epoc32/include/stdapis/boost/graph/sloan_ordering.hpp
branchSymbian2
changeset 2 2fe1408b6811
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/epoc32/include/stdapis/boost/graph/sloan_ordering.hpp	Tue Mar 16 16:12:26 2010 +0000
     1.3 @@ -0,0 +1,448 @@
     1.4 +//
     1.5 +//=======================================================================
     1.6 +// Copyright 2002 Marc Wintermantel (wintermantel@even-ag.ch)
     1.7 +// ETH Zurich, Center of Structure Technologies (www.imes.ethz.ch/st)
     1.8 +//
     1.9 +// Distributed under the Boost Software License, Version 1.0. (See
    1.10 +// accompanying file LICENSE_1_0.txt or copy at
    1.11 +// http://www.boost.org/LICENSE_1_0.txt)
    1.12 +//=======================================================================
    1.13 +//
    1.14 +
    1.15 +#ifndef BOOST_GRAPH_SLOAN_HPP
    1.16 +#define BOOST_GRAPH_SLOAN_HPP
    1.17 +
    1.18 +#define WEIGHT1 1               //default weight for the distance in the Sloan algorithm
    1.19 +#define WEIGHT2 2               //default weight for the degree in the Sloan algorithm
    1.20 +#define MAXINT 2147483647       //Maximum value for a 32bit integer
    1.21 +
    1.22 +#include <boost/config.hpp>
    1.23 +#include <vector>
    1.24 +#include <queue>
    1.25 +#include <boost/pending/queue.hpp>
    1.26 +#include <boost/graph/graph_traits.hpp>
    1.27 +#include <boost/graph/breadth_first_search.hpp>
    1.28 +#include <boost/graph/properties.hpp>
    1.29 +#include <boost/pending/indirect_cmp.hpp>
    1.30 +#include <boost/property_map.hpp>
    1.31 +#include <algorithm>
    1.32 +#include <utility>
    1.33 +#include <boost/graph/visitors.hpp>
    1.34 +#include <boost/graph/adjacency_list.hpp>
    1.35 +#include <boost/graph/cuthill_mckee_ordering.hpp>
    1.36 +
    1.37 +
    1.38 +////////////////////////////////////////////////////////////
    1.39 +//
    1.40 +//Sloan-Algorithm for graph reordering
    1.41 +//(optimzes profile and wavefront, not primiraly bandwidth
    1.42 +//
    1.43 +////////////////////////////////////////////////////////////
    1.44 +
    1.45 +namespace boost {
    1.46 +        
    1.47 +  /////////////////////////////////////////////////////////////////////////
    1.48 +  // Function that returns the maximum depth of 
    1.49 +  // a rooted level strucutre (RLS)
    1.50 +  //
    1.51 +  /////////////////////////////////////////////////////////////////////////
    1.52 +  template<class Distance>
    1.53 +  unsigned RLS_depth(Distance& d)
    1.54 +  {
    1.55 +    unsigned h_s = 0;
    1.56 +    typename Distance::iterator iter;
    1.57 +    
    1.58 +    for (iter = d.begin(); iter != d.end(); ++iter)
    1.59 +      {
    1.60 +        if(*iter > h_s)
    1.61 +          {
    1.62 +            h_s = *iter;
    1.63 +          }
    1.64 +      }
    1.65 +    
    1.66 +    return h_s;
    1.67 +  }
    1.68 +
    1.69 +
    1.70 +    
    1.71 +  /////////////////////////////////////////////////////////////////////////
    1.72 +  // Function that returns the width of the largest level of 
    1.73 +  // a rooted level strucutre (RLS)
    1.74 +  //
    1.75 +  /////////////////////////////////////////////////////////////////////////
    1.76 +  template<class Distance, class my_int>
    1.77 +  unsigned RLS_max_width(Distance& d, my_int depth)
    1.78 +  {
    1.79 +    
    1.80 +      //Searching for the maximum width of a level
    1.81 +      std::vector<unsigned> dummy_width(depth+1, 0);
    1.82 +      std::vector<unsigned>::iterator my_it;
    1.83 +      typename Distance::iterator iter;
    1.84 +      unsigned w_max = 0;
    1.85 +      
    1.86 +      for (iter = d.begin(); iter != d.end(); ++iter)
    1.87 +      {
    1.88 +          dummy_width[*iter]++;
    1.89 +      }
    1.90 +      
    1.91 +      for(my_it = dummy_width.begin(); my_it != dummy_width.end(); ++my_it)
    1.92 +      {
    1.93 +          if(*my_it > w_max) w_max = *my_it;
    1.94 +      }
    1.95 +      
    1.96 +      return w_max;
    1.97 +      
    1.98 +  }
    1.99 +    
   1.100 +
   1.101 +  /////////////////////////////////////////////////////////////////////////
   1.102 +  // Function for finding a good starting node for Sloan algorithm
   1.103 +  //
   1.104 +  // This is to find a good starting node. "good" is in the sense
   1.105 +  // of the ordering generated. 
