diff -r 000000000000 -r bde4ae8d615e os/ossrv/ossrv_pub/boost_apis/boost/rational.hpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/os/ossrv/ossrv_pub/boost_apis/boost/rational.hpp Fri Jun 15 03:10:57 2012 +0200 @@ -0,0 +1,548 @@ +// Boost rational.hpp header file ------------------------------------------// + +// (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and +// distribute this software is granted provided this copyright notice appears +// in all copies. This software is provided "as is" without express or +// implied warranty, and with no claim as to its suitability for any purpose. + +// See http://www.boost.org/libs/rational for documentation. + +// Credits: +// Thanks to the boost mailing list in general for useful comments. +// Particular contributions included: +// Andrew D Jewell, for reminding me to take care to avoid overflow +// Ed Brey, for many comments, including picking up on some dreadful typos +// Stephen Silver contributed the test suite and comments on user-defined +// IntType +// Nickolay Mladenov, for the implementation of operator+= + +// Revision History +// 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz) +// 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config +// (Joaquín M López Muñoz) +// 27 Dec 05 Add Boolean conversion operator (Daryle Walker) +// 28 Sep 02 Use _left versions of operators from operators.hpp +// 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel) +// 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams) +// 05 Feb 01 Update operator>> to tighten up input syntax +// 05 Feb 01 Final tidy up of gcd code prior to the new release +// 27 Jan 01 Recode abs() without relying on abs(IntType) +// 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm, +// tidy up a number of areas, use newer features of operators.hpp +// (reduces space overhead to zero), add operator!, +// introduce explicit mixed-mode arithmetic operations +// 12 Jan 01 Include fixes to handle a user-defined IntType better +// 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David) +// 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++ +// 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not +// affected (Beman Dawes) +// 6 Mar 00 Fix operator-= normalization, #include (Jens Maurer) +// 14 Dec 99 Modifications based on comments from the boost list +// 09 Dec 99 Initial Version (Paul Moore) + +#ifndef BOOST_RATIONAL_HPP +#define BOOST_RATIONAL_HPP + +#include // for std::istream and std::ostream +#include // for std::noskipws +#include // for std::domain_error +#include // for std::string implicit constructor +#include // for boost::addable etc +#include // for std::abs +#include // for boost::call_traits +#include // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC +#include // for BOOST_WORKAROUND + +namespace boost { + +// Note: We use n and m as temporaries in this function, so there is no value +// in using const IntType& as we would only need to make a copy anyway... +template +IntType gcd(IntType n, IntType m) +{ + // Avoid repeated construction + IntType zero(0); + + // This is abs() - given the existence of broken compilers with Koenig + // lookup issues and other problems, I code this explicitly. (Remember, + // IntType may be a user-defined type). + if (n < zero) + n = -n; + if (m < zero) + m = -m; + + // As n and m are now positive, we can be sure that %= returns a + // positive value (the standard guarantees this for built-in types, + // and we require it of user-defined types). + for(;;) { + if(m == zero) + return n; + n %= m; + if(n == zero) + return m; + m %= n; + } +} + +template +IntType lcm(IntType n, IntType m) +{ + // Avoid repeated construction + IntType zero(0); + + if (n == zero || m == zero) + return zero; + + n /= gcd(n, m); + n *= m; + + if (n < zero) + n = -n; + return n; +} + +class bad_rational : public std::domain_error +{ +public: + explicit bad_rational() : std::domain_error("bad rational: zero denominator") {} +}; + +template +class rational; + +template +rational abs(const rational& r); + +template +class rational : + less_than_comparable < rational, + equality_comparable < rational, + less_than_comparable2 < rational, IntType, + equality_comparable2 < rational, IntType, + addable < rational, + subtractable < rational, + multipliable < rational, + dividable < rational, + addable2 < rational, IntType, + subtractable2 < rational, IntType, + subtractable2_left < rational, IntType, + multipliable2 < rational, IntType, + dividable2 < rational, IntType, + dividable2_left < rational, IntType, + incrementable < rational, + decrementable < rational + > > > > > > > > > > > > > > > > +{ + typedef typename boost::call_traits::param_type param_type; + + struct helper { IntType parts[2]; }; + typedef IntType (helper::* bool_type)[2]; + +public: + typedef IntType int_type; + rational() : num(0), den(1) {} + rational(param_type