of TCapability)
  4075 @param	c4	The fourth capability to check (enumerator of TCapability)
  4076 @param	c5	The fifth capability to check (enumerator of TCapability)
  4077 @param	c6	The sixth capability to check (enumerator of TCapability)
  4078 
  4079 @publishedAll
  4080 @released
  4081 */
  4082 #define	_LIT_SECURITY_POLICY_C6(n,c1,c2,c3,c4,c5,c6)  \
  4083 	_LIT_SECURITY_POLICY_C7(n,c1,c2,c3,c4,c5,c6,ECapability_None)
  4084 
  4085 
  4086 /** Macro for compile-time initialisation of a security policy object
  4087 The policy will check for five capabilities.
  4088 
  4089 The object declared has an implicit conversion to const TSecurityPolicy&.
  4090 Taking the address of the object will return a const TSecurityPolicy*.
  4091 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4092 function call operator n().
  4093 
  4094 If an invlid capability value is specified then, dependant on the compiler,
  4095 a compile time error or warning will be produced which includes the label
  4096 "__invalid_capability_value"
  4097 
  4098 @param	c1	The first capability to check (enumerator of TCapability)
  4099 @param	c2	The second capability to check (enumerator of TCapability)
  4100 @param	c3	The third capability to check (enumerator of TCapability)
  4101 @param	c4	The fourth capability to check (enumerator of TCapability)
  4102 @param	c5	The fifth capability to check (enumerator of TCapability)
  4103 
  4104 @publishedAll
  4105 @released
  4106 */
  4107 #define _INIT_SECURITY_POLICY_C5(c1,c2,c3,c4,c5)  \
  4108 	_INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,c5,ECapability_None,ECapability_None)
  4109 
  4110 
  4111 /** Macro for compile-time definition of a security policy object
  4112 The policy will check for five capabilities.
  4113 
  4114 The object declared has an implicit conversion to const TSecurityPolicy&.
  4115 Taking the address of the object will return a const TSecurityPolicy*.
  4116 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4117 function call operator n().
  4118 
  4119 If an invlid capability value is specified then, dependant on the compiler,
  4120 a compile time error or warning will be produced which includes the label
  4121 "__invalid_capability_value"
  4122 
  4123 @param	n	Name to use for policy object
  4124 @param	c1	The first capability to check (enumerator of TCapability)
  4125 @param	c2	The second capability to check (enumerator of TCapability)
  4126 @param	c3	The third capability to check (enumerator of TCapability)
  4127 @param	c4	The fourth capability to check (enumerator of TCapability)
  4128 @param	c5	The fifth capability to check (enumerator of TCapability)
  4129 
  4130 @publishedAll
  4131 @released
  4132 */
  4133 #define	_LIT_SECURITY_POLICY_C5(n,c1,c2,c3,c4,c5)  \
  4134 	_LIT_SECURITY_POLICY_C7(n,c1,c2,c3,c4,c5,ECapability_None,ECapability_None)
  4135 
  4136 
  4137 /** Macro for compile-time initialisation of a security policy object
  4138 The policy will check for four capabilities.
  4139 
  4140 The object declared has an implicit conversion to const TSecurityPolicy&.
  4141 Taking the address of the object will return a const TSecurityPolicy*.
  4142 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4143 function call operator n().
  4144 
  4145 If an invlid capability value is specified then, dependant on the compiler,
  4146 a compile time error or warning will be produced which includes the label
  4147 "__invalid_capability_value"
  4148 
  4149 @param	c1	The first capability to check (enumerator of TCapability)
  4150 @param	c2	The second capability to check (enumerator of TCapability)
  4151 @param	c3	The third capability to check (enumerator of TCapability)
  4152 @param	c4	The fourth capability to check (enumerator of TCapability)
  4153 
  4154 @publishedAll
  4155 @released
  4156 */
  4157 #define _INIT_SECURITY_POLICY_C4(c1,c2,c3,c4)  \
  4158 	_INIT_SECURITY_POLICY_C7(c1,c2,c3,c4,ECapability_None,ECapability_None,ECapability_None)
  4159 
  4160 
  4161 /** Macro for compile-time definition of a security policy object
  4162 The policy will check for four capabilities.
  4163 
  4164 The object declared has an implicit conversion to const TSecurityPolicy&.
  4165 Taking the address of the object will return a const TSecurityPolicy*.
  4166 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4167 function call operator n().
  4168 
  4169 If an invlid capability value is specified then, dependant on the compiler,
  4170 a compile time error or warning will be produced which includes the label
  4171 "__invalid_capability_value"
  4172 
  4173 @param	n	Name to use for policy object
  4174 @param	c1	The first capability to check (enumerator of TCapability)
  4175 @param	c2	The second capability to check (enumerator of TCapability)
  4176 @param	c3	The third capability to check (enumerator of TCapability)
  4177 @param	c4	The fourth capability to check (enumerator of TCapability)
  4178 
  4179 @publishedAll
  4180 @released
  4181 */
  4182 #define	_LIT_SECURITY_POLICY_C4(n,c1,c2,c3,c4)  \
  4183 	_LIT_SECURITY_POLICY_C7(n,c1,c2,c3,c4,ECapability_None,ECapability_None,ECapability_None)
  4184 
  4185 
  4186 /** Macro for compile-time initialisation of a security policy object
  4187 The policy will check for three capabilities.
  4188 
  4189 The object declared has an implicit conversion to const TSecurityPolicy&.
  4190 Taking the address of the object will return a const TSecurityPolicy*.
  4191 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4192 function call operator n().
  4193 
  4194 If an invlid capability value is specified then, dependant on the compiler,
  4195 a compile time error or warning will be produced which includes the label
  4196 "__invalid_capability_value"
  4197 
  4198 @param	c1	The first capability to check (enumerator of TCapability)
  4199 @param	c2	The second capability to check (enumerator of TCapability)
  4200 @param	c3	The third capability to check (enumerator of TCapability)
  4201 
  4202 @publishedAll
  4203 @released
  4204 */
  4205 #define _INIT_SECURITY_POLICY_C3(c1,c2,c3)									\
  4206 	{ 																		\
  4207 	FOUR_TUINT8(															\
  4208 		(TUint8)TSecurityPolicy::ETypeC3,									\
  4209 		CAPABILITY_AS_TUINT8(c1),											\
  4210 		CAPABILITY_AS_TUINT8(c2),											\
  4211 		CAPABILITY_AS_TUINT8(c3)											\
  4212 	),																		\
  4213 	(TUint32)0xffffffff														\
  4214 	}
  4215 
  4216 
  4217 /** Macro for compile-time definition of a security policy object
  4218 The policy will check for three capabilities.
  4219 
  4220 The object declared has an implicit conversion to const TSecurityPolicy&.
  4221 Taking the address of the object will return a const TSecurityPolicy*.
  4222 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4223 function call operator n().
  4224 
  4225 If an invlid capability value is specified then, dependant on the compiler,
  4226 a compile time error or warning will be produced which includes the label
  4227 "__invalid_capability_value"
  4228 
  4229 @param	n	Name to use for policy object
  4230 @param	c1	The first capability to check (enumerator of TCapability)
  4231 @param	c2	The second capability to check (enumerator of TCapability)
  4232 @param	c3	The third capability to check (enumerator of TCapability)
  4233 
  4234 @publishedAll
  4235 @released
  4236 */
  4237 #define	_LIT_SECURITY_POLICY_C3(n,c1,c2,c3)									\
  4238 	const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_C3(c1,c2,c3)
  4239 
  4240 
  4241 /** Macro for compile-time initialisation of a security policy object
  4242 The policy will check for two capabilities.
  4243 
  4244 The object declared has an implicit conversion to const TSecurityPolicy&.
  4245 Taking the address of the object will return a const TSecurityPolicy*.
  4246 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4247 function call operator n().
  4248 
  4249 If an invlid capability value is specified then, dependant on the compiler,
  4250 a compile time error or warning will be produced which includes the label
  4251 "__invalid_capability_value"
  4252 
  4253 @param	c1	The first capability to check (enumerator of TCapability)
  4254 @param	c2	The second capability to check (enumerator of TCapability)
  4255 
  4256 @publishedAll
  4257 @released
  4258 */
  4259 #define _INIT_SECURITY_POLICY_C2(c1,c2)  \
  4260 	_INIT_SECURITY_POLICY_C3(c1,c2,ECapability_None)
  4261 
  4262 
  4263 /** Macro for compile-time definition of a security policy object
  4264 The policy will check for two capabilities.
  4265 
  4266 The object declared has an implicit conversion to const TSecurityPolicy&.
  4267 Taking the address of the object will return a const TSecurityPolicy*.
  4268 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4269 function call operator n().
  4270 
  4271 If an invlid capability value is specified then, dependant on the compiler,
  4272 a compile time error or warning will be produced which includes the label
  4273 "__invalid_capability_value"
  4274 
  4275 @param	n	Name to use for policy object
  4276 @param	c1	The first capability to check (enumerator of TCapability)
  4277 @param	c2	The second capability to check (enumerator of TCapability)
  4278 
  4279 @publishedAll
  4280 @released
  4281 */
  4282 #define	_LIT_SECURITY_POLICY_C2(n,c1,c2)  \
  4283 	_LIT_SECURITY_POLICY_C3(n,c1,c2,ECapability_None)
  4284 
  4285 
  4286 /** Macro for compile-time initialisation of a security policy object
  4287 The policy will check for one capability.
  4288 
  4289 The object declared has an implicit conversion to const TSecurityPolicy&.
  4290 Taking the address of the object will return a const TSecurityPolicy*.
  4291 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4292 function call operator n().
  4293 
  4294 If an invlid capability value is specified then, dependant on the compiler,
  4295 a compile time error or warning will be produced which includes the label
  4296 "__invalid_capability_value"
  4297 
  4298 @param	c1	The first capability to check (enumerator of TCapability)
  4299 
  4300 
  4301 @publishedAll
  4302 @released
  4303 */
  4304 #define _INIT_SECURITY_POLICY_C1(c1)  \
  4305 	_INIT_SECURITY_POLICY_C3(c1,ECapability_None,ECapability_None)
  4306 
  4307 
  4308 /** Macro for compile-time definition of a security policy object
  4309 The policy will check for one capability.
  4310 
  4311 The object declared has an implicit conversion to const TSecurityPolicy&.
  4312 Taking the address of the object will return a const TSecurityPolicy*.
  4313 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4314 function call operator n().
  4315 
  4316 If an invlid capability value is specified then, dependant on the compiler,
  4317 a compile time error or warning will be produced which includes the label
  4318 "__invalid_capability_value"
  4319 
  4320 @param	n	Name to use for policy object
  4321 @param	c1	The first capability to check (enumerator of TCapability)
  4322 
  4323 @publishedAll
  4324 @released
  4325 */
  4326 #define	_LIT_SECURITY_POLICY_C1(n,c1)  \
  4327 	_LIT_SECURITY_POLICY_C3(n,c1,ECapability_None,ECapability_None)
  4328 
  4329 
  4330 /** Macro for compile-time initialisation of a security policy object
  4331 The policy will check for a secure ID and three capabilities.
  4332 
  4333 The object declared has an implicit conversion to const TSecurityPolicy&.
  4334 Taking the address of the object will return a const TSecurityPolicy*.
  4335 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4336 function call operator n().
  4337 
  4338 If an invlid capability value is specified then, dependant on the compiler,
  4339 a compile time error or warning be produced which includes the label
  4340 "__invalid_capability_value"
  4341 
  4342 @param	sid	The SID value to check for
  4343 @param	c1	The first capability to check (enumerator of TCapability)
  4344 @param	c2	The second capability to check (enumerator of TCapability)
  4345 @param	c3	The third capability to check (enumerator of TCapability)
  4346 
  4347 @publishedAll
  4348 @released
  4349 */
  4350 #define _INIT_SECURITY_POLICY_S3(sid,c1,c2,c3)								\
  4351 	{																		\
  4352 	FOUR_TUINT8(															\
  4353 		(TUint8)TSecurityPolicy::ETypeS3,									\
  4354 		CAPABILITY_AS_TUINT8(c1),											\
  4355 		CAPABILITY_AS_TUINT8(c2),											\
  4356 		CAPABILITY_AS_TUINT8(c3)											\
  4357 	),																		\
  4358 	(TUint32)(sid)															\
  4359 	}
  4360 
  4361 
  4362 /** Macro for compile-time definition of a security policy object
  4363 The policy will check for a secure ID and three capabilities.
  4364 
  4365 The object declared has an implicit conversion to const TSecurityPolicy&.
  4366 Taking the address of the object will return a const TSecurityPolicy*.
  4367 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4368 function call operator n().
  4369 
  4370 If an invlid capability value is specified then, dependant on the compiler,
  4371 a compile time error or warning be produced which includes the label
  4372 "__invalid_capability_value"
  4373 
  4374 @param	n	Name to use for policy object
  4375 @param	sid	The SID value to check for
  4376 @param	c1	The first capability to check (enumerator of TCapability)
  4377 @param	c2	The second capability to check (enumerator of TCapability)
  4378 @param	c3	The third capability to check (enumerator of TCapability)
  4379 
  4380 @publishedAll
  4381 @released
  4382 */
  4383 #define	_LIT_SECURITY_POLICY_S3(n,sid,c1,c2,c3)								\
  4384 	const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_S3(sid,c1,c2,c3)
  4385 
  4386 
  4387 /** Macro for compile-time initialisation of a security policy object
  4388 The policy will check for a secure ID and two capabilities.
  4389 
  4390 The object declared has an implicit conversion to const TSecurityPolicy&.
  4391 Taking the address of the object will return a const TSecurityPolicy*.
  4392 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4393 function call operator n().
  4394 
  4395 If an invlid capability value is specified then, dependant on the compiler,
  4396 a compile time error or warning be produced which includes the label
  4397 "__invalid_capability_value"
  4398 
  4399 @param	sid	The SID value to check for
  4400 @param	c1	The first capability to check (enumerator of TCapability)
  4401 @param	c2	The second capability to check (enumerator of TCapability)
  4402 
  4403 @publishedAll
  4404 @released
  4405 */
  4406 #define _INIT_SECURITY_POLICY_S2(sid,c1,c2)  \
  4407 	_INIT_SECURITY_POLICY_S3(sid,c1,c2,ECapability_None)
  4408 
  4409 
  4410 /** Macro for compile-time definition of a security policy object
  4411 The policy will check for a secure ID and two capabilities.
  4412 
  4413 The object declared has an implicit conversion to const TSecurityPolicy&.
  4414 Taking the address of the object will return a const TSecurityPolicy*.
  4415 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4416 function call operator n().
  4417 
  4418 If an invlid capability value is specified then, dependant on the compiler,
  4419 a compile time error or warning be produced which includes the label
  4420 "__invalid_capability_value"
  4421 
  4422 @param	n	Name to use for policy object
  4423 @param	sid	The SID value to check for
  4424 @param	c1	The first capability to check (enumerator of TCapability)
  4425 @param	c2	The second capability to check (enumerator of TCapability)
  4426 
  4427 @publishedAll
  4428 @released
  4429 */
  4430 #define	_LIT_SECURITY_POLICY_S2(n,sid,c1,c2)  \
  4431 	_LIT_SECURITY_POLICY_S3(n,sid,c1,c2,ECapability_None)
  4432 
  4433 
  4434 /** Macro for compile-time initialisation of a security policy object
  4435 The policy will check for a secure ID and one capability.
  4436 
  4437 The object declared has an implicit conversion to const TSecurityPolicy&.
  4438 Taking the address of the object will return a const TSecurityPolicy*.
  4439 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4440 function call operator n().