   1.106 +  /////////////////////////////////////////////////////////////////////////
   1.107 +  template <class Graph, class ColorMap, class DegreeMap> 
   1.108 +  typename graph_traits<Graph>::vertex_descriptor 
   1.109 +  sloan_start_end_vertices(Graph& G, 
   1.110 +                           typename graph_traits<Graph>::vertex_descriptor &s, 
   1.111 +                           ColorMap color, 
   1.112 +                           DegreeMap degree)
   1.113 +  {
   1.114 +    typedef typename property_traits<DegreeMap>::value_type Degree;
   1.115 +    typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
   1.116 +    typedef typename std::vector< typename graph_traits<Graph>::vertices_size_type>::iterator vec_iter;
   1.117 +    typedef typename graph_traits<Graph>::vertices_size_type size_type;
   1.118 +    
   1.119 +    typedef typename property_map<Graph, vertex_index_t>::const_type VertexID;
   1.120 +    
   1.121 +    s = *(vertices(G).first);
   1.122 +    Vertex e = s;
   1.123 +    Vertex i;
   1.124 +    unsigned my_degree = get(degree, s ); 
   1.125 +    unsigned dummy, h_i, h_s, w_i, w_e;
   1.126 +    bool new_start = true;
   1.127 +    unsigned maximum_degree = 0;
   1.128 +    
   1.129 +    //Creating a std-vector for storing the distance from the start vertex in dist
   1.130 +    std::vector<typename graph_traits<Graph>::vertices_size_type> dist(num_vertices(G), 0);
   1.131 +
   1.132 +    //Wrap a property_map_iterator around the std::iterator
   1.133 +    boost::iterator_property_map<vec_iter, VertexID, size_type, size_type&> dist_pmap(dist.begin(), get(vertex_index, G));
   1.134 +    
   1.135 +    //Creating a property_map for the indices of a vertex
   1.136 +    typename property_map<Graph, vertex_index_t>::type index_map = get(vertex_index, G);
   1.137 +    
   1.138 +    //Creating a priority queue
   1.139 +    typedef indirect_cmp<DegreeMap, std::greater<Degree> > Compare;
   1.140 +    Compare comp(degree);
   1.141 +    std::priority_queue<Vertex, std::vector<Vertex>, Compare> degree_queue(comp);
   1.142 +    
   1.143 +    //step 1
   1.144 +    //Scan for the vertex with the smallest degree and the maximum degree
   1.145 +    typename graph_traits<Graph>::vertex_iterator ui, ui_end;
   1.146 +    for (tie(ui, ui_end) = vertices(G); ui != ui_end; ++ui)
   1.147 +    {
   1.148 +      dummy = get(degree, *ui);
   1.149 +      
   1.150 +      if(dummy < my_degree)
   1.151 +      {
   1.152 +        my_degree = dummy;
   1.153 +        s = *ui;
   1.154 +      }
   1.155 +      
   1.156 +      if(dummy > maximum_degree)
   1.157 +      {
   1.158 +        maximum_degree = dummy;
   1.159 +      }
   1.160 +    }
   1.161 +    //end 1
   1.162 +    
   1.163 +    do{  
   1.164 +      new_start = false;     //Setting the loop repetition status to false
   1.165 +      
   1.166 +      //step 2
   1.167 +      //initialize the the disance std-vector with 0
   1.168 +      for(typename std::vector<typename graph_traits<Graph>::vertices_size_type>::iterator iter = dist.begin(); iter != dist.end(); ++iter) *iter = 0;
   1.169 +      
