sl@0: /* sl@0: ** 2004 May 26 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** sl@0: ** This file contains code use to implement APIs that are part of the sl@0: ** VDBE. sl@0: ** sl@0: ** $Id: vdbeapi.c,v 1.141 2008/09/04 12:03:43 shane Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: #include "vdbeInt.h" sl@0: sl@0: #if 0 && defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) sl@0: /* sl@0: ** The following structure contains pointers to the end points of a sl@0: ** doubly-linked list of all compiled SQL statements that may be holding sl@0: ** buffers eligible for release when the sqlite3_release_memory() interface is sl@0: ** invoked. Access to this list is protected by the SQLITE_MUTEX_STATIC_LRU2 sl@0: ** mutex. sl@0: ** sl@0: ** Statements are added to the end of this list when sqlite3_reset() is sl@0: ** called. They are removed either when sqlite3_step() or sqlite3_finalize() sl@0: ** is called. When statements are added to this list, the associated sl@0: ** register array (p->aMem[1..p->nMem]) may contain dynamic buffers that sl@0: ** can be freed using sqlite3VdbeReleaseMemory(). sl@0: ** sl@0: ** When statements are added or removed from this list, the mutex sl@0: ** associated with the Vdbe being added or removed (Vdbe.db->mutex) is sl@0: ** already held. The LRU2 mutex is then obtained, blocking if necessary, sl@0: ** the linked-list pointers manipulated and the LRU2 mutex relinquished. sl@0: */ sl@0: struct StatementLruList { sl@0: Vdbe *pFirst; sl@0: Vdbe *pLast; sl@0: }; sl@0: static struct StatementLruList sqlite3LruStatements; sl@0: sl@0: /* sl@0: ** Check that the list looks to be internally consistent. This is used sl@0: ** as part of an assert() statement as follows: sl@0: ** sl@0: ** assert( stmtLruCheck() ); sl@0: */ sl@0: #ifndef NDEBUG sl@0: static int stmtLruCheck(){ sl@0: Vdbe *p; sl@0: for(p=sqlite3LruStatements.pFirst; p; p=p->pLruNext){ sl@0: assert(p->pLruNext || p==sqlite3LruStatements.pLast); sl@0: assert(!p->pLruNext || p->pLruNext->pLruPrev==p); sl@0: assert(p->pLruPrev || p==sqlite3LruStatements.pFirst); sl@0: assert(!p->pLruPrev || p->pLruPrev->pLruNext==p); sl@0: } sl@0: return 1; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Add vdbe p to the end of the statement lru list. It is assumed that sl@0: ** p is not already part of the list when this is called. The lru list sl@0: ** is protected by the SQLITE_MUTEX_STATIC_LRU mutex. sl@0: */ sl@0: static void stmtLruAdd(Vdbe *p){ sl@0: sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); sl@0: sl@0: if( p->pLruPrev || p->pLruNext || sqlite3LruStatements.pFirst==p ){ sl@0: sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); sl@0: return; sl@0: } sl@0: sl@0: assert( stmtLruCheck() ); sl@0: sl@0: if( !sqlite3LruStatements.pFirst ){ sl@0: assert( !sqlite3LruStatements.pLast ); sl@0: sqlite3LruStatements.pFirst = p; sl@0: sqlite3LruStatements.pLast = p; sl@0: }else{ sl@0: assert( !sqlite3LruStatements.pLast->pLruNext ); sl@0: p->pLruPrev = sqlite3LruStatements.pLast; sl@0: sqlite3LruStatements.pLast->pLruNext = p; sl@0: sqlite3LruStatements.pLast = p; sl@0: } sl@0: sl@0: assert( stmtLruCheck() ); sl@0: sl@0: sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); sl@0: } sl@0: sl@0: /* sl@0: ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is already held, remove sl@0: ** statement p from the least-recently-used statement list. If the sl@0: ** statement is not currently part of the list, this call is a no-op. sl@0: */ sl@0: static void stmtLruRemoveNomutex(Vdbe *p){ sl@0: if( p->pLruPrev || p->pLruNext || p==sqlite3LruStatements.pFirst ){ sl@0: assert( stmtLruCheck() ); sl@0: if( p->pLruNext ){ sl@0: p->pLruNext->pLruPrev = p->pLruPrev; sl@0: }else{ sl@0: sqlite3LruStatements.pLast = p->pLruPrev; sl@0: } sl@0: if( p->pLruPrev ){ sl@0: p->pLruPrev->pLruNext = p->pLruNext; sl@0: }else{ sl@0: sqlite3LruStatements.pFirst = p->pLruNext; sl@0: } sl@0: p->pLruNext = 0; sl@0: p->pLruPrev = 0; sl@0: assert( stmtLruCheck() ); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Assuming the SQLITE_MUTEX_STATIC_LRU2 mutext is not held, remove sl@0: ** statement p from the least-recently-used statement list. If the sl@0: ** statement is not currently part of the list, this call is a no-op. sl@0: */ sl@0: static void stmtLruRemove(Vdbe *p){ sl@0: sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); sl@0: stmtLruRemoveNomutex(p); sl@0: sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); sl@0: } sl@0: sl@0: /* sl@0: ** Try to release n bytes of memory by freeing buffers associated sl@0: ** with the memory registers of currently unused vdbes. sl@0: */ sl@0: int sqlite3VdbeReleaseMemory(int n){ sl@0: Vdbe *p; sl@0: Vdbe *pNext; sl@0: int nFree = 0; sl@0: sl@0: sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); sl@0: for(p=sqlite3LruStatements.pFirst; p && nFreepLruNext; sl@0: sl@0: /* For each statement handle in the lru list, attempt to obtain the sl@0: ** associated database mutex. If it cannot be obtained, continue sl@0: ** to the next statement handle. It is not possible to block on sl@0: ** the