epoc32/include/stdapis/boost/graph/max_cardinality_matching.hpp
branchSymbian2
changeset 2 2fe1408b6811
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/epoc32/include/stdapis/boost/graph/max_cardinality_matching.hpp	Tue Mar 16 16:12:26 2010 +0000
     1.3 @@ -0,0 +1,876 @@
     1.4 +//=======================================================================
     1.5 +// Copyright (c) 2005 Aaron Windsor
     1.6 +//
     1.7 +// Distributed under the Boost Software License, Version 1.0. 
     1.8 +// (See accompanying file LICENSE_1_0.txt or copy at
     1.9 +// http://www.boost.org/LICENSE_1_0.txt)
    1.10 +//
    1.11 +//=======================================================================
    1.12 +
    1.13 +#ifndef BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP
    1.14 +#define BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP
    1.15 +
    1.16 +#include <vector>
    1.17 +#include <list>
    1.18 +#include <deque>
    1.19 +#include <algorithm>                     // for std::sort and std::stable_sort
    1.20 +#include <utility>                       // for std::pair
    1.21 +#include <boost/property_map.hpp>
    1.22 +#include <boost/utility.hpp>             // for boost::tie
    1.23 +#include <boost/graph/graph_traits.hpp>  
    1.24 +#include <boost/graph/visitors.hpp>
    1.25 +#include <boost/graph/depth_first_search.hpp>
    1.26 +#include <boost/graph/filtered_graph.hpp>
    1.27 +#include <boost/pending/disjoint_sets.hpp>
    1.28 +#include <boost/assert.hpp>
    1.29 +
    1.30 +
    1.31 +namespace boost
    1.32 +{
    1.33 +  namespace graph { namespace detail {
    1.34 +    enum { V_EVEN, V_ODD, V_UNREACHED };
    1.35 +  } } // end namespace graph::detail
    1.36 +
    1.37 +  template <typename Graph, typename MateMap, typename VertexIndexMap>
    1.38 +  typename graph_traits<Graph>::vertices_size_type 
    1.39 +  matching_size(const Graph& g, MateMap mate, VertexIndexMap vm)
    1.40 +  {
    1.41 +    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
    1.42 +    typedef typename graph_traits<Graph>::vertex_descriptor
    1.43 +      vertex_descriptor_t;
    1.44 +    typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
    1.45 +
    1.46 +    v_size_t size_of_matching = 0;
    1.47 +    vertex_iterator_t vi, vi_end;
    1.48 +
    1.49 +    for(tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
    1.50 +      {
    1.51 +    vertex_descriptor_t v = *vi;
    1.52 +    if (get(mate,v) != graph_traits<Graph>::null_vertex() 
    1.53 +            && get(vm,v) < get(vm,get(mate,v)))
    1.54 +      ++size_of_matching;
    1.55 +      }
    1.56 +    return size_of_matching;
    1.57 +  }
    1.58 +
    1.59 +
    1.60 +
    1.61 +
    1.62 +  template <typename Graph, typename MateMap>
    1.63 +  inline typename graph_traits<Graph>::vertices_size_type
    1.64 +  matching_size(const Graph& g, MateMap mate)
    1.65 +  {
    1.66 +    return matching_size(g, mate, get(vertex_index,g));
    1.67 +  }
    1.68 +
    1.69 +
    1.70 +
    1.71 +
    1.72 +  template <typename Graph, typename MateMap, typename VertexIndexMap>
    1.73 +  bool is_a_matching(const Graph& g, MateMap mate, VertexIndexMap vm)
    1.74 +  {
    1.75 +    typedef typename graph_traits<Graph>::vertex_descriptor
    1.76 +      vertex_descriptor_t;
    1.77 +    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
    1.78 +
    1.79 +    vertex_iterator_t vi, vi_end;
    1.80 +    for( tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
    1.81 +      {
    1.82 +    vertex_descriptor_t v = *vi;
    1.83 +    if (get(mate,v) != graph_traits<Graph>::null_vertex() 
    1.84 +            && v != get(mate,get(mate,v)))
    1.85 +      return false;
    1.86 +      }    
    1.87 +    return true;
    1.88 +  }
    1.89 +
    1.90 +
    1.91 +
    1.92 +
    1.93 +  template <typename Graph, typename MateMap>
    1.94 +  inline bool is_a_matching(const Graph& g, MateMap mate)
    1.95 +  {
    1.96 +    return is_a_matching(g, mate, get(vertex_index,g));
    1.97 +  }
    1.98 +
    1.99 +
   1.100 +
   1.101 +
   1.102 +  //***************************************************************************
   1.103 +  //***************************************************************************
   1.104 +  //               Maximum Cardinality Matching Functors 
   1.105 +  //***************************************************************************
   1.106 +  //***************************************************************************
   1.107 +  
   1.108 +  template <typename Graph, typename MateMap, 
   1.109 +            typename VertexIndexMap = dummy_property_map>
   1.110 +  struct no_augmenting_path_finder
   1.111 +  {
   1.112 +    no_augmenting_path_finder(const Graph& g, MateMap mate, VertexIndexMap vm)
   1.113 +    { }
   1.114 +
   1.115 +    inline bool augment_matching() { return false; }
   1.116 +
   1.117 +    template <typename PropertyMap>
   1.118 +    void get_current_matching(PropertyMap p) {}
   1.119 +  };
   1.120 +
   1.121 +
   1.122 +
   1.123 +
   1.124 +  template <typename Graph, typename MateMap, typename VertexIndexMap>
   1.125 +  class edmonds_augmenting_path_finder
   1.126 +  {
   1.127 +    // This implementation of Edmonds' matching algorithm closely
   1.128 +    // follows Tarjan's description of the algorithm in "Data
   1.129 +    // Structures and Network Algorithms."
