sl@0: /* sl@0: ** 2004 May 22 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ****************************************************************************** sl@0: ** sl@0: ** This file contains code that is specific to Unix systems. sl@0: ** sl@0: ** $Id: os_unix.c,v 1.204 2008/09/24 09:12:47 danielk1977 Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: #if SQLITE_OS_UNIX /* This file is used on unix only */ sl@0: sl@0: /* sl@0: ** If SQLITE_ENABLE_LOCKING_STYLE is defined and is non-zero, then several sl@0: ** alternative locking implementations are provided: sl@0: ** sl@0: ** * POSIX locking (the default), sl@0: ** * No locking, sl@0: ** * Dot-file locking, sl@0: ** * flock() locking, sl@0: ** * AFP locking (OSX only). sl@0: ** sl@0: ** SQLITE_ENABLE_LOCKING_STYLE only works on a Mac. It is turned on by sl@0: ** default on a Mac and disabled on all other posix platforms. sl@0: */ sl@0: #if !defined(SQLITE_ENABLE_LOCKING_STYLE) sl@0: # if defined(__DARWIN__) sl@0: # define SQLITE_ENABLE_LOCKING_STYLE 1 sl@0: # else sl@0: # define SQLITE_ENABLE_LOCKING_STYLE 0 sl@0: # endif sl@0: #endif sl@0: sl@0: /* sl@0: ** These #defines should enable >2GB file support on Posix if the sl@0: ** underlying operating system supports it. If the OS lacks sl@0: ** large file support, these should be no-ops. sl@0: ** sl@0: ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch sl@0: ** on the compiler command line. This is necessary if you are compiling sl@0: ** on a recent machine (ex: RedHat 7.2) but you want your code to work sl@0: ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 sl@0: ** without this option, LFS is enable. But LFS does not exist in the kernel sl@0: ** in RedHat 6.0, so the code won't work. Hence, for maximum binary sl@0: ** portability you should omit LFS. sl@0: */ sl@0: #ifndef SQLITE_DISABLE_LFS sl@0: # define _LARGE_FILE 1 sl@0: # ifndef _FILE_OFFSET_BITS sl@0: # define _FILE_OFFSET_BITS 64 sl@0: # endif sl@0: # define _LARGEFILE_SOURCE 1 sl@0: #endif sl@0: sl@0: /* sl@0: ** standard include files. sl@0: */ sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: sl@0: #if SQLITE_ENABLE_LOCKING_STYLE sl@0: #include sl@0: #include sl@0: #include sl@0: #endif /* SQLITE_ENABLE_LOCKING_STYLE */ sl@0: sl@0: /* sl@0: ** If we are to be thread-safe, include the pthreads header and define sl@0: ** the SQLITE_UNIX_THREADS macro. sl@0: */ sl@0: #if SQLITE_THREADSAFE sl@0: # include sl@0: # define SQLITE_UNIX_THREADS 1 sl@0: #endif sl@0: sl@0: /* sl@0: ** Default permissions when creating a new file sl@0: */ sl@0: #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS sl@0: # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 sl@0: #endif sl@0: sl@0: /* sl@0: ** Maximum supported path-length. sl@0: */ sl@0: #define MAX_PATHNAME 512 sl@0: sl@0: sl@0: /* sl@0: ** The unixFile structure is subclass of sqlite3_file specific for the unix sl@0: ** protability layer. sl@0: */ sl@0: typedef struct unixFile unixFile; sl@0: struct unixFile { sl@0: sqlite3_io_methods const *pMethod; /* Always the first entry */ sl@0: #ifdef SQLITE_TEST sl@0: /* In test mode, increase the size of this structure a bit so that sl@0: ** it is larger than the struct CrashFile defined in test6.c. sl@0: */ sl@0: char aPadding[32]; sl@0: #endif sl@0: struct openCnt *pOpen; /* Info about all open fd's on this inode */ sl@0: struct lockInfo *pLock; /* Info about locks on this inode */ sl@0: #if SQLITE_ENABLE_LOCKING_STYLE sl@0: void *lockingContext; /* Locking style specific state */ sl@0: #endif sl@0: int h; /* The file descriptor */ sl@0: unsigned char locktype; /* The type of lock held on this fd */ sl@0: int dirfd; /* File descriptor for the directory */ sl@0: #if SQLITE_THREADSAFE sl@0: pthread_t tid; /* The thread that "owns" this unixFile */ sl@0: #endif sl@0: int lastErrno; /* The unix errno from the last I/O error */ sl@0: }; sl@0: sl@0: /* sl@0: ** Include code that is common to all os_*.c files sl@0: */ sl@0: #include "os_common.h" sl@0: sl@0: /* sl@0: ** Define various macros that are missing from some systems. sl@0: */ sl@0: #ifndef O_LARGEFILE sl@0: # define O_LARGEFILE 0 sl@0: #endif sl@0: #ifdef SQLITE_DISABLE_LFS sl@0: # undef O_LARGEFILE sl@0: # define O_LARGEFILE 0 sl@0: #endif sl@0: #ifndef O_NOFOLLOW sl@0: # define O_NOFOLLOW 0 sl@0: #endif sl@0: #ifndef O_BINARY sl@0: # define O_BINARY 0 sl@0: #endif sl@0: sl@0: /* sl@0: ** The DJGPP compiler environment looks mostly like Unix, but it sl@0: ** lacks the fcntl() system call. So redefine fcntl() to be something sl@0: ** that always succeeds. This means that locking does not occur under sl@0: ** DJGPP. But it is DOS - what did you expect? sl@0: */ sl@0: #ifdef __DJGPP__ sl@0: # define fcntl(A,B,C) 0 sl@0: #endif sl@0: sl@0: /* sl@0: ** The threadid macro resolves to the thread-id or to 0. Used for sl@0: ** testing and debugging only. sl@0: */ sl@0: #if SQLITE_THREADSAFE sl@0: #define threadid pthread_self() sl@0: #else sl@0: #define threadid 0 sl@0: #endif sl@0: sl@0: /* sl@0: ** Set or check the unixFile.tid field. This field is set when an unixFile sl@0: ** is first opened. All subsequent uses of the unixFile verify that the sl@0: ** same thread is operating on the unixFile. Some operating systems do sl@0: ** not allow locks to be overridden by other threads and that restriction sl@0: ** means that sqlite3* database handles cannot be moved from one thread sl@0: ** to another. This logic makes sure a user does not try to do that sl@0: ** by mistake. sl@0: ** sl@0: ** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to sl@0: ** another as long as we are running on a system that supports threads sl@0: ** overriding each others locks (which now the most common behavior) sl@0: ** or if no locks are held. But the unixFile.pLock field needs to be sl@0: ** recomputed because its key includes the thread-id. See the sl@0: ** transferOwnership() function below for additional information sl@0: */ sl@0: #if SQLITE_THREADSAFE sl@0: # define SET_THREADID(X) (X)->tid = pthread_self() sl@0: # define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \ sl@0: !pthread_equal((X)->tid, pthread_self())) sl@0: #else sl@0: # define SET_THREADID(X) sl@0: # define CHECK_THREADID(X) 0 sl@0: #endif sl@0: sl@0: /* sl@0: ** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996) sl@0: ** section 6.5.2.2 lines 483 through 490 specify that when a process sl@0: ** sets or clears a lock, that operation overrides any prior locks set sl@0: ** by the same process. It does not explicitly say so, but this implies sl@0: ** that it overrides locks set by the same process using a different sl@0: ** file descriptor. Consider this test case: sl@0: ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); sl@0: ** sl@0: ** Suppose ./file1 and ./file2 are really the same file (because sl@0: ** one is a hard or symbolic link to the other) then if you set sl@0: ** an exclusive lock on fd1, then try to get an exclusive lock sl@0: ** on fd2, it works. I would have expected the second lock to sl@0: ** fail since there was already a lock on the file due to fd1. sl@0: ** But not so. Since both locks came from the same process, the sl@0: ** second overrides the first, even though they were on different sl@0: ** file descriptors opened on different file names. sl@0: ** sl@0: ** Bummer. If you ask me, this is broken. Badly broken. It means sl@0: ** that we cannot use POSIX locks to synchronize file access among sl@0: ** competing threads of the same process. POSIX locks will work fine sl@0: ** to synchronize access for threads in separate processes, but not sl@0: ** threads within the same process. sl@0: ** sl@0: ** To work around the problem, SQLite has to manage file locks internally sl@0: ** on its own. Whenever a new database is opened, we have to find the sl@0: ** specific inode of the database file (the inode is determined by the sl@0: ** st_dev and st_ino fields of the stat structure that fstat() fills in) sl@0: ** and check for locks already existing on that inode. When locks are sl@0: ** created or removed, we have to look at our own internal record of the sl@0: ** locks to see if another thread has previously set a lock on that same sl@0: ** inode. sl@0: ** sl@0: ** The sqlite3_file structure for POSIX is no longer just an integer file sl@0: ** descriptor. It is now a structure that holds the integer file sl@0: ** descriptor and a pointer to a structure that describes the internal sl@0: ** locks on the corresponding inode. There is one locking structure sl@0: ** per inode, so if the same inode is opened twice, both unixFile structures sl@0: ** point to the same locking structure. The locking structure keeps sl@0: ** a reference count (so we will know when to delete it) and a "cnt" sl@0: ** field that tells us its internal lock status. cnt==0 means the sl@0: ** file is unlocked. cnt==-1 means the file has an exclusive lock. sl@0: ** cnt>0 means there are cnt shared locks on the file. sl@0: ** sl@0: ** Any attempt to lock or unlock a file first checks the locking sl@0: ** structure. The fcntl() system call is only invoked to set a sl@0: ** POSIX lock if the internal lock structure transitions between sl@0: ** a locked and an unlocked state. sl@0: ** sl@0: ** 2004-Jan-11: sl@0: ** More recent discoveries about POSIX advisory locks. (The more sl@0: ** I discover, the more I realize the a POSIX advisory locks are sl@0: ** an abomination.) sl@0: ** sl@0: ** If you close a file descriptor that points to a file that has locks, sl@0: ** all locks on that file that are owned by the current process are sl@0: ** released. To work around this problem, each unixFile structure contains sl@0: ** a pointer to an openCnt structure. There is one openCnt structure sl@0: ** per open inode, which means that multiple unixFile can point to a single sl@0: ** openCnt. When an attempt is made to close an unixFile, if there are sl@0: ** other unixFile open on the same inode that are holding locks, the call sl@0: ** to close() the file descriptor