database mutex - that could cause deadlock. sl@0: */ sl@0: if( SQLITE_OK==sqlite3_mutex_try(p->db->mutex) ){ sl@0: nFree += sqlite3VdbeReleaseBuffers(p); sl@0: stmtLruRemoveNomutex(p); sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: } sl@0: } sl@0: sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU2)); sl@0: sl@0: return nFree; sl@0: } sl@0: sl@0: /* sl@0: ** Call sqlite3Reprepare() on the statement. Remove it from the sl@0: ** lru list before doing so, as Reprepare() will free all the sl@0: ** memory register buffers anyway. sl@0: */ sl@0: int vdbeReprepare(Vdbe *p){ sl@0: stmtLruRemove(p); sl@0: return sqlite3Reprepare(p); sl@0: } sl@0: sl@0: #else /* !SQLITE_ENABLE_MEMORY_MANAGEMENT */ sl@0: #define stmtLruRemove(x) sl@0: #define stmtLruAdd(x) sl@0: #define vdbeReprepare(x) sqlite3Reprepare(x) sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** Return TRUE (non-zero) of the statement supplied as an argument needs sl@0: ** to be recompiled. A statement needs to be recompiled whenever the sl@0: ** execution environment changes in a way that would alter the program sl@0: ** that sqlite3_prepare() generates. For example, if new functions or sl@0: ** collating sequences are registered or if an authorizer function is sl@0: ** added or changed. sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_expired(sqlite3_stmt *pStmt){ sl@0: Vdbe *p = (Vdbe*)pStmt; sl@0: return p==0 || p->expired; sl@0: } sl@0: sl@0: /* sl@0: ** The following routine destroys a virtual machine that is created by sl@0: ** the sqlite3_compile() routine. The integer returned is an SQLITE_ sl@0: ** success/failure code that describes the result of executing the virtual sl@0: ** machine. sl@0: ** sl@0: ** This routine sets the error code and string returned by sl@0: ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_finalize(sqlite3_stmt *pStmt){ sl@0: int rc; sl@0: if( pStmt==0 ){ sl@0: rc = SQLITE_OK; sl@0: }else{ sl@0: Vdbe *v = (Vdbe*)pStmt; sl@0: #ifndef SQLITE_MUTEX_NOOP sl@0: sqlite3_mutex *mutex = v->db->mutex; sl@0: #endif sl@0: sqlite3_mutex_enter(mutex); sl@0: stmtLruRemove(v); sl@0: rc = sqlite3VdbeFinalize(v); sl@0: sqlite3_mutex_leave(mutex); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Terminate the current execution of an SQL statement and reset it sl@0: ** back to its starting state so that it can be reused. A success code from sl@0: ** the prior execution is returned. sl@0: ** sl@0: ** This routine sets the error code and string returned by sl@0: ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_reset(sqlite3_stmt *pStmt){ sl@0: int rc; sl@0: if( pStmt==0 ){ sl@0: rc = SQLITE_OK; sl@0: }else{ sl@0: Vdbe *v = (Vdbe*)pStmt; sl@0: sqlite3_mutex_enter(v->db->mutex); sl@0: rc = sqlite3VdbeReset(v); sl@0: stmtLruAdd(v); sl@0: sqlite3VdbeMakeReady(v, -1, 0, 0, 0); sl@0: assert( (rc & (v->db->errMask))==rc ); sl@0: sqlite3_mutex_leave(v->db->mutex); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Set all the parameters in the compiled SQL statement to NULL. sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ sl@0: int i; sl@0: int rc = SQLITE_OK; sl@0: Vdbe *p = (Vdbe*)pStmt; sl@0: #ifndef SQLITE_MUTEX_NOOP sl@0: sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; sl@0: #endif sl@0: sqlite3_mutex_enter(mutex); sl@0: for(i=0; inVar; i++){ sl@0: sqlite3VdbeMemRelease(&p->aVar[i]); sl@0: p->aVar[i].flags = MEM_Null; sl@0: } sl@0: sqlite3_mutex_leave(mutex); sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: /**************************** sqlite3_value_ ******************************* sl@0: ** The following routines extract information from a Mem or sqlite3_value sl@0: ** structure. sl@0: */ sl@0: SQLITE_EXPORT const void *sqlite3_value_blob(sqlite3_value *pVal){ sl@0: Mem *p = (Mem*)pVal; sl@0: if( p->flags & (MEM_Blob|MEM_Str) ){ sl@0: sqlite3VdbeMemExpandBlob(p); sl@0: p->flags &= ~MEM_Str; sl@0: p->flags |= MEM_Blob; sl@0: return p->z; sl@0: }else{ sl@0: return sqlite3_value_text(pVal); sl@0: } sl@0: } sl@0: SQLITE_EXPORT int sqlite3_value_bytes(sqlite3_value *pVal){ sl@0: return sqlite3ValueBytes(pVal, SQLITE_UTF8); sl@0: } sl@0: SQLITE_EXPORT int sqlite3_value_bytes16(sqlite3_value *pVal){ sl@0: return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); sl@0: } sl@0: SQLITE_EXPORT double sqlite3_value_double(sqlite3_value *pVal){ sl@0: return sqlite3VdbeRealValue((Mem*)pVal); sl@0: } sl@0: SQLITE_EXPORT int sqlite3_value_int(sqlite3_value *pVal){ sl@0: return sqlite3VdbeIntValue((Mem*)pVal); sl@0: } sl@0: SQLITE_EXPORT sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ sl@0: return sqlite3VdbeIntValue((Mem*)pVal); sl@0: } sl@0: SQLITE_EXPORT const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ sl@0: return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: SQLITE_EXPORT const void *sqlite3_value_text16(sqlite3_value* pVal){ sl@0: return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); sl@0: } sl@0: SQLITE_EXPORT const void *sqlite3_value_text16be(sqlite3_value *pVal){ sl@0: return sqlite3ValueText(pVal, SQLITE_UTF16BE); sl@0: } sl@0: SQLITE_EXPORT const void *sqlite3_value_text16le(sqlite3_value *pVal){ sl@0: return sqlite3ValueText(pVal, SQLITE_UTF16LE); sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: SQLITE_EXPORT int sqlite3_value_type(sqlite3_value* pVal){ sl@0: return pVal->type; sl@0: } sl@0: sl@0: /**************************** sqlite3_result_ ******************************* sl@0: ** The following routines are used by user-defined functions to specify sl@0: ** the function result. sl@0: */ sl@0: SQLITE_EXPORT void sqlite3_result_blob( sl@0: sqlite3_context *pCtx, sl@0: const void *z, sl@0: int n, sl@0: void (*xDel)(void *) sl@0: ){ sl@0: assert( n>=0 ); sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); sl@0: } sl@0: SQLITE_EXPORT void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetDouble(&pCtx->s, rVal); sl@0: } sl@0: SQLITE_EXPORT void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: pCtx->isError = SQLITE_ERROR; sl@0: sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: SQLITE_EXPORT void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: pCtx->isError = SQLITE_ERROR; sl@0: sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); sl@0: } sl@0: #endif sl@0: SQLITE_EXPORT void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); sl@0: } sl@0: SQLITE_EXPORT void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetInt64(&pCtx->s, iVal); sl@0: } sl@0: SQLITE_EXPORT void sqlite3_result_null(sqlite3_context *pCtx){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetNull(&pCtx->s); sl@0: } sl@0: SQLITE_EXPORT void sqlite3_result_text( sl@0: sqlite3_context *pCtx, sl@0: const char *z, sl@0: int n, sl@0: void (*xDel)(void *) sl@0: ){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: SQLITE_EXPORT void sqlite3_result_text16( sl@0: sqlite3_context *pCtx, sl@0: const void *z, sl@0: int n, sl@0: void (*xDel)(void *) sl@0: ){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); sl@0: } sl@0: SQLITE_EXPORT void sqlite3_result_text16be( sl@0: sqlite3_context *pCtx, sl@0: const void *z, sl@0: int n, sl@0: void (*xDel)(void *) sl@0: ){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); sl@0: } sl@0: SQLITE_EXPORT void sqlite3_result_text16le( sl@0: sqlite3_context *pCtx, sl@0: const void *z, sl@0: int n, sl@0: void (*xDel)(void *) sl@0: ){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: SQLITE_EXPORT void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemCopy(&pCtx->s, pValue); sl@0: } sl@0: SQLITE_EXPORT void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); sl@0: } sl@0: SQLITE_EXPORT void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ sl@0: pCtx->isError = errCode; sl@0: } sl@0: sl@0: /* Force an SQLITE_TOOBIG error. */ sl@0: SQLITE_EXPORT void sqlite3_result_error_toobig(sqlite3_context *pCtx){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: pCtx->isError = SQLITE_TOOBIG; sl@0: sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, sl@0: SQLITE_UTF8, SQLITE_STATIC); sl@0: } sl@0: sl@0: /* An SQLITE_NOMEM error. */ sl@0: SQLITE_EXPORT void sqlite3_result_error_nomem(sqlite3_context *pCtx){ sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: sqlite3VdbeMemSetNull(&pCtx->s); sl@0: pCtx->isError = SQLITE_NOMEM; sl@0: pCtx->s.db->mallocFailed = 1; sl@0: } sl@0: sl@0: /* sl@0: ** Execute the statement pStmt, either until a row of data is ready, the sl@0: ** statement is completely executed or an error occurs. sl@0: ** sl@0: ** This routine implements the bulk of the logic behind the sqlite_step() sl@0: ** API. The only thing omitted is the automatic recompile if a sl@0: ** schema change has occurred. That detail is handled by the sl@0: ** outer sqlite3_step() wrapper procedure. sl@0: */ sl@0: static int sqlite3Step(Vdbe *p){ sl@0: sqlite3 *db; sl@0: int rc; sl@0: sl@0: assert(p); sl@0: if( p->magic!=VDBE_MAGIC_RUN ){ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: sl@0: /* Assert that malloc() has not failed */ sl@0: db = p->db; sl@0: if( db->mallocFailed ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: sl@0: if( p->pc<=0 && p->expired ){ sl@0: if( p->rc==SQLITE_OK ){ sl@0: p->rc = SQLITE_SCHEMA; sl@0: } sl@0: rc = SQLITE_ERROR; sl@0: goto end_of_step; sl@0: } sl@0: if( sqlite3SafetyOn(db) ){ sl@0: p->rc = SQLITE_MISUSE; sl@0: return SQLITE_MISUSE; sl@0: } sl@0: if( p->pc<0 ){ sl@0: /* If there are no other statements currently running, then sl@0: ** reset the interrupt flag. This prevents a call to sqlite3_interrupt sl@0: ** from interrupting a statement that has not yet started. sl@0: */ sl@0: if( db->activeVdbeCnt==0 ){ sl@0: db->u1.isInterrupted = 0; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_TRACE sl@0: if( db->xProfile && !db->init.busy ){ sl@0: double rNow; sl@0: sqlite3OsCurrentTime(db->pVfs, &rNow); sl@0: p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; sl@0: } sl@0: #endif sl@0: sl@0: db->activeVdbeCnt++; sl@0: p->pc = 0; sl@0: stmtLruRemove(p); sl@0: } sl@0: #ifndef SQLITE_OMIT_EXPLAIN sl@0: if( p->explain ){ sl@0: rc = sqlite3VdbeList(p); sl@0: }else sl@0: #endif /* SQLITE_OMIT_EXPLAIN */ sl@0: { sl@0: rc = sqlite3VdbeExec(p); sl@0: } sl@0: sl@0: if( sqlite3SafetyOff(db) ){ sl@0: rc = SQLITE_MISUSE; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_TRACE sl@0: /* Invoke the profile callback if there is one sl@0: */ sl@0: if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->nOp>0 sl@0: && p->aOp[0].opcode==OP_Trace && p->aOp[0].p4.z!