   1.130 +
   1.131 +  public:
   1.132 +
   1.133 +    //generates the type of an iterator property map from vertices to type X
   1.134 +    template <typename X>
   1.135 +    struct map_vertex_to_ 
   1.136 +    { 
   1.137 +      typedef boost::iterator_property_map<typename std::vector<X>::iterator,
   1.138 +                                           VertexIndexMap> type; 
   1.139 +    };
   1.140 +    
   1.141 +    typedef typename graph_traits<Graph>::vertex_descriptor
   1.142 +      vertex_descriptor_t;
   1.143 +    typedef typename std::pair< vertex_descriptor_t, vertex_descriptor_t >
   1.144 +      vertex_pair_t;
   1.145 +    typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor_t; 
   1.146 +    typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
   1.147 +    typedef typename graph_traits<Graph>::edges_size_type e_size_t;
   1.148 +    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
   1.149 +    typedef typename graph_traits<Graph>::out_edge_iterator 
   1.150 +      out_edge_iterator_t;
   1.151 +    typedef typename std::deque<vertex_descriptor_t> vertex_list_t;
   1.152 +    typedef typename std::vector<edge_descriptor_t> edge_list_t;
   1.153 +    typedef typename map_vertex_to_<vertex_descriptor_t>::type 
   1.154 +      vertex_to_vertex_map_t;
   1.155 +    typedef typename map_vertex_to_<int>::type vertex_to_int_map_t;
   1.156 +    typedef typename map_vertex_to_<vertex_pair_t>::type 
   1.157 +      vertex_to_vertex_pair_map_t;
   1.158 +    typedef typename map_vertex_to_<v_size_t>::type vertex_to_vsize_map_t;
   1.159 +    typedef typename map_vertex_to_<e_size_t>::type vertex_to_esize_map_t;
   1.160 +
   1.161 +
   1.162 +
   1.163 +    
   1.164 +    edmonds_augmenting_path_finder(const Graph& arg_g, MateMap arg_mate, 
   1.165 +                                   VertexIndexMap arg_vm) : 
   1.166 +      g(arg_g),
   1.167 +      vm(arg_vm),
   1.168 +      n_vertices(num_vertices(arg_g)),
   1.169 +
   1.170 +      mate_vector(n_vertices),
   1.171 +      ancestor_of_v_vector(n_vertices),
   1.172 +      ancestor_of_w_vector(n_vertices),
   1.173 +      vertex_state_vector(n_vertices),
   1.174 +      origin_vector(n_vertices),
   1.175 +      pred_vector(n_vertices),
   1.176 +      bridge_vector(n_vertices),
   1.177 +      ds_parent_vector(n_vertices),
   1.178 +      ds_rank_vector(n_vertices),
   1.179 +
   1.180 +      mate(mate_vector.begin(), vm),
   1.181 +      ancestor_of_v(ancestor_of_v_vector.begin(), vm),
   1.182 +      ancestor_of_w(ancestor_of_w_vector.begin(), vm),
   1.183 +      vertex_state(vertex_state_vector.begin(), vm),
   1.184 +      origin(origin_vector.begin(), vm),
   1.185 +      pred(pred_vector.begin(), vm),
   1.186 +      bridge(bridge_vector.begin(), vm),
   1.187 +      ds_parent_map(ds_parent_vector.begin(), vm),
   1.188 +      ds_rank_map(ds_rank_vector.begin(), vm),
   1.189 +
   1.190 +      ds(ds_rank_map, ds_parent_map)
   1.191 +    {
   1.192 +      vertex_iterator_t vi, vi_end;
   1.193 +      for(tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
   1.194 +    mate[*vi] = get(arg_mate, *vi);
   1.195 +    }
   1.196 +
   1.197 +
   1.198 +    
   1.199 +
   1.200 +    bool augment_matching()
   1.201 +    {
   1.202 +      //As an optimization, some of these values can be saved from one
   1.203 +      //iteration to the next instead of being re-initialized each
   1.204 +      //iteration, allowing for "lazy blossom expansion." This is not
   1.205 +      //currently implemented.