n) : num(n), den(1) {} + rational(param_type n, param_type d) : num(n), den(d) { normalize(); } + + // Default copy constructor and assignment are fine + + // Add assignment from IntType + rational& operator=(param_type n) { return assign(n, 1); } + + // Assign in place + rational& assign(param_type n, param_type d); + + // Access to representation + IntType numerator() const { return num; } + IntType denominator() const { return den; } + + // Arithmetic assignment operators + rational& operator+= (const rational& r); + rational& operator-= (const rational& r); + rational& operator*= (const rational& r); + rational& operator/= (const rational& r); + + rational& operator+= (param_type i); + rational& operator-= (param_type i); + rational& operator*= (param_type i); + rational& operator/= (param_type i); + + // Increment and decrement + const rational& operator++(); + const rational& operator--(); + + // Operator not + bool operator!() const { return !num; } + + // Boolean conversion + +#if BOOST_WORKAROUND(__MWERKS__,<=0x3003) + // The "ISO C++ Template Parser" option in CW 8.3 chokes on the + // following, hence we selectively disable that option for the + // offending memfun. +#pragma parse_mfunc_templ off +#endif + + operator bool_type() const { return operator !() ? 0 : &helper::parts; } + +#if BOOST_WORKAROUND(__MWERKS__,<=0x3003) +#pragma parse_mfunc_templ reset +#endif + + // Comparison operators + bool operator< (const rational& r) const; + bool operator== (const rational& r) const; + + bool operator< (param_type i) const; + bool operator> (param_type i) const; + bool operator== (param_type i) const; + +private: + // Implementation - numerator and denominator (normalized). + // Other possibilities - separate whole-part, or sign, fields? + IntType num; + IntType den; + + // Representation note: Fractions are kept in normalized form at all + // times. normalized form is defined as gcd(num,den) == 1 and den > 0. + // In particular, note that the implementation of abs() below relies + // on den always being positive. + void normalize(); +}; + +// Assign in place +template +inline rational& rational::assign(param_type n, param_type d) +{ + num = n; + den = d; + normalize(); + return *this; +} + +// Unary plus and minus +template +inline rational operator+ (const rational& r) +{ + return r; +} + +template +inline rational operator- (const rational& r) +{ + return rational(-r.numerator(), r.denominator()); +} + +// Arithmetic assignment operators +template +rational& rational::operator+= (const rational& r) +{ + // This calculation avoids overflow, and minimises the number of expensive + // calculations. Thanks to Nickolay Mladenov for this algorithm. + // + // Proof: + // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1. + // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1 + // + // The result is (a*d1 + c*b1) / (b1*d1*g). + // Now we have to normalize this ratio. + // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1 + // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a. + // But since gcd(a,b1)=1 we have h=1. + // Similarly h|d1 leads to h=1. + // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g + // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g) + // Which proves that instead of normalizing the result, it is better to + // divide num and den by gcd((a*d1 + c*b1), g) + + // Protect against self-modification + IntType r_num = r.num; + IntType r_den = r.den; + + IntType g = gcd(den, r_den); + den /= g; // = b1 from the calculations above + num = num * (r_den / g) + r_num * den; + g = gcd(num, g); + num /= g; + den *= r_den/g; + + return *this; +} + +template +rational& rational::operator-= (const rational& r) +{ + // Protect against self-modification + IntType r_num = r.num; + IntType r_den = r.den; + + // This calculation avoids overflow, and minimises the number of expensive + // calculations. It corresponds exactly to the += case above + IntType g = gcd(den, r_den); + den /= g; + num = num * (r_den / g) - r_num * den; + g = gcd(num, g); + num /= g; + den *= r_den/g; + + return *this; +} + +template +rational& rational::operator*= (const rational& r) +{ + // Protect against self-modification + IntType r_num = r.num; + IntType r_den = r.den; + + // Avoid overflow and preserve normalization + IntType gcd1 = gcd(num, r_den); + IntType gcd2 = gcd(r_num, den); + num = (num/gcd1) * (r_num/gcd2); + den = (den/gcd2) * (r_den/gcd1); + return *this; +} + +template +rational& rational::operator/= (const rational& r) +{ + // Protect against self-modification + IntType r_num = r.num; + IntType r_den = r.den; + + // Avoid repeated construction + IntType zero(0); + + // Trap division by zero + if (r_num == zero) + throw bad_rational(); + if (num == zero) + return *this; + + // Avoid overflow and preserve normalization + IntType gcd1 = gcd(num, r_num); + IntType gcd2 = gcd(r_den, den); + num = (num/gcd1) * (r_den/gcd2); + den = (den/gcd2) * (r_num/gcd1); + + if (den < zero) { + num = -num; + den = -den; + } + return *this; +} + +// Mixed-mode operators +template +inline rational& +rational::operator+= (param_type i) +{ + return operator+= (rational(i)); +} + +template +inline rational& +rational::operator-= (param_type i) +{ + return operator-= (rational(i)); +} + +template +inline rational& +rational::operator*= (param_type i) +{ + return operator*= (rational(i)); +} + +template +inline rational& +rational::operator/= (param_type i) +{ + return operator/= (rational(i)); +} + +// Increment and decrement +template +inline const rational& rational::operator++() +{ + // This can never denormalise the fraction + num += den; + return *this; +} + +template +inline const rational& rational::operator--() +{ + // This can never denormalise the fraction + num -= den; + return *this; +} + +// Comparison operators +template +bool rational::operator< (const rational& r) const +{ + // Avoid repeated construction + IntType zero(0); + + // If the two values have different signs, we don't need to do the + // expensive calculations below. We take advantage here of the fact + // that the denominator is always positive. + if (num < zero && r.num >= zero) // -ve < +ve + return true; + if (num >= zero && r.num <= zero) // +ve or zero is not < -ve or zero + return false; + + // Avoid overflow + IntType gcd1 = gcd(num, r.num); + IntType gcd2 = gcd(r.den, den); + return (num/gcd1) * (r.den/gcd2) < (den/gcd2) * (r.num/gcd1); +} + +template +bool rational::operator< (param_type i) const +{ + // Avoid repeated construction + IntType zero(0); + + // If the two values have different signs, we don't need to do the + // expensive calculations below. We take advantage here of the fact + // that the denominator is always positive. + if (num < zero && i >= zero) // -ve < +ve + return true; + if (num >= zero && i <= zero) // +ve or zero is not < -ve or zero + return false; + + // Now, use the fact that n/d truncates towards zero as long as n and d + // are both positive. + // Divide instead of multiplying to avoid overflow issues. Of course, + // division may be slower, but accuracy is more important than speed... + if (num > zero) + return (num/den) < i; + else + return -i < (-num/den); +} + +template +bool rational::operator> (param_type i) const +{ + // Trap equality first + if (num == i && den == IntType(1)) + return false; + + // Otherwise, we can use operator< + return !operator<(i); +} + +template +inline bool rational::operator== (const rational& r) const +{ + return ((num == r.num) && (den == r.den)); +} + +template +inline bool rational::operator== (param_type i) const +{ + return ((den == IntType(1)) && (num == i)); +} + +// Normalisation +template +void rational::normalize() +{ + // Avoid repeated construction + IntType zero(0); + + if (den == zero) + throw bad_rational(); + + // Handle the case of zero separately, to avoid division by zero + if (num == zero) { + den = IntType(1); + return; + } + + IntType g = gcd(num, den); + + num /= g; + den /= g; + + // Ensure that the denominator is positive + if (den < zero) { + num = -num; + den = -den; + } +} + +namespace detail { + + // A utility class to reset the format flags for an istream at end + // of scope, even in case of exceptions + struct resetter { + resetter(std::istream& is) : is_(is), f_(is.flags()) {} + ~resetter() { is_.flags(f_); } + std::istream& is_; + std::istream::fmtflags f_; // old GNU c++ lib has no ios_base + }; + +} + +// Input and output +template +std::istream& operator>> (std::istream& is, rational& r) +{ + IntType n = IntType(0), d = IntType(1); + char c = 0; + detail::resetter sentry(is); + + is >> n; + c = is.get(); + + if (c != '/') + is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base + +#if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT + is >> std::noskipws; +#else + is.unsetf(ios::skipws); // compiles, but seems to have no effect. +#endif + is >> d; + + if (is) + r.assign(n, d); + + return is; +} + +// Add manipulators for output format? +template +std::ostream& operator<< (std::ostream& os, const rational& r) +{ + os << r.numerator() << '/' << r.denominator(); + return os; +} + +// Type conversion +template +inline T rational_cast( + const rational& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T)) +{ + return static_cast(src.numerator())/src.denominator(); +} + +// Do not use any abs() defined on IntType - it isn't worth it, given the +// difficulties involved (Koenig lookup required, there may not *be* an abs() +// defined, etc etc). +template +inline rational abs(const rational& r) +{ + if (r.numerator() >= IntType(0)) + return r; + + return rational(-r.numerator(), r.denominator()); +} + +} // namespace boost + +#endif // BOOST_RATIONAL_HPP +