=0 ){ sl@0: double rNow; sl@0: u64 elapseTime; sl@0: sl@0: sqlite3OsCurrentTime(db->pVfs, &rNow); sl@0: elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; sl@0: db->xProfile(db->pProfileArg, p->aOp[0].p4.z, elapseTime); sl@0: } sl@0: #endif sl@0: sl@0: db->errCode = rc; sl@0: /*sqlite3Error(p->db, rc, 0);*/ sl@0: p->rc = sqlite3ApiExit(p->db, p->rc); sl@0: end_of_step: sl@0: assert( (rc&0xff)==rc ); sl@0: if( p->zSql && (rc&0xff)db->errCode = p->rc; sl@0: /* sqlite3Error(p->db, p->rc, 0); */ sl@0: return p->rc; sl@0: }else{ sl@0: /* This is for legacy sqlite3_prepare() builds and when the code sl@0: ** is SQLITE_ROW or SQLITE_DONE */ sl@0: return rc; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This is the top-level implementation of sqlite3_step(). Call sl@0: ** sqlite3Step() to do most of the work. If a schema error occurs, sl@0: ** call sqlite3Reprepare() and try again. sl@0: */ sl@0: #ifdef SQLITE_OMIT_PARSER sl@0: int sqlite3_step(sqlite3_stmt *pStmt){ sl@0: int rc = SQLITE_MISUSE; sl@0: if( pStmt ){ sl@0: Vdbe *v; sl@0: v = (Vdbe*)pStmt; sl@0: sqlite3_mutex_enter(v->db->mutex); sl@0: rc = sqlite3Step(v); sl@0: sqlite3_mutex_leave(v->db->mutex); sl@0: } sl@0: return rc; sl@0: } sl@0: #else sl@0: SQLITE_EXPORT int sqlite3_step(sqlite3_stmt *pStmt){ sl@0: int rc = SQLITE_MISUSE; sl@0: if( pStmt ){ sl@0: int cnt = 0; sl@0: Vdbe *v = (Vdbe*)pStmt; sl@0: sqlite3 *db = v->db; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: while( (rc = sqlite3Step(v))==SQLITE_SCHEMA sl@0: && cnt++ < 5 sl@0: && vdbeReprepare(v) ){ sl@0: sqlite3_reset(pStmt); sl@0: v->expired = 0; sl@0: } sl@0: if( rc==SQLITE_SCHEMA && v->zSql && db->pErr ){ sl@0: /* This case occurs after failing to recompile an sql statement. sl@0: ** The error message from the SQL compiler has already been loaded sl@0: ** into the database handle. This block copies the error message sl@0: ** from the database handle into the statement and sets the statement sl@0: ** program counter to 0 to ensure that when the statement is sl@0: ** finalized or reset the parser error message is available via sl@0: ** sqlite3_errmsg() and sqlite3_errcode(). sl@0: */ sl@0: const char *zErr = (const char *)sqlite3_value_text(db->pErr); sl@0: sqlite3DbFree(db, v->zErrMsg); sl@0: if( !db->mallocFailed ){ sl@0: v->zErrMsg = sqlite3DbStrDup(db, zErr); sl@0: } else { sl@0: v->zErrMsg = 0; sl@0: v->rc = SQLITE_NOMEM; sl@0: } sl@0: } sl@0: rc = sqlite3ApiExit(db, rc); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: } sl@0: return rc; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Extract the user data from a sqlite3_context structure and return a sl@0: ** pointer to it. sl@0: */ sl@0: SQLITE_EXPORT void *sqlite3_user_data(sqlite3_context *p){ sl@0: assert( p && p->pFunc ); sl@0: return p->pFunc->pUserData; sl@0: } sl@0: sl@0: /* sl@0: ** Extract the user data from a sqlite3_context structure and return a sl@0: ** pointer to it. sl@0: */ sl@0: SQLITE_EXPORT sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ sl@0: assert( p && p->pFunc ); sl@0: return p->s.db; sl@0: } sl@0: sl@0: /* sl@0: ** The following is the implementation of an SQL function that always sl@0: ** fails with an error message stating that the function is used in the sl@0: ** wrong context. The sqlite3_overload_function() API might construct sl@0: ** SQL function that use this routine so that the functions will exist sl@0: ** for name resolution but are actually overloaded by the xFindFunction sl@0: ** method of virtual tables. sl@0: */ sl@0: void sqlite3InvalidFunction( sl@0: sqlite3_context *context, /* The function calling context */ sl@0: int argc, /* Number of arguments to the function */ sl@0: sqlite3_value **argv /* Value of each argument */ sl@0: ){ sl@0: const char *zName = context->pFunc->zName; sl@0: char *zErr; sl@0: zErr = sqlite3MPrintf(0, sl@0: "unable to use function %s in the requested context", zName); sl@0: sqlite3_result_error(context, zErr, -1); sl@0: sqlite3_free(zErr); sl@0: } sl@0: sl@0: /* sl@0: ** Allocate or return the aggregate context for a user function. A new sl@0: ** context is allocated on the first call. Subsequent calls return the sl@0: ** same context that was returned on prior calls. sl@0: */ sl@0: SQLITE_EXPORT void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ sl@0: Mem *pMem; sl@0: assert( p && p->pFunc && p->pFunc->xStep ); sl@0: assert( sqlite3_mutex_held(p->s.db->mutex) ); sl@0: pMem = p->pMem; sl@0: if( (pMem->flags & MEM_Agg)==0 ){ sl@0: if( nByte==0 ){ sl@0: sqlite3VdbeMemReleaseExternal(pMem); sl@0: pMem->flags = MEM_Null; sl@0: pMem->z = 0; sl@0: }else{ sl@0: sqlite3VdbeMemGrow(pMem, nByte, 0); sl@0: pMem->flags = MEM_Agg; sl@0: pMem->u.pDef = p->pFunc; sl@0: if( pMem->z ){ sl@0: memset(pMem->z, 0, nByte); sl@0: } sl@0: } sl@0: } sl@0: return (void*)pMem->z; sl@0: } sl@0: sl@0: /* sl@0: ** Return the auxilary data pointer, if any, for the iArg'th argument to sl@0: ** the user-function defined by pCtx. sl@0: */ sl@0: SQLITE_EXPORT void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ sl@0: VdbeFunc *pVdbeFunc; sl@0: sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: pVdbeFunc = pCtx->pVdbeFunc; sl@0: if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ sl@0: return 0; sl@0: } sl@0: return pVdbeFunc->apAux[iArg].pAux; sl@0: } sl@0: sl@0: /* sl@0: ** Set the auxilary data pointer and delete function, for the iArg'th sl@0: ** argument to the user-function defined by pCtx. Any previous value is sl@0: ** deleted by calling the delete function specified when it was set. sl@0: */ sl@0: SQLITE_EXPORT void sqlite3_set_auxdata( sl@0: sqlite3_context *pCtx, sl@0: int iArg, sl@0: void *pAux, sl@0: void (*xDelete)(void*) sl@0: ){ sl@0: struct AuxData *pAuxData; sl@0: VdbeFunc *pVdbeFunc; sl@0: if( iArg<0 ) goto failed; sl@0: sl@0: assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sl@0: pVdbeFunc = pCtx->pVdbeFunc; sl@0: if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ sl@0: int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); sl@0: int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; sl@0: pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); sl@0: if( !pVdbeFunc ){ sl@0: goto failed; sl@0: } sl@0: pCtx->pVdbeFunc = pVdbeFunc; sl@0: memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); sl@0: pVdbeFunc->nAux = iArg+1; sl@0: pVdbeFunc->pFunc = pCtx->pFunc; sl@0: } sl@0: sl@0: pAuxData = &pVdbeFunc->apAux[iArg]; sl@0: if( pAuxData->pAux && pAuxData->xDelete ){ sl@0: pAuxData->xDelete(pAuxData->pAux); sl@0: } sl@0: pAuxData->pAux = pAux; sl@0: pAuxData->xDelete = xDelete; sl@0: return; sl@0: sl@0: failed: sl@0: if( xDelete ){ sl@0: xDelete(pAux); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Return the number of times the Step function of a aggregate has been sl@0: ** called. sl@0: ** sl@0: ** This function is deprecated. Do not use it for new code. It is sl@0: ** provide only to avoid breaking legacy code. New aggregate function sl@0: ** implementations should keep their own counts within their aggregate sl@0: ** context. sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_aggregate_count(sqlite3_context *p){ sl@0: assert( p && p->pFunc && p->pFunc->xStep ); sl@0: return p->pMem->n; sl@0: } sl@0: sl@0: /* sl@0: ** Return the number of columns in the result set for the statement pStmt. sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_column_count(sqlite3_stmt *pStmt){ sl@0: Vdbe *pVm = (Vdbe *)pStmt; sl@0: return pVm ? pVm->nResColumn : 0; sl@0: } sl@0: sl@0: /* sl@0: ** Return the number of values available from the current row of the sl@0: ** currently executing statement pStmt. sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_data_count(sqlite3_stmt *pStmt){ sl@0: Vdbe *pVm = (Vdbe *)pStmt; sl@0: if( pVm==0 || pVm->pResultSet==0 ) return 0; sl@0: return pVm->nResColumn; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Check to see if column iCol of the given statement is valid. If sl@0: ** it is, return a pointer to the Mem for the value of that column. sl@0: ** If iCol is not valid, return a pointer to a Mem which has a value sl@0: ** of NULL. sl@0: */ sl@0: static Mem *columnMem(sqlite3_stmt *pStmt, int i){ sl@0: Vdbe *pVm; sl@0: int vals; sl@0: Mem *pOut; sl@0: sl@0: pVm = (Vdbe *)pStmt; sl@0: if( pVm && pVm->pResultSet!=0 && inResColumn && i>=0 ){ sl@0: sqlite3_mutex_enter(pVm->db->mutex); sl@0: vals = sqlite3_data_count(pStmt); sl@0: pOut = &pVm->pResultSet[i]; sl@0: }else{ sl@0: static const Mem nullMem = {{0}, 0.0, 0, "", 0, MEM_Null, SQLITE_NULL, 0, 0, 0 }; sl@0: if( pVm->db ){ sl@0: sqlite3_mutex_enter(pVm->db->mutex); sl@0: sqlite3Error(pVm->db, SQLITE_RANGE, 0); sl@0: } sl@0: pOut = (Mem*)&nullMem; sl@0: } sl@0: return pOut; sl@0: } sl@0: sl@0: /* sl@0: ** This function is called after invoking an sqlite3_value_XXX function on a sl@0: ** column value (i.e. a value returned by evaluating an SQL expression in the sl@0: ** select list of a SELECT statement) that may cause a malloc() failure. If sl@0: ** malloc() has failed, the threads mallocFailed flag is cleared and the result sl@0: ** code of statement pStmt set to SQLITE_NOMEM. sl@0: ** sl@0: ** Specifically, this is called from within: sl@0: ** sl@0: ** sqlite3_column_int() sl@0: ** sqlite3_column_int64() sl@0: ** sqlite3_column_text() sl@0: ** sqlite3_column_text16() sl@0: ** sqlite3_column_real() sl@0: ** sqlite3_column_bytes() sl@0: ** sqlite3_column_bytes16() sl@0: ** sl@0: ** But not for sqlite3_column_blob(), which never calls malloc(). sl@0: */ sl@0: static void columnMallocFailure(sqlite3_stmt *pStmt) sl@0: { sl@0: /* If malloc() failed during an encoding conversion within an sl@0: ** sqlite3_column_XXX API, then set the return code of the statement to sl@0: ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR sl@0: ** and _finalize() will return NOMEM. sl@0: */ sl@0: Vdbe *p = (Vdbe *)pStmt; sl@0: if( p ){ sl@0: p->rc = sqlite3ApiExit(p->db, p->rc); sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: } sl@0: } sl@0: sl@0: /**************************** sqlite3_column_ ******************************* sl@0: ** The following routines are used to access elements of the current row sl@0: ** in the result set. sl@0: */ sl@0: SQLITE_EXPORT const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ sl@0: const void *val; sl@0: val = sqlite3_value_blob( columnMem(pStmt,i) ); sl@0: /* Even though there is no encoding conversion, value_blob() might sl@0: ** need to call malloc() to expand the result of a zeroblob() sl@0: ** expression. sl@0: */ sl@0: columnMallocFailure(pStmt); sl@0: return val; sl@0: } sl@0: SQLITE_EXPORT int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ sl@0: int val = sqlite3_value_bytes( columnMem(pStmt,i) ); sl@0: columnMallocFailure(pStmt); sl@0: return val; sl@0: } sl@0: SQLITE_EXPORT int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ sl@0: int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); sl@0: columnMallocFailure(pStmt); sl@0: return val; sl@0: } sl@0: SQLITE_EXPORT double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ sl@0: double val = sqlite3_value_double( columnMem(pStmt,i) ); sl@0: columnMallocFailure(pStmt); sl@0: return val; sl@0: } sl@0: SQLITE_EXPORT int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ sl@0: int val = sqlite3_value_int( columnMem(pStmt,i) ); sl@0: columnMallocFailure(pStmt); sl@0: return val; sl@0: } sl@0: SQLITE_EXPORT sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ sl@0: sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); sl@0: columnMallocFailure(pStmt); sl@0: return val; sl@0: } sl@0: SQLITE_EXPORT const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ sl@0: const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); sl@0: columnMallocFailure(pStmt); sl@0: return val; sl@0: } sl@0: SQLITE_EXPORT sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ sl@0: sqlite3_value *pOut = columnMem(pStmt, i); sl@0: columnMallocFailure(pStmt); sl@0: return pOut; sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: SQLITE_EXPORT const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ sl@0: const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); sl@0: columnMallocFailure(pStmt); sl@0: return val; sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: SQLITE_EXPORT int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ sl@0: int iType = sqlite3_value_type( columnMem(pStmt,i) ); sl@0: columnMallocFailure(pStmt); sl@0: return iType; sl@0: } sl@0: sl@0: /* The following function is experimental and subject to change or sl@0: ** removal */ sl@0: /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ sl@0: ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); sl@0: **} sl@0: */ sl@0: sl@0: /* sl@0: ** Convert the N-th element of pStmt->pColName[] into a string using sl@0: ** xFunc() then return that string. If N is out of range, return 0. sl@0: ** sl@0: ** There are up to 5 names for each column. useType determines which sl@0: ** name is returned. Here are the names: sl@0: ** sl@0: ** 0 The column name as it should be displayed for output sl@0: ** 1 The datatype name for the column sl@0: ** 2 The name of the database that the column derives from sl@0: ** 3 The name of the table that the column derives from sl@0: ** 4 The name of the table column that the result column derives from sl@0: ** sl@0: ** If the result is not a simple column reference (if it is an expression sl@0: ** or a constant) then useTypes 2, 3, and 4 return NULL. sl@0: */ sl@0: static const void *columnName( sl@0: sqlite3_stmt *pStmt, sl@0: int N, sl@0: const void *(*xFunc)(Mem*), sl@0: int useType sl@0: ){ sl@0: const void *ret = 0; sl@0: Vdbe *p = (Vdbe *)pStmt; sl@0: int n; sl@0: sl@0: sl@0: if( p!=0 ){ sl@0: n = sqlite3_column_count(pStmt); sl@0: if( N=0 ){ sl@0: N += useType*n; sl@0: sqlite3_mutex_enter(p->db->mutex); sl@0: ret = xFunc(&p->aColName[N]); sl@0: sl@0: /* A malloc may have failed inside of the xFunc() call. If this sl@0: ** is the case, clear the mallocFailed flag and return NULL. sl@0: */ sl@0: if( p->db && p->db->mallocFailed ){ sl@0: p->db->mallocFailed = 0; sl@0: ret = 0; sl@0: } sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: } sl@0: } sl@0: return ret; sl@0: } sl@0: sl@0: /* sl@0: ** Return the name of the Nth column of the result set returned by SQL sl@0: ** statement pStmt. sl@0: */ sl@0: SQLITE_EXPORT const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: SQLITE_EXPORT const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Constraint: If you have ENABLE_COLUMN_METADATA then you must sl@0: ** not define OMIT_DECLTYPE. sl@0: */ sl@0: #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) sl@0: # error "Must not define both SQLITE_OMIT_DECLTYPE \ sl@0: and SQLITE_ENABLE_COLUMN_METADATA" sl@0: #endif sl@0: sl@0: #ifndef SQLITE_OMIT_DECLTYPE sl@0: /* sl@0: ** Return the column declaration type (if applicable) of the 'i'th column sl@0: ** of the result set of SQL statement pStmt. sl@0: */ sl@0: SQLITE_EXPORT