   1.206 +      
   1.207 +      e_size_t timestamp = 0;
   1.208 +      even_edges.clear();
   1.209 +      
   1.210 +      vertex_iterator_t vi, vi_end;
   1.211 +      for(tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
   1.212 +    {
   1.213 +      vertex_descriptor_t u = *vi;
   1.214 +      
   1.215 +      origin[u] = u;
   1.216 +      pred[u] = u;
   1.217 +      ancestor_of_v[u] = 0;
   1.218 +      ancestor_of_w[u] = 0;
   1.219 +      ds.make_set(u);
   1.220 +      
   1.221 +      if (mate[u] == graph_traits<Graph>::null_vertex())
   1.222 +        {
   1.223 +          vertex_state[u] = graph::detail::V_EVEN;
   1.224 +          out_edge_iterator_t ei, ei_end;
   1.225 +          for(tie(ei,ei_end) = out_edges(u,g); ei != ei_end; ++ei)
   1.226 +        even_edges.push_back( *ei );
   1.227 +        }
   1.228 +      else
   1.229 +        vertex_state[u] = graph::detail::V_UNREACHED;      
   1.230 +    }
   1.231 +    
   1.232 +      //end initializations
   1.233 +    
   1.234 +      vertex_descriptor_t v,w,w_free_ancestor,v_free_ancestor;
   1.235 +      w_free_ancestor = graph_traits<Graph>::null_vertex();
   1.236 +      v_free_ancestor = graph_traits<Graph>::null_vertex(); 
   1.237 +      bool found_alternating_path = false;
   1.238 +      
   1.239 +      while(!even_edges.empty() && !found_alternating_path)
   1.240 +    {
   1.241 +      // since we push even edges onto the back of the list as
   1.242 +      // they're discovered, taking them off the back will search
   1.243 +      // for augmenting paths depth-first.
   1.244 +      edge_descriptor_t current_edge = even_edges.back();
   1.245 +      even_edges.pop_back();
   1.246 +
   1.247 +      v = source(current_edge,g);
   1.248 +      w = target(current_edge,g);
   1.249 +      
   1.250 +      vertex_descriptor_t v_prime = origin[ds.find_set(v)];
   1.251 +      vertex_descriptor_t w_prime = origin[ds.find_set(w)];
   1.252 +      
   1.253 +      // because of the way we put all of the edges on the queue,
   1.254 +      // v_prime should be labeled V_EVEN; the following is a
   1.255 +      // little paranoid but it could happen...
   1.256 +      if (vertex_state[v_prime] != graph::detail::V_EVEN)
   1.257 +        {
   1.258 +          std::swap(v_prime,w_prime);
   1.259 +          std::swap(v,w);
   1.260 +        }
   1.261 +
   1.262 +      if (vertex_state[w_prime] == graph::detail::V_UNREACHED)
   1.263 +        {
   1.264 +          vertex_state[w_prime] = graph::detail::V_ODD;
   1.265 +          vertex_state[mate[w_prime]] = graph::detail::V_EVEN;
   1.266 +          out_edge_iterator_t ei, ei_end;
   1.267 +          for( tie(ei,ei_end) = out_edges(mate[w_prime], g); ei != ei_end; ++ei)
   1.268 +        even_edges.push_back(*ei);
   1.269 +          pred[w_prime] = v;
   1.270 +        }
   1.271 +          //w_prime == v_prime can happen below if we get an edge that has been
   1.272 +          //shrunk into a blossom
   1.273 +      else if (vertex_state[w_prime] == graph::detail::V_EVEN && w_prime != v_prime) 
   1.274 +        {                                                             
   1.275 +          vertex_descriptor_t w_up = w_prime;
   1.276 +          vertex_descriptor_t v_up = v_prime;
   1.277 +          vertex_descriptor_t nearest_common_ancestor 
   1.278 +                = graph_traits<Graph>::null_vertex();
   1.279 +          w_free_ancestor = graph_traits<Graph>::null_vertex();
   1.280 +          v_free_ancestor = graph_traits<Graph>::null_vertex();
   1.281 +          
   1.282 +          // We now need to distinguish between the case that
   1.283 +          // w_prime and v_prime share an ancestor under the
   1.284 +          // "parent" relation, in which case we've found a
   1.285 +          // blossom and should shrink it, or the case that
   1.286 +          // w_prime and v_prime both have distinct ancestors that
   1.287 +          // are free, in which case we've found an alternating
   1.288 +          // path between those two ancestors.