   1.170 +      //generating the RLS (rooted level structure)
   1.171 +      breadth_first_search
   1.172 +        (G, s, visitor
   1.173 +         (
   1.174 +           make_bfs_visitor(record_distances(dist_pmap, on_tree_edge() ) )
   1.175 +           )
   1.176 +          );
   1.177 +      
   1.178 +      //end 2
   1.179 +      
   1.180 +      //step 3
   1.181 +      //calculating the depth of the RLS
   1.182 +      h_s = RLS_depth(dist);
   1.183 +      
   1.184 +      //step 4
   1.185 +      //pushing one node of each degree in an ascending manner into degree_queue
   1.186 +      std::vector<bool> shrink_trace(maximum_degree, false);
   1.187 +      for (tie(ui, ui_end) = vertices(G); ui != ui_end; ++ui)
   1.188 +      {
   1.189 +        dummy = get(degree, *ui);
   1.190 +        
   1.191 +        if( (dist[index_map[*ui]] == h_s ) && ( !shrink_trace[ dummy ] ) )
   1.192 +        {
   1.193 +          degree_queue.push(*ui);
   1.194 +          shrink_trace[ dummy ] = true;
   1.195 +        }
   1.196 +      }
   1.197 +      
   1.198 +      //end 3 & 4
   1.199 +
   1.200 +      
   1.201 +      //step 5
   1.202 +      //Initializing w
   1.203 +      w_e = MAXINT;
   1.204 +      //end 5
   1.205 +      
   1.206 +      
   1.207 +      //step 6
   1.208 +      //Testing for termination
   1.209 +      while( !degree_queue.empty() )
   1.210 +      {
   1.211 +        i = degree_queue.top();       //getting the node with the lowest degree from the degree queue
   1.212 +        degree_queue.pop();           //ereasing the node with the lowest degree from the degree queue
   1.213 +        
   1.214 +        //generating a RLS          
   1.215 +        for(typename std::vector<typename graph_traits<Graph>::vertices_size_type>::iterator iter = dist.begin(); iter != dist.end(); ++iter) *iter = 0;
   1.216 +        
   1.217 +        breadth_first_search
   1.218 +          (G, i, boost::visitor
   1.219 +           (
   1.220 +             make_bfs_visitor(record_distances(dist_pmap, on_tree_edge() ) )
   1.221 +             )
   1.222 +            );
   1.223 +        
   1.224 +        //Calculating depth and width of the rooted level
   1.225 +        h_i = RLS_depth(dist);
   1.226 +        w_i = RLS_max_width(dist, h_i);
   1.227 +        
   1.228 +        //Testing for termination
   1.229 +        if( (h_i > h_s) && (w_i < w_e) ) 
   1.230 +        {
   1.231 +          h_s = h_i;
   1.232 +          s = i;
   1.233 +          while(!degree_queue.empty()) degree_queue.pop();
   1.234 +          new_start = true;         
   1.235 +        }
   1.236 +        else if(w_i < w_e)
   1.237 +        { 
   1.238 +          w_e = w_i;
   1.239 +          e = i;
   1.240 +        }
   1.241 +      }
   1.242 +      //end 6
   1.243 +        
   1.244 +    }while(new_start);
   1.245 +    
   1.246 +    return e;
   1.247 +  }
   1.248 +
   1.249 +  //////////////////////////////////////////////////////////////////////////
   1.250 +  // Sloan algorithm with a given starting Vertex.
   1.251 +  //
   1.252 +  // This algorithm requires user to provide a starting vertex to
   1.253 +  // compute Sloan ordering.