  4441 
  4442 If an invlid capability value is specified then, dependant on the compiler,
  4443 a compile time error or warning be produced which includes the label
  4444 "__invalid_capability_value"
  4445 
  4446 @param	sid	The SID value to check for
  4447 @param	c1	The first capability to check (enumerator of TCapability)
  4448 
  4449 @publishedAll
  4450 @released
  4451 */
  4452 #define _INIT_SECURITY_POLICY_S1(sid,c1)  \
  4453 	_INIT_SECURITY_POLICY_S3(sid,c1,ECapability_None,ECapability_None)
  4454 
  4455 
  4456 /** Macro for compile-time definition of a security policy object
  4457 The policy will check for a secure ID and one capability.
  4458 
  4459 The object declared has an implicit conversion to const TSecurityPolicy&.
  4460 Taking the address of the object will return a const TSecurityPolicy*.
  4461 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4462 function call operator n().
  4463 
  4464 If an invlid capability value is specified then, dependant on the compiler,
  4465 a compile time error or warning be produced which includes the label
  4466 "__invalid_capability_value"
  4467 
  4468 @param	n	Name to use for policy object
  4469 @param	sid	The SID value to check for
  4470 @param	c1	The first capability to check (enumerator of TCapability)
  4471 
  4472 @publishedAll
  4473 @released
  4474 */
  4475 #define	_LIT_SECURITY_POLICY_S1(n,sid,c1)  \
  4476 	_LIT_SECURITY_POLICY_S3(n,sid,c1,ECapability_None,ECapability_None)
  4477 
  4478 
  4479 /** Macro for compile-time initialisation of a security policy object
  4480 The policy will check for a secure ID.
  4481 
  4482 The object declared has an implicit conversion to const TSecurityPolicy&.
  4483 Taking the address of the object will return a const TSecurityPolicy*.
  4484 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4485 function call operator n().
  4486 
  4487 @param	sid	The SID value to check for
  4488 
  4489 @publishedAll
  4490 @released
  4491 */
  4492 #define _INIT_SECURITY_POLICY_S0(sid)  \
  4493 	_INIT_SECURITY_POLICY_S3(sid,ECapability_None,ECapability_None,ECapability_None)
  4494 
  4495 
  4496 /** Macro for compile-time definition of a security policy object
  4497 The policy will check for a secure ID.
  4498 
  4499 The object declared has an implicit conversion to const TSecurityPolicy&.
  4500 Taking the address of the object will return a const TSecurityPolicy*.
  4501 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4502 function call operator n().
  4503 
  4504 @param	n	Name to use for policy object
  4505 @param	sid	The SID value to check for
  4506 
  4507 @publishedAll
  4508 @released
  4509 */
  4510 #define	_LIT_SECURITY_POLICY_S0(n,sid)  \
  4511 	_LIT_SECURITY_POLICY_S3(n,sid,ECapability_None,ECapability_None,ECapability_None)
  4512 
  4513 
  4514 /** Macro for compile-time initialisation of a security policy object
  4515 The policy will check for a vendor ID and three capabilities.
  4516 
  4517 The object declared has an implicit conversion to const TSecurityPolicy&.
  4518 Taking the address of the object will return a const TSecurityPolicy*.
  4519 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4520 function call operator n().
  4521 
  4522 If an invlid capability value is specified then, dependant on the compiler,
  4523 a compile time error or warning be produced which includes the label
  4524 "__invalid_capability_value"
  4525 
  4526 @param	vid	The VID value to check for
  4527 @param	c1	The first capability to check (enumerator of TCapability)
  4528 @param	c2	The second capability to check (enumerator of TCapability)
  4529 @param	c3	The third capability to check (enumerator of TCapability)
  4530 
  4531 @publishedAll
  4532 @released
  4533 */
  4534 #define _INIT_SECURITY_POLICY_V3(vid,c1,c2,c3)								\
  4535 	{																		\
  4536 	FOUR_TUINT8(															\
  4537 		(TUint8)TSecurityPolicy::ETypeV3,									\
  4538 		CAPABILITY_AS_TUINT8(c1),											\
  4539 		CAPABILITY_AS_TUINT8(c2),											\
  4540 		CAPABILITY_AS_TUINT8(c3)											\
  4541 	),																		\
  4542 	(TUint32)(vid)															\
  4543 	}
  4544 
  4545 
  4546 /** Macro for compile-time definition of a security policy object
  4547 The policy will check for a vendor ID and three capabilities.
  4548 
  4549 The object declared has an implicit conversion to const TSecurityPolicy&.
  4550 Taking the address of the object will return a const TSecurityPolicy*.
  4551 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4552 function call operator n().
  4553 
  4554 If an invlid capability value is specified then, dependant on the compiler,
  4555 a compile time error or warning be produced which includes the label
  4556 "__invalid_capability_value"
  4557 
  4558 @param	n	Name to use for policy object
  4559 @param	vid	The VID value to check for
  4560 @param	c1	The first capability to check (enumerator of TCapability)
  4561 @param	c2	The second capability to check (enumerator of TCapability)
  4562 @param	c3	The third capability to check (enumerator of TCapability)
  4563 
  4564 @publishedAll
  4565 @released
  4566 */
  4567 #define	_LIT_SECURITY_POLICY_V3(n,vid,c1,c2,c3)								\
  4568 	const TStaticSecurityPolicy n = _INIT_SECURITY_POLICY_V3(vid,c1,c2,c3)
  4569 
  4570 
  4571 /** Macro for compile-time initialisation of a security policy object
  4572 The policy will check for a vendor ID and two capabilities.
  4573 
  4574 The object declared has an implicit conversion to const TSecurityPolicy&.
  4575 Taking the address of the object will return a const TSecurityPolicy*.
  4576 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4577 function call operator n().
  4578 
  4579 If an invlid capability value is specified then, dependant on the compiler,
  4580 a compile time error or warning be produced which includes the label
  4581 "__invalid_capability_value"
  4582 
  4583 @param	vid	The VID value to check for
  4584 @param	c1	The first capability to check (enumerator of TCapability)
  4585 @param	c2	The second capability to check (enumerator of TCapability)
  4586 
  4587 @publishedAll
  4588 @released
  4589 */
  4590 #define _INIT_SECURITY_POLICY_V2(vid,c1,c2)  \
  4591 	_INIT_SECURITY_POLICY_V3(vid,c1,c2,ECapability_None)
  4592 
  4593 
  4594 /** Macro for compile-time definition of a security policy object
  4595 The policy will check for a vendor ID and two capabilities.
  4596 
  4597 The object declared has an implicit conversion to const TSecurityPolicy&.
  4598 Taking the address of the object will return a const TSecurityPolicy*.
  4599 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4600 function call operator n().
  4601 
  4602 If an invlid capability value is specified then, dependant on the compiler,
  4603 a compile time error or warning be produced which includes the label
  4604 "__invalid_capability_value"
  4605 
  4606 @param	n	Name to use for policy object
  4607 @param	vid	The VID value to check for
  4608 @param	c1	The first capability to check (enumerator of TCapability)
  4609 @param	c2	The second capability to check (enumerator of TCapability)
  4610 
  4611 @publishedAll
  4612 @released
  4613 */
  4614 #define	_LIT_SECURITY_POLICY_V2(n,vid,c1,c2)  \
  4615 	_LIT_SECURITY_POLICY_V3(n,vid,c1,c2,ECapability_None)
  4616 
  4617 
  4618 /** Macro for compile-time initialisation of a security policy object
  4619 The policy will check for a vendor ID and one capability.
  4620 
  4621 The object declared has an implicit conversion to const TSecurityPolicy&.
  4622 Taking the address of the object will return a const TSecurityPolicy*.
  4623 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4624 function call operator n().
  4625 
  4626 If an invlid capability value is specified then, dependant on the compiler,
  4627 a compile time error or warning be produced which includes the label
  4628 "__invalid_capability_value"
  4629 
  4630 @param	vid	The VID value to check for
  4631 @param	c1	The first capability to check (enumerator of TCapability)
  4632 
  4633 @publishedAll
  4634 @released
  4635 */
  4636 #define _INIT_SECURITY_POLICY_V1(vid,c1)  \
  4637 	_INIT_SECURITY_POLICY_V3(vid,c1,ECapability_None,ECapability_None)
  4638 
  4639 
  4640 /** Macro for compile-time definition of a security policy object
  4641 The policy will check for a vendor ID and one capability.
  4642 
  4643 The object declared has an implicit conversion to const TSecurityPolicy&.
  4644 Taking the address of the object will return a const TSecurityPolicy*.
  4645 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4646 function call operator n().
  4647 
  4648 If an invlid capability value is specified then, dependant on the compiler,
  4649 a compile time error or warning be produced which includes the label
  4650 "__invalid_capability_value"
  4651 
  4652 @param	n	Name to use for policy object
  4653 @param	vid	The VID value to check for
  4654 @param	c1	The first capability to check (enumerator of TCapability)
  4655 
  4656 @publishedAll
  4657 @released
  4658 */
  4659 #define	_LIT_SECURITY_POLICY_V1(n,vid,c1)  \
  4660 	_LIT_SECURITY_POLICY_V3(n,vid,c1,ECapability_None,ECapability_None)
  4661 
  4662 
  4663 /** Macro for compile-time initialisation of a security policy object
  4664 The policy will check for a vendor ID.
  4665 
  4666 The object declared has an implicit conversion to const TSecurityPolicy&.
  4667 Taking the address of the object will return a const TSecurityPolicy*.
  4668 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4669 function call operator n().
  4670 
  4671 @param	vid	The VID value to check for
  4672 
  4673 @publishedAll
  4674 @released
  4675 */
  4676 #define _INIT_SECURITY_POLICY_V0(vid)  \
  4677 	_INIT_SECURITY_POLICY_V3(vid,ECapability_None,ECapability_None,ECapability_None)
  4678 
  4679 
  4680 /** Macro for compile-time definition of a security policy object
  4681 The policy will check for a vendor ID.
  4682 
  4683 The object declared has an implicit conversion to const TSecurityPolicy&.
  4684 Taking the address of the object will return a const TSecurityPolicy*.
  4685 Explicit conversion to const TSecurityPolicy& may be effected by using the
  4686 function call operator n().
  4687 
  4688 @param	n	Name to use for policy object
  4689 @param	vid	The VID value to check for
  4690 
  4691 @publishedAll
  4692 @released
  4693 */
  4694 #define	_LIT_SECURITY_POLICY_V0(n,vid)  \
  4695 	_LIT_SECURITY_POLICY_V3(n,vid,ECapability_None,ECapability_None,ECapability_None)
  4696 
  4697 
  4698 
  4699 #ifdef __KERNEL_MODE__
  4700 class DThread;
  4701 class RMessageK;
  4702 #endif
  4703 class TPlatSecDiagnostic;
  4704 
  4705 /**
  4706 Class containing Platform Security related methods
  4707 @internalTechnology
  4708 */
  4709 class PlatSec
  4710 	{
  4711 #ifndef __KERNEL_MODE__
  4712 public:
  4713 	/**
  4714 	Tests whether a given Platform Security capability is enforced by the system.
  4715 
  4716 	Capabilities may not be enforced for several reasons:
  4717 	-#	The capability has been explicitly disabled on this system
  4718 		by use of the PlatSecDisabledCaps configuration parameter
  4719 	-#	Platform Security checks have been globally disabled
  4720 		by use of the EPlatSecEnforcement configuration parameter	     
  4721 	-#	The capability value is unknown. I.e. Is not part of the set of supported
  4722 		capabilities. See TCapabilitySet::SetAllSupported().
  4723 
  4724 	@param aCapability The capability to test
  4725 	@return A non-zero value if the capability is enforced, zero if it is not.
  4726 
  4727 	@publishedAll
  4728 	@released
  4729 	*/
  4730 	IMPORT_C static TBool IsCapabilityEnforced(TCapability aCapability);
  4731 
  4732 	/**
  4733 	An enumeration used with PlatSecSetting()
  4734 	@see PlatSecSetting()
  4735 	@publishedAll
  4736 	@test
  4737 	*/
  4738 	enum TConfigSetting
  4739 		{
  4740 		EPlatSecEnforcement, /**< Used to request the value of the PlatSecEnforcement setting */
  4741 		EPlatSecDiagnotics,  /**< Used to request the value of the PlatSecDiagnotics setting */
  4742 		EPlatSecProcessIsolation,  /**< Used to request the value of the PlatSecProcessIsolation setting */
  4743 		EPlatSecEnforceSysBin,  /**< Used to request the value of the PlatSecEnforceSysBin setting */
  4744 		EPlatSecLocked,  /**< Used to request the value of the PlatSecLocked setting */
  4745 		};
  4746 
  4747 	/**
  4748 	A test function to return the state of a given Platform Security configuration setting.
  4749 	@param aSetting An enumerated value representing the required setting
  4750 	@return A value representing the setting. 0 represents 'OFF', 1 represents 'ON'
  4751 			Other values may be returned for some settings, these exceptions are documented
  4752 			in the description for individual enumerations of TConfigSetting.