   1.289 +
   1.290 +          ++timestamp;
   1.291 +
   1.292 +          while (nearest_common_ancestor == graph_traits<Graph>::null_vertex() && 
   1.293 +             (v_free_ancestor == graph_traits<Graph>::null_vertex() || 
   1.294 +              w_free_ancestor == graph_traits<Graph>::null_vertex()
   1.295 +              )
   1.296 +             )
   1.297 +        {
   1.298 +          ancestor_of_w[w_up] = timestamp;
   1.299 +          ancestor_of_v[v_up] = timestamp;
   1.300 +
   1.301 +          if (w_free_ancestor == graph_traits<Graph>::null_vertex())
   1.302 +            w_up = parent(w_up);
   1.303 +          if (v_free_ancestor == graph_traits<Graph>::null_vertex())
   1.304 +            v_up = parent(v_up);
   1.305 +          
   1.306 +          if (mate[v_up] == graph_traits<Graph>::null_vertex())
   1.307 +            v_free_ancestor = v_up;
   1.308 +          if (mate[w_up] == graph_traits<Graph>::null_vertex())
   1.309 +            w_free_ancestor = w_up;
   1.310 +          
   1.311 +          if (ancestor_of_w[v_up] == timestamp)
   1.312 +            nearest_common_ancestor = v_up;
   1.313 +          else if (ancestor_of_v[w_up] == timestamp)
   1.314 +            nearest_common_ancestor = w_up;
   1.315 +          else if (v_free_ancestor == w_free_ancestor && 
   1.316 +               v_free_ancestor != graph_traits<Graph>::null_vertex())
   1.317 +            nearest_common_ancestor = v_up;
   1.318 +        }
   1.319 +          
   1.320 +          if (nearest_common_ancestor == graph_traits<Graph>::null_vertex())
   1.321 +        found_alternating_path = true; //to break out of the loop
   1.322 +          else
   1.323 +        {
   1.324 +          //shrink the blossom
   1.325 +          link_and_set_bridges(w_prime, nearest_common_ancestor, std::make_pair(w,v));
   1.326 +          link_and_set_bridges(v_prime, nearest_common_ancestor, std::make_pair(v,w));
   1.327 +        }
   1.328 +        }      
   1.329 +    }
   1.330 +      
   1.331 +      if (!found_alternating_path)
   1.332 +    return false;
   1.333 +
   1.334 +      // retrieve the augmenting path and put it in aug_path
   1.335 +      reversed_retrieve_augmenting_path(v, v_free_ancestor);
   1.336 +      retrieve_augmenting_path(w, w_free_ancestor);
   1.337 +
   1.338 +      // augment the matching along aug_path
   1.339 +      vertex_descriptor_t a,b;
   1.340 +      while (!aug_path.empty())
   1.341 +    {
   1.342 +      a = aug_path.front();
   1.343 +      aug_path.pop_front();
   1.344 +      b = aug_path.front();
   1.345 +      aug_path.pop_front();
   1.346 +      mate[a] = b;
   1.347 +      mate[b] = a;
   1.348 +    }
   1.349 +      
   1.350 +      return true;
   1.351 +      
   1.352 +    }
   1.353 +
   1.354 +
   1.355 +
   1.356 +
   1.357 +    template <typename PropertyMap>
   1.358 +    void get_current_matching(PropertyMap pm)
   1.359 +    {
   1.360 +      vertex_iterator_t vi,vi_end;
   1.361 +      for(tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
   1.362 +    put(pm, *vi, mate[*vi]);
   1.363 +    }
   1.364 +
   1.365 +
   1.366 +
   1.367 +
   1.368 +    template <typename PropertyMap>
   1.369 +    void get_vertex_state_map(PropertyMap pm)
   1.370 +    {
   1.371 +      vertex_iterator_t vi,vi_end;
   1.372 +      for(tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
   1.373 +    put(pm, *vi, vertex_state[origin[ds.find_set(*vi)]]);
   1.374 +    }
   1.375 +
   1.376 +
   1.377 +
   1.378 +
   1.379 +  private:    
   1.380 +
   1.381 +    vertex_descriptor_t parent(vertex_descriptor_t x)
   1.382 +    {
   1.383 +      if (vertex_state[x] == graph::detail::V_EVEN 
   1.384 +          && mate[x] != graph_traits<Graph>::null_vertex())
   1.385 +    return mate[x];
   1.386 +      else if (vertex_state[x] == graph::detail::V_ODD)
   1.387 +    return origin[ds.find_set(pred[x])];
   1.388 +      else
   1.389 +    return x;
   1.390 +    }
   1.391 +    
   1.392 +    
   1.393 +
   1.394 +
   1.395 +    void link_and_set_bridges(vertex_descriptor_t x, 
   1.396 +                              vertex_descriptor_t stop_vertex, 
   1.397 +                  vertex_pair_t the_bridge)
   1.398 +    {
   1.399 +      for(vertex_descriptor_t v = x; v != stop_vertex; v = parent(v))
   1.400 +    {
   1.401 +      ds.union_set(v, stop_vertex);
   1.402 +      origin[ds.find_set(stop_vertex)] = stop_vertex;
   1.403 +
   1.404 +      if (vertex_state[v] == graph::detail::V_ODD)
   1.405 +        {
   1.406 +          bridge[v] = the_bridge;
   1.407 +          out_edge_iterator_t oei, oei_end;
   1.408 +          for(tie(oei, oei_end) = out_edges(v,g); oei != oei_end; ++oei)
   1.409 +        even_edges.push_back(*oei);
   1.410 +        }
   1.411 +    }
   1.412 +    }
   1.413 +    
   1.414 +
   1.415 +    // Since none of the STL containers support both constant-time
   1.416 +    // concatenation and reversal, the process of expanding an
   1.417 +    // augmenting path once we know one exists is a little more
   1.418 +    // complicated than it has to be. If we know the path is from v to
   1.419 +    // w, then the augmenting path is recursively defined as:
   1.420 +    //
   1.421 +    // path(v,w) = [v], if v = w
   1.422 +    //           = concat([v, mate[v]], path(pred[mate[v]], w), 
   1.423 +    //                if v != w and vertex_state[v] == graph::detail::V_EVEN
   1.424 +    //           = concat([v], reverse(path(x,mate[v])), path(y,w)),
   1.425 +    //                if v != w, vertex_state[v] == graph::detail::V_ODD, and bridge[v] = (x,y)
   1.426 +    //
   1.427 +    // These next two mutually recursive functions implement this definition.