is deferred until all of the locks clear. sl@0: ** The openCnt structure keeps a list of file descriptors that need to sl@0: ** be closed and that list is walked (and cleared) when the last lock sl@0: ** clears. sl@0: ** sl@0: ** First, under Linux threads, because each thread has a separate sl@0: ** process ID, lock operations in one thread do not override locks sl@0: ** to the same file in other threads. Linux threads behave like sl@0: ** separate processes in this respect. But, if you close a file sl@0: ** descriptor in linux threads, all locks are cleared, even locks sl@0: ** on other threads and even though the other threads have different sl@0: ** process IDs. Linux threads is inconsistent in this respect. sl@0: ** (I'm beginning to think that linux threads is an abomination too.) sl@0: ** The consequence of this all is that the hash table for the lockInfo sl@0: ** structure has to include the process id as part of its key because sl@0: ** locks in different threads are treated as distinct. But the sl@0: ** openCnt structure should not include the process id in its sl@0: ** key because close() clears lock on all threads, not just the current sl@0: ** thread. Were it not for this goofiness in linux threads, we could sl@0: ** combine the lockInfo and openCnt structures into a single structure. sl@0: ** sl@0: ** 2004-Jun-28: sl@0: ** On some versions of linux, threads can override each others locks. sl@0: ** On others not. Sometimes you can change the behavior on the same sl@0: ** system by setting the LD_ASSUME_KERNEL environment variable. The sl@0: ** POSIX standard is silent as to which behavior is correct, as far sl@0: ** as I can tell, so other versions of unix might show the same sl@0: ** inconsistency. There is no little doubt in my mind that posix sl@0: ** advisory locks and linux threads are profoundly broken. sl@0: ** sl@0: ** To work around the inconsistencies, we have to test at runtime sl@0: ** whether or not threads can override each others locks. This test sl@0: ** is run once, the first time any lock is attempted. A static sl@0: ** variable is set to record the results of this test for future sl@0: ** use. sl@0: */ sl@0: sl@0: /* sl@0: ** An instance of the following structure serves as the key used sl@0: ** to locate a particular lockInfo structure given its inode. sl@0: ** sl@0: ** If threads cannot override each others locks, then we set the sl@0: ** lockKey.tid field to the thread ID. If threads can override sl@0: ** each others locks then tid is always set to zero. tid is omitted sl@0: ** if we compile without threading support. sl@0: */ sl@0: struct lockKey { sl@0: dev_t dev; /* Device number */ sl@0: ino_t ino; /* Inode number */ sl@0: #if SQLITE_THREADSAFE sl@0: pthread_t tid; /* Thread ID or zero if threads can override each other */ sl@0: #endif sl@0: }; sl@0: sl@0: /* sl@0: ** An instance of the following structure is allocated for each open sl@0: ** inode on each thread with a different process ID. (Threads have sl@0: ** different process IDs on linux, but not on most other unixes.) sl@0: ** sl@0: ** A single inode can have multiple file descriptors, so each unixFile sl@0: ** structure contains a pointer to an instance of this object and this sl@0: ** object keeps a count of the number of unixFile pointing to it. sl@0: */ sl@0: struct lockInfo { sl@0: struct lockKey key; /* The lookup key */ sl@0: int cnt; /* Number of SHARED locks held */ sl@0: int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ sl@0: int nRef; /* Number of pointers to this structure */ sl@0: struct lockInfo *pNext, *pPrev; /* List of all lockInfo objects */ sl@0: }; sl@0: sl@0: /* sl@0: ** An instance of the following structure serves as the key used sl@0: ** to locate a particular openCnt structure given its inode. This sl@0: ** is the same as the lockKey except that the thread ID is omitted. sl@0: */ sl@0: struct openKey { sl@0: dev_t dev; /* Device number */ sl@0: ino_t ino; /* Inode number */ sl@0: }; sl@0: sl@0: /* sl@0: ** An instance of the following structure is allocated for each open sl@0: ** inode. This structure keeps track of the number of locks on that sl@0: ** inode. If a close is attempted against an inode that is holding sl@0: ** locks, the close is deferred until all locks clear by adding the sl@0: ** file descriptor to be closed to the pending list. sl@0: */ sl@0: struct openCnt { sl@0: struct openKey key; /* The lookup key */ sl@0: int nRef; /* Number of pointers to this structure */ sl@0: int nLock; /* Number of outstanding locks */ sl@0: int nPending; /* Number of pending close() operations */ sl@0: int *aPending; /* Malloced space holding fd's awaiting a close() */ sl@0: struct openCnt *pNext, *pPrev; /* List of all openCnt objects */ sl@0: }; sl@0: sl@0: /* sl@0: ** List of all lockInfo and openCnt objects. This used to be a hash sl@0: ** table. But the number of objects is rarely more than a dozen and sl@0: ** never exceeds a few thousand. And lookup is not on a critical sl@0: ** path oo a simple linked list will suffice. sl@0: */ sl@0: static struct lockInfo *lockList = 0; sl@0: static struct openCnt *openList = 0; sl@0: sl@0: /* sl@0: ** The locking styles are associated with the different file locking sl@0: ** capabilities supported by different file systems. sl@0: ** sl@0: ** POSIX locking style fully supports shared and exclusive byte-range locks sl@0: ** AFP locking only supports exclusive byte-range locks sl@0: ** FLOCK only supports a single file-global exclusive lock sl@0: ** DOTLOCK isn't a true locking style, it refers to the use of a special sl@0: ** file named the same as the database file with a '.lock' extension, this sl@0: ** can be used on file systems that do not offer any reliable file locking sl@0: ** NO locking means that no locking will be attempted, this is only used for sl@0: ** read-only file systems currently sl@0: ** UNSUPPORTED means that no locking will be attempted, this is only used for sl@0: ** file systems that are known to be unsupported sl@0: */ sl@0: #define LOCKING_STYLE_POSIX 1 sl@0: #define LOCKING_STYLE_NONE 2 sl@0: #define LOCKING_STYLE_DOTFILE 3 sl@0: #define LOCKING_STYLE_FLOCK 4 sl@0: #define LOCKING_STYLE_AFP 5 sl@0: sl@0: /* sl@0: ** Only set the lastErrno if the error code is a real error and not sl@0: ** a normal expected return code of SQLITE_BUSY or SQLITE_OK sl@0: */ sl@0: #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) sl@0: sl@0: /* sl@0: ** Helper functions to obtain and relinquish the global mutex. sl@0: */ sl@0: static void enterMutex(void){ sl@0: sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); sl@0: } sl@0: static void leaveMutex(void){ sl@0: sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); sl@0: } sl@0: sl@0: #if SQLITE_THREADSAFE sl@0: /* sl@0: ** This variable records whether or not threads can override each others sl@0: ** locks. sl@0: ** sl@0: ** 0: No. Threads cannot override each others locks. sl@0: ** 1: Yes. Threads can override each others locks. sl@0: ** -1: We don't know yet. sl@0: ** sl@0: ** On some systems, we know at compile-time if threads can override each sl@0: ** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro sl@0: ** will be set appropriately. On other systems, we have to check at sl@0: ** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is sl@0: ** undefined. sl@0: ** sl@0: ** This variable normally has file scope only. But during testing, we make sl@0: ** it a global so that the test code can change its value in order to verify sl@0: ** that the right stuff happens in either case. sl@0: */ sl@0: #ifndef SQLITE_THREAD_OVERRIDE_LOCK sl@0: # define SQLITE_THREAD_OVERRIDE_LOCK -1 sl@0: #endif sl@0: #ifdef SQLITE_TEST sl@0: int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK; sl@0: #else sl@0: static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK; sl@0: #endif sl@0: sl@0: /* sl@0: ** This structure holds information passed into individual test sl@0: ** threads by the testThreadLockingBehavior() routine. sl@0: */ sl@0: struct threadTestData { sl@0: int fd; /* File to be locked */ sl@0: struct flock lock; /* The locking operation */ sl@0: int result; /* Result of the locking operation */ sl@0: }; sl@0: sl@0: #ifdef SQLITE_LOCK_TRACE sl@0: /* sl@0: ** Print out information about all locking operations. sl@0: ** sl@0: ** This routine is used for troubleshooting locks on multithreaded sl@0: ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE sl@0: ** command-line option on the compiler. This code is normally sl@0: ** turned off. sl@0: */ sl@0: static int lockTrace(int fd, int op, struct flock *p){ sl@0: char *zOpName, *zType; sl@0: int s; sl@0: int savedErrno; sl@0: if( op==F_GETLK ){ sl@0: zOpName = "GETLK"; sl@0: }else if( op==F_SETLK ){ sl@0: zOpName = "SETLK"; sl@0: }else{ sl@0: s = fcntl(fd, op, p); sl@0: sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); sl@0: return s; sl@0: } sl@0: if( p->l_type==F_RDLCK ){ sl@0: zType = "RDLCK"; sl@0: }else if( p->l_type==F_WRLCK ){ sl@0: zType = "WRLCK"; sl@0: }else if( p->l_type==F_UNLCK ){ sl@0: zType = "UNLCK"; sl@0: }else{ sl@0: assert( 0 ); sl@0: } sl@0: assert( p->l_whence==SEEK_SET ); sl@0: s = fcntl(fd, op, p); sl@0: savedErrno = errno; sl@0: sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", sl@0: threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, sl@0: (int)p->l_pid, s); sl@0: if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ sl@0: struct flock l2; sl@0: l2 = *p; sl@0: fcntl(fd, F_GETLK, &l2); sl@0: if( l2.l_type==F_RDLCK ){ sl@0: zType = "RDLCK"; sl@0: }else if( l2.l_type==F_WRLCK ){ sl@0: zType = "WRLCK"; sl@0: }else if( l2.l_type==F_UNLCK ){ sl@0: zType = "UNLCK"; sl@0: }else{ sl@0: assert( 0 ); sl@0: } sl@0: sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", sl@0: zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); sl@0: } sl@0: errno = savedErrno; sl@0: return s; sl@0: } sl@0: #define fcntl lockTrace sl@0: #endif /* SQLITE_LOCK_TRACE */ sl@0: sl@0: /* sl@0: ** The