const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: SQLITE_EXPORT const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: #endif /* SQLITE_OMIT_DECLTYPE */ sl@0: sl@0: #ifdef SQLITE_ENABLE_COLUMN_METADATA sl@0: /* sl@0: ** Return the name of the database from which a result column derives. sl@0: ** NULL is returned if the result column is an expression or constant or sl@0: ** anything else which is not an unabiguous reference to a database column. sl@0: */ sl@0: const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: sl@0: /* sl@0: ** Return the name of the table from which a result column derives. sl@0: ** NULL is returned if the result column is an expression or constant or sl@0: ** anything else which is not an unabiguous reference to a database column. sl@0: */ sl@0: const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: sl@0: /* sl@0: ** Return the name of the table column from which a result column derives. sl@0: ** NULL is returned if the result column is an expression or constant or sl@0: ** anything else which is not an unabiguous reference to a database column. sl@0: */ sl@0: const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ sl@0: return columnName( sl@0: pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: #endif /* SQLITE_ENABLE_COLUMN_METADATA */ sl@0: sl@0: sl@0: /******************************* sqlite3_bind_ *************************** sl@0: ** sl@0: ** Routines used to attach values to wildcards in a compiled SQL statement. sl@0: */ sl@0: /* sl@0: ** Unbind the value bound to variable i in virtual machine p. This is the sl@0: ** the same as binding a NULL value to the column. If the "i" parameter is sl@0: ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. sl@0: ** sl@0: ** The error code stored in database p->db is overwritten with the return sl@0: ** value in any case. sl@0: */ sl@0: static int vdbeUnbind(Vdbe *p, int i){ sl@0: Mem *pVar; sl@0: if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ sl@0: if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0); sl@0: return SQLITE_MISUSE; sl@0: } sl@0: if( i<1 || i>p->nVar ){ sl@0: sqlite3Error(p->db, SQLITE_RANGE, 0); sl@0: return SQLITE_RANGE; sl@0: } sl@0: i--; sl@0: pVar = &p->aVar[i]; sl@0: sqlite3VdbeMemRelease(pVar); sl@0: pVar->flags = MEM_Null; sl@0: sqlite3Error(p->db, SQLITE_OK, 0); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Bind a text or BLOB value. sl@0: */ sl@0: static int bindText( sl@0: sqlite3_stmt *pStmt, /* The statement to bind against */ sl@0: int i, /* Index of the parameter to bind */ sl@0: const void *zData, /* Pointer to the data to be bound */ sl@0: int nData, /* Number of bytes of data to be bound */ sl@0: void (*xDel)(void*), /* Destructor for the data */ sl@0: int encoding /* Encoding for the data */ sl@0: ){ sl@0: Vdbe *p = (Vdbe *)pStmt; sl@0: Mem *pVar; sl@0: int rc; sl@0: sl@0: if( p==0 ){ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: sqlite3_mutex_enter(p->db->mutex); sl@0: rc = vdbeUnbind(p, i); sl@0: if( rc==SQLITE_OK && zData!=0 ){ sl@0: pVar = &p->aVar[i-1]; sl@0: rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); sl@0: if( rc==SQLITE_OK && encoding!=0 ){ sl@0: rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); sl@0: } sl@0: sqlite3Error(p->db, rc, 0); sl@0: rc = sqlite3ApiExit(p->db, rc); sl@0: } sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Bind a blob value to an SQL statement variable. sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_bind_blob( sl@0: sqlite3_stmt *pStmt, sl@0: int i, sl@0: const void *zData, sl@0: int nData, sl@0: void (*xDel)(void*) sl@0: ){ sl@0: return bindText(pStmt, i, zData, nData, xDel, 0); sl@0: } sl@0: SQLITE_EXPORT int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ sl@0: int rc; sl@0: Vdbe *p = (Vdbe *)pStmt; sl@0: sqlite3_mutex_enter(p->db->mutex); sl@0: rc = vdbeUnbind(p, i); sl@0: if( rc==SQLITE_OK ){ sl@0: sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); sl@0: } sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: return rc; sl@0: } sl@0: SQLITE_EXPORT int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ sl@0: return sqlite3_bind_int64(p, i, (i64)iValue); sl@0: } sl@0: SQLITE_EXPORT int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ sl@0: int rc; sl@0: Vdbe *p = (Vdbe *)pStmt; sl@0: sqlite3_mutex_enter(p->db->mutex); sl@0: rc = vdbeUnbind(p, i); sl@0: if( rc==SQLITE_OK ){ sl@0: sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); sl@0: } sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: return rc; sl@0: } sl@0: SQLITE_EXPORT int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ sl@0: int rc; sl@0: Vdbe *p = (Vdbe*)pStmt; sl@0: sqlite3_mutex_enter(p->db->mutex); sl@0: rc = vdbeUnbind(p, i); sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: return rc; sl@0: } sl@0: SQLITE_EXPORT int sqlite3_bind_text( sl@0: sqlite3_stmt *pStmt, sl@0: int i, sl@0: const char *zData, sl@0: int nData, sl@0: void (*xDel)(void*) sl@0: ){ sl@0: return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); sl@0: } sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: SQLITE_EXPORT int