   1.428 +    
   1.429 +    void retrieve_augmenting_path(vertex_descriptor_t v, vertex_descriptor_t w)  
   1.430 +    {
   1.431 +      if (v == w)
   1.432 +    aug_path.push_back(v);
   1.433 +      else if (vertex_state[v] == graph::detail::V_EVEN)
   1.434 +    {
   1.435 +      aug_path.push_back(v);
   1.436 +      aug_path.push_back(mate[v]);
   1.437 +      retrieve_augmenting_path(pred[mate[v]], w);
   1.438 +    }
   1.439 +      else //vertex_state[v] == graph::detail::V_ODD 
   1.440 +    {
   1.441 +      aug_path.push_back(v);
   1.442 +      reversed_retrieve_augmenting_path(bridge[v].first, mate[v]);
   1.443 +      retrieve_augmenting_path(bridge[v].second, w);
   1.444 +    }
   1.445 +    }
   1.446 +
   1.447 +
   1.448 +    void reversed_retrieve_augmenting_path(vertex_descriptor_t v,
   1.449 +                                           vertex_descriptor_t w)  
   1.450 +    {
   1.451 +
   1.452 +      if (v == w)
   1.453 +    aug_path.push_back(v);
   1.454 +      else if (vertex_state[v] == graph::detail::V_EVEN)
   1.455 +    {
   1.456 +      reversed_retrieve_augmenting_path(pred[mate[v]], w);
   1.457 +      aug_path.push_back(mate[v]);
   1.458 +      aug_path.push_back(v);
   1.459 +    }
   1.460 +      else //vertex_state[v] == graph::detail::V_ODD 
   1.461 +    {
   1.462 +      reversed_retrieve_augmenting_path(bridge[v].second, w);
   1.463 +      retrieve_augmenting_path(bridge[v].first, mate[v]);
   1.464 +      aug_path.push_back(v);
   1.465 +    }
   1.466 +    }
   1.467 +
   1.468 +    
   1.469 +
   1.470 +
   1.471 +    //private data members
   1.472 +    
   1.473 +    const Graph& g;
   1.474 +    VertexIndexMap vm;
   1.475 +    v_size_t n_vertices;
   1.476 +    
   1.477 +    //storage for the property maps below
   1.478 +    std::vector<vertex_descriptor_t> mate_vector;
   1.479 +    std::vector<e_size_t> ancestor_of_v_vector;
   1.480 +    std::vector<e_size_t> ancestor_of_w_vector;
   1.481 +    std::vector<int> vertex_state_vector;
   1.482 +    std::vector<vertex_descriptor_t> origin_vector;
   1.483 +    std::vector<vertex_descriptor_t> pred_vector;
   1.484 +    std::vector<vertex_pair_t> bridge_vector;
   1.485 +    std::vector<vertex_descriptor_t> ds_parent_vector;
   1.486 +    std::vector<v_size_t> ds_rank_vector;
   1.487 +
   1.488 +    //iterator property maps
   1.489 +    vertex_to_vertex_map_t mate;
   1.490 +    vertex_to_esize_map_t ancestor_of_v;
   1.491 +    vertex_to_esize_map_t ancestor_of_w;
   1.492 +    vertex_to_int_map_t vertex_state;
   1.493 +    vertex_to_vertex_map_t origin;
   1.494 +    vertex_to_vertex_map_t pred;
   1.495 +    vertex_to_vertex_pair_map_t bridge;
   1.496 +    vertex_to_vertex_map_t ds_parent_map;
   1.497 +    vertex_to_vsize_map_t ds_rank_map;
   1.498 +
   1.499 +    vertex_list_t aug_path;
   1.500 +    edge_list_t even_edges;
   1.501 +    disjoint_sets< vertex_to_vsize_map_t, vertex_to_vertex_map_t > ds;
   1.502 +
   1.503 +  };
   1.504 +
   1.505 +
   1.506 +
   1.507 +
   1.508 +  //***************************************************************************
   1.509 +  //***************************************************************************
   1.510 +  //               Initial Matching Functors
   1.511 +  //***************************************************************************
   1.512 +  //***************************************************************************
   1.513 +  
   1.514 +  template <typename Graph, typename MateMap>
   1.515 +  struct greedy_matching
   1.516 +  {
   1.517 +    typedef typename graph_traits< Graph >::vertex_descriptor vertex_descriptor_t;
   1.518 +    typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
   1.519 +    typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t; 
   1.520 +    typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;
   1.521 +
   1.522 +    static void find_matching(const Graph& g, MateMap mate)
   1.523 +    {
   1.524 +      vertex_iterator_t vi, vi_end;
   1.525 +      for(tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
   1.526 +    put(mate, *vi, graph_traits<Graph>::null_vertex());
   1.527 +            
   1.528 +      edge_iterator_t ei, ei_end;
   1.529 +      for( tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
   1.530 +    {
   1.531 +      edge_descriptor_t e = *ei;
   1.532 +      vertex_descriptor_t u = source(e,g);
   1.533 +      vertex_descriptor_t v = target(e,g);
   1.534 +      
   1.535 +      if (get(mate,u) == get(mate,v))  
   1.536 +        //only way equality can hold is if
   1.537 +            //   mate[u] == mate[v] == null_vertex
   1.538 +        {
   1.539 +          put(mate,u,v);
   1.540 +          put(mate,v,u);
   1.541 +        }
   1.542 +    }    
   1.543 +    }
   1.544 +  };
   1.545 +  
   1.546 +
   1.547 +
   1.548 +  
   1.549 +  template <typename Graph, typename MateMap>
   1.550 +  struct extra_greedy_matching
   1.551 +  {
   1.552 +    // The "extra greedy matching" is formed by repeating the
   1.553 +    // following procedure as many times as possible: Choose the
   1.554 +    // unmatched vertex v of minimum non-zero degree.  Choose the
   1.555 +    // neighbor w of v which is unmatched and has minimum degree over
   1.556 +    // all of v's neighbors. Add (u,v) to the matching. Ties for
   1.557 +    // either choice are broken arbitrarily. This procedure takes time
   1.558 +    // O(m log n), where m is the number of edges in the graph and n
   1.559 +    // is the number of vertices.