  4753 	@see TConfigSetting
  4754 	@publishedAll
  4755 	@test
  4756 	*/
  4757 	IMPORT_C static TInt ConfigSetting(TConfigSetting aSetting);
  4758 
  4759 #endif // Not __KERNEL_MODE__
  4760 
  4761 	//
  4762 	// All methods below here are internalTechnology
  4763 	//
  4764 
  4765 #ifndef __REMOVE_PLATSEC_DIAGNOSTICS__
  4766 public:
  4767 	/** @internalTechnology */
  4768 	static inline TInt LoaderCapabilityViolation(const TDesC8& aImporterName, const TDesC8& aFileName, const SCapabilitySet& aMissingCaps);
  4769 #ifdef __KERNEL_MODE__
  4770 	/** @internalTechnology */
  4771 	static inline TInt CapabilityCheckFail(const DProcess* aViolatingProcess, TCapability aCapability, const char* aContextText);
  4772 	/** @internalTechnology */
  4773 	static inline TInt CapabilityCheckFail(const DThread* aViolatingThread, TCapability aCapability, const char* aContextText);
  4774 	/** @internalTechnology */
  4775 	static inline TInt SecureIdCheckFail(const DProcess* aViolatingProcess, TSecureId aSid, const char* aContextText);
  4776 	/** @internalTechnology */
  4777 	static inline TInt PolicyCheckFail(const DProcess* aProcess, const SSecurityInfo& aMissing, const char* aContextText);
  4778 	/** @internalTechnology */
  4779 	static inline TInt PolicyCheckFail(const DThread* aProcess, const SSecurityInfo& aMissing, const char* aContextText);
  4780 	/** @internalTechnology */
  4781 	static inline TInt ProcessIsolationFail(const char* aContextText);
  4782 	/** @internalTechnology */
  4783 	static inline TInt ProcessIsolationIPCFail(RMessageK* aMessage, const char* aContextText);
  4784 #else // !__KERNEL_MODE__
  4785 	/** @internalTechnology */
  4786 	static inline TInt LoaderCapabilityViolation(RProcess aLoadingProcess, const TDesC8& aFileName, const SCapabilitySet& aMissingCaps);
  4787 	/** @internalTechnology */
  4788 	static inline TInt CreatorCapabilityCheckFail(TCapability aCapability, const char* aContextText);
  4789 	/** @internalTechnology */
  4790 	static inline TInt CreatorCapabilityCheckFail(const TCapabilitySet& aMissingCaps, const char* aContextText);
  4791 	/** @internalTechnology */
  4792 	static inline TInt CapabilityCheckFail(TInt aHandle, TCapability aCapability, const char* aContextText);
  4793 	/** @internalTechnology */
  4794 	static inline TInt CapabilityCheckFail(TInt aHandle, const TCapabilitySet& aMissingCaps, const char* aContextText);
  4795 	/** @internalTechnology */
  4796 	static inline TInt PolicyCheckFail(TInt aHandle, const SSecurityInfo& aMissing, const char* aContextText);
  4797 	/** @internalTechnology */
  4798 	static inline TInt CapabilityCheckFail(RMessagePtr2 aMessage, TCapability aCapability, const char* aContextText);
  4799 	/** @internalTechnology */
  4800 	static inline TInt CapabilityCheckFail(RMessagePtr2 aMessage, const TCapabilitySet& aMissingCaps, const char* aContextText);
  4801 	/** @internalTechnology */
  4802 	static inline TInt PolicyCheckFail(RMessagePtr2 aMessage, const SSecurityInfo& aMissingCaps, const char* aContextText);
  4803 	/** @internalTechnology */
  4804 	static inline TInt PolicyCheckFail(RSessionBase aSession, const SSecurityInfo& aMissingCaps, const char* aContextText);
  4805 	/** @internalTechnology */
  4806 	static inline TInt CreatorPolicyCheckFail(const SSecurityInfo& aMissingCaps, const char* aContextText);
  4807 	/** @internalTechnology */
  4808 	static inline TInt CreatorCapabilityCheckFail(TCapability aCapability);
  4809 	/** @internalTechnology */
  4810 	static inline TInt CreatorCapabilityCheckFail(const TCapabilitySet& aMissingCaps);
  4811 	/** @internalTechnology */
  4812 	static inline TInt CapabilityCheckFail(TInt aHandle, TCapability aCapability);
  4813 	/** @internalTechnology */
  4814 	static inline TInt CapabilityCheckFail(TInt aHandle, const TCapabilitySet& aMissingCaps);
  4815 	/** @internalTechnology */
  4816 	static inline TInt PolicyCheckFail(TInt aHandle, const SSecurityInfo& aMissing);
  4817 	/** @internalTechnology */
  4818 	static inline TInt CapabilityCheckFail(RMessagePtr2 aMessage, TCapability aCapability);
  4819 	/** @internalTechnology */
  4820 	static inline TInt CapabilityCheckFail(RMessagePtr2 aMessage, const TCapabilitySet& aMissingCaps);
  4821 	/** @internalTechnology */
  4822 	static inline TInt PolicyCheckFail(RMessagePtr2 aMessage, const SSecurityInfo& aMissingCaps);
  4823 	/** @internalTechnology */
  4824 	static inline TInt CreatorPolicyCheckFail(const SSecurityInfo& aMissingCaps);
  4825 #endif //__KERNEL_MODE__
  4826 
  4827 private:
  4828 	UIMPORT_C static TInt EmitDiagnostic(TPlatSecDiagnostic& aDiagnostic, const char* aContextText);
  4829 #else //__REMOVE_PLATSEC_DIAGNOSTICS__
  4830 #ifndef __KERNEL_MODE__
  4831 private:
  4832 	IMPORT_C static TInt EmitDiagnostic(TPlatSecDiagnostic& aDiagnostic, const char* aContextText);
  4833 #endif // !__KERNEL_MODE__
  4834 #endif // !__REMOVE_PLATSEC_DIAGNOSTICS__
  4835 
  4836 public:
  4837 	/** @internalTechnology */
  4838 	UIMPORT_C static TInt EmitDiagnostic();
  4839 	};
  4840 
  4841 
  4842 #define KMaxSerialNumLength 64
  4843 typedef TBuf8<KMaxSerialNumLength> TMediaSerialNumber;
  4844 
  4845 
  4846 /**
  4847 @publishedAll
  4848 @released
  4849 
  4850 Contains information about the code and data sections belonging to a process.
  4851 
  4852 @see RProcess::GetMemoryInfo
  4853 */
  4854 class TProcessMemoryInfo
  4855 	{
  4856 public:
  4857     /**
  4858     The code base address (.text).
  4859     */
  4860 	TUint32 iCodeBase;
  4861 
  4862 	
  4863     /**
  4864     The size of the code section (.text).
  4865     */
  4866 	TUint32 iCodeSize;
  4867 	
  4868 	
  4869     /**
  4870     The base address of the constant data section (.radata).
  4871     */
  4872 	TUint32 iConstDataBase;
  4873 	
  4874 	
  4875     /**
  4876     The size of the constant data section (.radata).
  4877     */
  4878 
  4879 	TUint32 iConstDataSize;
  4880 	
  4881 	
  4882     /**
  4883     The base address of the initialised data section (.data).
  4884     */
  4885 	TUint32 iInitialisedDataBase;
  4886 	
  4887 	
  4888     /**
  4889     The size of the initialised data section (.data).
  4890     */
  4891 	TUint32 iInitialisedDataSize;
  4892 
  4893 	
  4894     /**
  4895     The base address of the uninitialised data section (.bss).
  4896     */
  4897 	TUint32 iUninitialisedDataBase;
  4898 
  4899 	
  4900     /**
  4901     The size of the uninitialised data section (.bss).
  4902     */
  4903 	TUint32 iUninitialisedDataSize;
  4904 	};
  4905 
  4906 
  4907 
  4908 
  4909 /**
  4910 @publishedAll
  4911 @released
  4912 
  4913 Defines a more useful synonym for TProcessMemoryInfo.
  4914 */
  4915 typedef TProcessMemoryInfo TModuleMemoryInfo;	// more accurate name - remove old one later
  4916 
  4917 
  4918 
  4919 
  4920 #ifndef __KERNEL_MODE__
  4921 class CBase;
  4922 /**
  4923 @publishedAll
  4924 @released
  4925 
  4926 Generic array.
  4927 
  4928 This class defines a generic array which can be constructed by any of the
  4929 following templated concrete arrays:
  4930 
  4931 1. CArrayFixFlat<class T>
  4932 
  4933 2. CArrayFixSeg<class T>
  4934 
  4935 3. CArrayVarFlat<class T>
  4936 
  4937 4. CArrayVarSeg<class T>
  4938 
  4939 5. CArrayPakFlat<class T>
  4940 
  4941 6. RArray<class T>
  4942 
  4943 7. RPointerArray<class T>
  4944 
  4945 and also by the following template specialisation classes:
  4946 
  4947 1. RArray<TInt>
  4948 
  4949 2. RArray<TUint>
  4950 
  4951 It allows a degree of polymorphism amongst the array classes. It permits the 
  4952 operator[] and the Count() member functions of an array to be invoked without 
  4953 knowing which array class has been used to construct that array.
  4954 
  4955 TArray allows access to elements of an array but does not permit changes to 
  4956 those elements. 
  4957 
  4958 Use the Array() member function of an array to construct and return
  4959 a TArray<class T> object for that array.
  4960 
  4961 A TArray<class T> type object is not intended to be constructed explicitly 
  4962 by user code.
  4963 
  4964 @see CArrayFixFlat
  4965 @see CArrayFixSeg
  4966 @see CArrayVarFlat
  4967 @see CArrayVarSeg
  4968 @see CArrayPakFlat
  4969 @see RArray
  4970 @see RPointerArray
  4971 @see RArray<TInt>
  4972 @see RArray<TUint>
  4973 */
  4974 template <class T>
  4975 class TArray
  4976 	{
  4977 public:
  4978 	inline TArray(TInt (*aCount)(const CBase* aPtr),const TAny*(*anAt)(const CBase* aPtr,TInt anIndex),const CBase* aPtr);
  4979 	inline TInt Count() const;
  4980 	inline const T& operator[](TInt anIndex) const;
  4981 private:
  4982 	const CBase* iPtr;
  4983 	TInt (*iCount)(const CBase* aPtr);
  4984 	const TAny*(*iAt)(const CBase* aPtr,TInt anIndex);
  4985 	};
  4986 #endif
  4987 
  4988 
  4989 
  4990 
  4991 /**
  4992 @publishedAll
  4993 @released
  4994 
  4995 Defines a function type used by a TIdentityRelation object. 
  4996 
  4997 A function of this type implements an algorithm for determining whether
  4998 two objects match.
  4999 
  5000 @see TIdentityRelation
  5001 */
  5002 typedef TBool (*TGeneralIdentityRelation)(const TAny*, const TAny*);
  5003 
  5004 
  5005 
  5006 
  5007 /**
  5008 @publishedAll
  5009 @released
  5010 
  5011 Defines a function type used by a TLinearOrder object
  5012 
  5013 A function of this type implements an algorithm that determines
  5014 the order of two objects.
  5015 
  5016 @see TLinearOrder
  5017 */
  5018 typedef TInt (*TGeneralLinearOrder)(const TAny*, const TAny*);
  5019 
  5020 
  5021 
  5022 
  5023 /**
  5024 @publishedAll
  5025 @released
  5026 
  5027 A templated class which packages a function that determines whether two
  5028 objects of a given class type match. During linear search operations the search
  5029 term is always passed as the first argument and the second argument is an
  5030 element of the array being searched.
  5031 
  5032 A TIdentityRelation<T> object is constructed and passed as a parameter to 
  5033 member functions of the array classes RArray<T> and RPointerArray<T>.
  5034 
  5035 @see RArray
  5036 @see RPointerArray
  5037 */
  5038 template <class T>
  5039 class TIdentityRelation
  5040 	{
  5041 public:
  5042 	inline TIdentityRelation();
  5043 	inline TIdentityRelation( TBool (*anIdentity)(const T&, const T&) );
  5044 	inline operator TGeneralIdentityRelation() const;
  5045 private:
  5046 	inline static TBool EqualityOperatorCompare(const T& aLeft, const T& aRight);
  5047 private:
  5048 	TGeneralIdentityRelation iIdentity;
  5049 	};
  5050 
  5051 
  5052 
  5053 /**
  5054 @publishedAll
  5055 @released
  5056 
  5057 A set of common identity relations for frequently occurring types.
  5058 
  5059 @see RArray
  5060 @see RPointerArray
  5061 @see RHashSet
  5062 @see RPtrHashSet
  5063 @see RHashMap
  5064 @see RPtrHashMap
  5065 */
  5066 class DefaultIdentity
  5067 	{
  5068 public:
  5069 	IMPORT_C static TBool Integer(const TInt&, const TInt&);
  5070 	IMPORT_C static TBool Des8(const TDesC8&, const TDesC8&);
  5071 	IMPORT_C static TBool Des16(const TDesC16&, const TDesC16&);
  5072 	IMPORT_C static TBool IntegerPtr(TInt* const&, TInt* const&);
  5073 	IMPORT_C static TBool Des8Ptr(TDesC8* const&, TDesC8* const&);
  5074 	IMPORT_C static TBool Des16Ptr(TDesC16* const&, TDesC16* const&);
  5075 	};
  5076 
  5077 
  5078 
  5079 
  5080 /**
  5081 @publishedAll
  5082 @released
  5083 
  5084 A templated class which packages a function that determines the order of two 
  5085 objects of a given class type. During binary search operations the search term
  5086 is always passed as the first argument and the second argument is an element
  5087 of the array being searched.
  5088 
  5089 A TLinearOrder<T> object is constructed and passed as a parameter to member 
  5090 functions of the array classes RArray<T> and RPointerArray<T>.
  5091 
  5092 @see RArray
  5093 @see RPointerArray
  5094 */
  5095 template <class T>
  5096 class TLinearOrder
  5097 	{
  5098 public:
  5099 	inline TLinearOrder( TInt(*anOrder)(const T&, const T&) );
  5100 	inline operator TGeneralLinearOrder() const;
  5101 private:
  5102 	TGeneralLinearOrder iOrder;
  5103 	};
  5104 
  5105 
  5106 /*
  5107 @publishedAll
  5108 @released
  5109 
  5110 A set of values that tell array search functions which array element is to be
  5111 returned when there are duplicate elements in the array.
  5112 
  5113 These values are used by RArray, RPointerArray, RArray<TInt>,
  5114 and RArray<TUint> search functions. 
  5115 
  5116 Examples of functions that take
  5117 these enum values are: RPointerArray::SpecificFindInOrderL(),
  5118 and RArray::SpecificFindInSignedKeyOrder().
  5119 
  5120 @see RArray
  5121 @see RPointerArray
  5122 @see RArray<TInt>
  5123 @see RArray<TUint>
  5124 */
  5125 enum TArrayFindMode
  5126 	{
  5127 	/**
  5128 	Indicates that any element in a block of duplicate elements can be
  5129 	returned by a search function.
  5130 	
  5131 	Note that using this mode, there can be no guarantee that the element
  5132 	returned by the search functions will be the same if the size of the array
  5133 	changes between successive calls to those functions.
  5134 	*/
  5135 	EArrayFindMode_Any = 0,
  5136 	
  5137 	/**
  5138 	Indicates that the first element in a block of duplicate elements
  5139 	is returned.
  5140 	*/
  5141 	EArrayFindMode_First = 1,
  5142 
  5143 	/**
  5144 	Indicates that the first element after the last element in a block
  5145 	of duplicate elements is returned.
  5146 	*/
  5147 	EArrayFindMode_Last = 2,
  5148     
  5149     /**
  5150     @internalTechnology
  5151     */
  5152 	EArrayFindMode_Limit = 3
  5153 	};
  5154 
  5155 
  5156 /**
  5157 @internalComponent
  5158 
  5159 Base class used in the derivation of RPointerArray, RArray<TInt>,
  5160 and RArray<TUint>. 
