epoc32/include/stdapis/boost/graph/bc_clustering.hpp
author William Roberts <williamr@symbian.org>
Wed, 31 Mar 2010 12:33:34 +0100
branchSymbian3
changeset 4 837f303aceeb
permissions -rw-r--r--
Current Symbian^3 public API header files (from PDK 3.0.h)
This is the epoc32/include tree with the "platform" subtrees removed, and
all but a selected few mbg and rsg files removed.
williamr@2
     1
// Copyright 2004 The Trustees of Indiana University.
williamr@2
     2
williamr@2
     3
// Distributed under the Boost Software License, Version 1.0.
williamr@2
     4
// (See accompanying file LICENSE_1_0.txt or copy at
williamr@2
     5
// http://www.boost.org/LICENSE_1_0.txt)
williamr@2
     6
williamr@2
     7
//  Authors: Douglas Gregor
williamr@2
     8
//           Andrew Lumsdaine
williamr@2
     9
#ifndef BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
williamr@2
    10
#define BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP
williamr@2
    11
williamr@2
    12
#include <boost/graph/betweenness_centrality.hpp>
williamr@2
    13
#include <boost/graph/graph_traits.hpp>
williamr@2
    14
#include <boost/pending/indirect_cmp.hpp>
williamr@2
    15
#include <algorithm>
williamr@2
    16
#include <vector>
williamr@2
    17
#include <boost/property_map.hpp>
williamr@2
    18
williamr@2
    19
namespace boost {
williamr@2
    20
williamr@2
    21
/** Threshold termination function for the betweenness centrality
williamr@2
    22
 * clustering algorithm.
williamr@2
    23
 */
williamr@2
    24
template<typename T>
williamr@2
    25
struct bc_clustering_threshold
williamr@2
    26
{
williamr@2
    27
  typedef T centrality_type;
williamr@2
    28
williamr@2
    29
  /// Terminate clustering when maximum absolute edge centrality is
williamr@2
    30
  /// below the given threshold.
williamr@2
    31
  explicit bc_clustering_threshold(T threshold) 
williamr@2
    32
    : threshold(threshold), dividend(1.0) {}
williamr@2
    33
  
williamr@2
    34
  /**
williamr@2
    35
   * Terminate clustering when the maximum edge centrality is below
williamr@2
    36
   * the given threshold.
williamr@2
    37
   *
williamr@2
    38
   * @param threshold the threshold value
williamr@2
    39
   *
williamr@2
    40
   * @param g the graph on which the threshold will be calculated
williamr@2
    41
   *
williamr@2
    42
   * @param normalize when true, the threshold is compared against the
williamr@2
    43
   * normalized edge centrality based on the input graph; otherwise,
williamr@2
    44
   * the threshold is compared against the absolute edge centrality.
williamr@2
    45
   */
williamr@2
    46
  template<typename Graph>
williamr@2
    47
  bc_clustering_threshold(T threshold, const Graph& g, bool normalize = true)
williamr@2
    48
    : threshold(threshold), dividend(1.0)
williamr@2
    49
  {
williamr@2
    50
    if (normalize) {
williamr@2
    51
      typename graph_traits<Graph>::vertices_size_type n = num_vertices(g);
williamr@2
    52
      dividend = T((n - 1) * (n - 2)) / T(2);
williamr@2
    53
    }
williamr@2
    54
  }
williamr@2
    55
williamr@2
    56
  /** Returns true when the given maximum edge centrality (potentially
williamr@2
    57
   * normalized) falls below the threshold.
williamr@2
    58
   */
williamr@2
    59
  template<typename Graph, typename Edge>
williamr@2
    60
  bool operator()(T max_centrality, Edge, const Graph&)
williamr@2
    61
  {
williamr@2
    62
    return (max_centrality / dividend) < threshold;
williamr@2
    63
  }
williamr@2
    64
williamr@2
    65
 protected:
williamr@2
    66
  T threshold;
williamr@2
    67
  T dividend;
williamr@2
    68
};
williamr@2
    69
williamr@2
    70
/** Graph clustering based on edge betweenness centrality.
williamr@2
    71
 * 
williamr@2
    72
 * This algorithm implements graph clustering based on edge
williamr@2
    73
 * betweenness centrality. It is an iterative algorithm, where in each
williamr@2
    74
 * step it compute the edge betweenness centrality (via @ref
williamr@2
    75
 * brandes_betweenness_centrality) and removes the edge with the
williamr@2
    76
 * maximum betweenness centrality. The @p done function object
williamr@2
    77
 * determines when the algorithm terminates (the edge found when the
williamr@2
    78
 * algorithm terminates will not be removed).
williamr@2
    79
 *
williamr@2
    80
 * @param g The graph on which clustering will be performed. The type
williamr@2
    81
 * of this parameter (@c MutableGraph) must be a model of the
williamr@2
    82
 * VertexListGraph, IncidenceGraph, EdgeListGraph, and Mutable Graph
williamr@2
    83
 * concepts.