   1.560 +    
   1.561 +    typedef typename graph_traits< Graph >::vertex_descriptor
   1.562 +      vertex_descriptor_t;
   1.563 +    typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
   1.564 +    typedef typename graph_traits< Graph >::edge_descriptor edge_descriptor_t; 
   1.565 +    typedef typename graph_traits< Graph >::edge_iterator edge_iterator_t;
   1.566 +    typedef std::pair<vertex_descriptor_t, vertex_descriptor_t> vertex_pair_t;
   1.567 +    
   1.568 +    struct select_first
   1.569 +    {
   1.570 +      inline static vertex_descriptor_t select_vertex(const vertex_pair_t p) 
   1.571 +      {return p.first;}
   1.572 +    };
   1.573 +
   1.574 +    struct select_second
   1.575 +    {
   1.576 +      inline static vertex_descriptor_t select_vertex(const vertex_pair_t p) 
   1.577 +      {return p.second;}
   1.578 +    };
   1.579 +
   1.580 +    template <class PairSelector>
   1.581 +    class less_than_by_degree
   1.582 +    {
   1.583 +    public:
   1.584 +      less_than_by_degree(const Graph& g): m_g(g) {}
   1.585 +      bool operator() (const vertex_pair_t x, const vertex_pair_t y)
   1.586 +      {
   1.587 +    return 
   1.588 +      out_degree(PairSelector::select_vertex(x), m_g) 
   1.589 +      < out_degree(PairSelector::select_vertex(y), m_g);
   1.590 +      }
   1.591 +    private:
   1.592 +      const Graph& m_g;
   1.593 +    };
   1.594 +
   1.595 +
   1.596 +    static void find_matching(const Graph& g, MateMap mate)
   1.597 +    {
   1.598 +      typedef std::vector<std::pair<vertex_descriptor_t, vertex_descriptor_t> >
   1.599 +        directed_edges_vector_t;
   1.600 +      
   1.601 +      directed_edges_vector_t edge_list;
   1.602 +      vertex_iterator_t vi, vi_end;
   1.603 +      for(tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
   1.604 +    put(mate, *vi, graph_traits<Graph>::null_vertex());
   1.605 +
   1.606 +      edge_iterator_t ei, ei_end;
   1.607 +      for(tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
   1.608 +    {
   1.609 +      edge_descriptor_t e = *ei;
   1.610 +      vertex_descriptor_t u = source(e,g);
   1.611 +      vertex_descriptor_t v = target(e,g);
   1.612 +      edge_list.push_back(std::make_pair(u,v));
   1.613 +      edge_list.push_back(std::make_pair(v,u));
   1.614 +    }
   1.615 +      
   1.616 +      //sort the edges by the degree of the target, then (using a
   1.617 +      //stable sort) by degree of the source
   1.618 +      std::sort(edge_list.begin(), edge_list.end(), 
   1.619 +                less_than_by_degree<select_second>(g));
   1.620 +      std::stable_sort(edge_list.begin(), edge_list.end(), 
   1.621 +                       less_than_by_degree<select_first>(g));
   1.622 +      
   1.623 +      //construct the extra greedy matching
   1.624 +      for(typename directed_edges_vector_t::const_iterator itr = edge_list.begin(); itr != edge_list.end(); ++itr)
   1.625 +    {
   1.626 +      if (get(mate,itr->first) == get(mate,itr->second)) 
   1.627 +        //only way equality can hold is if mate[itr->first] == mate[itr->second] == null_vertex
   1.628 +        {
   1.629 +          put(mate, itr->first, itr->second);
   1.630 +          put(mate, itr->second, itr->first);
   1.631 +        }
   1.632 +    }    
   1.633 +    }
   1.634 +  };
   1.635 +
   1.636 +
   1.637 +  
   1.638 +
   1.639 +  template <typename Graph, typename MateMap>
   1.640 +  struct empty_matching
   1.641 +  { 
   1.642 +    typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator_t;
   1.643 +    
   1.644 +    static void find_matching(const Graph& g, MateMap mate)
   1.645 +    {
   1.646 +      vertex_iterator_t vi, vi_end;
   1.647 +      for(tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
   1.648 +    put(mate, *vi, graph_traits<Graph>::null_vertex());
   1.649 +    }
   1.650 +  };
   1.651 +  
   1.652 +
   1.653 +
   1.654 +
   1.655 +  //***************************************************************************
   1.656 +  //***************************************************************************
   1.657 +  //               Matching Verifiers
   1.658 +  //***************************************************************************
   1.659 +  //***************************************************************************
   1.660 +
   1.661 +  namespace detail
   1.662 +  {
   1.663 +
   1.664 +    template <typename SizeType>
   1.665 +    class odd_components_counter : public dfs_visitor<>
   1.666 +    // This depth-first search visitor will count the number of connected 
   1.667 +    // components with an odd number of vertices. It's used by 
   1.668 +    // maximum_matching_verifier.