  5161 
  5162 The base class is inherited privately.
  5163 
  5164 The class is internal and is not intended for use.
  5165 */
  5166 class RPointerArrayBase
  5167 	{
  5168 protected:
  5169 	IMPORT_C RPointerArrayBase();
  5170 	IMPORT_C RPointerArrayBase(TInt aGranularity);
  5171 	IMPORT_C RPointerArrayBase(TInt aMinGrowBy, TInt aFactor);
  5172 	IMPORT_C void Close();
  5173 	IMPORT_C TInt Count() const;
  5174 	inline void ZeroCount() {iCount=0;}
  5175 	inline TAny** Entries() {return iEntries;}
  5176 	IMPORT_C TAny*& At(TInt anIndex) const;
  5177 	IMPORT_C TInt Append(const TAny* anEntry);
  5178 	IMPORT_C TInt Insert(const TAny* anEntry, TInt aPos);
  5179 	IMPORT_C void Remove(TInt anIndex);
  5180 	IMPORT_C void Compress();
  5181 	IMPORT_C void Reset();
  5182 	IMPORT_C TInt Find(const TAny* anEntry) const;
  5183 	IMPORT_C TInt Find(const TAny* anEntry, TGeneralIdentityRelation anIdentity) const;
  5184 	IMPORT_C TInt FindReverse(const TAny* aEntry) const;
  5185 	IMPORT_C TInt FindReverse(const TAny* aEntry, TGeneralIdentityRelation aIdentity) const;
  5186 	IMPORT_C TInt FindIsqSigned(TInt anEntry) const;
  5187 	IMPORT_C TInt FindIsqUnsigned(TUint anEntry) const;
  5188 	IMPORT_C TInt FindIsq(const TAny* anEntry, TGeneralLinearOrder anOrder) const;
  5189 	IMPORT_C TInt FindIsqSigned(TInt anEntry, TInt aMode) const;
  5190 	IMPORT_C TInt FindIsqUnsigned(TUint anEntry, TInt aMode) const;
  5191 	IMPORT_C TInt FindIsq(const TAny* anEntry, TGeneralLinearOrder anOrder, TInt aMode) const;
  5192 	IMPORT_C TInt InsertIsqSigned(TInt anEntry, TBool aAllowRepeats);
  5193 	IMPORT_C TInt InsertIsqUnsigned(TUint anEntry, TBool aAllowRepeats);
  5194 	IMPORT_C TInt InsertIsq(const TAny* anEntry, TGeneralLinearOrder anOrder, TBool aAllowRepeats);
  5195 	IMPORT_C TInt BinarySearchSigned(TInt anEntry, TInt& anIndex) const;
  5196 	IMPORT_C TInt BinarySearchUnsigned(TUint anEntry, TInt& anIndex) const;
  5197 	IMPORT_C TInt BinarySearch(const TAny* anEntry, TInt& anIndex, TGeneralLinearOrder anOrder) const;
  5198 	IMPORT_C TInt BinarySearchSigned(TInt anEntry, TInt& anIndex, TInt aMode) const;
  5199 	IMPORT_C TInt BinarySearchUnsigned(TUint anEntry, TInt& anIndex, TInt aMode) const;
  5200 	IMPORT_C TInt BinarySearch(const TAny* anEntry, TInt& anIndex, TGeneralLinearOrder anOrder, TInt aMode) const;
  5201 #ifndef __KERNEL_MODE__
  5202 	IMPORT_C RPointerArrayBase(TAny** aEntries, TInt aCount);
  5203 	IMPORT_C void GranularCompress();
  5204 	IMPORT_C TInt DoReserve(TInt aCount);
  5205 	IMPORT_C void HeapSortSigned();
  5206 	IMPORT_C void HeapSortUnsigned();
  5207 	IMPORT_C void HeapSort(TGeneralLinearOrder anOrder);
  5208 	IMPORT_C static TInt GetCount(const CBase* aPtr);
  5209 	IMPORT_C static const TAny* GetElementPtr(const CBase* aPtr, TInt aIndex);
  5210 #endif
  5211 private:
  5212 	TInt Grow();
  5213 private:
  5214 	TInt iCount;
  5215 	TAny** iEntries;
  5216 	TInt iAllocated;
  5217 	TInt iGranularity;	// positive means linear, negative means exponential growth
  5218 	TInt iSpare1;
  5219 	TInt iSpare2;
  5220 	};
  5221 
  5222 
  5223 
  5224 
  5225 /**
  5226 @publishedAll
  5227 @released
  5228 
  5229 A simple and efficient array of pointers to objects.
  5230 
  5231 The elements of the array are pointers to instances of a class; this class
  5232 is specified as the template parameter T.
  5233 
  5234 The class offers standard array behaviour which includes insertion, appending 
  5235 and sorting of pointers.
  5236 
  5237 Derivation from RPointerArrayBase is private.
  5238 */
  5239 template <class T>
  5240 class RPointerArray : private RPointerArrayBase
  5241 	{
  5242 public:
  5243 	inline RPointerArray();
  5244 	inline explicit RPointerArray(TInt aGranularity);
  5245 	inline RPointerArray(TInt aMinGrowBy, TInt aFactor);
  5246 	inline void Close();
  5247 	inline TInt Count() const;
  5248 	inline T* const& operator[](TInt anIndex) const;
  5249 	inline T*& operator[](TInt anIndex);
  5250 	inline TInt Append(const T* anEntry);
  5251 	inline TInt Insert(const T* anEntry, TInt aPos);
  5252 	inline void Remove(TInt anIndex);
  5253 	inline void Compress();
  5254 	inline void Reset();
  5255 	void ResetAndDestroy();
  5256 	inline TInt Find(const T* anEntry) const;
  5257 	inline TInt Find(const T* anEntry, TIdentityRelation<T> anIdentity) const;
  5258 	template <class K>
  5259 	inline TInt Find(const K& aKey, TBool (*apfnCompare)(const K* k, const T& t)) const
  5260 	/**
  5261 	Finds the first object pointer in the array which matches aKey using
  5262 	the comparison algorithm provided by apfnCompare.
  5263 	
  5264 	The find operation always starts at the low index end of the array. There 
  5265 	is no assumption about the order of objects in the array.
  5266 
  5267 	@param aKey The key of type K to be compared with the elements of the array using apfnCompare.
  5268 	@param apfnCompare A function defining the identity relation between the
  5269 			object pointers in the array, and their keys of type K.  The
  5270 			function returns true if k and t match based on this relationship.
  5271 	
  5272 	@return The index of the first matching object pointer within the array.
  5273 			KErrNotFound, if no suitable object pointer can be found.
  5274 	*/
  5275 		{ return RPointerArrayBase::Find((T*)&aKey,*(TIdentityRelation<T>*)&apfnCompare); }		
  5276 	inline TInt FindReverse(const T* anEntry) const;
  5277 	inline TInt FindReverse(const T* anEntry, TIdentityRelation<T> anIdentity) const;
  5278 	template <class K>
  5279 	inline TInt FindReverse(const K& aKey, TInt (*apfnMatch)(const K* k, const T& t)) const
  5280 	/**
  5281 	Finds the first object pointer in the array which matches aKey using
  5282 	the comparison algorithm provided by apfnCompare.
  5283 	
  5284 	The find operation always starts at the high index end of the array. There 
  5285 	is no assumption about the order of objects in the array.
  5286 
  5287 	@param aKey The key of type K to be compared with the elements of the array using apfnMatch.
  5288 	@param apfnMatch A function defining the identity relation between the
  5289 			object pointers in the array, and their keys of type K.  The
  5290 			function returns true if k and t match based on this relationship.
  5291 	
  5292 	@return The index of the first matching object pointer within the array.
  5293 			KErrNotFound, if no suitable object pointer can be found.
  5294 	*/
  5295 
  5296 		{ return RPointerArrayBase::FindReverse((T*)&aKey,*(TIdentityRelation<T>*)&apfnMatch); } 				
  5297 	inline TInt FindInAddressOrder(const T* anEntry) const;
  5298 	inline TInt FindInOrder(const T* anEntry, TLinearOrder<T> anOrder) const;
  5299 	inline TInt FindInAddressOrder(const T* anEntry, TInt& anIndex) const;
  5300 	inline TInt FindInOrder(const T* anEntry, TInt& anIndex, TLinearOrder<T> anOrder) const;
  5301 	template <class K>
  5302 	inline TInt FindInOrder(const K& aKey, TInt (*apfnCompare)(const K* k, const T& t)) const
  5303 	/**
  5304 	Finds the object pointer in the array whose object matches the specified
  5305 	key, (Using the relationship defined within apfnCompare) using a binary search
  5306 	technique and an ordering algorithm.
  5307 
  5308 	The function assumes that existing object pointers in the array are ordered 
  5309 	so that the objects themselves are in object order as determined by an algorithm 
  5310 	supplied by the caller and packaged as a TLinearOrder<T>.
  5311 
  5312 	@param aKey The key of type K to be compared with the elements of the array using apfnCompare.
  5313 	@param apfnCompare A function which defines the order that the array was sorted,
  5314 		 where in it aKey (via the defined relationship) should fit, and if the key is present. 
  5315 	
  5316 	@return The index of the matching object pointer within the array.
  5317 			KErrNotFound, if no suitable object pointer can be found.
  5318 	*/	
  5319 		{ return RPointerArrayBase::FindIsq((T*)&aKey,*(TLinearOrder<T>*)&apfnCompare); }
  5320 	inline TInt SpecificFindInAddressOrder(const T* anEntry, TInt aMode) const;
  5321 	inline TInt SpecificFindInOrder(const T* anEntry, TLinearOrder<T> anOrder, TInt aMode) const;
  5322 	inline TInt SpecificFindInAddressOrder(const T* anEntry, TInt& anIndex, TInt aMode) const;
  5323 	inline TInt SpecificFindInOrder(const T* anEntry, TInt& anIndex, TLinearOrder<T> anOrder, TInt aMode) const;
  5324 	inline TInt InsertInAddressOrder(const T* anEntry);
  5325 	inline TInt InsertInOrder(const T* anEntry, TLinearOrder<T> anOrder);
  5326 	inline TInt InsertInAddressOrderAllowRepeats(const T* anEntry);
  5327 	inline TInt InsertInOrderAllowRepeats(const T* anEntry, TLinearOrder<T> anOrder);
  5328 #ifndef __KERNEL_MODE__
  5329 	inline void AppendL(const T* anEntry);
  5330 	inline void InsertL(const T* anEntry, TInt aPos);
  5331 	inline TInt FindL(const T* anEntry) const;
  5332 	inline TInt FindL(const T* anEntry, TIdentityRelation<T> anIdentity) const;
  5333 	inline TInt FindReverseL(const T* anEntry) const;
  5334 	inline TInt FindReverseL(const T* anEntry, TIdentityRelation<T> anIdentity) const;
  5335 	inline TInt FindInAddressOrderL(const T* anEntry) const;
  5336 	inline TInt FindInOrderL(const T* anEntry, TLinearOrder<T> anOrder) const;
  5337 	inline void FindInAddressOrderL(const T* anEntry, TInt& anIndex) const;
  5338 	inline void FindInOrderL(const T* anEntry, TInt& anIndex, TLinearOrder<T> anOrder) const;
  5339 	inline TInt SpecificFindInAddressOrderL(const T* anEntry, TInt aMode) const;
  5340 	inline TInt SpecificFindInOrderL(const T* anEntry, TLinearOrder<T> anOrder, TInt aMode) const;
  5341 	inline void SpecificFindInAddressOrderL(const T* anEntry, TInt& anIndex, TInt aMode) const;
  5342 	inline void SpecificFindInOrderL(const T* anEntry, TInt& anIndex, TLinearOrder<T> anOrder, TInt aMode) const;
  5343 	inline void InsertInAddressOrderL(const T* anEntry);
  5344 	inline void InsertInOrderL(const T* anEntry, TLinearOrder<T> anOrder);
  5345 	inline void InsertInAddressOrderAllowRepeatsL(const T* anEntry);
  5346 	inline void InsertInOrderAllowRepeatsL(const T* anEntry, TLinearOrder<T> anOrder);
  5347 
  5348 	inline RPointerArray(T** aEntries, TInt aCount);
  5349 	inline void GranularCompress();
  5350 	inline TInt Reserve(TInt aCount);
  5351 	inline void ReserveL(TInt aCount);
  5352 	inline void SortIntoAddressOrder();
  5353 	inline void Sort(TLinearOrder<T> anOrder);
  5354 	inline TArray<T*> Array() const;
  5355 #endif
  5356 	};
  5357 
  5358 
  5359 
  5360 /**
  5361 @publishedAll
  5362 @released
  5363 
  5364 Array of raw pointers.
  5365 
  5366 The array is a simple and efficient specialized array of TAny pointers offering
  5367 standard array behaviour.
  5368 
  5369 The derivation from RPointerArrayBase is private.
  5370 */
  5371 TEMPLATE_SPECIALIZATION class RPointerArray<TAny> : private RPointerArrayBase
  5372 	{
  5373 public:
  5374 	inline RPointerArray();
  5375 	inline explicit RPointerArray(TInt aGranularity);
  5376 	inline RPointerArray(TInt aMinGrowBy, TInt aFactor);
  5377 	inline void Close();
  5378 	inline TInt Count() const;
  5379 	inline TAny* const& operator[](TInt anIndex) const;
  5380 	inline TAny*& operator[](TInt anIndex);
  5381 	inline TInt Append(const TAny* anEntry);
  5382 	inline TInt Insert(const TAny* anEntry, TInt aPos);
  5383 	inline void Remove(TInt anIndex);
  5384 	inline void Compress();
  5385 	inline void Reset();
  5386 	inline TInt Find(const TAny* anEntry) const;
  5387 	inline TInt FindReverse(const TAny* anEntry) const;
  5388 	inline TInt FindInAddressOrder(const TAny* anEntry) const;
  5389 	inline TInt FindInAddressOrder(const TAny* anEntry, TInt& anIndex) const;
  5390 	inline TInt SpecificFindInAddressOrder(const TAny* anEntry, TInt aMode) const;
  5391 	inline TInt SpecificFindInAddressOrder(const TAny* anEntry, TInt& anIndex, TInt aMode) const;
  5392 	inline TInt InsertInAddressOrder(const TAny* anEntry);
  5393 	inline TInt InsertInAddressOrderAllowRepeats(const TAny* anEntry);
  5394 #ifndef __KERNEL_MODE__
  5395 	inline void AppendL(const TAny* anEntry);
  5396 	inline void InsertL(const TAny* anEntry, TInt aPos);
  5397 	inline TInt FindL(const TAny* anEntry) const;
  5398 	inline TInt FindReverseL(const TAny* anEntry) const;
  5399 	inline TInt FindInAddressOrderL(const TAny* anEntry) const;
  5400 	inline void FindInAddressOrderL(const TAny* anEntry, TInt& anIndex) const;
  5401 	inline TInt SpecificFindInAddressOrderL(const TAny* anEntry, TInt aMode) const;
  5402 	inline void SpecificFindInAddressOrderL(const TAny* anEntry, TInt& anIndex, TInt aMode) const;
  5403 	inline void InsertInAddressOrderL(const TAny* anEntry);
  5404 	inline void InsertInAddressOrderAllowRepeatsL(const TAny* anEntry);
  5405 
  5406 	inline RPointerArray(TAny** aEntries, TInt aCount);
  5407 	inline void GranularCompress();
  5408 	inline void SortIntoAddressOrder();
  5409 	inline TArray<TAny*> Array() const;
  5410 #endif
  5411 	};