sqlite3_bind_text16( sl@0: sqlite3_stmt *pStmt, sl@0: int i, sl@0: const void *zData, sl@0: int nData, sl@0: void (*xDel)(void*) sl@0: ){ sl@0: return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: SQLITE_EXPORT int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ sl@0: int rc; sl@0: Vdbe *p = (Vdbe *)pStmt; sl@0: sqlite3_mutex_enter(p->db->mutex); sl@0: rc = vdbeUnbind(p, i); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3VdbeMemCopy(&p->aVar[i-1], pValue); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3VdbeChangeEncoding(&p->aVar[i-1], ENC(p->db)); sl@0: } sl@0: } sl@0: rc = sqlite3ApiExit(p->db, rc); sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: return rc; sl@0: } sl@0: SQLITE_EXPORT int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ sl@0: int rc; sl@0: Vdbe *p = (Vdbe *)pStmt; sl@0: sqlite3_mutex_enter(p->db->mutex); sl@0: rc = vdbeUnbind(p, i); sl@0: if( rc==SQLITE_OK ){ sl@0: sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); sl@0: } sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Return the number of wildcards that can be potentially bound to. sl@0: ** This routine is added to support DBD::SQLite. sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ sl@0: Vdbe *p = (Vdbe*)pStmt; sl@0: return p ? p->nVar : 0; sl@0: } sl@0: sl@0: /* sl@0: ** Create a mapping from variable numbers to variable names sl@0: ** in the Vdbe.azVar[] array, if such a mapping does not already sl@0: ** exist. sl@0: */ sl@0: static void createVarMap(Vdbe *p){ sl@0: if( !p->okVar ){ sl@0: sqlite3_mutex_enter(p->db->mutex); sl@0: if( !p->okVar ){ sl@0: int j; sl@0: Op *pOp; sl@0: for(j=0, pOp=p->aOp; jnOp; j++, pOp++){ sl@0: if( pOp->opcode==OP_Variable ){ sl@0: assert( pOp->p1>0 && pOp->p1<=p->nVar ); sl@0: p->azVar[pOp->p1-1] = pOp->p4.z; sl@0: } sl@0: } sl@0: p->okVar = 1; sl@0: } sl@0: sqlite3_mutex_leave(p->db->mutex); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Return the name of a wildcard parameter. Return NULL if the index sl@0: ** is out of range or if the wildcard is unnamed. sl@0: ** sl@0: ** The result is always UTF-8. sl@0: */ sl@0: SQLITE_EXPORT const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ sl@0: Vdbe *p = (Vdbe*)pStmt; sl@0: if( p==0 || i<1 || i>p->nVar ){ sl@0: return 0; sl@0: } sl@0: createVarMap(p); sl@0: return p->azVar[i-1]; sl@0: } sl@0: sl@0: /* sl@0: ** Given a wildcard parameter name, return the index of the variable sl@0: ** with that name. If there is no variable with the given name, sl@0: ** return 0. sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ sl@0: Vdbe *p = (Vdbe*)pStmt; sl@0: int i; sl@0: if( p==0 ){ sl@0: return 0; sl@0: } sl@0: createVarMap(p); sl@0: if( zName ){ sl@0: for(i=0; inVar; i++){ sl@0: const char *z = p->azVar[i]; sl@0: if( z && strcmp(z,zName)==0 ){ sl@0: return i+1; sl@0: } sl@0: } sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Transfer all bindings from the first statement over to the second. sl@0: ** If the two statements contain a different number of bindings, then sl@0: ** an SQLITE_ERROR is returned. sl@0: */ sl@0: int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ sl@0: Vdbe *pFrom = (Vdbe*)pFromStmt; sl@0: Vdbe *pTo = (Vdbe*)pToStmt; sl@0: int i, rc = SQLITE_OK; sl@0: if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) sl@0: || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) sl@0: || pTo->db!=pFrom->db ){ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: if( pFrom->nVar!=pTo->nVar ){ sl@0: return SQLITE_ERROR; sl@0: } sl@0: sqlite3_mutex_enter(pTo->db->mutex); sl@0: for(i=0; rc==SQLITE_OK && inVar; i++){ sl@0: sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); sl@0: } sl@0: sqlite3_mutex_leave(pTo->db->mutex); sl@0: assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Deprecated external interface. Internal/core SQLite code sl@0: ** should call sqlite3TransferBindings. sl@0: */ sl@0: SQLITE_EXPORT int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ sl@0: return sqlite3TransferBindings(pFromStmt, pToStmt); sl@0: } sl@0: sl@0: /* sl@0: ** Return the sqlite3* database handle to which the prepared statement given sl@0: ** in the argument belongs. This is the same database handle that was sl@0: ** the first argument to the sqlite3_prepare() that was used to create sl@0: ** the statement in the first place. sl@0: */ sl@0: SQLITE_EXPORT sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ sl@0: return pStmt ? ((Vdbe*)pStmt)->db : 0; sl@0: } sl@0: sl@0: /* sl@0: ** Return a pointer to the next prepared statement after pStmt associated sl@0: ** with database connection pDb. If pStmt is NULL, return the first sl@0: ** prepared statement for the database connection. Return NULL if there sl@0: ** are no more. sl@0: */ sl@0: SQLITE_EXPORT sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ sl@0: sqlite3_stmt *pNext; sl@0: sqlite3_mutex_enter(pDb->mutex); sl@0: if( pStmt==0 ){ sl@0: pNext = (sqlite3_stmt*)pDb->pVdbe; sl@0: }else{ sl@0: pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; sl@0: } sl@0: sqlite3_mutex_leave(pDb->mutex); sl@0: return pNext; sl@0: }