epoc32/include/stdapis/boost/function/function_base.hpp
branchSymbian2
changeset 2 2fe1408b6811
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/epoc32/include/stdapis/boost/function/function_base.hpp	Tue Mar 16 16:12:26 2010 +0000
     1.3 @@ -0,0 +1,736 @@
     1.4 +// Boost.Function library
     1.5 +
     1.6 +//  Copyright Douglas Gregor 2001-2006. Use, modification and
     1.7 +//  distribution is subject to the Boost Software License, Version
     1.8 +//  1.0. (See accompanying file LICENSE_1_0.txt or copy at
     1.9 +//  http://www.boost.org/LICENSE_1_0.txt)
    1.10 +
    1.11 +// For more information, see http://www.boost.org
    1.12 +
    1.13 +#ifndef BOOST_FUNCTION_BASE_HEADER
    1.14 +#define BOOST_FUNCTION_BASE_HEADER
    1.15 +
    1.16 +#include <stdexcept>
    1.17 +#include <string>
    1.18 +#include <memory>
    1.19 +#include <new>
    1.20 +#include <typeinfo>
    1.21 +#include <boost/config.hpp>
    1.22 +#include <boost/assert.hpp>
    1.23 +#include <boost/type_traits/is_integral.hpp>
    1.24 +#include <boost/type_traits/composite_traits.hpp>
    1.25 +#include <boost/ref.hpp>
    1.26 +#include <boost/mpl/if.hpp>
    1.27 +#include <boost/detail/workaround.hpp>
    1.28 +#include <boost/type_traits/alignment_of.hpp>
    1.29 +#ifndef BOOST_NO_SFINAE
    1.30 +#  include "boost/utility/enable_if.hpp"
    1.31 +#else
    1.32 +#  include "boost/mpl/bool.hpp"
    1.33 +#endif
    1.34 +#include <boost/function_equal.hpp>
    1.35 +
    1.36 +// Borrowed from Boost.Python library: determines the cases where we
    1.37 +// need to use std::type_info::name to compare instead of operator==.
    1.38 +# if (defined(__GNUC__) && __GNUC__ >= 3) \
    1.39 + || defined(_AIX) \
    1.40 + || (   defined(__sgi) && defined(__host_mips))
    1.41 +#  include <cstring>
    1.42 +#  define BOOST_FUNCTION_COMPARE_TYPE_ID(X,Y) \
    1.43 +     (std::strcmp((X).name(),(Y).name()) == 0)
    1.44 +# else
    1.45 +#  define BOOST_FUNCTION_COMPARE_TYPE_ID(X,Y) ((X)==(Y))
    1.46 +#endif
    1.47 +
    1.48 +#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300 || defined(__ICL) && __ICL <= 600 || defined(__MWERKS__) && __MWERKS__ < 0x2406 && !defined(BOOST_STRICT_CONFIG)
    1.49 +#  define BOOST_FUNCTION_TARGET_FIX(x) x
    1.50 +#else
    1.51 +#  define BOOST_FUNCTION_TARGET_FIX(x)
    1.52 +#endif // not MSVC
    1.53 +
    1.54 +#if defined(__sgi) && defined(_COMPILER_VERSION) && _COMPILER_VERSION <= 730 && !defined(BOOST_STRICT_CONFIG)
    1.55 +// Work around a compiler bug.
    1.56 +// boost::python::objects::function has to be seen by the compiler before the
    1.57 +// boost::function class template.