   1.254 +  //////////////////////////////////////////////////////////////////////////
   1.255 +  template <class Graph, class OutputIterator,
   1.256 +            class ColorMap, class DegreeMap,
   1.257 +            class PriorityMap, class Weight>
   1.258 +  OutputIterator
   1.259 +  sloan_ordering(Graph& g,
   1.260 +                 typename graph_traits<Graph>::vertex_descriptor s,
   1.261 +                 typename graph_traits<Graph>::vertex_descriptor e,
   1.262 +                 OutputIterator permutation, 
   1.263 +                 ColorMap color, 
   1.264 +                 DegreeMap degree, 
   1.265 +                 PriorityMap priority, 
   1.266 +                 Weight W1, 
   1.267 +                 Weight W2)
   1.268 +  {
   1.269 +    //typedef typename property_traits<DegreeMap>::value_type Degree;
   1.270 +    typedef typename property_traits<PriorityMap>::value_type Degree;
   1.271 +    typedef typename property_traits<ColorMap>::value_type ColorValue;
   1.272 +    typedef color_traits<ColorValue> Color;
   1.273 +    typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
   1.274 +    typedef typename std::vector<typename graph_traits<Graph>::vertices_size_type>::iterator vec_iter;
   1.275 +    typedef typename graph_traits<Graph>::vertices_size_type size_type;
   1.276 +
   1.277 +    typedef typename property_map<Graph, vertex_index_t>::const_type VertexID;
   1.278 +
   1.279 +    
   1.280 +    //Creating a std-vector for storing the distance from the end vertex in it
   1.281 +    typename std::vector<typename graph_traits<Graph>::vertices_size_type> dist(num_vertices(g), 0);
   1.282 +    
   1.283 +    //Wrap a property_map_iterator around the std::iterator
   1.284 +    boost::iterator_property_map<vec_iter, VertexID, size_type, size_type&> dist_pmap(dist.begin(), get(vertex_index, g)); 
   1.285 +    
   1.286 +    breadth_first_search
   1.287 +      (g, e, visitor
   1.288 +       (
   1.289 +           make_bfs_visitor(record_distances(dist_pmap, on_tree_edge() ) )
   1.290 +        )
   1.291 +       );
   1.292 +    
   1.293 +    //Creating a property_map for the indices of a vertex
   1.294 +    typename property_map<Graph, vertex_index_t>::type index_map = get(vertex_index, g);
   1.295 +    
   1.296 +    //Sets the color and priority to their initial status
   1.297 +    unsigned cdeg;    
   1.298 +    typename graph_traits<Graph>::vertex_iterator ui, ui_end;
   1.299 +    for (tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui)
   1.300 +    {
   1.301 +        put(color, *ui, Color::white());
   1.302 +        cdeg=get(degree, *ui)+1;
   1.303 +        put(priority, *ui, W1*dist[index_map[*ui]]-W2*cdeg );  
   1.304 +    }
   1.305 +    
   1.306 +    //Priority list
   1.307 +    typedef indirect_cmp<PriorityMap, std::greater<Degree> > Compare;
   1.308 +    Compare comp(priority);
   1.309 +    std::list<Vertex> priority_list;
   1.310 +
   1.311 +    //Some more declarations
   1.312 +    typename graph_traits<Graph>::out_edge_iterator ei, ei_end, ei2, ei2_end;
   1.313 +    Vertex u, v, w;
   1.314 +
   1.315 +    put(color, s, Color::green());      //Sets the color of the starting vertex to gray
   1.316 +    priority_list.push_front(s);                 //Puts s into the priority_list
   1.317 +    
   1.318 +    while ( !priority_list.empty() ) 
   1.319 +    {  
   1.320 +      priority_list.sort(comp);         //Orders the elements in the priority list in an ascending manner
   1.321 +      
   1.322 +      u = priority_list.front();           //Accesses the last element in the priority list
   1.323 +      priority_list.pop_front();               //Removes the last element in the priority list
   1.324 +      
   1.325 +      if(get(color, u) == Color::green() )
   1.326 +      {
   1.327 +        //for-loop over all out-edges of vertex u
   1.328 +        for (tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei) 
   1.329 +        {
   1.330 +          v = target(*ei, g);
   1.331 +          
   1.332 +          put( priority, v, get(priority, v) + W2 ); //updates the priority
   1.333 +          
   1.334 +          if (get(color, v) == Color::white() )      //test if the vertex is inactive
   1.335 +          {
   1.336 +            put(color, v, Color::green() );        //giving the vertex a preactive status
   1.337 +            priority_list.push_front(v);                     //writing the vertex in the priority_queue
   1.338 +          }           
   1.339 +        }
   1.340 +      }
   1.341 +      
   1.342 +      //Here starts step 8
   1.343 +      *permutation++ = u;                      //Puts u to the first position in the permutation-vector