testThreadLockingBehavior() routine launches two separate sl@0: ** threads on this routine. This routine attempts to lock a file sl@0: ** descriptor then returns. The success or failure of that attempt sl@0: ** allows the testThreadLockingBehavior() procedure to determine sl@0: ** whether or not threads can override each others locks. sl@0: */ sl@0: static void *threadLockingTest(void *pArg){ sl@0: struct threadTestData *pData = (struct threadTestData*)pArg; sl@0: pData->result = fcntl(pData->fd, F_SETLK, &pData->lock); sl@0: return pArg; sl@0: } sl@0: sl@0: /* sl@0: ** This procedure attempts to determine whether or not threads sl@0: ** can override each others locks then sets the sl@0: ** threadsOverrideEachOthersLocks variable appropriately. sl@0: */ sl@0: static void testThreadLockingBehavior(int fd_orig){ sl@0: int fd; sl@0: struct threadTestData d[2]; sl@0: pthread_t t[2]; sl@0: sl@0: fd = dup(fd_orig); sl@0: if( fd<0 ) return; sl@0: memset(d, 0, sizeof(d)); sl@0: d[0].fd = fd; sl@0: d[0].lock.l_type = F_RDLCK; sl@0: d[0].lock.l_len = 1; sl@0: d[0].lock.l_start = 0; sl@0: d[0].lock.l_whence = SEEK_SET; sl@0: d[1] = d[0]; sl@0: d[1].lock.l_type = F_WRLCK; sl@0: pthread_create(&t[0], 0, threadLockingTest, &d[0]); sl@0: pthread_create(&t[1], 0, threadLockingTest, &d[1]); sl@0: pthread_join(t[0], 0); sl@0: pthread_join(t[1], 0); sl@0: close(fd); sl@0: threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0; sl@0: } sl@0: #endif /* SQLITE_THREADSAFE */ sl@0: sl@0: /* sl@0: ** Release a lockInfo structure previously allocated by findLockInfo(). sl@0: */ sl@0: static void releaseLockInfo(struct lockInfo *pLock){ sl@0: if( pLock ){ sl@0: pLock->nRef--; sl@0: if( pLock->nRef==0 ){ sl@0: if( pLock->pPrev ){ sl@0: assert( pLock->pPrev->pNext==pLock ); sl@0: pLock->pPrev->pNext = pLock->pNext; sl@0: }else{ sl@0: assert( lockList==pLock ); sl@0: lockList = pLock->pNext; sl@0: } sl@0: if( pLock->pNext ){ sl@0: assert( pLock->pNext->pPrev==pLock ); sl@0: pLock->pNext->pPrev = pLock->pPrev; sl@0: } sl@0: sqlite3_free(pLock); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Release a openCnt structure previously allocated by findLockInfo(). sl@0: */ sl@0: static void releaseOpenCnt(struct openCnt *pOpen){ sl@0: if( pOpen ){ sl@0: pOpen->nRef--; sl@0: if( pOpen->nRef==0 ){ sl@0: if( pOpen->pPrev ){ sl@0: assert( pOpen->pPrev->pNext==pOpen ); sl@0: pOpen->pPrev->pNext = pOpen->pNext; sl@0: }else{ sl@0: assert( openList==pOpen ); sl@0: openList = pOpen->pNext; sl@0: } sl@0: if( pOpen->pNext ){ sl@0: assert( pOpen->pNext->pPrev==pOpen ); sl@0: pOpen->pNext->pPrev = pOpen->pPrev; sl@0: } sl@0: sqlite3_free(pOpen->aPending); sl@0: sqlite3_free(pOpen); sl@0: } sl@0: } sl@0: } sl@0: sl@0: #if SQLITE_ENABLE_LOCKING_STYLE sl@0: /* sl@0: ** Tests a byte-range locking query to see if byte range locks are sl@0: ** supported, if not we fall back to dotlockLockingStyle. sl@0: */ sl@0: static int testLockingStyle(int fd){ sl@0: struct flock lockInfo; sl@0: sl@0: /* Test byte-range lock using fcntl(). If the call succeeds, sl@0: ** assume that the file-system supports POSIX style locks. sl@0: */ sl@0: lockInfo.l_len = 1; sl@0: lockInfo.l_start = 0; sl@0: lockInfo.l_whence = SEEK_SET; sl@0: lockInfo.l_type = F_RDLCK; sl@0: if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) { sl@0: return LOCKING_STYLE_POSIX; sl@0: } sl@0: sl@0: /* Testing for flock() can give false positives. So if if the above sl@0: ** test fails, then we fall back to using dot-file style locking. sl@0: */ sl@0: return LOCKING_STYLE_DOTFILE; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** If SQLITE_ENABLE_LOCKING_STYLE is defined, this function Examines the sl@0: ** f_fstypename entry in the statfs structure as returned by stat() for sl@0: ** the file system hosting the database file and selects the appropriate sl@0: ** locking style based on its value. These values and assignments are sl@0: ** based on Darwin/OSX behavior and have not been thoroughly tested on sl@0: ** other systems. sl@0: ** sl@0: ** If SQLITE_ENABLE_LOCKING_STYLE is not defined, this function always sl@0: ** returns LOCKING_STYLE_POSIX. sl@0: */ sl@0: static int detectLockingStyle( sl@0: sqlite3_vfs *pVfs, sl@0: const char *filePath, sl@0: int fd sl@0: ){ sl@0: #if SQLITE_ENABLE_LOCKING_STYLE sl@0: struct Mapping { sl@0: const char *zFilesystem; sl@0: int eLockingStyle; sl@0: } aMap[] = { sl@0: { "hfs", LOCKING_STYLE_POSIX }, sl@0: { "ufs", LOCKING_STYLE_POSIX }, sl@0: { "afpfs", LOCKING_STYLE_AFP }, sl@0: #ifdef SQLITE_ENABLE_AFP_LOCKING_SMB sl@0: { "smbfs", LOCKING_STYLE_AFP }, sl@0: #else sl@0: { "smbfs", LOCKING_STYLE_FLOCK }, sl@0: #endif sl@0: { "msdos", LOCKING_STYLE_DOTFILE }, sl@0: { "webdav", LOCKING_STYLE_NONE }, sl@0: { 0, 0 } sl@0: }; sl@0: int i; sl@0: struct statfs fsInfo; sl@0: sl@0: if( !filePath ){ sl@0: return LOCKING_STYLE_NONE; sl@0: } sl@0: if( pVfs->pAppData ){ sl@0: return SQLITE_PTR_TO_INT(pVfs->pAppData); sl@0: } sl@0: sl@0: if( statfs(filePath, &fsInfo) != -1 ){ sl@0: if( fsInfo.f_flags & MNT_RDONLY ){ sl@0: return LOCKING_STYLE_NONE; sl@0: } sl@0: for(i=0; aMap[i].zFilesystem; i++){ sl@0: if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ sl@0: return aMap[i].eLockingStyle; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Default case. Handles, amongst others, "nfs". */ sl@0: return testLockingStyle(fd); sl@0: #endif sl@0: return LOCKING_STYLE_POSIX; sl@0: } sl@0: sl@0: /* sl@0: ** Given a file descriptor, locate lockInfo and openCnt structures that sl@0: ** describes that file descriptor. Create new ones if necessary. The sl@0: ** return values might be uninitialized if an error occurs. sl@0: ** sl@0: ** Return an appropriate error code. sl@0: */ sl@0: static int findLockInfo( sl@0: int fd, /* The file descriptor used in the key */ sl@0: struct lockInfo **ppLock, /* Return the lockInfo structure here */ sl@0: struct openCnt **ppOpen /* Return the openCnt structure here */ sl@0: ){ sl@0: int rc; sl@0: struct lockKey key1; sl@0: struct openKey key2; sl@0: struct stat statbuf; sl@0: struct lockInfo *pLock; sl@0: struct openCnt *pOpen; sl@0: rc = fstat(fd, &statbuf); sl@0: if( rc!=0 ){ sl@0: #ifdef EOVERFLOW sl@0: if( errno==EOVERFLOW ) return SQLITE_NOLFS; sl@0: #endif sl@0: return SQLITE_IOERR; sl@0: } sl@0: sl@0: /* On OS X on an msdos filesystem, the inode number is reported sl@0: ** incorrectly for zero-size files. See ticket #3260. To work sl@0: ** around this problem (we consider it a bug in OS X, not SQLite) sl@0: ** we always increase the file size to 1 by writing a single byte sl@0: ** prior to accessing the inode number. The one byte written is sl@0: ** an ASCII 'S' character which also happens to be the first byte sl@0: ** in the header of every SQLite database. In this way, if there sl@0: ** is a race condition such that another thread has already populated sl@0: ** the first page of the database, no damage is done. sl@0: */ sl@0: if( statbuf.st_size==0 ){ sl@0: write(fd, "S", 1); sl@0: rc = fstat(fd, &statbuf); sl@0: if( rc!=0 ){ sl@0: return SQLITE_IOERR; sl@0: } sl@0: } sl@0: sl@0: memset(&key1, 0, sizeof(key1)); sl@0: key1.dev = statbuf.st_dev; sl@0: key1.ino = statbuf.st_ino; sl@0: #if SQLITE_THREADSAFE sl@0: if( threadsOverrideEachOthersLocks<0 ){ sl@0: testThreadLockingBehavior(fd); sl@0: } sl@0: key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self(); sl@0: #endif sl@0: memset(&key2, 0, sizeof(key2)); sl@0: key2.dev = statbuf.st_dev; sl@0: key2.ino = statbuf.st_ino; sl@0: pLock = lockList; sl@0: while( pLock && memcmp(&key1, &pLock->key, sizeof(key1)) ){ sl@0: pLock = pLock->pNext; sl@0: } sl@0: if( pLock==0 ){ sl@0: pLock = sqlite3_malloc( sizeof(*pLock) ); sl@0: if( pLock==0 ){ sl@0: rc = SQLITE_NOMEM; sl@0: goto exit_findlockinfo; sl@0: } sl@0: pLock->key = key1; sl@0: pLock->nRef = 1; sl@0: pLock->cnt = 0; sl@0: pLock->locktype = 0; sl@0: pLock->pNext = lockList; sl@0: pLock->pPrev = 0; sl@0: if( lockList ) lockList->pPrev = pLock; sl@0: lockList = pLock; sl@0: }else{ sl@0: pLock->nRef++; sl@0: } sl@0: *ppLock = pLock; sl@0: if( ppOpen!=0 ){ sl@0: pOpen = openList; sl@0: while( pOpen && memcmp(&key2, &pOpen->key, sizeof(key2)) ){ sl@0: pOpen = pOpen->pNext; sl@0: } sl@0: if( pOpen==0 ){ sl@0: pOpen = sqlite3_malloc( sizeof(*pOpen) ); sl@0: if( pOpen==0 ){ sl@0: releaseLockInfo(pLock); sl@0: rc = SQLITE_NOMEM; sl@0: goto exit_findlockinfo; sl@0: } sl@0: pOpen->key = key2; sl@0: pOpen->nRef = 1; sl@0: pOpen->nLock = 0; sl@0: pOpen->nPending = 0; sl@0: pOpen->aPending = 0; sl@0: pOpen->pNext = openList; sl@0: pOpen->pPrev = 0; sl@0: if( openList ) openList->pPrev = pOpen; sl@0: openList = pOpen; sl@0: }else{ sl@0: pOpen->nRef++; sl@0: } sl@0: *ppOpen = pOpen; sl@0: } sl@0: sl@0: exit_findlockinfo: sl@0: return rc; sl@0: } sl@0: sl@0: #ifdef SQLITE_DEBUG sl@0: /* sl@0: ** Helper function for printing out trace information from debugging sl@0: ** binaries. This returns the string represetation of the supplied sl@0: ** integer lock-type. sl@0: */ sl@0: static const char *locktypeName(int locktype){ sl@0: switch( locktype ){ sl@0: case NO_LOCK: return "NONE"; sl@0: case SHARED_LOCK: return "SHARED"; sl@0: case RESERVED_LOCK: return "RESERVED"; sl@0: case PENDING_LOCK: return "PENDING"; sl@0: case EXCLUSIVE_LOCK: return "EXCLUSIVE"; sl@0: } sl@0: return "ERROR"; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** If we are currently in a different thread than the thread that the sl@0: ** unixFile argument belongs to, then transfer ownership of the unixFile sl@0: ** over to the current thread. sl@0: ** sl@0: ** A unixFile is only owned by a thread on systems where one thread is sl@0: ** unable to override locks created by a different thread. RedHat9 is sl@0: ** an example of such a system. sl@0: ** sl@0: ** Ownership transfer is only allowed if the unixFile is currently unlocked. sl@0: ** If the unixFile is locked and an ownership is wrong, then return sl@0: ** SQLITE_MISUSE. SQLITE_OK is returned if everything works. sl@0: */ sl@0: #if SQLITE_THREADSAFE sl@0: static int transferOwnership(unixFile *pFile){ sl@0: int rc; sl@0: pthread_t hSelf; sl@0: if( threadsOverrideEachOthersLocks ){ sl@0: /* Ownership transfers not needed on this system */ sl@0: return SQLITE_OK; sl@0: } sl@0: hSelf = pthread_self(); sl@0: if( pthread_equal(pFile->tid, hSelf) ){ sl@0: /* We are still in the same thread */ sl@0: OSTRACE1("No-transfer, same thread\n"); sl@0: return SQLITE_OK; sl@0: } sl@0: if( pFile->locktype!