    1.58 +namespace boost { namespace python { namespace objects {
    1.59 +  class function;
    1.60 +}}}
    1.61 +#endif
    1.62 +
    1.63 +#if defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)                    \
    1.64 + || defined(BOOST_BCB_PARTIAL_SPECIALIZATION_BUG)                         \
    1.65 + || !(BOOST_STRICT_CONFIG || !defined(__SUNPRO_CC) || __SUNPRO_CC > 0x540)
    1.66 +#  define BOOST_FUNCTION_NO_FUNCTION_TYPE_SYNTAX
    1.67 +#endif
    1.68 +
    1.69 +#if !BOOST_WORKAROUND(__BORLANDC__, < 0x600)
    1.70 +#  define BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor,Type)              \
    1.71 +      typename ::boost::enable_if_c<(::boost::type_traits::ice_not<          \
    1.72 +                            (::boost::is_integral<Functor>::value)>::value), \
    1.73 +                           Type>::type
    1.74 +#else
    1.75 +// BCC doesn't recognize this depends on a template argument and complains
    1.76 +// about the use of 'typename'
    1.77 +#  define BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor,Type)     \
    1.78 +      ::boost::enable_if_c<(::boost::type_traits::ice_not<          \
    1.79 +                   (::boost::is_integral<Functor>::value)>::value), \
    1.80 +                       Type>::type
    1.81 +#endif
    1.82 +
    1.83 +#if !defined(BOOST_FUNCTION_NO_FUNCTION_TYPE_SYNTAX)
    1.84 +namespace boost {
    1.85 +
    1.86 +#if defined(__sgi) && defined(_COMPILER_VERSION) && _COMPILER_VERSION <= 730 && !defined(BOOST_STRICT_CONFIG)
    1.87 +// The library shipping with MIPSpro 7.3.1.3m has a broken allocator<void>
    1.88 +class function_base;
    1.89 +
    1.90 +template<typename Signature,
    1.91 +         typename Allocator = std::allocator<function_base> >
    1.92 +class function;
    1.93 +#else
    1.94 +template<typename Signature, typename Allocator = std::allocator<void> >
    1.95 +class function;
    1.96 +#endif
    1.97 +
    1.98 +template<typename Signature, typename Allocator>
    1.99 +inline void swap(function<Signature, Allocator>& f1,
   1.100 +                 function<Signature, Allocator>& f2)
   1.101 +{
   1.102 +  f1.swap(f2);
   1.103 +}
   1.104 +
   1.105 +} // end namespace boost
   1.106 +#endif // have partial specialization
   1.107 +
   1.108 +namespace boost {
   1.109 +  namespace detail {
   1.110 +    namespace function {
   1.111 +      class X;
   1.112 +
   1.113 +      /**
   1.114 +       * A buffer used to store small function objects in
   1.115 +       * boost::function. It is a union containing function pointers,
   1.116 +       * object pointers, and a structure that resembles a bound
   1.117 +       * member function pointer.
   1.118 +       */
   1.119 +      union function_buffer
   1.120 +      {
   1.121 +        // For pointers to function objects
   1.122 +        void* obj_ptr;
   1.123 +
   1.124 +        // For pointers to std::type_info objects
   1.125 +        // (get_functor_type_tag, check_functor_type_tag).
   1.126 +        const void* const_obj_ptr;
   1.127 +
   1.128 +        // For function pointers of all kinds
   1.129 +        mutable void (*func_ptr)();
   1.130 +
   1.131 +        // For bound member pointers
   1.132 +        struct bound_memfunc_ptr_t {
   1.133 +          void (X::*memfunc_ptr)(int);
   1.134 +          void* obj_ptr;
   1.135 +        } bound_memfunc_ptr;
   1.136 +
   1.137 +        // To relax aliasing constraints
   1.138 +        mutable char data;
   1.139 +      };
   1.140 +
   1.141 +      /**
   1.142 +       * The unusable class is a placeholder for unused function arguments
   1.143 +       * It is also completely unusable except that it constructable from
   1.144 +       * anything. This helps compilers without partial specialization to
   1.145 +       * handle Boost.Function objects returning void.
   1.146 +       */
   1.147 +      struct unusable
   1.148 +      {
   1.149 +        unusable() {}
   1.150 +        template<typename T> unusable(const T&) {}
   1.151 +      };
   1.152 +
   1.153 +      /* Determine the return type. This supports compilers that do not support
   1.154 +       * void returns or partial specialization by silently changing the return
   1.155 +       * type to "unusable".