   1.669 +    {
   1.670 +    public:
   1.671 +      odd_components_counter(SizeType& c_count):
   1.672 +    m_count(c_count)
   1.673 +      {
   1.674 +    m_count = 0;
   1.675 +      }
   1.676 +      
   1.677 +      template <class Vertex, class Graph>
   1.678 +      void start_vertex(Vertex v, Graph&) 
   1.679 +      {  
   1.680 +    addend = -1; 
   1.681 +      }
   1.682 +      
   1.683 +      template <class Vertex, class Graph>
   1.684 +      void discover_vertex(Vertex u, Graph&) 
   1.685 +      {
   1.686 +    addend *= -1;
   1.687 +    m_count += addend;
   1.688 +      }
   1.689 +      
   1.690 +    protected:
   1.691 +      SizeType& m_count;
   1.692 +      
   1.693 +    private:
   1.694 +      SizeType addend;
   1.695 +      
   1.696 +    };
   1.697 +
   1.698 +  }//namespace detail
   1.699 +
   1.700 +
   1.701 +
   1.702 +
   1.703 +  template <typename Graph, typename MateMap, 
   1.704 +            typename VertexIndexMap = dummy_property_map>
   1.705 +  struct no_matching_verifier
   1.706 +  {
   1.707 +    inline static bool 
   1.708 +    verify_matching(const Graph& g, MateMap mate, VertexIndexMap vm) 
   1.709 +    { return true;}
   1.710 +  };
   1.711 +  
   1.712 +  
   1.713 +
   1.714 +
   1.715 +  template <typename Graph, typename MateMap, typename VertexIndexMap>
   1.716 +  struct maximum_cardinality_matching_verifier
   1.717 +  {
   1.718 +
   1.719 +    template <typename X>
   1.720 +    struct map_vertex_to_
   1.721 +    { 
   1.722 +      typedef boost::iterator_property_map<typename std::vector<X>::iterator,
   1.723 +                                           VertexIndexMap> type; 
   1.724 +    };
   1.725 +
   1.726 +    typedef typename graph_traits<Graph>::vertex_descriptor 
   1.727 +      vertex_descriptor_t;
   1.728 +    typedef typename graph_traits<Graph>::vertices_size_type v_size_t;
   1.729 +    typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
   1.730 +    typedef typename map_vertex_to_<int>::type vertex_to_int_map_t;
   1.731 +    typedef typename map_vertex_to_<vertex_descriptor_t>::type 
   1.732 +      vertex_to_vertex_map_t;
   1.733 +
   1.734 +    template <typename VertexStateMap>
   1.735 +    struct non_odd_vertex {
   1.736 +      //this predicate is used to create a filtered graph that
   1.737 +      //excludes vertices labeled "graph::detail::V_ODD"
   1.738 +      non_odd_vertex() : vertex_state(0) { }
   1.739 +      non_odd_vertex(VertexStateMap* arg_vertex_state) 
   1.740 +        : vertex_state(arg_vertex_state) { }
   1.741 +      template <typename Vertex>
   1.742 +      bool operator()(const Vertex& v) const {
   1.743 +    BOOST_ASSERT(vertex_state);
   1.744 +    return get(*vertex_state, v) != graph::detail::V_ODD;
   1.745 +      }
   1.746 +      VertexStateMap* vertex_state;
   1.747 +    };
   1.748 +
   1.749 +    static bool verify_matching(const Graph& g, MateMap mate, VertexIndexMap vm)
   1.750 +    {
   1.751 +      //For any graph G, let o(G) be the number of connected
   1.752 +      //components in G of odd size. For a subset S of G's vertex set
   1.753 +      //V(G), let (G - S) represent the subgraph of G induced by
   1.754 +      //removing all vertices in S from G. Let M(G) be the size of the
   1.755 +      //maximum cardinality matching in G. Then the Tutte-Berge
   1.756 +      //formula guarantees that
   1.757 +      //
   1.758 +      //           2 * M(G) = min ( |V(G)| + |U| + o(G - U) )
   1.759 +      //
   1.760 +      //where the minimum is taken over all subsets U of
   1.761 +      //V(G). Edmonds' algorithm finds a set U that achieves the
   1.762 +      //minimum in the above formula, namely the vertices labeled
   1.763 +      //"ODD." This function runs one iteration of Edmonds' algorithm
   1.764 +      //to find U, then verifies that the size of the matching given
   1.765 +      //by mate satisfies the Tutte-Berge formula.
   1.766 +
   1.767 +      //first, make sure it's a valid matching
   1.768 +      if (!is_a_matching(g,mate,vm))
   1.769 +      return false;
   1.770 +
   1.771 +      //We'll try to augment the matching once. This serves two
   1.772 +      //purposes: first, if we find some augmenting path, the matching
   1.773 +      //is obviously non-maximum. Second, running edmonds' algorithm
   1.774 +      //on a graph with no augmenting path will create the
   1.775 +      //Edmonds-Gallai decomposition that we need as a certificate of
   1.776 +      //maximality - we can get it by looking at the vertex_state map
   1.777 +      //that results.
