williamr@2
|
1 |
// boost asinh.hpp header file
|
williamr@2
|
2 |
|
williamr@2
|
3 |
// (C) Copyright Eric Ford 2001 & Hubert Holin.
|
williamr@2
|
4 |
// Distributed under the Boost Software License, Version 1.0. (See
|
williamr@2
|
5 |
// accompanying file LICENSE_1_0.txt or copy at
|
williamr@2
|
6 |
// http://www.boost.org/LICENSE_1_0.txt)
|
williamr@2
|
7 |
|
williamr@2
|
8 |
// See http://www.boost.org for updates, documentation, and revision history.
|
williamr@2
|
9 |
|
williamr@2
|
10 |
#ifndef BOOST_ACOSH_HPP
|
williamr@2
|
11 |
#define BOOST_ACOSH_HPP
|
williamr@2
|
12 |
|
williamr@2
|
13 |
|
williamr@2
|
14 |
#include <cmath>
|
williamr@2
|
15 |
#include <limits>
|
williamr@2
|
16 |
#include <string>
|
williamr@2
|
17 |
#include <stdexcept>
|
williamr@2
|
18 |
|
williamr@2
|
19 |
|
williamr@2
|
20 |
#include <boost/config.hpp>
|
williamr@2
|
21 |
|
williamr@2
|
22 |
|
williamr@2
|
23 |
// This is the inverse of the hyperbolic cosine function.
|
williamr@2
|
24 |
|
williamr@2
|
25 |
namespace boost
|
williamr@2
|
26 |
{
|
williamr@2
|
27 |
namespace math
|
williamr@2
|
28 |
{
|
williamr@2
|
29 |
#if defined(__GNUC__) && (__GNUC__ < 3)
|
williamr@2
|
30 |
// gcc 2.x ignores function scope using declarations,
|
williamr@2
|
31 |
// put them in the scope of the enclosing namespace instead:
|
williamr@2
|
32 |
|
williamr@2
|
33 |
using ::std::abs;
|
williamr@2
|
34 |
using ::std::sqrt;
|
williamr@2
|
35 |
using ::std::log;
|
williamr@2
|
36 |
|
williamr@2
|
37 |
using ::std::numeric_limits;
|
williamr@2
|
38 |
#endif
|
williamr@2
|
39 |
|
williamr@2
|
40 |
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
williamr@2
|
41 |
// This is the main fare
|
williamr@2
|
42 |
|
williamr@2
|
43 |
template<typename T>
|
williamr@2
|
44 |
inline T acosh(const T x)
|
williamr@2
|
45 |
{
|
williamr@2
|
46 |
using ::std::abs;
|
williamr@2
|
47 |
using ::std::sqrt;
|
williamr@2
|
48 |
using ::std::log;
|
williamr@2
|
49 |
|
williamr@2
|
50 |
using ::std::numeric_limits;
|
williamr@2
|
51 |
|
williamr@2
|
52 |
|
williamr@2
|
53 |
T const one = static_cast<T>(1);
|
williamr@2
|
54 |
T const two = static_cast<T>(2);
|
williamr@2
|
55 |
|
williamr@2
|
56 |
static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
williamr@2
|
57 |
static T const taylor_n_bound = sqrt(taylor_2_bound);
|
williamr@2
|
58 |
static T const upper_taylor_2_bound = one/taylor_2_bound;
|
williamr@2
|
59 |
|
williamr@2
|
60 |
if (x < one)
|
williamr@2
|
61 |
{
|
williamr@2
|
62 |
if (numeric_limits<T>::has_quiet_NaN)
|
williamr@2
|
63 |
{
|
williamr@2
|
64 |
return(numeric_limits<T>::quiet_NaN());
|
williamr@2
|
65 |
}
|
williamr@2
|
66 |
else
|
williamr@2
|
67 |
{
|
williamr@2
|
68 |
::std::string error_reporting("Argument to atanh is strictly greater than +1 or strictly smaller than -1!");
|
williamr@2
|
69 |
::std::domain_error bad_argument(error_reporting);
|
williamr@2
|
70 |
|
williamr@2
|
71 |
throw(bad_argument);
|
williamr@2
|
72 |
}
|
williamr@2
|
73 |
}
|
williamr@2
|
74 |
else if (x >= taylor_n_bound)
|
williamr@2
|
75 |
{
|
williamr@2
|
76 |
if (x > upper_taylor_2_bound)
|
williamr@2
|
77 |
{
|
williamr@2
|
78 |
// approximation by laurent series in 1/x at 0+ order from -1 to 0
|
williamr@2
|
79 |
return( log( x*two) );
|
williamr@2
|
80 |
}
|
williamr@2
|
81 |
else
|
williamr@2
|
82 |
{
|
williamr@2
|
83 |
return( log( x + sqrt(x*x-one) ) );
|
williamr@2
|
84 |
}
|
williamr@2
|
85 |
}
|
williamr@2
|
86 |
else
|
williamr@2
|
87 |
{
|
williamr@2
|
88 |
T y = sqrt(x-one);
|
williamr@2
|
89 |
|
williamr@2
|
90 |
// approximation by taylor series in y at 0 up to order 2
|
williamr@2
|
91 |
T result = y;
|
williamr@2
|
92 |
|
williamr@2
|
93 |
if (y >= taylor_2_bound)
|
williamr@2
|
94 |
{
|
williamr@2
|
95 |
T y3 = y*y*y;
|
williamr@2
|
96 |
|
williamr@2
|
97 |
// approximation by taylor series in y at 0 up to order 4
|
williamr@2