   1.344 +      put(color, u, Color::black() );          //Gives u an inactive status
   1.345 +      
   1.346 +      //for loop over all the adjacent vertices of u
   1.347 +      for (tie(ei, ei_end) = out_edges(u, g); ei != ei_end; ++ei) {
   1.348 +        
   1.349 +        v = target(*ei, g);     
   1.350 +        
   1.351 +        if (get(color, v) == Color::green() ) {      //tests if the vertex is inactive
   1.352 +          
   1.353 +          put(color, v, Color::red() );        //giving the vertex an active status
   1.354 +          put(priority, v, get(priority, v)+W2);  //updates the priority        
   1.355 +          
   1.356 +          //for loop over alll adjacent vertices of v
   1.357 +          for (tie(ei2, ei2_end) = out_edges(v, g); ei2 != ei2_end; ++ei2) {
   1.358 +            w = target(*ei2, g);
   1.359 +            
   1.360 +            if(get(color, w) != Color::black() ) {     //tests if vertex is postactive
   1.361 +              
   1.362 +              put(priority, w, get(priority, w)+W2);  //updates the priority
   1.363 +              
   1.364 +              if(get(color, w) == Color::white() ){
   1.365 +                
   1.366 +                put(color, w, Color::green() );   // gives the vertex a preactive status
   1.367 +                priority_list.push_front(w);           // puts the vertex into the priority queue
   1.368 +                
   1.369 +              } //end if
   1.370 +              
   1.371 +            } //end if
   1.372 +            
   1.373 +          } //end for
   1.374 +          
   1.375 +        } //end if
   1.376 +        
   1.377 +      } //end for
   1.378 +      
   1.379 +    } //end while
   1.380 +    
   1.381 +    
   1.382 +    return permutation;
   1.383 +  }  
   1.384 +  
   1.385 +  /////////////////////////////////////////////////////////////////////////////////////////
   1.386 +  // Same algorithm as before, but without the weights given (taking default weights
   1.387 +  template <class Graph, class OutputIterator,
   1.388 +            class ColorMap, class DegreeMap,
   1.389 +            class PriorityMap>
   1.390 +  OutputIterator
   1.391 +  sloan_ordering(Graph& g,
   1.392 +                 typename graph_traits<Graph>::vertex_descriptor s,
   1.393 +                 typename graph_traits<Graph>::vertex_descriptor e,
   1.394 +                 OutputIterator permutation, 
   1.395 +                 ColorMap color, 
   1.396 +                 DegreeMap degree, 
   1.397 +                 PriorityMap priority)
   1.398 +  {
   1.399 +    return sloan_ordering(g, s, e, permutation, color, degree, priority, WEIGHT1, WEIGHT2); 
   1.400 +  }
   1.401 +
   1.402 +
   1.403 +  //////////////////////////////////////////////////////////////////////////
   1.404 +  // Sloan algorithm without a given starting Vertex.
   1.405 +  //
   1.406 +  // This algorithm finds a good starting vertex itself to
   1.407 +  // compute Sloan-ordering.
   1.408 +  //////////////////////////////////////////////////////////////////////////
   1.409 + 
   1.410 +
   1.411 +
   1.412 +  template < class Graph, class OutputIterator, 
   1.413 +             class Color, class Degree,
   1.414 +             class Priority, class Weight>
   1.415 +  inline OutputIterator
   1.416 +  sloan_ordering(Graph& G, 
   1.417 +                 OutputIterator permutation, 
   1.418 +                 Color color, 
   1.419 +                 Degree degree, 
   1.420 +                 Priority priority, 
   1.421 +                 Weight W1, 
   1.422 +                 Weight W2 )
   1.423 +  {
   1.424 +    typedef typename boost::graph_traits<Graph>::vertex_descriptor Vertex;
   1.425 +    
   1.426 +    Vertex s, e;
   1.427 +    e = sloan_start_end_vertices(G, s, color, degree);
   1.428 +    
   1.429 +    return sloan_ordering(G, s, e, permutation, color, degree, priority, W1, W2);
   1.430 +  }
   1.431 +
   1.432 +  /////////////////////////////////////////////////////////////////////////////////////////
   1.433 +  // Same as before, but without given weights (default weights are taken instead)
   1.434 +  template < class Graph, class OutputIterator, 
   1.435 +             class Color, class Degree,
   1.436 +             class Priority >
   1.437 +  inline OutputIterator
   1.438 +  sloan_ordering(Graph& G, 
   1.439 +                 OutputIterator permutation, 
   1.440 +                 Color color, 
   1.441 +                 Degree degree, 
   1.442 +                 Priority priority)
   1.443 +  { 
   1.444 +    return sloan_ordering(G, permutation, color, degree, priority, WEIGHT1, WEIGHT2);
   1.445 +  }
   1.446 +  
   1.447 +  
   1.448 +} // namespace boost
   1.449 +
   1.450 +
   1.451 +#endif // BOOST_GRAPH_SLOAN_HPP