   1.778 +      edmonds_augmenting_path_finder<Graph,MateMap,VertexIndexMap>
   1.779 +        augmentor(g,mate,vm);
   1.780 +      if (augmentor.augment_matching())
   1.781 +      return false;
   1.782 +
   1.783 +      std::vector<int> vertex_state_vector(num_vertices(g));
   1.784 +      vertex_to_int_map_t vertex_state(vertex_state_vector.begin(), vm);
   1.785 +      augmentor.get_vertex_state_map(vertex_state);
   1.786 +      
   1.787 +      //count the number of graph::detail::V_ODD vertices
   1.788 +      v_size_t num_odd_vertices = 0;
   1.789 +      vertex_iterator_t vi, vi_end;
   1.790 +      for(tie(vi,vi_end) = vertices(g); vi != vi_end; ++vi)
   1.791 +    if (vertex_state[*vi] == graph::detail::V_ODD)
   1.792 +      ++num_odd_vertices;
   1.793 +
   1.794 +      //count the number of connected components with odd cardinality
   1.795 +      //in the graph without graph::detail::V_ODD vertices
   1.796 +      non_odd_vertex<vertex_to_int_map_t> filter(&vertex_state);
   1.797 +      filtered_graph<Graph, keep_all, non_odd_vertex<vertex_to_int_map_t> > fg(g, keep_all(), filter);
   1.798 +
   1.799 +      v_size_t num_odd_components;
   1.800 +      detail::odd_components_counter<v_size_t> occ(num_odd_components);
   1.801 +      depth_first_search(fg, visitor(occ).vertex_index_map(vm));
   1.802 +
   1.803 +      if (2 * matching_size(g,mate,vm) == num_vertices(g) + num_odd_vertices - num_odd_components)
   1.804 +    return true;
   1.805 +      else
   1.806 +    return false;
   1.807 +    }
   1.808 +  };
   1.809 +
   1.810 +
   1.811 +
   1.812 +
   1.813 +  template <typename Graph, 
   1.814 +        typename MateMap,
   1.815 +        typename VertexIndexMap,
   1.816 +        template <typename, typename, typename> class AugmentingPathFinder, 
   1.817 +        template <typename, typename> class InitialMatchingFinder,
   1.818 +        template <typename, typename, typename> class MatchingVerifier>
   1.819 +  bool matching(const Graph& g, MateMap mate, VertexIndexMap vm)
   1.820 +  {
   1.821 +    
   1.822 +    InitialMatchingFinder<Graph,MateMap>::find_matching(g,mate);
   1.823 +
   1.824 +    AugmentingPathFinder<Graph,MateMap,VertexIndexMap> augmentor(g,mate,vm);
   1.825 +    bool not_maximum_yet = true;
   1.826 +    while(not_maximum_yet)
   1.827 +      {
   1.828 +    not_maximum_yet = augmentor.augment_matching();
   1.829 +      }
   1.830 +    augmentor.get_current_matching(mate);
   1.831 +
   1.832 +    return MatchingVerifier<Graph,MateMap,VertexIndexMap>::verify_matching(g,mate,vm);    
   1.833 +    
   1.834 +  }
   1.835 +
   1.836 +
   1.837 +
   1.838 +
   1.839 +  template <typename Graph, typename MateMap, typename VertexIndexMap>
   1.840 +  inline bool checked_edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate, VertexIndexMap vm)
   1.841 +  {
   1.842 +    return matching 
   1.843 +      < Graph, MateMap, VertexIndexMap,
   1.844 +        edmonds_augmenting_path_finder, extra_greedy_matching, maximum_cardinality_matching_verifier>
   1.845 +      (g, mate, vm);
   1.846 +  }
   1.847 +
   1.848 +
   1.849 +
   1.850 +
   1.851 +  template <typename Graph, typename MateMap>
   1.852 +  inline bool checked_edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate)
   1.853 +  {
   1.854 +    return checked_edmonds_maximum_cardinality_matching(g, mate, get(vertex_index,g));
   1.855 +  }
   1.856 +
   1.857 +
   1.858 +
   1.859 +
   1.860 +  template <typename Graph, typename MateMap, typename VertexIndexMap>
   1.861 +  inline void edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate, VertexIndexMap vm)
   1.862 +  {
   1.863 +    matching < Graph, MateMap, VertexIndexMap,
   1.864 +               edmonds_augmenting_path_finder, extra_greedy_matching, no_matching_verifier>
   1.865 +      (g, mate, vm);
   1.866 +  }
   1.867 +
   1.868 +
   1.869 +
   1.870 +
   1.871 +  template <typename Graph, typename MateMap>
   1.872 +  inline void edmonds_maximum_cardinality_matching(const Graph& g, MateMap mate)
   1.873 +  {
   1.874 +    edmonds_maximum_cardinality_matching(g, mate, get(vertex_index,g));
   1.875 +  }
   1.876 +
   1.877 +}//namespace boost
   1.878 +
   1.879 +#endif //BOOST_GRAPH_MAXIMUM_CARDINALITY_MATCHING_HPP