|
98 |
result -= y3/static_cast<T>(12);
|
williamr@2
|
99 |
}
|
williamr@2
|
100 |
|
williamr@2
|
101 |
return(sqrt(static_cast<T>(2))*result);
|
williamr@2
|
102 |
}
|
williamr@2
|
103 |
}
|
williamr@2
|
104 |
#else
|
williamr@2
|
105 |
// These are implementation details (for main fare see below)
|
williamr@2
|
106 |
|
williamr@2
|
107 |
namespace detail
|
williamr@2
|
108 |
{
|
williamr@2
|
109 |
template <
|
williamr@2
|
110 |
typename T,
|
williamr@2
|
111 |
bool QuietNanSupported
|
williamr@2
|
112 |
>
|
williamr@2
|
113 |
struct acosh_helper2_t
|
williamr@2
|
114 |
{
|
williamr@2
|
115 |
static T get_NaN()
|
williamr@2
|
116 |
{
|
williamr@2
|
117 |
return(::std::numeric_limits<T>::quiet_NaN());
|
williamr@2
|
118 |
}
|
williamr@2
|
119 |
}; // boost::detail::acosh_helper2_t
|
williamr@2
|
120 |
|
williamr@2
|
121 |
|
williamr@2
|
122 |
template<typename T>
|
williamr@2
|
123 |
struct acosh_helper2_t<T, false>
|
williamr@2
|
124 |
{
|
williamr@2
|
125 |
static T get_NaN()
|
williamr@2
|
126 |
{
|
williamr@2
|
127 |
::std::string error_reporting("Argument to acosh is greater than or equal to +1!");
|
williamr@2
|
128 |
::std::domain_error bad_argument(error_reporting);
|
williamr@2
|
129 |
|
williamr@2
|
130 |
throw(bad_argument);
|
williamr@2
|
131 |
}
|
williamr@2
|
132 |
}; // boost::detail::acosh_helper2_t
|
williamr@2
|
133 |
|
williamr@2
|
134 |
} // boost::detail
|
williamr@2
|
135 |
|
williamr@2
|
136 |
|
williamr@2
|
137 |
// This is the main fare
|
williamr@2
|
138 |
|
williamr@2
|
139 |
template<typename T>
|
williamr@2
|
140 |
inline T acosh(const T x)
|
williamr@2
|
141 |
{
|
williamr@2
|
142 |
using ::std::abs;
|
williamr@2
|
143 |
using ::std::sqrt;
|
williamr@2
|
144 |
using ::std::log;
|
williamr@2
|
145 |
|
williamr@2
|
146 |
using ::std::numeric_limits;
|
williamr@2
|
147 |
|
williamr@2
|
148 |
typedef detail::acosh_helper2_t<T, std::numeric_limits<T>::has_quiet_NaN> helper2_type;
|
williamr@2
|
149 |
|
williamr@2
|
150 |
|
williamr@2
|
151 |
T const one = static_cast<T>(1);
|
williamr@2
|
152 |
T const two = static_cast<T>(2);
|
williamr@2
|
153 |
|
williamr@2
|
154 |
static T const taylor_2_bound = sqrt(numeric_limits<T>::epsilon());
|
williamr@2
|
155 |
static T const taylor_n_bound = sqrt(taylor_2_bound);
|
williamr@2
|
156 |
static T const upper_taylor_2_bound = one/taylor_2_bound;
|
williamr@2
|
157 |
|
williamr@2
|
158 |
if (x < one)
|
williamr@2
|
159 |
{
|
williamr@2
|
160 |
return(helper2_type::get_NaN());
|
williamr@2
|
161 |
}
|
williamr@2
|
162 |
else if (x >= taylor_n_bound)
|
williamr@2
|
163 |
{
|
williamr@2
|
164 |
if (x > upper_taylor_2_bound)
|
williamr@2
|
165 |
{
|
williamr@2
|
166 |
// approximation by laurent series in 1/x at 0+ order from -1 to 0
|
williamr@2
|
167 |
return( log( x*two) );
|
williamr@2
|
168 |
}
|
williamr@2
|
169 |
else
|
williamr@2
|
170 |
{
|
williamr@2
|
171 |
return( log( x + sqrt(x*x-one) ) );
|
williamr@2
|
172 |
}
|
williamr@2
|
173 |
}
|
williamr@2
|
174 |
else
|
williamr@2
|
175 |
{
|
williamr@2
|
176 |
T y = sqrt(x-one);
|
williamr@2
|
177 |
|
williamr@2
|
178 |
// approximation by taylor series in y at 0 up to order 2
|
williamr@2
|
179 |
T result = y;
|
williamr@2
|
180 |
|
williamr@2
|
181 |
if (y >= taylor_2_bound)
|
williamr@2
|
182 |
{
|
williamr@2
|
183 |
T y3 = y*y*y;
|
williamr@2
|
184 |
|
williamr@2
|
185 |
// approximation by taylor series in y at 0 up to order 4
|
williamr@2
|
186 |
result -= y3/static_cast<T>(12);
|
williamr@2
|
187 |
}
|
williamr@2
|
188 |
|
williamr@2
|
189 |
return(sqrt(static_cast<T>(2))*result);
|
williamr@2
|
190 |
}
|
williamr@2
|
191 |
}
|
williamr@2
|
192 |
#endif /* defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) */
|
williamr@2
|
193 |
}
|
williamr@2
|
194 |
}
|
williamr@2
|
195 |
|
williamr@2
|
196 |
#endif /* BOOST_ACOSH_HPP */
|
williamr@2
|
197 |
|
williamr@2
|
198 |
|