   1.156 +       */
   1.157 +      template<typename T> struct function_return_type { typedef T type; };
   1.158 +
   1.159 +      template<>
   1.160 +      struct function_return_type<void>
   1.161 +      {
   1.162 +        typedef unusable type;
   1.163 +      };
   1.164 +
   1.165 +      // The operation type to perform on the given functor/function pointer
   1.166 +      enum functor_manager_operation_type {
   1.167 +        clone_functor_tag,
   1.168 +        destroy_functor_tag,
   1.169 +        check_functor_type_tag,
   1.170 +        get_functor_type_tag
   1.171 +      };
   1.172 +
   1.173 +      // Tags used to decide between different types of functions
   1.174 +      struct function_ptr_tag {};
   1.175 +      struct function_obj_tag {};
   1.176 +      struct member_ptr_tag {};
   1.177 +      struct function_obj_ref_tag {};
   1.178 +
   1.179 +      template<typename F>
   1.180 +      class get_function_tag
   1.181 +      {
   1.182 +        typedef typename mpl::if_c<(is_pointer<F>::value),
   1.183 +                                   function_ptr_tag,
   1.184 +                                   function_obj_tag>::type ptr_or_obj_tag;
   1.185 +
   1.186 +        typedef typename mpl::if_c<(is_member_pointer<F>::value),
   1.187 +                                   member_ptr_tag,
   1.188 +                                   ptr_or_obj_tag>::type ptr_or_obj_or_mem_tag;
   1.189 +
   1.190 +        typedef typename mpl::if_c<(is_reference_wrapper<F>::value),
   1.191 +                                   function_obj_ref_tag,
   1.192 +                                   ptr_or_obj_or_mem_tag>::type or_ref_tag;
   1.193 +
   1.194 +      public:
   1.195 +        typedef or_ref_tag type;
   1.196 +      };
   1.197 +
   1.198 +      // The trivial manager does nothing but return the same pointer (if we
   1.199 +      // are cloning) or return the null pointer (if we are deleting).
   1.200 +      template<typename F>
   1.201 +      struct reference_manager
   1.202 +      {
   1.203 +        static inline void
   1.204 +        get(const function_buffer& in_buffer, function_buffer& out_buffer, 
   1.205 +            functor_manager_operation_type op)
   1.206 +        {
   1.207 +          switch (op) {
   1.208 +          case clone_functor_tag: 
   1.209 +            out_buffer.obj_ptr = in_buffer.obj_ptr;
   1.210 +            return;
   1.211 +
   1.212 +          case destroy_functor_tag:
   1.213 +            out_buffer.obj_ptr = 0;
   1.214 +            return;
   1.215 +
   1.216 +          case check_functor_type_tag:
   1.217 +            {
   1.218 +              // DPG TBD: Since we're only storing a pointer, it's
   1.219 +              // possible that the user could ask for a base class or
   1.220 +              // derived class. Is that okay?
   1.221 +              const std::type_info& check_type = 
   1.222 +                *static_cast<const std::type_info*>(out_buffer.const_obj_ptr);
   1.223 +              if (BOOST_FUNCTION_COMPARE_TYPE_ID(check_type, typeid(F)))
   1.224 +                out_buffer.obj_ptr = in_buffer.obj_ptr;
   1.225 +              else
   1.226 +                out_buffer.obj_ptr = 0;
   1.227 +            }
   1.228 +            return;
   1.229 +
   1.230 +          case get_functor_type_tag:
   1.231 +            out_buffer.const_obj_ptr = &typeid(F);
   1.232 +            return;
   1.233 +          }
   1.234 +        }
   1.235 +      };
   1.236 +
   1.237 +      /**
   1.238 +       * Determine if boost::function can use the small-object
   1.239 +       * optimization with the function object type F.
   1.240 +       */
   1.241 +      template<typename F>
   1.242 +      struct function_allows_small_object_optimization
   1.243 +      {
   1.244 +        BOOST_STATIC_CONSTANT
   1.245 +          (bool, 
   1.246 +           value = ((sizeof(F) <= sizeof(function_buffer) &&
   1.247 +                     (alignment_of<function_buffer>::value 
   1.248 +                      % alignment_of<F>::value == 0))));
   1.249 +      };
   1.250 +
   1.251 +      /**
   1.252 +       * The functor_manager class contains a static function "manage" which
   1.253 +       * can clone or destroy the given function/function object pointer.