=NO_LOCK ){ sl@0: /* We cannot change ownership while we are holding a lock! */ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: OSTRACE4("Transfer ownership of %d from %d to %d\n", sl@0: pFile->h, pFile->tid, hSelf); sl@0: pFile->tid = hSelf; sl@0: if (pFile->pLock != NULL) { sl@0: releaseLockInfo(pFile->pLock); sl@0: rc = findLockInfo(pFile->h, &pFile->pLock, 0); sl@0: OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h, sl@0: locktypeName(pFile->locktype), sl@0: locktypeName(pFile->pLock->locktype), pFile->pLock->cnt); sl@0: return rc; sl@0: } else { sl@0: return SQLITE_OK; sl@0: } sl@0: } sl@0: #else sl@0: /* On single-threaded builds, ownership transfer is a no-op */ sl@0: # define transferOwnership(X) SQLITE_OK sl@0: #endif sl@0: sl@0: /* sl@0: ** Seek to the offset passed as the second argument, then read cnt sl@0: ** bytes into pBuf. Return the number of bytes actually read. sl@0: ** sl@0: ** NB: If you define USE_PREAD or USE_PREAD64, then it might also sl@0: ** be necessary to define _XOPEN_SOURCE to be 500. This varies from sl@0: ** one system to another. Since SQLite does not define USE_PREAD sl@0: ** any any form by default, we will not attempt to define _XOPEN_SOURCE. sl@0: ** See tickets #2741 and #2681. sl@0: */ sl@0: static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ sl@0: int got; sl@0: i64 newOffset; sl@0: TIMER_START; sl@0: #if defined(USE_PREAD) sl@0: got = pread(id->h, pBuf, cnt, offset); sl@0: SimulateIOError( got = -1 ); sl@0: #elif defined(USE_PREAD64) sl@0: got = pread64(id->h, pBuf, cnt, offset); sl@0: SimulateIOError( got = -1 ); sl@0: #else sl@0: newOffset = lseek(id->h, offset, SEEK_SET); sl@0: SimulateIOError( newOffset-- ); sl@0: if( newOffset!=offset ){ sl@0: return -1; sl@0: } sl@0: got = read(id->h, pBuf, cnt); sl@0: #endif sl@0: TIMER_END; sl@0: OSTRACE5("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED); sl@0: return got; sl@0: } sl@0: sl@0: /* sl@0: ** Read data from a file into a buffer. Return SQLITE_OK if all sl@0: ** bytes were read successfully and SQLITE_IOERR if anything goes sl@0: ** wrong. sl@0: */ sl@0: static int unixRead( sl@0: sqlite3_file *id, sl@0: void *pBuf, sl@0: int amt, sl@0: sqlite3_int64 offset sl@0: ){ sl@0: int got; sl@0: assert( id ); sl@0: got = seekAndRead((unixFile*)id, offset, pBuf, amt); sl@0: if( got==amt ){ sl@0: return SQLITE_OK; sl@0: }else if( got<0 ){ sl@0: return SQLITE_IOERR_READ; sl@0: }else{ sl@0: memset(&((char*)pBuf)[got], 0, amt-got); sl@0: return SQLITE_IOERR_SHORT_READ; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Seek to the offset in id->offset then read cnt bytes into pBuf. sl@0: ** Return the number of bytes actually read. Update the offset. sl@0: */ sl@0: static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ sl@0: int got; sl@0: i64 newOffset; sl@0: TIMER_START; sl@0: #if defined(USE_PREAD) sl@0: got = pwrite(id->h, pBuf, cnt, offset); sl@0: #elif defined(USE_PREAD64) sl@0: got = pwrite64(id->h, pBuf, cnt, offset); sl@0: #else sl@0: newOffset = lseek(id->h, offset, SEEK_SET); sl@0: if( newOffset!=offset ){ sl@0: return -1; sl@0: } sl@0: got = write(id->h, pBuf, cnt); sl@0: #endif sl@0: TIMER_END; sl@0: OSTRACE5("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED); sl@0: return got; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Write data from a buffer into a file. Return SQLITE_OK on success sl@0: ** or some other error code on failure. sl@0: */ sl@0: static int unixWrite( sl@0: sqlite3_file *id, sl@0: const void *pBuf, sl@0: int amt, sl@0: sqlite3_int64 offset sl@0: ){ sl@0: int wrote = 0; sl@0: assert( id ); sl@0: assert( amt>0 ); sl@0: while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){ sl@0: amt -= wrote; sl@0: offset += wrote; sl@0: pBuf = &((char*)pBuf)[wrote]; sl@0: } sl@0: SimulateIOError(( wrote=(-1), amt=1 )); sl@0: SimulateDiskfullError(( wrote=0, amt=1 )); sl@0: if( amt>0 ){ sl@0: if( wrote<0 ){ sl@0: return SQLITE_IOERR_WRITE; sl@0: }else{ sl@0: return SQLITE_FULL; sl@0: } sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: #ifdef SQLITE_TEST sl@0: /* sl@0: ** Count the number of fullsyncs and normal syncs. This is used to test sl@0: ** that syncs and fullsyncs are occuring at the right times. sl@0: */ sl@0: int sqlite3_sync_count = 0; sl@0: int sqlite3_fullsync_count = 0; sl@0: #endif sl@0: sl@0: /* sl@0: ** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined. sl@0: ** Otherwise use fsync() in its place. sl@0: */ sl@0: #ifndef HAVE_FDATASYNC sl@0: # define fdatasync fsync sl@0: #endif sl@0: sl@0: /* sl@0: ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not sl@0: ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently sl@0: ** only available on Mac OS X. But that could change. sl@0: */ sl@0: #ifdef F_FULLFSYNC sl@0: # define HAVE_FULLFSYNC 1 sl@0: #else sl@0: # define HAVE_FULLFSYNC 0 sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** The fsync() system call does not work as advertised on many sl@0: ** unix systems. The following procedure is an attempt to make sl@0: ** it work better. sl@0: ** sl@0: ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful sl@0: ** for testing when we want to run through the test suite quickly. sl@0: ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC sl@0: ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash sl@0: ** or power failure will likely corrupt the database file. sl@0: */ sl@0: static int full_fsync(int fd, int fullSync, int dataOnly){ sl@0: int rc; sl@0: sl@0: /* Record the number of times that we do a normal fsync() and sl@0: ** FULLSYNC. This is used during testing to verify that this procedure sl@0: ** gets called with the correct arguments. sl@0: */ sl@0: #ifdef SQLITE_TEST sl@0: if( fullSync ) sqlite3_fullsync_count++; sl@0: sqlite3_sync_count++; sl@0: #endif sl@0: sl@0: /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a sl@0: ** no-op sl@0: */ sl@0: #ifdef SQLITE_NO_SYNC sl@0: rc = SQLITE_OK; sl@0: #else sl@0: sl@0: #if HAVE_FULLFSYNC sl@0: if( fullSync ){ sl@0: rc = fcntl(fd, F_FULLFSYNC, 0); sl@0: }else{ sl@0: rc = 1; sl@0: } sl@0: /* If the FULLFSYNC failed, fall back to attempting an fsync(). sl@0: * It shouldn't be possible for fullfsync to fail on the local sl@0: * file system (on OSX), so failure indicates that FULLFSYNC sl@0: * isn't supported for this file system. So, attempt an fsync sl@0: * and (for now) ignore the overhead of a superfluous fcntl call. sl@0: * It'd be better to detect fullfsync support once and avoid sl@0: * the fcntl call every time sync is called. sl@0: */ sl@0: if( rc ) rc = fsync(fd); sl@0: sl@0: #else sl@0: if( dataOnly ){ sl@0: rc = fdatasync(fd); sl@0: }else{ sl@0: rc = fsync(fd); sl@0: } sl@0: #endif /* HAVE_FULLFSYNC */ sl@0: #endif /* defined(SQLITE_NO_SYNC) */ sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Make sure all writes to a particular file are committed to disk. sl@0: ** sl@0: ** If dataOnly==0 then both the file itself and its metadata (file sl@0: ** size, access time, etc) are synced. If dataOnly!=0 then only the sl@0: ** file data is synced. sl@0: ** sl@0: ** Under Unix, also make sure that the directory entry for the file sl@0: ** has been created by fsync-ing the directory that contains the file. sl@0: ** If we do not do this and we encounter a power failure, the directory sl@0: ** entry for the journal might not exist after we reboot. The next sl@0: ** SQLite to access the file will not know that the journal exists (because sl@0: ** the directory entry for the journal was never created) and the transaction sl@0: ** will not roll back - possibly leading to database corruption. sl@0: */ sl@0: static int unixSync(sqlite3_file *id, int flags){ sl@0: int rc; sl@0: unixFile *pFile = (unixFile*)id; sl@0: sl@0: int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); sl@0: int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; sl@0: sl@0: /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ sl@0: assert((flags&0x0F)==SQLITE_SYNC_NORMAL sl@0: || (flags&0x0F)==SQLITE_SYNC_FULL sl@0: ); sl@0: sl@0: /* Unix cannot, but some systems may return SQLITE_FULL from here. This sl@0: ** line is to test that doing so does not cause any problems. sl@0: */ sl@0: SimulateDiskfullError( return SQLITE_FULL ); sl@0: sl@0: assert( pFile ); sl@0: OSTRACE2("SYNC %-3d\n", pFile->h); sl@0: rc = full_fsync(pFile->h, isFullsync, isDataOnly); sl@0: SimulateIOError( rc=1 ); sl@0: if( rc ){ sl@0: return SQLITE_IOERR_FSYNC; sl@0: } sl@0: if( pFile->dirfd>=0 ){ sl@0: OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd, sl@0: HAVE_FULLFSYNC, isFullsync); sl@0: #ifndef SQLITE_DISABLE_DIRSYNC sl@0: /* The directory sync is only attempted if full_fsync is sl@0: ** turned off or unavailable. If a full_fsync occurred above, sl@0: ** then the directory sync is superfluous. sl@0: */ sl@0: if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){ sl@0: /* sl@0: ** We have received multiple reports of fsync() returning sl@0: ** errors when applied to directories on certain file systems. sl@0: ** A failed directory sync is not a big deal. So it seems sl@0: ** better to ignore the error. Ticket #1657 sl@0: */ sl@0: /* return SQLITE_IOERR; */ sl@0: } sl@0: #endif sl@0: close(pFile->dirfd); /* Only need to sync once, so close the directory */ sl@0: pFile->dirfd = -1; /* when we are done. */ sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Truncate an open file to a specified size sl@0: */ sl@0: static int unixTruncate(sqlite3_file *id, i64 nByte){ sl@0: int rc; sl@0: assert( id ); sl@0: SimulateIOError( return SQLITE_IOERR_TRUNCATE ); sl@0: rc = ftruncate(((unixFile*)id)->h, (off_t)nByte); sl@0: if( rc ){ sl@0: return SQLITE_IOERR_TRUNCATE; sl@0: }else{ sl@0: return SQLITE_OK; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Determine the current size of a file in bytes sl@0: */ sl@0: static int unixFileSize(sqlite3_file *id, i64 *pSize){ sl@0: int rc; sl@0: struct stat buf; sl@0: assert( id ); sl@0: rc = fstat(((unixFile*)id)->h, &buf); sl@0: SimulateIOError( rc=1 ); sl@0: if( rc!