williamr@2
    84
 *
williamr@2
    85
 * @param done The function object that indicates termination of the
williamr@2
    86
 * algorithm. It must be a ternary function object thats accepts the
williamr@2
    87
 * maximum centrality, the descriptor of the edge that will be
williamr@2
    88
 * removed, and the graph @p g.
williamr@2
    89
 *
williamr@2
    90
 * @param edge_centrality (UTIL/OUT) The property map that will store
williamr@2
    91
 * the betweenness centrality for each edge. When the algorithm
williamr@2
    92
 * terminates, it will contain the edge centralities for the
williamr@2
    93
 * graph. The type of this property map must model the
williamr@2
    94
 * ReadWritePropertyMap concept. Defaults to an @c
williamr@2
    95
 * iterator_property_map whose value type is 
williamr@2
    96
 * @c Done::centrality_type and using @c get(edge_index, g) for the 
williamr@2
    97
 * index map.
williamr@2
    98
 *
williamr@2
    99
 * @param vertex_index (IN) The property map that maps vertices to
williamr@2
   100
 * indices in the range @c [0, num_vertices(g)). This type of this
williamr@2
   101
 * property map must model the ReadablePropertyMap concept and its
williamr@2
   102
 * value type must be an integral type. Defaults to 
williamr@2
   103
 * @c get(vertex_index, g).
williamr@2
   104
 */
williamr@2
   105
template<typename MutableGraph, typename Done, typename EdgeCentralityMap,
williamr@2
   106
         typename VertexIndexMap>
williamr@2
   107
void 
williamr@2
   108
betweenness_centrality_clustering(MutableGraph& g, Done done,
williamr@2
   109
                                  EdgeCentralityMap edge_centrality,
williamr@2
   110
                                  VertexIndexMap vertex_index)
williamr@2
   111
{
williamr@2
   112
  typedef typename property_traits<EdgeCentralityMap>::value_type
williamr@2
   113
    centrality_type;
williamr@2
   114
  typedef typename graph_traits<MutableGraph>::edge_iterator edge_iterator;
williamr@2
   115
  typedef typename graph_traits<MutableGraph>::edge_descriptor edge_descriptor;
williamr@2
   116
  typedef typename graph_traits<MutableGraph>::vertices_size_type
williamr@2
   117
    vertices_size_type;
williamr@2
   118
williamr@2
   119
  if (edges(g).first == edges(g).second) return;
williamr@2
   120
williamr@2
   121
  // Function object that compares the centrality of edges
williamr@2
   122
  indirect_cmp<EdgeCentralityMap, std::less<centrality_type> > 
williamr@2
   123
    cmp(edge_centrality);
williamr@2
   124
williamr@2
   125
  bool is_done;
williamr@2
   126
  do {
williamr@2
   127
    brandes_betweenness_centrality(g, 
williamr@2
   128
                                   edge_centrality_map(edge_centrality)
williamr@2
   129
                                   .vertex_index_map(vertex_index));
williamr@2
   130
    edge_descriptor e = *max_element(edges(g).first, edges(g).second, cmp);
williamr@2
   131
    is_done = done(get(edge_centrality, e), e, g);
williamr@2
   132
    if (!is_done) remove_edge(e, g);
williamr@2
   133
  } while (!is_done && edges(g).first != edges(g).second);
williamr@2
   134
}
williamr@2
   135
williamr@2
   136
/**
williamr@2
   137
 * \overload
williamr@2
   138
 */ 
williamr@2
   139
template<typename MutableGraph, typename Done, typename EdgeCentralityMap>
williamr@2
   140
void 
williamr@2
   141
betweenness_centrality_clustering(MutableGraph& g, Done done,
williamr@2
   142
                                  EdgeCentralityMap edge_centrality)
williamr@2
   143
{
williamr@2
   144
  betweenness_centrality_clustering(g, done, edge_centrality,
williamr@2
   145
                                    get(vertex_index, g));
williamr@2
   146
}
williamr@2
   147
williamr@2
   148
/**
williamr@2
   149
 * \overload
williamr@2
   150
 */ 
williamr@2
   151
template<typename MutableGraph, typename Done>
williamr@2
   152
void
williamr@2
   153
betweenness_centrality_clustering(MutableGraph& g, Done done)
williamr@2
   154
{
williamr@2
   155
  typedef typename Done::centrality_type centrality_type;
williamr@2
   156
  std::vector<centrality_type> edge_centrality(num_edges(g));
williamr@2
   157
  betweenness_centrality_clustering(g, done, 
williamr@2
   158
    make_iterator_property_map(edge_centrality.begin(), get(edge_index, g)),
williamr@2
   159
    get(vertex_index, g));
williamr@2
   160
}
williamr@2
   161
williamr@2
   162
} // end namespace boost
williamr@2
   163
williamr@2
   164
#endif // BOOST_GRAPH_BETWEENNESS_CENTRALITY_CLUSTERING_HPP