   1.254 +       */
   1.255 +      template<typename Functor, typename Allocator>
   1.256 +      struct functor_manager
   1.257 +      {
   1.258 +      private:
   1.259 +        typedef Functor functor_type;
   1.260 +
   1.261 +        // For function pointers, the manager is trivial
   1.262 +        static inline void
   1.263 +        manager(const function_buffer& in_buffer, function_buffer& out_buffer, 
   1.264 +                functor_manager_operation_type op, function_ptr_tag)
   1.265 +        {
   1.266 +          if (op == clone_functor_tag)
   1.267 +            out_buffer.func_ptr = in_buffer.func_ptr;
   1.268 +          else if (op == destroy_functor_tag)
   1.269 +            out_buffer.func_ptr = 0;
   1.270 +          else /* op == check_functor_type_tag */ {
   1.271 +            const std::type_info& check_type = 
   1.272 +              *static_cast<const std::type_info*>(out_buffer.const_obj_ptr);
   1.273 +            if (BOOST_FUNCTION_COMPARE_TYPE_ID(check_type, typeid(Functor)))
   1.274 +              out_buffer.obj_ptr = &in_buffer.func_ptr;
   1.275 +            else
   1.276 +              out_buffer.obj_ptr = 0;
   1.277 +          }
   1.278 +        }
   1.279 +
   1.280 +        // Function objects that fit in the small-object buffer.
   1.281 +        static inline void
   1.282 +        manager(const function_buffer& in_buffer, function_buffer& out_buffer, 
   1.283 +                functor_manager_operation_type op, mpl::true_)
   1.284 +        {
   1.285 +          if (op == clone_functor_tag) {
   1.286 +            const functor_type* in_functor = 
   1.287 +              reinterpret_cast<const functor_type*>(&in_buffer.data);
   1.288 +            new ((void*)&out_buffer.data) functor_type(*in_functor);
   1.289 +          } else if (op == destroy_functor_tag) {
   1.290 +            // Some compilers (Borland, vc6, ...) are unhappy with ~functor_type.
   1.291 +            reinterpret_cast<functor_type*>(&out_buffer.data)->~Functor();
   1.292 +          } else /* op == check_functor_type_tag */ {
   1.293 +            const std::type_info& check_type = 
   1.294 +              *static_cast<const std::type_info*>(out_buffer.const_obj_ptr);
   1.295 +            if (BOOST_FUNCTION_COMPARE_TYPE_ID(check_type, typeid(Functor)))
   1.296 +              out_buffer.obj_ptr = &in_buffer.data;
   1.297 +            else
   1.298 +              out_buffer.obj_ptr = 0;
   1.299 +          }
   1.300 +        }
   1.301 +        
   1.302 +        // Function objects that require heap allocation
   1.303 +        static inline void
   1.304 +        manager(const function_buffer& in_buffer, function_buffer& out_buffer, 
   1.305 +                functor_manager_operation_type op, mpl::false_)
   1.306 +        {
   1.307 +#ifndef BOOST_NO_STD_ALLOCATOR
   1.308 +          typedef typename Allocator::template rebind<functor_type>::other
   1.309 +            allocator_type;
   1.310 +          typedef typename allocator_type::pointer pointer_type;
   1.311 +#else
   1.312 +          typedef functor_type* pointer_type;
   1.313 +#endif // BOOST_NO_STD_ALLOCATOR
   1.314 +
   1.315 +#  ifndef BOOST_NO_STD_ALLOCATOR
   1.316 +          allocator_type allocator;
   1.317 +#  endif // BOOST_NO_STD_ALLOCATOR
   1.318 +
   1.319 +          if (op == clone_functor_tag) {
   1.320 +            // GCC 2.95.3 gets the CV qualifiers wrong here, so we
   1.321 +            // can't do the static_cast that we should do.