=0 ){ sl@0: return SQLITE_IOERR_FSTAT; sl@0: } sl@0: *pSize = buf.st_size; sl@0: sl@0: /* When opening a zero-size database, the findLockInfo() procedure sl@0: ** writes a single byte into that file in order to work around a bug sl@0: ** in the OS-X msdos filesystem. In order to avoid problems with upper sl@0: ** layers, we need to report this file size as zero even though it is sl@0: ** really 1. Ticket #3260. sl@0: */ sl@0: if( *pSize==1 ) *pSize = 0; sl@0: sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** This routine translates a standard POSIX errno code into something sl@0: ** useful to the clients of the sqlite3 functions. Specifically, it is sl@0: ** intended to translate a variety of "try again" errors into SQLITE_BUSY sl@0: ** and a variety of "please close the file descriptor NOW" errors into sl@0: ** SQLITE_IOERR sl@0: ** sl@0: ** Errors during initialization of locks, or file system support for locks, sl@0: ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. sl@0: */ sl@0: static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { sl@0: switch (posixError) { sl@0: case 0: sl@0: return SQLITE_OK; sl@0: sl@0: case EAGAIN: sl@0: case ETIMEDOUT: sl@0: case EBUSY: sl@0: case EINTR: sl@0: case ENOLCK: sl@0: /* random NFS retry error, unless during file system support sl@0: * introspection, in which it actually means what it says */ sl@0: return SQLITE_BUSY; sl@0: sl@0: case EACCES: sl@0: /* EACCES is like EAGAIN during locking operations, but not any other time*/ sl@0: if( (sqliteIOErr == SQLITE_IOERR_LOCK) || sl@0: (sqliteIOErr == SQLITE_IOERR_UNLOCK) || sl@0: (sqliteIOErr == SQLITE_IOERR_RDLOCK) || sl@0: (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ sl@0: return SQLITE_BUSY; sl@0: } sl@0: /* else fall through */ sl@0: case EPERM: sl@0: return SQLITE_PERM; sl@0: sl@0: case EDEADLK: sl@0: return SQLITE_IOERR_BLOCKED; sl@0: sl@0: #if EOPNOTSUPP!=ENOTSUP sl@0: case EOPNOTSUPP: sl@0: /* something went terribly awry, unless during file system support sl@0: * introspection, in which it actually means what it says */ sl@0: #endif sl@0: #ifdef ENOTSUP sl@0: case ENOTSUP: sl@0: /* invalid fd, unless during file system support introspection, in which sl@0: * it actually means what it says */ sl@0: #endif sl@0: case EIO: sl@0: case EBADF: sl@0: case EINVAL: sl@0: case ENOTCONN: sl@0: case ENODEV: sl@0: case ENXIO: sl@0: case ENOENT: sl@0: case ESTALE: sl@0: case ENOSYS: sl@0: /* these should force the client to close the file and reconnect */ sl@0: sl@0: default: sl@0: return sqliteIOErr; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This routine checks if there is a RESERVED lock held on the specified sl@0: ** file by this or any other process. If such a lock is held, set *pResOut sl@0: ** to a non-zero value otherwise *pResOut is set to zero. The return value sl@0: ** is set to SQLITE_OK unless an I/O error occurs during lock checking. sl@0: */ sl@0: static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ sl@0: int rc = SQLITE_OK; sl@0: int reserved = 0; sl@0: unixFile *pFile = (unixFile*)id; sl@0: sl@0: SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); sl@0: sl@0: assert( pFile ); sl@0: enterMutex(); /* Because pFile->pLock is shared across threads */ sl@0: sl@0: /* Check if a thread in this process holds such a lock */ sl@0: if( pFile->pLock->locktype>SHARED_LOCK ){ sl@0: reserved = 1; sl@0: } sl@0: sl@0: /* Otherwise see if some other process holds it. sl@0: */ sl@0: if( !reserved ){ sl@0: struct flock lock; sl@0: lock.l_whence = SEEK_SET; sl@0: lock.l_start = RESERVED_BYTE; sl@0: lock.l_len = 1; sl@0: lock.l_type = F_WRLCK; sl@0: if (-1 == fcntl(pFile->h, F_GETLK, &lock)) { sl@0: int tErrno = errno; sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); sl@0: pFile->lastErrno = tErrno; sl@0: } else if( lock.l_type!=F_UNLCK ){ sl@0: reserved = 1; sl@0: } sl@0: } sl@0: sl@0: leaveMutex(); sl@0: OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); sl@0: sl@0: *pResOut = reserved; sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Lock the file with the lock specified by parameter locktype - one sl@0: ** of the following: sl@0: ** sl@0: ** (1) SHARED_LOCK sl@0: ** (2) RESERVED_LOCK sl@0: ** (3) PENDING_LOCK sl@0: ** (4) EXCLUSIVE_LOCK sl@0: ** sl@0: ** Sometimes when requesting one lock state, additional lock states sl@0: ** are inserted in between. The locking might fail on one of the later sl@0: ** transitions leaving the lock state different from what it started but sl@0: ** still short of its goal. The following chart shows the allowed sl@0: ** transitions and the inserted intermediate states: sl@0: ** sl@0: ** UNLOCKED -> SHARED sl@0: ** SHARED -> RESERVED sl@0: ** SHARED -> (PENDING) -> EXCLUSIVE sl@0: ** RESERVED -> (PENDING) -> EXCLUSIVE sl@0: ** PENDING -> EXCLUSIVE sl@0: ** sl@0: ** This routine will only increase a lock. Use the sqlite3OsUnlock() sl@0: ** routine to lower a locking level. sl@0: */ sl@0: static int unixLock(sqlite3_file *id, int locktype){ sl@0: /* The following describes the implementation of the various locks and sl@0: ** lock transitions in terms of the POSIX advisory shared and exclusive sl@0: ** lock primitives (called read-locks and write-locks below, to avoid sl@0: ** confusion with SQLite lock names). The algorithms are complicated sl@0: ** slightly in order to be compatible with windows systems simultaneously sl@0: ** accessing the same database file, in case that is ever required. sl@0: ** sl@0: ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved sl@0: ** byte', each single bytes at well known offsets, and the 'shared byte sl@0: ** range', a range of 510 bytes at a well known offset. sl@0: ** sl@0: ** To obtain a SHARED lock, a read-lock is obtained on the 'pending sl@0: ** byte'. If this is successful, a random byte from the 'shared byte sl@0: ** range' is read-locked and the lock on the 'pending byte' released. sl@0: ** sl@0: ** A process may only obtain a RESERVED lock after it has a SHARED lock. sl@0: ** A RESERVED lock is implemented by grabbing a write-lock on the sl@0: ** 'reserved byte'. sl@0: ** sl@0: ** A process may only obtain a PENDING lock after it has obtained a sl@0: ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock sl@0: ** on the 'pending byte'. This ensures that no new SHARED locks can be sl@0: ** obtained, but existing SHARED locks are allowed to persist. A process sl@0: ** does not have to obtain a RESERVED lock on the way to a PENDING lock. sl@0: ** This property is used by the algorithm for rolling back a journal file sl@0: ** after a crash. sl@0: ** sl@0: ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is sl@0: ** implemented by obtaining a write-lock on the entire 'shared byte sl@0: ** range'. Since all other locks require a read-lock on one of the bytes sl@0: ** within this range, this ensures that no other locks are held on the sl@0: ** database. sl@0: ** sl@0: ** The reason a single byte cannot be used instead of the 'shared byte sl@0: ** range' is that some versions of windows do not support read-locks. By sl@0: ** locking a random byte from a range, concurrent SHARED locks may exist sl@0: ** even if the locking primitive used is always a write-lock. sl@0: */ sl@0: int rc = SQLITE_OK; sl@0: unixFile *pFile = (unixFile*)id; sl@0: struct lockInfo *pLock = pFile->pLock; sl@0: struct flock lock; sl@0: int s; sl@0: sl@0: assert( pFile ); sl@0: OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h, sl@0: locktypeName(locktype), locktypeName(pFile->locktype), sl@0: locktypeName(pLock->locktype), pLock->cnt , getpid()); sl@0: sl@0: /* If there is already a lock of this type or more restrictive on the sl@0: ** unixFile, do nothing. Don't use the end_lock: exit path, as sl@0: ** enterMutex() hasn't been called yet. sl@0: */ sl@0: if( pFile->locktype>=locktype ){ sl@0: OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, sl@0: locktypeName(locktype)); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Make sure the locking sequence is correct sl@0: */ sl@0: assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); sl@0: assert( locktype!=PENDING_LOCK ); sl@0: assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); sl@0: sl@0: /* This mutex is needed because pFile->pLock is shared across threads sl@0: */ sl@0: enterMutex(); sl@0: sl@0: /* Make sure the current thread owns the pFile. sl@0: */ sl@0: rc = transferOwnership(pFile); sl@0: if( rc!=SQLITE_OK ){ sl@0: leaveMutex(); sl@0: return rc; sl@0: } sl@0: pLock = pFile->pLock; sl@0: sl@0: /* If some thread using this PID has a lock via a different unixFile* sl@0: ** handle that precludes the requested lock, return BUSY. sl@0: */ sl@0: if( (pFile->locktype!