  5412 
  5413 
  5414 
  5415 /**
  5416 @internalComponent
  5417 
  5418 Base class used in the derivation of RArray.
  5419 
  5420 The base class is inherited privately.
  5421 
  5422 The class is internal and is not intended for use.
  5423 */
  5424 class RArrayBase
  5425 	{
  5426 protected:
  5427 	IMPORT_C RArrayBase(TInt anEntrySize);
  5428 	IMPORT_C RArrayBase(TInt anEntrySize, TInt aGranularity);
  5429 	IMPORT_C RArrayBase(TInt anEntrySize, TInt aGranularity, TInt aKeyOffset);
  5430 	IMPORT_C RArrayBase(TInt anEntrySize, TInt aMinGrowBy, TInt aKeyOffset, TInt aFactor);
  5431 	IMPORT_C RArrayBase(TInt aEntrySize,TAny* aEntries, TInt aCount);
  5432 	IMPORT_C void Close();
  5433 	IMPORT_C TInt Count() const;
  5434 	IMPORT_C TAny* At(TInt anIndex) const;
  5435 	IMPORT_C TInt Append(const TAny* anEntry);
  5436 	IMPORT_C TInt Insert(const TAny* anEntry, TInt aPos);
  5437 	IMPORT_C void Remove(TInt anIndex);
  5438 	IMPORT_C void Compress();
  5439 	IMPORT_C void Reset();
  5440 	IMPORT_C TInt Find(const TAny* anEntry) const;
  5441 	IMPORT_C TInt Find(const TAny* anEntry, TGeneralIdentityRelation anIdentity) const;
  5442 	IMPORT_C TInt FindReverse(const TAny* aEntry) const;
  5443 	IMPORT_C TInt FindReverse(const TAny* aEntry, TGeneralIdentityRelation aIdentity) const;
  5444 	IMPORT_C TInt FindIsqSigned(const TAny* anEntry) const;
  5445 	IMPORT_C TInt FindIsqUnsigned(const TAny* anEntry) const;
  5446 	IMPORT_C TInt FindIsq(const TAny* anEntry, TGeneralLinearOrder anOrder) const;
  5447 	IMPORT_C TInt FindIsqSigned(const TAny* anEntry, TInt aMode) const;
  5448 	IMPORT_C TInt FindIsqUnsigned(const TAny* anEntry, TInt aMode) const;
  5449 	IMPORT_C TInt FindIsq(const TAny* anEntry, TGeneralLinearOrder anOrder, TInt aMode) const;
  5450 	IMPORT_C TInt InsertIsqSigned(const TAny* anEntry, TBool aAllowRepeats);
  5451 	IMPORT_C TInt InsertIsqUnsigned(const TAny* anEntry, TBool aAllowRepeats);
  5452 	IMPORT_C TInt InsertIsq(const TAny* anEntry, TGeneralLinearOrder anOrder, TBool aAllowRepeats);
  5453 	IMPORT_C TInt BinarySearchSigned(const TAny* anEntry, TInt& anIndex) const;
  5454 	IMPORT_C TInt BinarySearchUnsigned(const TAny* anEntry, TInt& anIndex) const;
  5455 	IMPORT_C TInt BinarySearch(const TAny* anEntry, TInt& anIndex, TGeneralLinearOrder anOrder) const;
  5456 	IMPORT_C TInt BinarySearchSigned(const TAny* anEntry, TInt& anIndex, TInt aMode) const;
  5457 	IMPORT_C TInt BinarySearchUnsigned(const TAny* anEntry, TInt& anIndex, TInt aMode) const;
  5458 	IMPORT_C TInt BinarySearch(const TAny* anEntry, TInt& anIndex, TGeneralLinearOrder anOrder, TInt aMode) const;
  5459 #ifndef __KERNEL_MODE__
  5460 	IMPORT_C void GranularCompress();
  5461 	IMPORT_C TInt DoReserve(TInt aCount);
  5462 	IMPORT_C void HeapSortSigned();
  5463 	IMPORT_C void HeapSortUnsigned();
  5464 	IMPORT_C void HeapSort(TGeneralLinearOrder anOrder);
  5465 	IMPORT_C static TInt GetCount(const CBase* aPtr);
  5466 	IMPORT_C static const TAny* GetElementPtr(const CBase* aPtr, TInt aIndex);
  5467 #endif
  5468 private:
  5469 	TInt Grow();
  5470 private:
  5471 	TInt iCount;
  5472 	TAny* iEntries;
  5473 	TInt iEntrySize;
  5474 	TInt iKeyOffset;
  5475 	TInt iAllocated;
  5476 	TInt iGranularity;	// positive means linear, negative means exponential growth
  5477 	TInt iSpare1;
  5478 	TInt iSpare2;
  5479 	};
  5480 
  5481 
  5482 
  5483 
  5484 /**
  5485 @publishedAll
  5486 @released
  5487 
  5488 A simple and efficient array of fixed length objects.
  5489 
  5490 The elements of the array are instances of a class; this class is specified
  5491 as the template parameter T.
  5492 
  5493 The array offers standard array behaviour which includes insertion, appending 
  5494 and sorting of elements.
  5495 
  5496 Note:
  5497 
  5498 1. where possible, this class should be used in preference to
  5499    CArrayFixFlat<classT>.
  5500 
  5501 2. the derivation from RArrayBase is private.
  5502 
  5503 3. for performance reasons, RArray stores objects in the array as
  5504    word (4 byte) aligned quantities. This means that some member functions
  5505    do not work when RArray is instantiated for classes of less than 4 bytes
  5506    in size, or when the class's alignment requirement is not 4.
  5507    Be aware that it is possible to get an unhandled exception on hardware
  5508    that enforces strict alignment.
  5509    
  5510    The affected functions are:
  5511    
  5512    3.1 the constructor: RArray(TInt, T*, TInt)
  5513    
  5514    3.2 Append(const T&)
  5515    
  5516    3.3 Insert(const T&, TInt)
  5517    
  5518    3.4 the [] operator, and then using the pointer to iterate through
  5519        the array as you would with a C array.
  5520 */
  5521 template <class T>
  5522 class RArray : private RArrayBase
  5523 	{
  5524 public:
  5525 	inline RArray();
  5526 	inline explicit RArray(TInt aGranularity);
  5527 	inline RArray(TInt aGranularity, TInt aKeyOffset);
  5528 	inline RArray(TInt aMinGrowBy, TInt aKeyOffset, TInt aFactor);
  5529 	inline RArray(TInt aEntrySize,T* aEntries, TInt aCount);
  5530 	inline void Close();
  5531 	inline TInt Count() const;
  5532 	inline const T& operator[](TInt anIndex) const;
  5533 	inline T& operator[](TInt anIndex);
  5534 	inline TInt Append(const T& anEntry);
  5535 	inline TInt Insert(const T& anEntry, TInt aPos);
  5536 	inline void Remove(TInt anIndex);
  5537 	inline void Compress();
  5538 	inline void Reset();
  5539 	inline TInt Find(const T& anEntry) const;
  5540 	inline TInt Find(const T& anEntry, TIdentityRelation<T> anIdentity) const;
  5541 	template <class K>
  5542 	inline TInt Find(const K& aKey, TBool (*apfnCompare)(const K* k, const T& t)) const
  5543 	/**
  5544 	Finds the first object in the array which matches aKey using
  5545 	the comparison algorithm provided by apfnCompare.
  5546 	
  5547 	The find operation always starts at the low index end of the array. There 
  5548 	is no assumption about the order of objects in the array.
  5549 
  5550 	@param aKey The key of type K to be compared with the elements of the array using apfnCompare.
  5551 	@param apfnCompare A function defining the identity relation between the
  5552 			object in the array, and their keys of type K.  The function
  5553 			returns true if k and t match based on this relationship.
  5554 	
  5555 	@return The index of the first matching object within the array.
  5556 			KErrNotFound, if no suitable object can be found.
  5557 	*/
  5558 		{ return RArrayBase::Find((T*)&aKey,*(TIdentityRelation<T>*)&apfnCompare); }
  5559 	inline TInt FindReverse(const T& anEntry) const;
  5560 	inline TInt FindReverse(const T& anEntry, TIdentityRelation<T> anIdentity) const;
  5561 	template <class K>
  5562 	inline TInt FindReverse(const K& aKey, TInt (*apfnMatch)(const K* k, const T& t)) const 
  5563 	/**
  5564 	Finds the first object in the array which matches aKey using the comparison
  5565 	algorithm provided by apfnCompare.
  5566 	
  5567 	The find operation always starts at the high index end of the array. There 
  5568 	is no assumption about the order of objects in the array.
  5569 
  5570 	@param aKey The key of type K to be compared with the elements of the array using apfnMatch.
  5571 	@param apfnMatch A function defining the identity relation between the
  5572 			object in the array, and their keys of type K.  The	function
  5573 			returns true if k and t match based on this relationship.
  5574 	
  5575 	@return The index of the first matching object within the array.
  5576 			KErrNotFound, if no suitable object can be found.
  5577 	*/	
  5578 		{ return RArrayBase::FindReverse((T*)&aKey,*(TIdentityRelation<T>*)&apfnMatch); }		
  5579 	inline TInt FindInSignedKeyOrder(const T& anEntry) const;
  5580 	inline TInt FindInUnsignedKeyOrder(const T& anEntry) const;
  5581 	inline TInt FindInOrder(const T& anEntry, TLinearOrder<T> anOrder) const;
  5582 	inline TInt FindInSignedKeyOrder(const T& anEntry, TInt& anIndex) const;
  5583 	inline TInt FindInUnsignedKeyOrder(const T& anEntry, TInt& anIndex) const;
  5584 	inline TInt FindInOrder(const T& anEntry, TInt& anIndex, TLinearOrder<T> anOrder) const;
  5585 	template <class K>
  5586 	inline TInt FindInOrder(const K& aKey, TInt (*apfnCompare)(const K* k, const T& t)) const
  5587 	/**
  5588 	Finds the object in the array whose object matches the specified
  5589 	key, (Using the relationship defined within apfnCompare) using a binary search
  5590 	technique and an ordering algorithm.
  5591 
  5592 	The function assumes that existing objects in the array are ordered so
  5593 	that the objects themselves are in object order as determined by an algorithm 
  5594 	supplied by the caller and packaged as a TLinearOrder<T>.
  5595 
  5596 	@param aKey The key of type K to be compared with the elements of the array using apfnCompare.
  5597 	@param apfnCompare A function which defines the order that the array was sorted,
  5598 		 where in it aKey (via the defined relationship) should fit, and if the key is present. 
  5599 	
  5600 	@return The index of the matching object within the array.
  5601 			KErrNotFound, if no suitable object can be found.
  5602 	*/	
  5603 
  5604 		{ return RArrayBase::FindIsq((T*)&aKey,*(TLinearOrder<T>*)&apfnCompare); }
  5605 	inline TInt SpecificFindInSignedKeyOrder(const T& anEntry, TInt aMode) const;
  5606 	inline TInt SpecificFindInUnsignedKeyOrder(const T& anEntry, TInt aMode) const;
  5607 	inline TInt SpecificFindInOrder(const T& anEntry, TLinearOrder<T> anOrder, TInt aMode) const;
  5608 	inline TInt SpecificFindInSignedKeyOrder(const T& anEntry, TInt& anIndex, TInt aMode) const;
  5609 	inline TInt SpecificFindInUnsignedKeyOrder(const T& anEntry, TInt& anIndex, TInt aMode) const;
  5610 	inline TInt SpecificFindInOrder(const T& anEntry, TInt& anIndex, TLinearOrder<T> anOrder, TInt aMode) const;
  5611 	inline TInt InsertInSignedKeyOrder(const T& anEntry);
  5612 	inline TInt InsertInUnsignedKeyOrder(const T& anEntry);
  5613 	inline TInt InsertInOrder(const T& anEntry, TLinearOrder<T> anOrder);
  5614 	inline TInt InsertInSignedKeyOrderAllowRepeats(const T& anEntry);
  5615 	inline TInt InsertInUnsignedKeyOrderAllowRepeats(const T& anEntry);
  5616 	inline TInt InsertInOrderAllowRepeats(const T& anEntry, TLinearOrder<T> anOrder);
  5617 #ifndef __KERNEL_MODE__
  5618 	inline void AppendL(const T& anEntry);
  5619 	inline void InsertL(const T& anEntry, TInt aPos);
  5620 	inline TInt FindL(const T& anEntry) const;
  5621 	inline TInt FindL(const T& anEntry, TIdentityRelation<T> anIdentity) const;
  5622 	inline TInt FindReverseL(const T& anEntry) const;
  5623 	inline TInt FindReverseL(const T& anEntry, TIdentityRelation<T> anIdentity) const;
  5624 	inline TInt FindInSignedKeyOrderL(const T& anEntry) const;
  5625 	inline TInt FindInUnsignedKeyOrderL(const T& anEntry) const;
  5626 	inline TInt FindInOrderL(const T& anEntry, TLinearOrder<T> anOrder) const;
  5627 	inline void FindInSignedKeyOrderL(const T& anEntry, TInt& anIndex) const;
  5628 	inline void FindInUnsignedKeyOrderL(const T& anEntry, TInt& anIndex) const;
  5629 	inline void FindInOrderL(const T& anEntry, TInt& anIndex, TLinearOrder<T> anOrder) const;
  5630 	inline TInt SpecificFindInSignedKeyOrderL(const T& anEntry, TInt aMode) const;
  5631 	inline TInt SpecificFindInUnsignedKeyOrderL(const T& anEntry, TInt aMode) const;
  5632 	inline TInt SpecificFindInOrderL(const T& anEntry, TLinearOrder<T> anOrder, TInt aMode) const;
  5633 	inline void SpecificFindInSignedKeyOrderL(const T& anEntry, TInt& anIndex, TInt aMode) const;
  5634 	inline void SpecificFindInUnsignedKeyOrderL(const T& anEntry, TInt& anIndex, TInt aMode) const;
  5635 	inline void SpecificFindInOrderL(const T& anEntry, TInt& anIndex, TLinearOrder<T> anOrder, TInt aMode) const;
  5636 	inline void InsertInSignedKeyOrderL(const T& anEntry);
  5637 	inline void InsertInUnsignedKeyOrderL(const T& anEntry);
  5638 	inline void InsertInOrderL(const T& anEntry, TLinearOrder<T> anOrder);
  5639 	inline void InsertInSignedKeyOrderAllowRepeatsL(const T& anEntry);
  5640 	inline void InsertInUnsignedKeyOrderAllowRepeatsL(const T& anEntry);
  5641 	inline void InsertInOrderAllowRepeatsL(const T& anEntry, TLinearOrder<T> anOrder);
  5642 
  5643 	inline void GranularCompress();
  5644 	inline TInt Reserve(TInt aCount);
  5645 	inline void ReserveL(TInt aCount);
  5646 	inline void SortSigned();
  5647 	inline void SortUnsigned();
  5648 	inline void Sort(TLinearOrder<T> anOrder);
  5649 	inline TArray<T> Array() const;
  5650 #endif
  5651 	};
  5652 
  5653 
  5654 
  5655 
  5656 /**
  5657 @publishedAll
  5658 @released
  5659 
  5660 A simple and efficient specialized array of signed integers offering standard 
  5661 array behaviour.