   1.322 +            const functor_type* f =
   1.323 +              (const functor_type*)(in_buffer.obj_ptr);
   1.324 +
   1.325 +            // Clone the functor
   1.326 +#  ifndef BOOST_NO_STD_ALLOCATOR
   1.327 +            pointer_type copy = allocator.allocate(1);
   1.328 +            allocator.construct(copy, *f);
   1.329 +
   1.330 +            // Get back to the original pointer type
   1.331 +            functor_type* new_f = static_cast<functor_type*>(copy);
   1.332 +#  else
   1.333 +            functor_type* new_f = new functor_type(*f);
   1.334 +#  endif // BOOST_NO_STD_ALLOCATOR
   1.335 +            out_buffer.obj_ptr = new_f;
   1.336 +          } else if (op == destroy_functor_tag) {
   1.337 +            /* Cast from the void pointer to the functor pointer type */
   1.338 +            functor_type* f =
   1.339 +              static_cast<functor_type*>(out_buffer.obj_ptr);
   1.340 +
   1.341 +#  ifndef BOOST_NO_STD_ALLOCATOR
   1.342 +            /* Cast from the functor pointer type to the allocator's pointer
   1.343 +               type */
   1.344 +            pointer_type victim = static_cast<pointer_type>(f);
   1.345 +
   1.346 +            // Destroy and deallocate the functor
   1.347 +            allocator.destroy(victim);
   1.348 +            allocator.deallocate(victim, 1);
   1.349 +#  else
   1.350 +            delete f;
   1.351 +#  endif // BOOST_NO_STD_ALLOCATOR
   1.352 +            out_buffer.obj_ptr = 0;
   1.353 +          } else /* op == check_functor_type_tag */ {
   1.354 +            const std::type_info& check_type = 
   1.355 +              *static_cast<const std::type_info*>(out_buffer.const_obj_ptr);
   1.356 +            if (BOOST_FUNCTION_COMPARE_TYPE_ID(check_type, typeid(Functor)))
   1.357 +              out_buffer.obj_ptr = in_buffer.obj_ptr;
   1.358 +            else
   1.359 +              out_buffer.obj_ptr = 0;
   1.360 +          }
   1.361 +        }
   1.362 +
   1.363 +        // For function objects, we determine whether the function
   1.364 +        // object can use the small-object optimization buffer or
   1.365 +        // whether we need to allocate it on the heap.
   1.366 +        static inline void
   1.367 +        manager(const function_buffer& in_buffer, function_buffer& out_buffer, 
   1.368 +                functor_manager_operation_type op, function_obj_tag)
   1.369 +        {
   1.370 +          manager(in_buffer, out_buffer, op,
   1.371 +                  mpl::bool_<(function_allows_small_object_optimization<functor_type>::value)>());
   1.372 +        }
   1.373 +
   1.374 +      public:
   1.375 +        /* Dispatch to an appropriate manager based on whether we have a
   1.376 +           function pointer or a function object pointer. */
   1.377 +        static inline void
   1.378 +        manage(const function_buffer& in_buffer, function_buffer& out_buffer, 
   1.379 +               functor_manager_operation_type op)
   1.380 +        {
   1.381 +          typedef typename get_function_tag<functor_type>::type tag_type;
   1.382 +          switch (op) {
   1.383 +          case get_functor_type_tag:
   1.384 +            out_buffer.const_obj_ptr = &typeid(functor_type);
   1.385 +            return;
   1.386 +
   1.387 +          default:
   1.388 +            manager(in_buffer, out_buffer, op, tag_type());
   1.389 +            return;
   1.390 +          }
   1.391 +        }
   1.392 +      };
   1.393 +
   1.394 +      // A type that is only used for comparisons against zero
   1.395 +      struct useless_clear_type {};
   1.396 +
   1.397 +#ifdef BOOST_NO_SFINAE
   1.398 +      // These routines perform comparisons between a Boost.Function
   1.399 +      // object and an arbitrary function object (when the last
   1.400 +      // parameter is mpl::bool_<false>) or against zero (when the
   1.401 +      // last parameter is mpl::bool_<true>). They are only necessary
   1.402 +      // for compilers that don't support SFINAE.
   1.403 +      template<typename Function, typename Functor>
   1.404 +        bool
   1.405 +        compare_equal(const Function& f, const Functor&, int, mpl::bool_<true>)
   1.406 +        { return f.empty(); }
   1.407 +
   1.408 +      template<typename Function, typename Functor>
   1.409 +        bool
   1.410 +        compare_not_equal(const Function& f, const Functor&, int,
   1.411 +                          mpl::bool_<true>)
   1.412 +        { return !f.empty(); }
   1.413 +
   1.414 +      template<typename Function, typename Functor>
   1.415 +        bool
   1.416 +        compare_equal(const Function& f, const Functor& g, long,
   1.417 +                      mpl::bool_<false>)
   1.418 +        {
   1.419 +          if (const Functor* fp = f.template target<Functor>())
   1.420 +            return function_equal(*fp, g);
   1.421 +          else return false;
   1.422 +        }
   1.423 +
   1.424 +      template<typename Function, typename Functor>
   1.425 +        bool
   1.426 +        compare_equal(const Function& f, const reference_wrapper<Functor>& g,
   1.427 +                      int, mpl::bool_<false>)
   1.428 +        {
   1.429 +          if (const Functor* fp = f.template target<Functor>())
   1.430 +            return fp == g.get_pointer();
   1.431 +          else return false;
   1.432 +        }
   1.433 +
   1.434 +      template<typename Function, typename Functor>
   1.435 +        bool
   1.436 +        compare_not_equal(const Function& f, const Functor& g, long,
   1.437 +                          mpl::bool_<false>)
   1.438 +        {
   1.439 +          if (const Functor* fp = f.template target<Functor>())
   1.440 +            return !function_equal(*fp, g);
   1.441 +          else return true;
   1.442 +        }
   1.443 +
   1.444 +      template<typename Function, typename Functor>
   1.445 +        bool
   1.446 +        compare_not_equal(const Function& f,
   1.447 +                          const reference_wrapper<Functor>& g, int,
   1.448 +                          mpl::bool_<false>)
   1.449 +        {
   1.450 +          if (const Functor* fp = f.template target<Functor>())
   1.451 +            return fp != g.get_pointer();
   1.452 +          else return true;
   1.453 +        }
   1.454 +#endif // BOOST_NO_SFINAE
   1.455 +
   1.456 +      /**
   1.457 +       * Stores the "manager" portion of the vtable for a
   1.458 +       * boost::function object.