=pLock->locktype && sl@0: (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK)) sl@0: ){ sl@0: rc = SQLITE_BUSY; sl@0: goto end_lock; sl@0: } sl@0: sl@0: /* If a SHARED lock is requested, and some thread using this PID already sl@0: ** has a SHARED or RESERVED lock, then increment reference counts and sl@0: ** return SQLITE_OK. sl@0: */ sl@0: if( locktype==SHARED_LOCK && sl@0: (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){ sl@0: assert( locktype==SHARED_LOCK ); sl@0: assert( pFile->locktype==0 ); sl@0: assert( pLock->cnt>0 ); sl@0: pFile->locktype = SHARED_LOCK; sl@0: pLock->cnt++; sl@0: pFile->pOpen->nLock++; sl@0: goto end_lock; sl@0: } sl@0: sl@0: lock.l_len = 1L; sl@0: sl@0: lock.l_whence = SEEK_SET; sl@0: sl@0: /* A PENDING lock is needed before acquiring a SHARED lock and before sl@0: ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will sl@0: ** be released. sl@0: */ sl@0: if( locktype==SHARED_LOCK sl@0: || (locktype==EXCLUSIVE_LOCK && pFile->locktypeh, F_SETLK, &lock); sl@0: if( s==(-1) ){ sl@0: int tErrno = errno; sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: goto end_lock; sl@0: } sl@0: } sl@0: sl@0: sl@0: /* If control gets to this point, then actually go ahead and make sl@0: ** operating system calls for the specified lock. sl@0: */ sl@0: if( locktype==SHARED_LOCK ){ sl@0: int tErrno = 0; sl@0: assert( pLock->cnt==0 ); sl@0: assert( pLock->locktype==0 ); sl@0: sl@0: /* Now get the read-lock */ sl@0: lock.l_start = SHARED_FIRST; sl@0: lock.l_len = SHARED_SIZE; sl@0: if( (s = fcntl(pFile->h, F_SETLK, &lock))==(-1) ){ sl@0: tErrno = errno; sl@0: } sl@0: /* Drop the temporary PENDING lock */ sl@0: lock.l_start = PENDING_BYTE; sl@0: lock.l_len = 1L; sl@0: lock.l_type = F_UNLCK; sl@0: if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){ sl@0: if( s != -1 ){ sl@0: /* This could happen with a network mount */ sl@0: tErrno = errno; sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: goto end_lock; sl@0: } sl@0: } sl@0: if( s==(-1) ){ sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: }else{ sl@0: pFile->locktype = SHARED_LOCK; sl@0: pFile->pOpen->nLock++; sl@0: pLock->cnt = 1; sl@0: } sl@0: }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){ sl@0: /* We are trying for an exclusive lock but another thread in this sl@0: ** same process is still holding a shared lock. */ sl@0: rc = SQLITE_BUSY; sl@0: }else{ sl@0: /* The request was for a RESERVED or EXCLUSIVE lock. It is sl@0: ** assumed that there is a SHARED or greater lock on the file sl@0: ** already. sl@0: */ sl@0: assert( 0!=pFile->locktype ); sl@0: lock.l_type = F_WRLCK; sl@0: switch( locktype ){ sl@0: case RESERVED_LOCK: sl@0: lock.l_start = RESERVED_BYTE; sl@0: break; sl@0: case EXCLUSIVE_LOCK: sl@0: lock.l_start = SHARED_FIRST; sl@0: lock.l_len = SHARED_SIZE; sl@0: break; sl@0: default: sl@0: assert(0); sl@0: } sl@0: s = fcntl(pFile->h, F_SETLK, &lock); sl@0: if( s==(-1) ){ sl@0: int tErrno = errno; sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: } sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: pFile->locktype = locktype; sl@0: pLock->locktype = locktype; sl@0: }else if( locktype==EXCLUSIVE_LOCK ){ sl@0: pFile->locktype = PENDING_LOCK; sl@0: pLock->locktype = PENDING_LOCK; sl@0: } sl@0: sl@0: end_lock: sl@0: leaveMutex(); sl@0: OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), sl@0: rc==SQLITE_OK ? "ok" : "failed"); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Lower the locking level on file descriptor pFile to locktype. locktype sl@0: ** must be either NO_LOCK or SHARED_LOCK. sl@0: ** sl@0: ** If the locking level of the file descriptor is already at or below sl@0: ** the requested locking level, this routine is a no-op. sl@0: */ sl@0: static int unixUnlock(sqlite3_file *id, int locktype){ sl@0: struct lockInfo *pLock; sl@0: struct flock lock; sl@0: int rc = SQLITE_OK; sl@0: unixFile *pFile = (unixFile*)id; sl@0: int h; sl@0: sl@0: assert( pFile ); sl@0: OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype, sl@0: pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid()); sl@0: sl@0: assert( locktype<=SHARED_LOCK ); sl@0: if( pFile->locktype<=locktype ){ sl@0: return SQLITE_OK; sl@0: } sl@0: if( CHECK_THREADID(pFile) ){ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: enterMutex(); sl@0: h = pFile->h; sl@0: pLock = pFile->pLock; sl@0: assert( pLock->cnt!=0 ); sl@0: if( pFile->locktype>SHARED_LOCK ){ sl@0: assert( pLock->locktype==pFile->locktype ); sl@0: SimulateIOErrorBenign(1); sl@0: SimulateIOError( h=(-1) ) sl@0: SimulateIOErrorBenign(0); sl@0: if( locktype==SHARED_LOCK ){ sl@0: lock.l_type = F_RDLCK; sl@0: lock.l_whence = SEEK_SET; sl@0: lock.l_start = SHARED_FIRST; sl@0: lock.l_len = SHARED_SIZE; sl@0: if( fcntl(h, F_SETLK, &lock)==(-1) ){ sl@0: int tErrno = errno; sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: goto end_unlock; sl@0: } sl@0: } sl@0: lock.l_type = F_UNLCK; sl@0: lock.l_whence = SEEK_SET; sl@0: lock.l_start = PENDING_BYTE; sl@0: lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); sl@0: if( fcntl(h, F_SETLK, &lock)!=(-1) ){ sl@0: pLock->locktype = SHARED_LOCK; sl@0: }else{ sl@0: int tErrno = errno; sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: goto end_unlock; sl@0: } sl@0: } sl@0: if( locktype==NO_LOCK ){ sl@0: struct openCnt *pOpen; sl@0: sl@0: /* Decrement the shared lock counter. Release the lock using an sl@0: ** OS call only when all threads in this same process have released sl@0: ** the lock. sl@0: */ sl@0: pLock->cnt--; sl@0: if( pLock->cnt==0 ){ sl@0: lock.l_type = F_UNLCK; sl@0: lock.l_whence = SEEK_SET; sl@0: lock.l_start = lock.l_len = 0L; sl@0: SimulateIOErrorBenign(1); sl@0: SimulateIOError( h=(-1) ) sl@0: SimulateIOErrorBenign(0); sl@0: if( fcntl(h, F_SETLK, &lock)!=(-1) ){ sl@0: pLock->locktype = NO_LOCK; sl@0: }else{ sl@0: int tErrno = errno; sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: pLock->cnt = 1; sl@0: goto end_unlock; sl@0: } sl@0: } sl@0: sl@0: /* Decrement the count of locks against this same file. When the sl@0: ** count reaches zero, close any other file descriptors whose close sl@0: ** was deferred because of outstanding locks. sl@0: */ sl@0: if( rc==SQLITE_OK ){ sl@0: pOpen = pFile->pOpen; sl@0: pOpen->nLock--; sl@0: assert( pOpen->nLock>=0 ); sl@0: if( pOpen->nLock==0 && pOpen->nPending>0 ){ sl@0: int i; sl@0: for(i=0; inPending; i++){ sl@0: close(pOpen->aPending[i]); sl@0: } sl@0: sqlite3_free(pOpen->aPending); sl@0: pOpen->nPending = 0; sl@0: pOpen->aPending = 0; sl@0: } sl@0: } sl@0: } sl@0: sl@0: end_unlock: sl@0: leaveMutex(); sl@0: if( rc==SQLITE_OK ) pFile->locktype = locktype; sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** This function performs the parts of the "close file" operation sl@0: ** common to all locking schemes. It closes the directory and file sl@0: ** handles, if they are valid, and sets all fields of the unixFile sl@0: ** structure to 0. sl@0: */ sl@0: static int closeUnixFile(sqlite3_file *id){ sl@0: unixFile *pFile = (unixFile*)id; sl@0: if( pFile ){ sl@0: if( pFile->dirfd>=0 ){ sl@0: close(pFile->dirfd); sl@0: } sl@0: if( pFile->h>=0 ){ sl@0: close(pFile->h); sl@0: } sl@0: OSTRACE2("CLOSE %-3d\n", pFile->h); sl@0: OpenCounter(-1); sl@0: memset(pFile, 0, sizeof(unixFile)); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Close a file. sl@0: */ sl@0: static int unixClose(sqlite3_file *id){ sl@0: if( id ){ sl@0: unixFile *pFile = (unixFile *)id; sl@0: unixUnlock(id, NO_LOCK); sl@0: enterMutex(); sl@0: if( pFile->pOpen && pFile->pOpen->nLock ){ sl@0: /* If there are outstanding locks, do not actually close the file just sl@0: ** yet because that would clear those locks. Instead, add the file sl@0: ** descriptor to pOpen->aPending. It will be automatically closed when sl@0: ** the last lock is cleared. sl@0: */ sl@0: int *aNew; sl@0: struct openCnt *pOpen = pFile->pOpen; sl@0: aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) ); sl@0: if( aNew==0 ){ sl@0: /* If a malloc fails, just leak the file descriptor */ sl@0: }else{ sl@0: pOpen->aPending = aNew; sl@0: pOpen->aPending[pOpen->nPending] = pFile->h; sl@0: pOpen->nPending++; sl@0: pFile->h = -1; sl@0: } sl@0: } sl@0: releaseLockInfo(pFile->pLock); sl@0: releaseOpenCnt(pFile->pOpen); sl@0: closeUnixFile(id); sl@0: leaveMutex(); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: sl@0: #if SQLITE_ENABLE_LOCKING_STYLE sl@0: #pragma mark AFP Support sl@0: sl@0: /* sl@0: ** The afpLockingContext structure contains all afp lock specific state sl@0: */ sl@0: typedef struct afpLockingContext afpLockingContext; sl@0: struct afpLockingContext { sl@0: unsigned long long sharedLockByte; sl@0: const char *filePath; sl@0: }; sl@0: sl@0: struct ByteRangeLockPB2 sl@0: { sl@0: unsigned long long offset; /* offset to first byte to lock */ sl@0: unsigned long long length; /* nbr of bytes to lock */ sl@0: unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ sl@0: unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ sl@0: unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ sl@0: int fd; /* file desc to assoc this lock with */ sl@0: }; sl@0: sl@0: #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) sl@0: sl@0: /* sl@0: ** Return SQLITE_OK on success, SQLITE_BUSY on failure. sl@0: */ sl@0: static int _AFPFSSetLock( sl@0: const char *path, sl@0: unixFile *pFile, sl@0: unsigned long long offset, sl@0: unsigned long long length, sl@0: int setLockFlag sl@0: ){ sl@0: struct ByteRangeLockPB2 pb; sl@0: int err; sl@0: sl@0: pb.unLockFlag = setLockFlag ? 