  5662 
  5663 Note that derivation from RPointerArrayBase is private.
  5664 */
  5665 TEMPLATE_SPECIALIZATION class RArray<TInt> : private RPointerArrayBase
  5666 	{
  5667 public:
  5668 	inline RArray();
  5669 	inline explicit RArray(TInt aGranularity);
  5670 	inline RArray(TInt aMinGrowBy, TInt aFactor);
  5671 	inline void Close();
  5672 	inline TInt Count() const;
  5673 	inline const TInt& operator[](TInt anIndex) const;
  5674 	inline TInt& operator[](TInt anIndex);
  5675 	inline TInt Append(TInt anEntry);
  5676 	inline TInt Insert(TInt anEntry, TInt aPos);
  5677 	inline void Remove(TInt anIndex);
  5678 	inline void Compress();
  5679 	inline void Reset();
  5680 	inline TInt Find(TInt anEntry) const;
  5681 	inline TInt FindReverse(TInt anEntry) const;
  5682 	inline TInt FindInOrder(TInt anEntry) const;
  5683 	inline TInt FindInOrder(TInt anEntry, TInt& anIndex) const;
  5684 	inline TInt SpecificFindInOrder(TInt anEntry, TInt aMode) const;
  5685 	inline TInt SpecificFindInOrder(TInt anEntry, TInt& anIndex, TInt aMode) const;
  5686 	inline TInt InsertInOrder(TInt anEntry);
  5687 	inline TInt InsertInOrderAllowRepeats(TInt anEntry);
  5688 #ifndef __KERNEL_MODE__
  5689 	inline void AppendL(TInt anEntry);
  5690 	inline void InsertL(TInt anEntry, TInt aPos);
  5691 	inline TInt FindL(TInt anEntry) const;
  5692 	inline TInt FindReverseL(TInt anEntry) const;
  5693 	inline TInt FindInOrderL(TInt anEntry) const;
  5694 	inline void FindInOrderL(TInt anEntry, TInt& anIndex) const;
  5695 	inline TInt SpecificFindInOrderL(TInt anEntry, TInt aMode) const;
  5696 	inline void SpecificFindInOrderL(TInt anEntry, TInt& anIndex, TInt aMode) const;
  5697 	inline void InsertInOrderL(TInt anEntry);
  5698 	inline void InsertInOrderAllowRepeatsL(TInt anEntry);
  5699 
  5700 	inline RArray(TInt* aEntries, TInt aCount);
  5701 	inline void GranularCompress();
  5702 	inline TInt Reserve(TInt aCount);
  5703 	inline void ReserveL(TInt aCount);
  5704 	inline void Sort();
  5705 	inline TArray<TInt> Array() const;
  5706 #endif
  5707 	};
  5708 
  5709 
  5710 
  5711 
  5712 /**
  5713 @publishedAll
  5714 @released
  5715 
  5716 Array of unsigned integers.
  5717 
  5718 The array is a simple and efficient specialized array of unsigned integers 
  5719 offering standard array behaviour.
  5720 
  5721 The derivation from RPointerArrayBase is private.
  5722 */
  5723 TEMPLATE_SPECIALIZATION class RArray<TUint> : private RPointerArrayBase
  5724 	{
  5725 public:
  5726 	inline RArray();
  5727 	inline explicit RArray(TInt aGranularity);
  5728 	inline RArray(TInt aMinGrowBy, TInt aFactor);
  5729 	inline void Close();
  5730 	inline TInt Count() const;
  5731 	inline const TUint& operator[](TInt anIndex) const;
  5732 	inline TUint& operator[](TInt anIndex);
  5733 	inline TInt Append(TUint anEntry);
  5734 	inline TInt Insert(TUint anEntry, TInt aPos);
  5735 	inline void Remove(TInt anIndex);
  5736 	inline void Compress();
  5737 	inline void Reset();
  5738 	inline TInt Find(TUint anEntry) const;
  5739 	inline TInt FindReverse(TUint anEntry) const;
  5740 	inline TInt FindInOrder(TUint anEntry) const;
  5741 	inline TInt FindInOrder(TUint anEntry, TInt& anIndex) const;
  5742 	inline TInt SpecificFindInOrder(TUint anEntry, TInt aMode) const;
  5743 	inline TInt SpecificFindInOrder(TUint anEntry, TInt& anIndex, TInt aMode) const;
  5744 	inline TInt InsertInOrder(TUint anEntry);
  5745 	inline TInt InsertInOrderAllowRepeats(TUint anEntry);
  5746 #ifndef __KERNEL_MODE__
  5747 	inline void AppendL(TUint anEntry);
  5748 	inline void InsertL(TUint anEntry, TInt aPos);
  5749 	inline TInt FindL(TUint anEntry) const;
  5750 	inline TInt FindReverseL(TUint anEntry) const;
  5751 	inline TInt FindInOrderL(TUint anEntry) const;
  5752 	inline void FindInOrderL(TUint anEntry, TInt& anIndex) const;
  5753 	inline TInt SpecificFindInOrderL(TUint anEntry, TInt aMode) const;
  5754 	inline void SpecificFindInOrderL(TUint anEntry, TInt& anIndex, TInt aMode) const;
  5755 	inline void InsertInOrderL(TUint anEntry);
  5756 	inline void InsertInOrderAllowRepeatsL(TUint anEntry);
  5757 
  5758 	inline RArray(TUint* aEntries, TInt aCount);
  5759 	inline void GranularCompress();
  5760 	inline TInt Reserve(TInt aCount);
  5761 	inline void ReserveL(TInt aCount);
  5762 	inline void Sort();
  5763 	inline TArray<TUint> Array() const;
  5764 #endif
  5765 	};
  5766 
  5767 #ifndef __LEAVE_EQUALS_THROW__
  5768 
  5769 class TTrapHandler;
  5770 
  5771 /**
  5772 @internalComponent
  5773 */
  5774 class TTrap
  5775 	{
  5776 public:
  5777 #ifndef __KERNEL_MODE__
  5778 	IMPORT_C TInt Trap(TInt& aResult);
  5779 	IMPORT_C static void UnTrap();
  5780 #endif
  5781 public:
  5782 	enum {EMaxState=0x10};
  5783 public:
  5784 	TInt iState[EMaxState];
  5785 	TTrap* iNext;
  5786 	TInt* iResult;
  5787 	TTrapHandler* iHandler;
  5788 	};
  5789 
  5790 
  5791 
  5792 /**
  5793 @publishedAll
  5794 @released
  5795 
  5796 Executes the set of C++ statements _s under a trap harness.
  5797 
  5798 Use this macro as a C++ statement.
  5799 
  5800 _r must be a TInt which has already been declared; if any of the
  5801 C++ statements _s leaves, then the leave code is returned in _r,
  5802 otherwise _r is set to KErrNone.
  5803 
  5804 _s can consist of multiple C++ statements; in theory, _s can consist
  5805 of any legal C++ code but in practice, such statements consist of simple
  5806 function calls, e.g. Foo() or an assignment of some value to the result of
  5807 a function call, e.g. functionValue=GetFoo().
  5808 
  5809 A cleanup stack is constructed for the set of C++ statements _s.
  5810 If any function in _s leaves, objects pushed to the cleanup stack are
  5811 cleaned-up. In addition, if any of the C++ statements in _s leaves,
  5812 then remaining C++ code in _s is not executed and any variables which
  5813 are assigned within that remaining code are not defined.
  5814 
  5815 @param _r An lvalue, convertible to TInt&, which will receive the result of
  5816           any User::Leave() executed within _s or, if no leave occurred,
  5817           it will be set to KErrNone. The value of _r on entry is not used.
  5818 
  5819 @param _s C++ statements which will be executed under a trap harness.
  5820 
  5821 @see TRAPD
  5822 */
  5823 #define TRAP(_r,_s) {TTrap __t;if (__t.Trap(_r)==0){_s;TTrap::UnTrap();}}
  5824 
  5825 /**
  5826 @publishedAll
  5827 @released
  5828 
  5829 Executes the set of C++ statements _s under a trap harness.
  5830 
  5831 Use this macro in the same way as you would TRAP, except that the
  5832 variable _r is defined as part of the macro (and is therefore valid for the
  5833 rest of the block in which the macro occurs). Often, this saves a line of code.
  5834 
  5835 @param _r A name, which will be declared as a TInt, and will receive the result
  5836           of any User::Leave() executed within _s or, if no leave occurred, it
  5837           will be set to KErrNone. After the macro, _r remains in scope until
  5838           the end of its enclosing block.
  5839 
  5840 @param _s C++ statements which will be executed under a trap harness.
  5841 
  5842 @see TRAP
  5843 */
  5844 #define TRAPD(_r,_s) TInt _r;{TTrap __t;if (__t.Trap(_r)==0){_s;TTrap::UnTrap();}}
  5845 
  5846 /**
  5847 @publishedAll
  5848 @released
  5849 
  5850 Executes the set of C++ statements _s under a trap harness.
  5851 Any leave code generated is ignored.
  5852 
  5853 Use this macro as a C++ statement.
  5854 
  5855 This macro is functionally equivalent to:
  5856 @code
  5857 	TInt x;
  5858 	TRAP(x,_s)
  5859 @endcode
  5860 or
  5861 @code
  5862 	TRAPD(x,_s)
  5863 @endcode
  5864 where the value in 'x' is not used by any subsequent code.
  5865 
  5866 _s can consist of multiple C++ statements; in theory, _s can consist
  5867 of any legal C++ code but in practice, such statements consist of simple
  5868 function calls, e.g. Foo() or an assignment of some value to the result of
  5869 a function call, e.g. functionValue=GetFoo().
  5870 
  5871 A cleanup stack is constructed for the set of C++ statements _s.
  5872 If any function in _s leaves, objects pushed to the cleanup stack are
  5873 cleaned-up. In addition, if any of the C++ statements in _s leaves,
  5874 then remaining C++ code in _s is not executed and any variables which
  5875 are assigned within that remaining code are not defined.
  5876 
  5877 @param _s C++ statements which will be executed under a trap harness.
  5878 
  5879 @see TRAPD
  5880 @see TRAP
  5881 */
  5882 #define TRAP_IGNORE(_s) {TInt _ignore;TTrap __t;if (__t.Trap(_ignore)==0){_s;TTrap::UnTrap();}}
  5883 
  5884 
  5885 #else //__LEAVE_EQUALS_THROW__
  5886 
  5887 #ifdef __WINS__
  5888 /** @internalComponent */
  5889 #define __WIN32SEHTRAP		TWin32SEHTrap __trap; __trap.Trap();
  5890 /** @internalComponent */
  5891 #define __WIN32SEHUNTRAP	__trap.UnTrap();
  5892 IMPORT_C void EmptyFunction();
  5893 #define __CALL_EMPTY_FUNCTION	EmptyFunction();   
  5894 #else // !__WINS__
  5895 #define __WIN32SEHTRAP
  5896 #define __WIN32SEHUNTRAP
  5897 #define __CALL_EMPTY_FUNCTION
  5898 #endif //__WINS__
  5899 
  5900 /** 
  5901 This macro is used by the TRAP and TRAPD macros and provides a means
  5902 of inserting code into uses of these.
  5903 
  5904 This macro is invoked before any 'trapped' code is called, and it should be
  5905 redefined to do whatever task is required. E.g. this code:
  5906 
  5907 @code
  5908     #undef TRAP_INSTRUMENTATION_START
  5909     #define TRAP_INSTRUMENTATION_START DoMyLoging(__LINE__)
  5910 @endcode
  5911 
  5912 Will cause all subsequent uses of the TRAP macros to behave in an
  5913 equivalent way to:
  5914 
  5915 @code
  5916     DoMyLoging(__LINE__)
  5917     TRAP(r,SomeCodeL());
  5918 @endcode
  5919 
  5920 
  5921 @publishedPartner
  5922 @released
  5923 
  5924 @see TRAP
  5925 @see TRAPD
  5926 */
  5927 #define TRAP_INSTRUMENTATION_START
  5928 
  5929 
  5930 
  5931 /** 
  5932 This macro is used by the TRAP and TRAPD macros and provides a means
  5933 of inserting code into uses of these.
  5934 
  5935 This macro is invoked if the 'trapped' code did not Leave.
  5936 E.g. this code:
  5937 
  5938 @code
  5939     #undef TRAP_INSTRUMENTATION_NOLEAVE
  5940     #define TRAP_INSTRUMENTATION_NOLEAVE DoMyLoging(__LINE__)
  5941 @endcode
  5942 
  5943 Will cause all subsequent uses of the TRAP macros to behave in an
  5944 equivalent way to:
  5945 
  5946 @code
  5947     TRAP(r,SomeCodeL());
  5948     if(r==KErrNone) DoMyLoging(__LINE__);
  5949 @endcode
  5950 
  5951 
  5952 @param aLine The line number in the C++ source file where the TRAP or TRAPD
  5953              macro was used.
  5954 
  5955 @publishedPartner
  5956 @released
  5957 
  5958 @see TRAP
  5959 @see TRAPD
  5960 */
  5961 #define TRAP_INSTRUMENTATION_NOLEAVE
  5962 
  5963 
  5964 /** 
  5965 This macro is used by the TRAP and TRAPD macros and provides a means
  5966 of inserting code into uses of these.
  5967 
  5968 This macro is invoked if the 'trapped' code did Leave. E.g. this code:
  5969 
  5970 @code
  5971     #undef TRAP_INSTRUMENTATION_LEAVE
  5972     #define TRAP_INSTRUMENTATION_LEAVE(aResult) DoMyLoging(aResult,__LINE__)
  5973 @endcode
  5974 
  5975 Will cause all subsequent uses of the TRAP macros to behave in an
  5976 equivalent way to:
  5977 
  5978 @code
  5979     TRAP(r,SomeCodeL());
  5980     if(r!=KErrNone) DoMyLoging(r,__LINE__);
  5981 @endcode
  5982 
  5983 
  5984 @param aResult  A reference to the result value used in the TRAP macro.
  5985 
  5986 
  5987 @publishedPartner
  5988 @released
  5989 
  5990 @see TRAP
  5991 @see TRAPD
  5992 */
  5993 #define TRAP_INSTRUMENTATION_LEAVE(aResult)
  5994 
  5995 
  5996 
  5997 /** 
  5998 This macro is used by the TRAP and TRAPD macros and provides a means
  5999 of inserting code into uses of these.
  6000 
  6001 This macro is invoked after the 'trapped' code is called, regardless of whether
  6002 or not it did Leave.  It should be redefined to do whatever task is
  6003 required. E.g. this code:
  6004 
  6005 @code
  6006     #undef TRAP_INSTRUMENTATION_END
  6007     #define TRAP_INSTRUMENTATION_END DoMyLoging(__LINE__)
  6008 @endcode
  6009 
  6010 Will cause all subsequent uses of the TRAP macros to behave in an
  6011 equivalent way to:
  6012 
  6013 @code
  6014     TRAP(r,SomeCodeL());
  6015     DoMyLoging(__LINE__)
  6016 @endcode
  6017 
  6018 
  6019 @publishedPartner
  6020 @released
  6021 
  6022 @see TRAP
  6023 @see TRAPD
  6024 */
  6025 #define TRAP_INSTRUMENTATION_END
  6026 
  6027 
  6028 
  6029 /**
  6030 @publishedAll
  6031 @released
  6032 
  6033 Executes the set of C++ statements _s under a trap harness.
  6034 
  6035 Use this macro as a C++ statement.
  6036 
  6037 _r must be a TInt which has already been declared; if any of the
  6038 C++ statements _s leaves, then the leave code is returned in _r,
  6039 otherwise _r is set to KErrNone.