   1.459 +       */
   1.460 +      struct vtable_base
   1.461 +      {
   1.462 +        vtable_base() : manager(0) { }
   1.463 +        void (*manager)(const function_buffer& in_buffer, 
   1.464 +                        function_buffer& out_buffer, 
   1.465 +                        functor_manager_operation_type op);
   1.466 +      };
   1.467 +    } // end namespace function
   1.468 +  } // end namespace detail
   1.469 +
   1.470 +/**
   1.471 + * The function_base class contains the basic elements needed for the
   1.472 + * function1, function2, function3, etc. classes. It is common to all
   1.473 + * functions (and as such can be used to tell if we have one of the
   1.474 + * functionN objects).
   1.475 + */
   1.476 +class function_base
   1.477 +{
   1.478 +public:
   1.479 +  function_base() : vtable(0) { }
   1.480 +
   1.481 +  /** Determine if the function is empty (i.e., has no target). */
   1.482 +  bool empty() const { return !vtable; }
   1.483 +
   1.484 +  /** Retrieve the type of the stored function object, or typeid(void)
   1.485 +      if this is empty. */
   1.486 +  const std::type_info& target_type() const
   1.487 +  {
   1.488 +    if (!vtable) return typeid(void);
   1.489 +
   1.490 +    detail::function::function_buffer type;
   1.491 +    vtable->manager(functor, type, detail::function::get_functor_type_tag);
   1.492 +    return *static_cast<const std::type_info*>(type.const_obj_ptr);
   1.493 +  }
   1.494 +
   1.495 +  template<typename Functor>
   1.496 +    Functor* target()
   1.497 +    {
   1.498 +      if (!vtable) return 0;
   1.499 +
   1.500 +      detail::function::function_buffer type_result;
   1.501 +      type_result.const_obj_ptr = &typeid(Functor);
   1.502 +      vtable->manager(functor, type_result, 
   1.503 +                      detail::function::check_functor_type_tag);
   1.504 +      return static_cast<Functor*>(type_result.obj_ptr);
   1.505 +    }
   1.506 +
   1.507 +  template<typename Functor>
   1.508 +#if defined(BOOST_MSVC) && BOOST_WORKAROUND(BOOST_MSVC, < 1300)
   1.509 +    const Functor* target( Functor * = 0 ) const
   1.510 +#else
   1.511 +    const Functor* target() const
   1.512 +#endif
   1.513 +    {
   1.514 +      if (!vtable) return 0;
   1.515 +
   1.516 +      detail::function::function_buffer type_result;
   1.517 +      type_result.const_obj_ptr = &typeid(Functor);
   1.518 +      vtable->manager(functor, type_result, 
   1.519 +                      detail::function::check_functor_type_tag);
   1.520 +      // GCC 2.95.3 gets the CV qualifiers wrong here, so we
   1.521 +      // can't do the static_cast that we should do.