  6040 
  6041 _s can consist of multiple C++ statements; in theory, _s can consist
  6042 of any legal C++ code but in practice, such statements consist of simple
  6043 function calls, e.g. Foo() or an assignment of some value to the result of
  6044 a function call, e.g. functionValue=GetFoo().
  6045 
  6046 A cleanup stack is constructed for the set of C++ statements _s.
  6047 If any function in _s leaves, objects pushed to the cleanup stack are
  6048 cleaned-up. In addition, if any of the C++ statements in _s leaves,
  6049 then remaining C++ code in _s is not executed and any variables which
  6050 are assigned within that remaining code are not defined.
  6051 
  6052 @param _r An lvalue, convertible to TInt&, which will receive the result of
  6053           any User::Leave() executed within _s or, if no leave occurred,
  6054           it will be set to KErrNone. The value of _r on entry is not used.
  6055 
  6056 @param _s C++ statements which will be executed under a trap harness.
  6057 
  6058 @see TRAPD
  6059 */
  6060 
  6061 /*__CALL_EMPTY_FUNCTION(call to a function with an empty body) was added as a 
  6062 workaround to a compiler bug (mwccsym2 - winscw ) which caused an incorrect 
  6063 trap handler to be invoked when multiple nested TRAP's were present and 
  6064 User::Leave(..) was called. */
  6065 
  6066 #define TRAP(_r, _s)										\
  6067 	{														\
  6068 	TInt& __rref = _r;										\
  6069 	__rref = 0;												\
  6070 	{ TRAP_INSTRUMENTATION_START; }							\
  6071 	try	{													\
  6072 		__WIN32SEHTRAP										\
  6073 		TTrapHandler* ____t = User::MarkCleanupStack();		\
  6074 		_s;													\
  6075 		User::UnMarkCleanupStack(____t);					\
  6076 		{ TRAP_INSTRUMENTATION_NOLEAVE; }					\
  6077 		__WIN32SEHUNTRAP									\
  6078 		}													\
  6079 	catch (XLeaveException& l)								\
  6080 		{													\
  6081 		__rref = l.GetReason();								\
  6082 		{ TRAP_INSTRUMENTATION_LEAVE(__rref); }				\
  6083 		}													\
  6084 	catch (...)												\
  6085 		{													\
  6086 		User::Invariant();									\
  6087 		}													\
  6088 	__CALL_EMPTY_FUNCTION									\
  6089 	{ TRAP_INSTRUMENTATION_END; }							\
  6090 	}
  6091 
  6092 
  6093 /**
  6094 @publishedAll
  6095 @released
  6096 
  6097 Executes the set of C++ statements _s under a trap harness.
  6098 
  6099 Use this macro in the same way as you would TRAP, except that the
  6100 variable _r is defined as part of the macro (and is therefore valid for the
  6101 rest of the block in which the macro occurs). Often, this saves a line of code.
  6102 
  6103 @param _r A name, which will be declared as a TInt, and will receive the result
  6104           of any User::Leave() executed within _s or, if no leave occurred, it
  6105           will be set to KErrNone. After the macro, _r remains in scope until
  6106           the end of its enclosing block.
  6107 
  6108 @param _s C++ statements which will be executed under a trap harness.
  6109 
  6110 @see TRAP
  6111 */
  6112 
  6113 /*__CALL_EMPTY_FUNCTION(call to a function with an empty body) was added as a 
  6114 workaround to a compiler bug (mwccsym2 - winscw ) which caused an incorrect 
  6115 trap handler to be invoked when multiple nested TRAP's were present and 
  6116 User::Leave(..) was called. */
  6117 
  6118 
  6119 #define TRAPD(_r, _s)										\
  6120 	TInt _r;												\
  6121 	{														\
  6122 	_r = 0;													\
  6123 	{ TRAP_INSTRUMENTATION_START; }							\
  6124 	try	{													\
  6125 		__WIN32SEHTRAP										\
  6126 		TTrapHandler* ____t = User::MarkCleanupStack();		\
  6127 		_s;													\
  6128 		User::UnMarkCleanupStack(____t);					\
  6129 		{ TRAP_INSTRUMENTATION_NOLEAVE; }					\
  6130 		__WIN32SEHUNTRAP									\
  6131 		}													\
  6132 	catch (XLeaveException& l)								\
  6133 		{													\
  6134 		_r = l.GetReason();									\
  6135 		{ TRAP_INSTRUMENTATION_LEAVE(_r); }					\
  6136 		}													\
  6137 	catch (...)												\
  6138 		{													\
  6139 		User::Invariant();									\
  6140 		}													\
  6141 	__CALL_EMPTY_FUNCTION									\
  6142 	{ TRAP_INSTRUMENTATION_END; }							\
  6143 	}
  6144 
  6145 /**
  6146 @publishedAll
  6147 @released
  6148 
  6149 Executes the set of C++ statements _s under a trap harness.
  6150 Any leave code generated is ignored.
  6151 
  6152 Use this macro as a C++ statement.
  6153 
  6154 This macro is functionally equivalent to:
  6155 @code
  6156 	TInt x;
  6157 	TRAP(x,_s)
  6158 @endcode
  6159 or
  6160 @code
  6161 	TRAPD(x,_s)
  6162 @endcode
  6163 where the value in 'x' is not used by any subsequent code.
  6164 
  6165 Use this macro as a C++ statement.
  6166 
  6167 _s can consist of multiple C++ statements; in theory, _s can consist
  6168 of any legal C++ code but in practice, such statements consist of simple
  6169 function calls, e.g. Foo() or an assignment of some value to the result of
  6170 a function call, e.g. functionValue=GetFoo().
  6171 
  6172 A cleanup stack is constructed for the set of C++ statements _s.
  6173 If any function in _s leaves, objects pushed to the cleanup stack are
  6174 cleaned-up. In addition, if any of the C++ statements in _s leaves,
  6175 then remaining C++ code in _s is not executed and any variables which
  6176 are assigned within that remaining code are not defined.
  6177 
  6178 @param _s C++ statements which will be executed under a trap harness.
  6179 
  6180 @see TRAPD
  6181 @see TRAP
  6182 */
  6183 
  6184 /*__CALL_EMPTY_FUNCTION(call to a function with an empty body) was added as a 
  6185 workaround to a compiler bug (mwccsym2 - winscw ) which caused an incorrect 
  6186 trap handler to be invoked when multiple nested TRAP's were present and 
  6187 User::Leave(..) was called. */
  6188 
  6189 #define TRAP_IGNORE(_s)										\
  6190 	{														\
  6191 	{ TRAP_INSTRUMENTATION_START; }							\
  6192 	try	{													\
  6193 		__WIN32SEHTRAP										\
  6194 		TTrapHandler* ____t = User::MarkCleanupStack();		\
  6195 		_s;													\
  6196 		User::UnMarkCleanupStack(____t);					\
  6197 		{ TRAP_INSTRUMENTATION_NOLEAVE; }					\
  6198 		__WIN32SEHUNTRAP									\
  6199 		}													\
  6200 	catch (XLeaveException& l)								\
  6201 		{													\
  6202 		l.GetReason();										\
  6203 		{ TRAP_INSTRUMENTATION_LEAVE(l.Reason()); }			\
  6204 		}													\
  6205 	catch (...)												\
  6206 		{													\
  6207 		User::Invariant();									\
  6208 		}													\
  6209 	__CALL_EMPTY_FUNCTION									\
  6210 	{ TRAP_INSTRUMENTATION_END; }							\
  6211 	}
  6212 
  6213 
  6214 #endif //__LEAVE_EQUALS_THROW__
  6215 
  6216 /* The macro __SYMBIAN_STDCPP_SUPPORT__ is defined when building a StdC++ target.
  6217  * In this case, operator new and operator delete below should not be declared
  6218  * to avoid clashing with StdC++ declarations.
  6219  */ 
  6220 
  6221 #ifndef __SYMBIAN_STDCPP_SUPPORT__
  6222 
  6223 #ifndef __OPERATOR_NEW_DECLARED__
  6224 
  6225 /* Some operator new and operator delete overloads may be declared in compiler
  6226  * pre-include files.
  6227  *
  6228  * __OPERATOR_NEW_DECLARED__ is #defined if they are, so that we can avoid
  6229  * re-declaring them here.
  6230  */
  6231 
  6232 #define __OPERATOR_NEW_DECLARED__
  6233 
  6234 /**
  6235 @publishedAll
  6236 @released
  6237 */
  6238 GLREF_C TAny* operator new(TUint aSize) __NO_THROW;
  6239 
  6240 /**
  6241 @publishedAll
  6242 @released
  6243 */
  6244 GLREF_C TAny* operator new(TUint aSize,TUint anExtraSize) __NO_THROW;
  6245 
  6246 /**
  6247 @publishedAll
  6248 @released
  6249 */
  6250 GLREF_C void operator delete(TAny* aPtr) __NO_THROW;
  6251 
  6252 #ifndef __OMIT_VEC_OPERATOR_NEW_DECL__
  6253 /**
  6254 @publishedAll
  6255 @released
  6256 */
  6257 GLREF_C TAny* operator new[](TUint aSize) __NO_THROW;
  6258 
  6259 /**
  6260 @publishedAll
  6261 @released
  6262 */
  6263 GLREF_C void operator delete[](TAny* aPtr) __NO_THROW;
  6264 #endif // !__OMIT_VEC_OPERATOR_NEW_DECL__
  6265 
  6266 #endif // !__OPERATOR_NEW_DECLARED__
  6267 
  6268 #endif // !__SYMBIAN_STDCPP_SUPPORT__
  6269 
  6270 /**
  6271 @publishedAll
  6272 @released
  6273 */
  6274 inline TAny* operator new(TUint aSize, TAny* aBase) __NO_THROW;
  6275 
  6276 /**
  6277 @publishedAll
  6278 @released
  6279 */
  6280 inline void operator delete(TAny* aPtr, TAny* aBase) __NO_THROW;
  6281 
  6282 #ifndef __PLACEMENT_VEC_NEW_INLINE
  6283 /**
  6284 @publishedAll
  6285 @released
  6286 */
  6287 inline TAny* operator new[](TUint aSize, TAny* aBase) __NO_THROW;
  6288 
  6289 /**
  6290 @publishedAll
  6291 @released
  6292 */
  6293 inline void operator delete[](TAny* aPtr, TAny* aBase) __NO_THROW;
  6294 
  6295 #endif // !__PLACEMENT_VEC_NEW_INLINE
  6296 
  6297 #if !defined(__BOOL_NO_TRUE_TRAP__)
  6298 
  6299 /**
  6300 @publishedAll
  6301 @released
  6302 */
  6303 TBool operator==(TTrue,volatile const TBool);
  6304 
  6305 /**
  6306 @publishedAll
  6307 @released
  6308 */
  6309 TBool operator==(volatile const TBool,TTrue);
  6310 
  6311 /**
  6312 @publishedAll
  6313 @released
  6314 */
  6315 TBool operator!=(TTrue,volatile const TBool);
  6316 
  6317 /**
  6318 @publishedAll
  6319 @released
  6320 */
  6321 TBool operator!=(volatile const TBool,TTrue);
  6322 #endif
  6323 
  6324 
  6325 
  6326 
  6327 /**
  6328 @publishedAll
  6329 @released
  6330 
  6331 A Version 2 client/server class that clients use to package 
  6332 the arguments to be sent to a server.
  6333 
  6334 The object can package up to 4 arguments together with information about each
  6335 argument's type, width and accessibility; it is also possible for
  6336 the package to contain zero arguments. In addition to the default constructor,
  6337 the class has four templated constructors, allowing an object of this type to
  6338 be constructed for 0, 1, 2, 3 or 4 arguments.
  6339 
  6340 Internally, the arguments are stored in a simple TInt array.
  6341 Consecutive arguments in a constructor's parameter list are put into
  6342 consecutive slots in the array. The Set() overloaded functions can be used
  6343 to set argument values into specific slots within this array.
  6344 */
  6345 class TIpcArgs
  6346 	{
  6347 public:
  6348     /**
  6349     @internalComponent
  6350     
  6351     Argument types; some of these may be ORed together to specify
  6352 	type, accessibility, and width.
  6353     */
  6354 	enum TArgType
  6355 		{
  6356 		EUnspecified = 0,                         /**< Type not specified.*/
  6357 		EHandle = 1,                              /**< Handle type.*/
  6358 		EFlagDes = 4,                             /**< Descriptor type.*/
  6359 		EFlagConst = 2,                           /**< Read only type.*/
  6360 		EFlag16Bit = 1,                           /**< 16 bit rather than 8 bit.*/
  6361 		EDes8 = EFlagDes,                         /**< 8 bit read/write descriptor.*/
  6362 		EDes16 = EFlagDes|EFlag16Bit,             /**< 16 bit read/write descriptor.*/
  6363 		EDesC8 = EFlagDes|EFlagConst,             /**< 8 bit read only descriptor.*/
  6364 		EDesC16 = EFlagDes|EFlagConst|EFlag16Bit, /**< 16 bit read only descriptor.*/
  6365 		};
  6366 
  6367 
  6368     /**
  6369     @internalComponent
  6370 	*/
  6371 	enum 
  6372 		{
  6373 		KBitsPerType	= 3, 		/**< Number of bits of type information used for each of the 4 arguments.*/
  6374 		KPinArgShift	= KBitsPerType*KMaxMessageArguments,	/**< Bit number of the start of the pin flags. */
  6375 		KPinArg0		= 1<<(KPinArgShift+0),	/**< Set to pin argument at index 0.*/
  6376 		KPinArg1		= 1<<(KPinArgShift+1),	/**< Set to pin argument at index 1.*/
  6377 		KPinArg2		= 1<<(KPinArgShift+2),	/**< Set to pin argument at index 2.*/
  6378 		KPinArg3		= 1<<(KPinArgShift+3),	/**< Set to pin argument at index 3.*/
  6379 		KPinMask 		= 0xf<<KPinArgShift,	/**< The bits used for the pinning attributes of each argument.*/
  6380 		};
  6381 	
  6382 	
  6383 	/**
  6384 	Indicates a Null argument.
  6385 	*/
  6386 	enum TNothing {
  6387 	              /**
  6388 	              An enum value that can be used to indicate an empty or
  6389 	              unused argument to a server. For example:
  6390 	
  6391                   @code
  6392                   TIpcArgs args(arg1, TIpcArgs::ENothing, arg2);
  6393                   @endcode
  6394     
  6395                   This argument will have an undefined value when the server
  6396                   receives the message.
  6397 	              */
  6398 	              ENothing
  6399 	              };
  6400 public:
  6401     /**
  6402     Default constructor.
  6403     
  6404     An argument package constructed using this constructor has no arguments;
  6405     however, arguments can subsequently be set into this argument package object
  6406     using the Set() member functions.
  6407     */
  6408 	inline TIpcArgs()
  6409 		:iFlags(0)
  6410 		{}
  6411 		
  6412 		
  6413     /**
  6414     A templated constructor that constructs the argument package; it takes
  6415     1 argument.