   1.522 +      return (const Functor*)(type_result.obj_ptr);
   1.523 +    }
   1.524 +
   1.525 +  template<typename F>
   1.526 +    bool contains(const F& f) const
   1.527 +    {
   1.528 +#if defined(BOOST_MSVC) && BOOST_WORKAROUND(BOOST_MSVC, < 1300)
   1.529 +      if (const F* fp = this->target( (F*)0 ))
   1.530 +#else
   1.531 +      if (const F* fp = this->template target<F>())
   1.532 +#endif
   1.533 +      {
   1.534 +        return function_equal(*fp, f);
   1.535 +      } else {
   1.536 +        return false;
   1.537 +      }
   1.538 +    }
   1.539 +
   1.540 +#if defined(__GNUC__) && __GNUC__ == 3 && __GNUC_MINOR__ <= 3
   1.541 +  // GCC 3.3 and newer cannot copy with the global operator==, due to
   1.542 +  // problems with instantiation of function return types before it
   1.543 +  // has been verified that the argument types match up.
   1.544 +  template<typename Functor>
   1.545 +    BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.546 +    operator==(Functor g) const
   1.547 +    {
   1.548 +      if (const Functor* fp = target<Functor>())
   1.549 +        return function_equal(*fp, g);
   1.550 +      else return false;
   1.551 +    }
   1.552 +
   1.553 +  template<typename Functor>
   1.554 +    BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.555 +    operator!=(Functor g) const
   1.556 +    {
   1.557 +      if (const Functor* fp = target<Functor>())
   1.558 +        return !function_equal(*fp, g);
   1.559 +      else return true;
   1.560 +    }
   1.561 +#endif
   1.562 +
   1.563 +public: // should be protected, but GCC 2.95.3 will fail to allow access
   1.564 +  detail::function::vtable_base* vtable;
   1.565 +  mutable detail::function::function_buffer functor;
   1.566 +};
   1.567 +
   1.568 +/**
   1.569 + * The bad_function_call exception class is thrown when a boost::function
   1.570 + * object is invoked
   1.571 + */
   1.572 +class bad_function_call : public std::runtime_error
   1.573 +{
   1.574 +public:
   1.575 +  bad_function_call() : std::runtime_error("call to empty boost::function") {}
   1.576 +};
   1.577 +
   1.578 +#ifndef BOOST_NO_SFINAE
   1.579 +inline bool operator==(const function_base& f,
   1.580 +                       detail::function::useless_clear_type*)
   1.581 +{
   1.582 +  return f.empty();
   1.583 +}
   1.584 +
   1.585 +inline bool operator!=(const function_base& f,
   1.586 +                       detail::function::useless_clear_type*)
   1.587 +{
   1.588 +  return !f.empty();
   1.589 +}
   1.590 +
   1.591 +inline bool operator==(detail::function::useless_clear_type*,
   1.592 +                       const function_base& f)
   1.593 +{
   1.594 +  return f.empty();
   1.595 +}
   1.596 +
   1.597 +inline bool operator!=(detail::function::useless_clear_type*,
   1.598 +                       const function_base& f)
   1.599 +{
   1.600 +  return !f.empty();
   1.601 +}
   1.602 +#endif
   1.603 +
   1.604 +#ifdef BOOST_NO_SFINAE
   1.605 +// Comparisons between boost::function objects and arbitrary function objects
   1.606 +template<typename Functor>
   1.607 +  inline bool operator==(const function_base& f, Functor g)
   1.608 +  {
   1.609 +    typedef mpl::bool_<(is_integral<Functor>::value)> integral;
   1.610 +    return detail::function::compare_equal(f, g, 0, integral());
   1.611 +  }
   1.612 +
   1.613 +template<typename Functor>
   1.614 +  inline bool operator==(Functor g, const function_base& f)
   1.615 +  {
   1.616 +    typedef mpl::bool_<(is_integral<Functor>::value)> integral;
   1.617 +    return detail::function::compare_equal(f, g, 0, integral());
   1.618 +  }
   1.619 +
   1.620 +template<typename Functor>
   1.621 +  inline bool operator!=(const function_base& f, Functor g)
   1.622 +  {
   1.623 +    typedef mpl::bool_<(is_integral<Functor>::value)> integral;
   1.624 +    return detail::function::compare_not_equal(f, g, 0, integral());
   1.625 +  }
   1.626 +
   1.627 +template<typename Functor>
   1.628 +  inline bool operator!=(Functor g, const function_base& f)
   1.629 +  {
   1.630 +    typedef mpl::bool_<(is_integral<Functor>::value)> integral;
   1.631 +    return detail::function::compare_not_equal(f, g, 0, integral());
   1.632 +  }
   1.633 +#else
   1.634 +
   1.635 +#  if !(defined(__GNUC__) && __GNUC__ == 3 && __GNUC_MINOR__ <= 3)
   1.636 +// Comparisons between boost::function objects and arbitrary function
   1.637 +// objects. GCC 3.3 and before has an obnoxious bug that prevents this
   1.638 +// from working.