  6416     
  6417     @param a0 An argument of general class type T0 to be contained by
  6418               this object.
  6419     */		
  6420 	template <class T0>
  6421 	inline explicit TIpcArgs(T0 a0)
  6422 		{
  6423 		Assign(iArgs[0],a0);
  6424 		iFlags=(Type(a0)<<(0*KBitsPerType));
  6425 		}
  6426 		
  6427 		
  6428     /**
  6429     A templated constructor that constructs the argument package; it takes
  6430     2 arguments.
  6431     
  6432     @param a0 An argument of general class type T0 to be contained by
  6433               this object.
  6434     @param a1 An argument of general class type T1 to be contained by
  6435               this object.
  6436     */		
  6437 	template <class T0,class T1>
  6438 	inline TIpcArgs(T0 a0,T1 a1)
  6439 		{
  6440 		Assign(iArgs[0],a0);
  6441 		Assign(iArgs[1],a1);
  6442 		iFlags=(Type(a0)<<(0*KBitsPerType))|(Type(a1)<<(1*KBitsPerType));
  6443 		}
  6444 				
  6445 		
  6446     /**
  6447     A templated constructor that constructs the argument package; it takes
  6448     3 arguments.
  6449     
  6450     @param a0 An argument of general class type T0 to be contained by
  6451               this object.
  6452     @param a1 An argument of general class type T1 to be contained by
  6453               this object.
  6454     @param a2 An argument of general class type T2 to be contained by
  6455               this object.
  6456     */		
  6457 	template <class T0,class T1,class T2>
  6458 	inline TIpcArgs(T0 a0,T1 a1,T2 a2)
  6459 		{
  6460 		Assign(iArgs[0],a0);
  6461 		Assign(iArgs[1],a1);
  6462 		Assign(iArgs[2],a2);
  6463 		iFlags=(Type(a0)<<(0*KBitsPerType))|(Type(a1)<<(1*KBitsPerType))|(Type(a2)<<(2*KBitsPerType));
  6464 		}
  6465 
  6466 
  6467     /**
  6468     A templated constructor that constructs the argument package; it takes
  6469     4 arguments.
  6470     
  6471     @param a0 An argument of general class type T0 to be contained by
  6472               this object.
  6473     @param a1 An argument of general class type T1 to be contained by
  6474               this object.
  6475     @param a2 An argument of general class type T2 to be contained by
  6476               this object.
  6477     @param a3 An argument of general class type T3 to be contained by
  6478               this object.
  6479     */		
  6480 	template <class T0,class T1,class T2,class T3>
  6481 	inline TIpcArgs(T0 a0,T1 a1,T2 a2,T3 a3)
  6482 		{
  6483 		Assign(iArgs[0],a0);
  6484 		Assign(iArgs[1],a1);
  6485 		Assign(iArgs[2],a2);
  6486 		Assign(iArgs[3],a3);
  6487 		iFlags=(Type(a0)<<(0*KBitsPerType))|(Type(a1)<<(1*KBitsPerType))|(Type(a2)<<(2*KBitsPerType))|(Type(a3)<<(3*KBitsPerType));
  6488 		}
  6489 	//
  6490 	inline void Set(TInt aIndex,TNothing);
  6491 	inline void Set(TInt aIndex,TInt aValue);
  6492 	inline void Set(TInt aIndex,const TAny* aValue);
  6493 	inline void Set(TInt aIndex,RHandleBase aValue);
  6494 	inline void Set(TInt aIndex,const TDesC8* aValue);
  6495 #ifndef __KERNEL_MODE__
  6496 	inline void Set(TInt aIndex,const TDesC16* aValue);
  6497 #endif
  6498 	inline void Set(TInt aIndex,TDes8* aValue);
  6499 #ifndef __KERNEL_MODE__
  6500 	inline void Set(TInt aIndex,TDes16* aValue);
  6501 #endif
  6502 
  6503 	inline TIpcArgs& PinArgs(TBool aPinArg0=ETrue, TBool aPinArg1=ETrue, TBool aPinArg2=ETrue, TBool aPinArg3=ETrue);
  6504 private:
  6505 	inline static TArgType Type(TNothing);
  6506 	inline static TArgType Type(TInt);
  6507 	inline static TArgType Type(const TAny*);
  6508 	inline static TArgType Type(RHandleBase aValue);
  6509 	inline static TArgType Type(const TDesC8*);
  6510 #ifndef __KERNEL_MODE__
  6511 	inline static TArgType Type(const TDesC16*);
  6512 #endif
  6513 	inline static TArgType Type(TDes8*);
  6514 #ifndef __KERNEL_MODE__
  6515 	inline static TArgType Type(TDes16*);
  6516 #endif
  6517 	//
  6518 	inline static void Assign(TInt&,TNothing);
  6519 	inline static void Assign(TInt& aArg,TInt aValue);
  6520 	inline static void Assign(TInt& aArg,const TAny* aValue);
  6521 	inline static void Assign(TInt& aArg,RHandleBase aValue);
  6522 	inline static void Assign(TInt& aArg,const TDesC8* aValue);
  6523 #ifndef __KERNEL_MODE__
  6524 	inline static void Assign(TInt& aArg,const TDesC16* aValue);
  6525 #endif
  6526 	inline static void Assign(TInt& aArg,TDes8* aValue);
  6527 #ifndef __KERNEL_MODE__
  6528 	inline static void Assign(TInt& aArg,TDes16* aValue);
  6529 #endif
  6530 public:
  6531     
  6532     /**
  6533     The location where the message arguments are stored.
  6534     
  6535     There is no reason to access this data member directly and it should be
  6536     considered as internal.
  6537     */
  6538 	TInt iArgs[KMaxMessageArguments];
  6539 	
  6540 	/**
  6541 	The location where the flag bits describing the argument types are stored.
  6542 	
  6543 	The symbolic values describing the argument types are internal to Symbian,
  6544 	and there is therefore no reason to access this data member directly.
  6545 	It should be considered as internal.
  6546 	*/
  6547 	TInt iFlags;
  6548 	};
  6549 
  6550 // Structures for passing 64 bit integers and doubles across GCC/EABI boundaries
  6551 
  6552 /**
  6553 @internalComponent
  6554 */
  6555 struct SInt64
  6556 	{
  6557 public:
  6558 	inline SInt64();
  6559 	inline SInt64(Int64 a);
  6560 	inline SInt64& operator=(Int64 a);
  6561 	inline operator Int64() const;
  6562 public:
  6563 	TUint32 iData[2];	// little endian
  6564 	};
  6565 
  6566 /**
  6567 @internalComponent
  6568 */
  6569 struct SUint64
  6570 	{
  6571 public:
  6572 	inline SUint64();
  6573 	inline SUint64(Uint64 a);
  6574 	inline SUint64& operator=(Uint64 a);
  6575 	inline operator Uint64() const;
  6576 public:
  6577 	TUint32 iData[2];	// little endian
  6578 	};
  6579 
  6580 /**
  6581 @internalComponent
  6582 */
  6583 struct SDouble
  6584 	{
  6585 public:
  6586 	inline SDouble();
  6587 	inline SDouble(TReal a);
  6588 	inline SDouble& operator=(TReal a);
  6589 	inline operator TReal() const;
  6590 public:
  6591 	TUint32 iData[2];	// always little endian
  6592 	};
  6593 
  6594 /**
  6595 @publishedAll
  6596 @released
  6597 
  6598 Stores information about a thread's stack.
  6599 
  6600 Note, on the emulator, the memory between iLimit and the thread's current stack pointer
  6601 may not actually be committed.
  6602 
  6603 @see RThread::StackInfo()
  6604 */
  6605 class TThreadStackInfo
  6606 	{
  6607 public:
  6608     /**
  6609     The address which the stack pointer would contain if the stack were empty.
  6610     */
  6611 	TLinAddr iBase;
  6612 	
  6613 	/**
  6614 	The address which the stack pointer would contain if the stack were full,
  6615     (The lowest valid address).
  6616 	*/
  6617 	TLinAddr iLimit;
  6618 	
  6619 	/**
  6620 	The limit value for the stack if it were expanded to its maximum size.
  6621     
  6622     Currently expanding stacks is not supported so iExpandLimit==iLimit
  6623 	*/
  6624 	TLinAddr iExpandLimit;
  6625 	};
  6626 
  6627 
  6628 
  6629 
  6630 #ifdef __SUPPORT_CPP_EXCEPTIONS__
  6631 /**
  6632 @internalComponent
  6633 @released
  6634 
  6635 The class used to implement User::Leave in term of throw and TRAP in terms of catch.
  6636 
  6637 */
  6638 class XLeaveException
  6639 	{
  6640 public:
  6641 	inline XLeaveException() {}
  6642 	inline XLeaveException(TInt aReason) {iR = aReason;}
  6643 	inline TInt Reason() const {return iR;}
  6644 	IMPORT_C TInt GetReason() const;
  6645 private:
  6646 #if __ARMCC_VERSION >= 220000
  6647 	// From rvct 2.2 onwards we want the class impedimenta to be shared, so create a key function.
  6648 	// Unfortunately we can't make this the key function the dtor since this would make it impossible for existing 2.1 
  6649 	// derived binaries to be 'BC' with 2.2 binaries (in the general case (which I wont attempt to describe coz its
  6650 	// too complex) so its best to be safe). As a clue: if 2.1 is used to compile with a key function its not possible 
  6651 	// for catch handlers to work :-( (see the old code).
  6652 	virtual void ForceKeyFunction();	
  6653 #endif
  6654 private:
  6655 #if __ARMCC_VERSION < 220000
  6656 	TAny* iVtable;							// reserve space for vtable
  6657 #endif	
  6658 	TInt iR;
  6659 	};
  6660 
  6661 // The standard header file <exception> defines the following guard macro for EDG and CW, VC++, GCC respectively.
  6662 // The guard below is ugly. It will surely come back and bite us unless we resolve the whole issue of standard headers
  6663 // when we move to supporting Standard C++.
  6664 
  6665 // The macro __SYMBIAN_STDCPP_SUPPORT__ is defined when building a StdC++ target.
  6666 // In this case, we include the StdC++ specification <exception> rather than declaring uncaught_exception.
  6667  
  6668 #ifdef __SYMBIAN_STDCPP_SUPPORT__
  6669 	#include <stdapis/stlportv5/exception>
  6670 #elif !defined(_EXCEPTION) && !defined(_EXCEPTION_) && !defined(__EXCEPTION__)
  6671 // Declare standard C++ functions relating to exceptions here
  6672 namespace std {
  6673 #if defined(__VC32__) || defined(__CW32__)
  6674   bool uncaught_exception();
  6675 #else
  6676   IMPORT_C bool uncaught_exception();
  6677 #endif
  6678   void terminate(void);
  6679   void unexpected(void);
  6680   typedef void (*terminate_handler)();
  6681   terminate_handler set_terminate(terminate_handler h) throw();
  6682   typedef void (*unexpected_handler)();
  6683   unexpected_handler set_unexpected(unexpected_handler h) throw();
  6684 }
  6685 
  6686 #endif
  6687 #endif //__SUPPORT_CPP_EXCEPTIONS__
  6688 
  6689 #ifdef __WINS__
  6690 
  6691 #ifndef __WIN32_SEH_TYPES_KNOWN__
  6692 class __UnknownWindowsType1;
  6693 class __UnknownWindowsType2;
  6694 #endif
  6695 
  6696 class TWin32SEHTrap;
  6697 
  6698 /**
  6699  * Typedef for the SEH handler function
  6700  * @internalComponent
  6701  */
  6702 typedef TUint32 (TWin32SEHExceptionHandler)(__UnknownWindowsType1* aExceptionRecord, TWin32SEHTrap* aRegistrationRecord, __UnknownWindowsType2* aContext);
  6703 
  6704 /**
  6705  * @internalComponent
  6706  */
  6707 class TWin32SEHTrap
  6708 	{
  6709 private:
  6710 	// Prevent copy/assign
  6711     TWin32SEHTrap(TWin32SEHTrap const &);
  6712     TWin32SEHTrap& operator=(TWin32SEHTrap const &);
  6713 
  6714 #ifdef __KERNEL_MODE__
  6715 //
  6716 // Kernel-side functions for nkern exception handler
  6717 //
  6718 public:
  6719 	/** Find final exception handler in SEH chain */
  6720 	static TWin32SEHTrap* IterateForFinal();
  6721 
  6722 	/** Access exception handler */
  6723 	TWin32SEHExceptionHandler* ExceptionHandler();
  6724 
  6725 private:
  6726 
  6727 #else // !__KERNEL_MODE__
  6728 //
  6729 // User-side functions for use in TRAP(...)
  6730 //
  6731 public:
  6732 	UIMPORT_C TWin32SEHTrap();
  6733 
  6734 public:
  6735 	/** Add object to SEH chain */
  6736 	UIMPORT_C void Trap();
  6737 
  6738 	/** Remove object from SEH chain */
  6739 	UIMPORT_C void UnTrap();
  6740 
  6741 #ifndef __IN_SEH_CPP__
  6742 private:
  6743 #endif
  6744 	/** Handle Win32 exceptions */
  6745 	static TUint32 ExceptionHandler(__UnknownWindowsType1* aException, TWin32SEHTrap* aRegistrationRecord, __UnknownWindowsType2* aContext);
  6746 
  6747 #endif //__KERNEL_MODE__
  6748 
  6749 	//
  6750 	// NB: This is really an _EXCEPTION_REGISTRATION_RECORD
  6751 	//
  6752     TWin32SEHTrap*					iPrevExceptionRegistrationRecord;	/** Link to previous SEH record */
  6753 	TWin32SEHExceptionHandler*		iExceptionHandler;					/** SEH handler function */
  6754 
  6755 private:
  6756 	TUint32 iPadding[254];	// discourage the compiler from putting this in reused function parameter space
  6757 	};
  6758 
  6759 #else // !__WINS__
  6760 
  6761 #ifdef __X86__
  6762 /**
  6763  * @internalComponent
  6764  */
  6765 class TWin32SEHTrap
  6766 	{
  6767 public:
  6768 	UIMPORT_C TWin32SEHTrap();
  6769 	UIMPORT_C void Trap();
  6770 	UIMPORT_C void UnTrap();
  6771 	};
  6772 #endif //__X86__
  6773 #endif //__WINS__
  6774 
  6775 /**
  6776 @internalTechnology
  6777  */
  6778 struct TEmulatorImageHeader
  6779 	{
  6780 	TUid iUids[KMaxCheckedUid];
  6781 	TProcessPriority iPriority;
  6782 	SSecurityInfo iS;
  6783 	TUint32 iSpare1;
  6784 	TUint32 iSpare2;
  6785 	TUint32 iModuleVersion;
  6786 	TUint32 iFlags;
  6787 	};
  6788 
  6789 // forward declaration of shareable data buffers pool infomation
  6790 class TShPoolInfo;
  6791 
  6792 #include <e32cmn.inl>
  6793 
  6794 #ifndef SYMBIAN_ENABLE_SPLIT_HEADERS
  6795 #include <e32cmn_private.h>
  6796 #endif
  6797 
  6798 #endif //__E32CMN_H__
  6799