   1.639 +template<typename Functor>
   1.640 +  BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.641 +  operator==(const function_base& f, Functor g)
   1.642 +  {
   1.643 +    if (const Functor* fp = f.template target<Functor>())
   1.644 +      return function_equal(*fp, g);
   1.645 +    else return false;
   1.646 +  }
   1.647 +
   1.648 +template<typename Functor>
   1.649 +  BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.650 +  operator==(Functor g, const function_base& f)
   1.651 +  {
   1.652 +    if (const Functor* fp = f.template target<Functor>())
   1.653 +      return function_equal(g, *fp);
   1.654 +    else return false;
   1.655 +  }
   1.656 +
   1.657 +template<typename Functor>
   1.658 +  BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.659 +  operator!=(const function_base& f, Functor g)
   1.660 +  {
   1.661 +    if (const Functor* fp = f.template target<Functor>())
   1.662 +      return !function_equal(*fp, g);
   1.663 +    else return true;
   1.664 +  }
   1.665 +
   1.666 +template<typename Functor>
   1.667 +  BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.668 +  operator!=(Functor g, const function_base& f)
   1.669 +  {
   1.670 +    if (const Functor* fp = f.template target<Functor>())
   1.671 +      return !function_equal(g, *fp);
   1.672 +    else return true;
   1.673 +  }
   1.674 +#  endif
   1.675 +
   1.676 +template<typename Functor>
   1.677 +  BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.678 +  operator==(const function_base& f, reference_wrapper<Functor> g)
   1.679 +  {
   1.680 +    if (const Functor* fp = f.template target<Functor>())
   1.681 +      return fp == g.get_pointer();
   1.682 +    else return false;
   1.683 +  }
   1.684 +
   1.685 +template<typename Functor>
   1.686 +  BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.687 +  operator==(reference_wrapper<Functor> g, const function_base& f)
   1.688 +  {
   1.689 +    if (const Functor* fp = f.template target<Functor>())
   1.690 +      return g.get_pointer() == fp;
   1.691 +    else return false;
   1.692 +  }
   1.693 +
   1.694 +template<typename Functor>
   1.695 +  BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.696 +  operator!=(const function_base& f, reference_wrapper<Functor> g)
   1.697 +  {
   1.698 +    if (const Functor* fp = f.template target<Functor>())
   1.699 +      return fp != g.get_pointer();
   1.700 +    else return true;
   1.701 +  }
   1.702 +
   1.703 +template<typename Functor>
   1.704 +  BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
   1.705 +  operator!=(reference_wrapper<Functor> g, const function_base& f)
   1.706 +  {
   1.707 +    if (const Functor* fp = f.template target<Functor>())
   1.708 +      return g.get_pointer() != fp;
   1.709 +    else return true;
   1.710 +  }
   1.711 +
   1.712 +#endif // Compiler supporting SFINAE
   1.713 +
   1.714 +namespace detail {
   1.715 +  namespace function {
   1.716 +    inline bool has_empty_target(const function_base* f)
   1.717 +    {
   1.718 +      return f->empty();
   1.719 +    }
   1.720 +
   1.721 +#if BOOST_WORKAROUND(BOOST_MSVC, <= 1310)
   1.722 +    inline bool has_empty_target(const void*)
   1.723 +    {
   1.724 +      return false;
   1.725 +    }
   1.726 +#else
   1.727 +    inline bool has_empty_target(...)
   1.728 +    {
   1.729 +      return false;
   1.730 +    }
   1.731 +#endif
   1.732 +  } // end namespace function
   1.733 +} // end namespace detail
   1.734 +} // end namespace boost
   1.735 +
   1.736 +#undef BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL
   1.737 +#undef BOOST_FUNCTION_COMPARE_TYPE_ID
   1.738 +
   1.739 +#endif // BOOST_FUNCTION_BASE_HEADER