0 : 1; sl@0: pb.startEndFlag = 0; sl@0: pb.offset = offset; sl@0: pb.length = length; sl@0: pb.fd = pFile->h; sl@0: OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n", sl@0: (setLockFlag?"ON":"OFF"), pFile->h, offset, length); sl@0: err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); sl@0: if ( err==-1 ) { sl@0: int rc; sl@0: int tErrno = errno; sl@0: OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, tErrno, strerror(tErrno)); sl@0: rc = sqliteErrorFromPosixError(tErrno, setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); /* error */ sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: return rc; sl@0: } else { sl@0: return SQLITE_OK; sl@0: } sl@0: } sl@0: sl@0: /* AFP-style reserved lock checking following the behavior of sl@0: ** unixCheckReservedLock, see the unixCheckReservedLock function comments */ sl@0: static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ sl@0: int rc = SQLITE_OK; sl@0: int reserved = 0; sl@0: unixFile *pFile = (unixFile*)id; sl@0: sl@0: SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); sl@0: sl@0: assert( pFile ); sl@0: afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; sl@0: sl@0: /* Check if a thread in this process holds such a lock */ sl@0: if( pFile->locktype>SHARED_LOCK ){ sl@0: reserved = 1; sl@0: } sl@0: sl@0: /* Otherwise see if some other process holds it. sl@0: */ sl@0: if( !reserved ){ sl@0: /* lock the RESERVED byte */ sl@0: int lrc = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1,1); sl@0: if( SQLITE_OK==lrc ){ sl@0: /* if we succeeded in taking the reserved lock, unlock it to restore sl@0: ** the original state */ sl@0: lrc = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1, 0); sl@0: } else { sl@0: /* if we failed to get the lock then someone else must have it */ sl@0: reserved = 1; sl@0: } sl@0: if( IS_LOCK_ERROR(lrc) ){ sl@0: rc=lrc; sl@0: } sl@0: } sl@0: sl@0: OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); sl@0: sl@0: *pResOut = reserved; sl@0: return rc; sl@0: } sl@0: sl@0: /* AFP-style locking following the behavior of unixLock, see the unixLock sl@0: ** function comments for details of lock management. */ sl@0: static int afpLock(sqlite3_file *id, int locktype){ sl@0: int rc = SQLITE_OK; sl@0: unixFile *pFile = (unixFile*)id; sl@0: afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; sl@0: sl@0: assert( pFile ); sl@0: OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h, sl@0: locktypeName(locktype), locktypeName(pFile->locktype), getpid()); sl@0: sl@0: /* If there is already a lock of this type or more restrictive on the sl@0: ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as sl@0: ** enterMutex() hasn't been called yet. sl@0: */ sl@0: if( pFile->locktype>=locktype ){ sl@0: OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, sl@0: locktypeName(locktype)); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Make sure the locking sequence is correct sl@0: */ sl@0: assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); sl@0: assert( locktype!=PENDING_LOCK ); sl@0: assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); sl@0: sl@0: /* This mutex is needed because pFile->pLock is shared across threads sl@0: */ sl@0: enterMutex(); sl@0: sl@0: /* Make sure the current thread owns the pFile. sl@0: */ sl@0: rc = transferOwnership(pFile); sl@0: if( rc!=SQLITE_OK ){ sl@0: leaveMutex(); sl@0: return rc; sl@0: } sl@0: sl@0: /* A PENDING lock is needed before acquiring a SHARED lock and before sl@0: ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will sl@0: ** be released. sl@0: */ sl@0: if( locktype==SHARED_LOCK sl@0: || (locktype==EXCLUSIVE_LOCK && pFile->locktypefilePath, pFile, PENDING_BYTE, 1, 1); sl@0: if (failed) { sl@0: rc = failed; sl@0: goto afp_end_lock; sl@0: } sl@0: } sl@0: sl@0: /* If control gets to this point, then actually go ahead and make sl@0: ** operating system calls for the specified lock. sl@0: */ sl@0: if( locktype==SHARED_LOCK ){ sl@0: int lk, lrc1, lrc2, lrc1Errno; sl@0: sl@0: /* Now get the read-lock SHARED_LOCK */ sl@0: /* note that the quality of the randomness doesn't matter that much */ sl@0: lk = random(); sl@0: context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1); sl@0: lrc1 = _AFPFSSetLock(context->filePath, pFile, sl@0: SHARED_FIRST+context->sharedLockByte, 1, 1); sl@0: if( IS_LOCK_ERROR(lrc1) ){ sl@0: lrc1Errno = pFile->lastErrno; sl@0: } sl@0: /* Drop the temporary PENDING lock */ sl@0: lrc2 = _AFPFSSetLock(context->filePath, pFile, PENDING_BYTE, 1, 0); sl@0: sl@0: if( IS_LOCK_ERROR(lrc1) ) { sl@0: pFile->lastErrno = lrc1Errno; sl@0: rc = lrc1; sl@0: goto afp_end_lock; sl@0: } else if( IS_LOCK_ERROR(lrc2) ){ sl@0: rc = lrc2; sl@0: goto afp_end_lock; sl@0: } else if( lrc1 != SQLITE_OK ) { sl@0: rc = lrc1; sl@0: } else { sl@0: pFile->locktype = SHARED_LOCK; sl@0: } sl@0: }else{ sl@0: /* The request was for a RESERVED or EXCLUSIVE lock. It is sl@0: ** assumed that there is a SHARED or greater lock on the file sl@0: ** already. sl@0: */ sl@0: int failed = 0; sl@0: assert( 0!=pFile->locktype ); sl@0: if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) { sl@0: /* Acquire a RESERVED lock */ sl@0: failed = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1,1); sl@0: } sl@0: if (!failed && locktype == EXCLUSIVE_LOCK) { sl@0: /* Acquire an EXCLUSIVE lock */ sl@0: sl@0: /* Remove the shared lock before trying the range. we'll need to sl@0: ** reestablish the shared lock if we can't get the afpUnlock sl@0: */ sl@0: if (!(failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST + sl@0: context->sharedLockByte, 1, 0))) { sl@0: /* now attemmpt to get the exclusive lock range */ sl@0: failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST, sl@0: SHARED_SIZE, 1); sl@0: if (failed && (failed = _AFPFSSetLock(context->filePath, pFile, sl@0: SHARED_FIRST + context->sharedLockByte, 1, 1))) { sl@0: rc = failed; sl@0: } sl@0: } else { sl@0: rc = failed; sl@0: } sl@0: } sl@0: if( failed ){ sl@0: rc = failed; sl@0: } sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: pFile->locktype = locktype; sl@0: }else if( locktype==EXCLUSIVE_LOCK ){ sl@0: pFile->locktype = PENDING_LOCK; sl@0: } sl@0: sl@0: afp_end_lock: sl@0: leaveMutex(); sl@0: OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), sl@0: rc==SQLITE_OK ? "ok" : "failed"); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Lower the locking level on file descriptor pFile to locktype. locktype sl@0: ** must be either NO_LOCK or SHARED_LOCK. sl@0: ** sl@0: ** If the locking level of the file descriptor is already at or below sl@0: ** the requested locking level, this routine is a no-op. sl@0: */ sl@0: static int afpUnlock(sqlite3_file *id, int locktype) { sl@0: int rc = SQLITE_OK; sl@0: unixFile *pFile = (unixFile*)id; sl@0: afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; sl@0: sl@0: assert( pFile ); sl@0: OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype, sl@0: pFile->locktype, getpid()); sl@0: sl@0: assert( locktype<=SHARED_LOCK ); sl@0: if( pFile->locktype<=locktype ){ sl@0: return SQLITE_OK; sl@0: } sl@0: if( CHECK_THREADID(pFile) ){ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: enterMutex(); sl@0: int failed = SQLITE_OK; sl@0: if( pFile->locktype>SHARED_LOCK ){ sl@0: if( locktype==SHARED_LOCK ){ sl@0: sl@0: /* unlock the exclusive range - then re-establish the shared lock */ sl@0: if (pFile->locktype==EXCLUSIVE_LOCK) { sl@0: failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST, sl@0: SHARED_SIZE, 0); sl@0: if (!failed) { sl@0: /* successfully removed the exclusive lock */ sl@0: if ((failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST+ sl@0: context->sharedLockByte, 1, 1))) { sl@0: /* failed to re-establish our shared lock */ sl@0: rc = failed; sl@0: } sl@0: } else { sl@0: rc = failed; sl@0: } sl@0: } sl@0: } sl@0: if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) { sl@0: if ((failed = _AFPFSSetLock(context->filePath, pFile, sl@0: PENDING_BYTE, 1, 0))){ sl@0: /* failed to release the pending lock */ sl@0: rc = failed; sl@0: } sl@0: } sl@0: if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) { sl@0: if ((failed = _AFPFSSetLock(context->filePath, pFile, sl@0: RESERVED_BYTE, 1, 0))) { sl@0: /* failed to release the reserved lock */ sl@0: rc = failed; sl@0: } sl@0: } sl@0: } sl@0: if( locktype==NO_LOCK ){ sl@0: int failed = _AFPFSSetLock(context->filePath, pFile, sl@0: SHARED_FIRST + context->sharedLockByte, 1, 0); sl@0: if (failed) { sl@0: rc = failed; sl@0: } sl@0: } sl@0: if (rc == SQLITE_OK) sl@0: pFile->locktype = locktype; sl@0: leaveMutex(); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Close a file & cleanup AFP specific locking context sl@0: */ sl@0: static int afpClose(sqlite3_file *id) { sl@0: if( id ){ sl@0: unixFile *pFile = (unixFile*)id; sl@0: afpUnlock(id, NO_LOCK); sl@0: sqlite3_free(pFile->lockingContext); sl@0: } sl@0: return closeUnixFile(id); sl@0: } sl@0: sl@0: sl@0: #pragma mark flock() style locking sl@0: sl@0: /* sl@0: ** The flockLockingContext is not used sl@0: */ sl@0: typedef void flockLockingContext; sl@0: sl@0: /* flock-style reserved lock checking following the behavior of sl@0: ** unixCheckReservedLock, see the unixCheckReservedLock function comments */ sl@0: static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ sl@0: int rc = SQLITE_OK; sl@0: int reserved = 0; sl@0: unixFile *pFile = (unixFile*)id; sl@0: sl@0: SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); sl@0: sl@0: assert( pFile ); sl@0: sl@0: /* Check if a thread in this process holds such a lock */ sl@0: if( pFile->locktype>SHARED_LOCK ){ sl@0: reserved = 1; sl@0: } sl@0: sl@0: /* Otherwise see if some other process holds it. */ sl@0: if( !reserved ){ sl@0: /* attempt to get the lock */ sl@0: int lrc = flock(pFile->h, LOCK_EX | LOCK_NB); sl@0: if( !lrc ){ sl@0: /* got the lock, unlock it */ sl@0: lrc = flock(pFile->h, LOCK_UN); sl@0: if ( lrc ) { sl@0: int tErrno = errno; sl@0: /* unlock failed with an error */ sl@0: lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); sl@0: if( IS_LOCK_ERROR(lrc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: rc = lrc; sl@0: } sl@0: } sl@0: } else { sl@0: int tErrno = errno; sl@0: reserved = 1; sl@0: /* someone else might have it reserved */ sl@0: lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); sl@0: if( IS_LOCK_ERROR(lrc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: rc = lrc; sl@0: } sl@0: } sl@0: } sl@0: OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); sl@0: sl@0: *pResOut = reserved; sl@0: return rc; sl@0: } sl@0: sl@0: static int flockLock(sqlite3_file *id, int locktype) { sl@0: int rc = SQLITE_OK; sl@0: unixFile *pFile = (unixFile*)id; sl@0: sl@0: assert( pFile ); sl@0: sl@0: /* if we already have a lock, it is exclusive. sl@0: ** Just adjust level and punt on outta here. */ sl@0: if (pFile->locktype > NO_LOCK) { sl@0: pFile->locktype = locktype; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* grab an exclusive lock */ sl@0: sl@0: if (flock(pFile->h, LOCK_EX | LOCK_NB)) { sl@0: int tErrno = errno; sl@0: /* didn't get, must be busy */ sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: } else { sl@0: /* got it, set the type and return ok */ sl@0: pFile->locktype = locktype; sl@0: } sl@0: OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), sl@0: rc==SQLITE_OK ? "ok" : "failed"); sl@0: return rc; sl@0: } sl@0: sl@0: static int flockUnlock(sqlite3_file *id, int locktype) { sl@0: unixFile *pFile = (unixFile*)id; sl@0: sl@0: assert( pFile ); sl@0: OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype, sl@0: pFile->locktype, getpid()); sl@0: assert( locktype<=SHARED_LOCK ); sl@0: sl@0: /* no-op if possible */ sl@0: if( pFile->locktype==locktype ){ sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* shared can just be set because we always have an exclusive */ sl@0: if (locktype==SHARED_LOCK) { sl@0: pFile->locktype = locktype; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* no, really, unlock. */ sl@0: int rc = flock(pFile->h, LOCK_UN); sl@0: if (rc) { sl@0: int r, tErrno = errno; sl@0: r = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); sl@0: if( IS_LOCK_ERROR(r) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: return r; sl@0: } else { sl@0: pFile->locktype = NO_LOCK; sl@0: return SQLITE_OK; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Close a file. sl@0: */ sl@0: static int flockClose(sqlite3_file *id) { sl@0: if( id ){ sl@0: flockUnlock(id, NO_LOCK); sl@0: } sl@0: return closeUnixFile(id); sl@0: } sl@0: sl@0: #pragma mark Old-School .lock file based locking sl@0: sl@0: /* Dotlock-style reserved lock checking following the behavior of sl@0: ** unixCheckReservedLock, see the unixCheckReservedLock function comments */ sl@0: static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { sl@0: int rc = SQLITE_OK; sl@0: int reserved = 0; sl@0: unixFile *pFile = (unixFile*)id; sl@0: sl@0: SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); sl@0: sl@0: assert( pFile ); sl@0: sl@0: /* Check if a thread in this process holds such a lock */ sl@0: if( pFile->locktype>SHARED_LOCK ){ sl@0: reserved = 1; sl@0: } sl@0: sl@0: /* Otherwise see if some other process holds it. */ sl@0: if( !reserved ){ sl@0: char *zLockFile = (char *)pFile->lockingContext; sl@0: struct stat statBuf; sl@0: sl@0: if( lstat(zLockFile, &statBuf)==0 ){ sl@0: /* file exists, someone else has the lock */ sl@0: reserved = 1; sl@0: }else{ sl@0: /* file does not exist, we could have it if we want it */ sl@0: int tErrno = errno; sl@0: if( ENOENT != tErrno ){ sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: } sl@0: } sl@0: OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); sl@0: sl@0: *pResOut = reserved; sl@0: return rc; sl@0: } sl@0: sl@0: static int dotlockLock(sqlite3_file *id, int locktype) { sl@0: unixFile *pFile = (unixFile*)id; sl@0: int fd; sl@0: char *zLockFile = (char *)pFile->lockingContext; sl@0: int rc=SQLITE_OK; sl@0: sl@0: /* if we already have a lock, it is exclusive. sl@0: ** Just adjust level and punt on outta here. */ sl@0: if (pFile->locktype > NO_LOCK) { sl@0: pFile->locktype = locktype; sl@0: sl@0: /* Always update the timestamp on the old file */ sl@0: utimes(zLockFile, NULL); sl@0: rc = SQLITE_OK; sl@0: goto dotlock_end_lock; sl@0: } sl@0: sl@0: /* check to see if lock file already exists */ sl@0: struct stat statBuf; sl@0: if (lstat(zLockFile,&statBuf) == 0){ sl@0: rc = SQLITE_BUSY; /* it does, busy */ sl@0: goto dotlock_end_lock; sl@0: } sl@0: sl@0: /* grab an exclusive lock */ sl@0: fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600); sl@0: if( fd<0 ){ sl@0: /* failed to open/create the file, someone else may have stolen the lock */ sl@0: int tErrno = errno; sl@0: if( EEXIST == tErrno ){ sl@0: rc = SQLITE_BUSY; sl@0: } else { sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: } sl@0: goto dotlock_end_lock; sl@0: } sl@0: close(fd); sl@0: sl@0: /* got it, set the type and return ok */ sl@0: pFile->locktype = locktype; sl@0: sl@0: dotlock_end_lock: sl@0: return rc; sl@0: } sl@0: sl@0: static int dotlockUnlock(sqlite3_file *id, int locktype) { sl@0: unixFile *pFile = (unixFile*)id; sl@0: char *zLockFile = (char *)pFile->lockingContext; sl@0: sl@0: assert( pFile ); sl@0: OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype, sl@0: pFile->locktype, getpid()); sl@0: assert( locktype<=SHARED_LOCK ); sl@0: sl@0: /* no-op if possible */ sl@0: if( pFile->locktype==locktype ){ sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* shared can just be set because we always have an exclusive */ sl@0: if (locktype==SHARED_LOCK) { sl@0: pFile->locktype = locktype; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* no, really, unlock. */ sl@0: if (unlink(zLockFile) ) { sl@0: int rc, tErrno = errno; sl@0: if( ENOENT != tErrno ){ sl@0: rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); sl@0: } sl@0: if( IS_LOCK_ERROR(rc) ){ sl@0: pFile->lastErrno = tErrno; sl@0: } sl@0: return rc; sl@0: } sl@0: pFile->locktype = NO_LOCK; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Close a file. sl@0: */ sl@0: static int dotlockClose(sqlite3_file *id) { sl@0: if( id ){ sl@0: unixFile *pFile = (unixFile*)id; sl@0: dotlockUnlock(id, NO_LOCK); sl@0: sqlite3_free(pFile->lockingContext); sl@0: } sl@0: return closeUnixFile(id); sl@0: } sl@0: sl@0: sl@0: #endif /* SQLITE_ENABLE_LOCKING_STYLE */ sl@0: sl@0: /* sl@0: ** The nolockLockingContext is void sl@0: */ sl@0: typedef void nolockLockingContext; sl@0: sl@0: static int nolockCheckReservedLock(sqlite3_file *id, int *pResOut) { sl@0: *pResOut = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int nolockLock(sqlite3_file *id, int locktype) { sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int nolockUnlock(sqlite3_file *id, int locktype) { sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Close a file. sl@0: */ sl@0: static int nolockClose(sqlite3_file *id) { sl@0: return closeUnixFile(id); sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Information and control of an open file handle. sl@0: */ sl@0: static int unixFileControl(sqlite3_file *id, int op, void *pArg){ sl@0: switch( op ){ sl@0: case SQLITE_FCNTL_LOCKSTATE: { sl@0: *(int*)pArg = ((unixFile*)id)->locktype; sl@0: return SQLITE_OK; sl@0: } sl@0: } sl@0: return SQLITE_ERROR; sl@0: } sl@0: sl@0: /* sl@0: ** Return the sector size in bytes of the underlying block device for sl@0: ** the specified file. This is almost always 512 bytes, but may be sl@0: ** larger for some devices. sl@0: ** sl@0: ** SQLite code assumes this function cannot fail. It also assumes that sl@0: ** if two files are created in the same file-system directory (i.e. sl@0: ** a database and its journal file) that the sector size will be the sl@0: ** same for both. sl@0: */ sl@0: static int unixSectorSize(sqlite3_file *id){ sl@0: return SQLITE_DEFAULT_SECTOR_SIZE; sl@0: } sl@0: sl@0: /* sl@0: ** Return the device characteristics for the file. This is always 0. sl@0: */ sl@0: static int unixDeviceCharacteristics(sqlite3_file *id){ sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Initialize the contents of the unixFile structure pointed to by pId. sl@0: ** sl@0: ** When locking extensions are enabled, the filepath and locking style sl@0: ** are needed to determine the unixFile pMethod to use for locking operations. sl@0: ** The locking-style specific lockingContext data structure is created sl@0: ** and assigned here also. sl@0: */ sl@0: static int fillInUnixFile( sl@0: sqlite3_vfs *pVfs, /* Pointer to vfs object */ sl@0: int h, /* Open file descriptor of file being opened */ sl@0: int dirfd, /* Directory file descriptor */ sl@0: sqlite3_file *pId, /* Write to the unixFile structure here */ sl@0: const char *zFilename, /* Name of the file being opened */ sl@0: int noLock /* Omit locking if true */ sl@0: ){ sl@0: int eLockingStyle; sl@0: unixFile *pNew = (unixFile *)pId; sl@0: int rc = SQLITE_OK; sl@0: sl@0: /* Macro to define the static contents of an sqlite3_io_methods sl@0: ** structure for a unix backend file. Different locking methods sl@0: ** require different functions for the xClose, xLock, xUnlock and sl@0: ** xCheckReservedLock methods. sl@0: */ sl@0: #define IOMETHODS(xClose, xLock, xUnlock, xCheckReservedLock) { \ sl@0: 1, /* iVersion */ \ sl@0: xClose, /* xClose */ \ sl@0: unixRead, /* xRead */ \ sl@0: unixWrite, /* xWrite */ \ sl@0: unixTruncate, /* xTruncate */ \ sl@0: unixSync, /* xSync */ \ sl@0: unixFileSize, /* xFileSize */ \ sl@0: xLock, /* xLock */ \ sl@0: xUnlock, /* xUnlock */ \ sl@0: xCheckReservedLock, /* xCheckReservedLock */ \ sl@0: unixFileControl, /* xFileControl */ \ sl@0: unixSectorSize, /* xSectorSize */ \ sl@0: unixDeviceCharacteristics /* xDeviceCapabilities */ \ sl@0: } sl@0: static sqlite3_io_methods aIoMethod[] = { sl@0: IOMETHODS(unixClose, unixLock, unixUnlock, unixCheckReservedLock) sl@0: ,IOMETHODS(nolockClose, nolockLock, nolockUnlock, nolockCheckReservedLock) sl@0: #if SQLITE_ENABLE_LOCKING_STYLE sl@0: ,IOMETHODS(dotlockClose, dotlockLock, dotlockUnlock,dotlockCheckReservedLock) sl@0: ,IOMETHODS(flockClose, flockLock, flockUnlock, flockCheckReservedLock) sl@0: ,IOMETHODS(afpClose, afpLock, afpUnlock, afpCheckReservedLock) sl@0: #endif sl@0: }; sl@0: /* The order of the IOMETHODS macros above is important. It must be the sl@0: ** same order as the LOCKING_STYLE numbers sl@0: */ sl@0: assert(LOCKING_STYLE_POSIX==1); sl@0: assert(LOCKING_STYLE_NONE==2); sl@0: assert(LOCKING_STYLE_DOTFILE==3); sl@0: assert(LOCKING_STYLE_FLOCK==4); sl@0: assert(LOCKING_STYLE_AFP==5); sl@0: sl@0: assert( pNew->pLock==NULL ); sl@0: assert( pNew->pOpen==NULL ); sl@0: sl@0: OSTRACE3("OPEN %-3d %s\n", h, zFilename); sl@0: pNew->h = h; sl@0: pNew->dirfd = dirfd; sl@0: SET_THREADID(pNew); sl@0: sl@0: if( noLock ){ sl@0: eLockingStyle = LOCKING_STYLE_NONE; sl@0: }else{ sl@0: eLockingStyle = detectLockingStyle(pVfs, zFilename, h); sl@0: } sl@0: sl@0: switch( eLockingStyle ){ sl@0: sl@0: case LOCKING_STYLE_POSIX: { sl@0: enterMutex(); sl@0: rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen); sl@0: leaveMutex(); sl@0: break; sl@0: } sl@0: sl@0: #if SQLITE_ENABLE_LOCKING_STYLE sl@0: case LOCKING_STYLE_AFP: { sl@0: /* AFP locking uses the file path so it needs to be included in sl@0: ** the afpLockingContext. sl@0: */ sl@0: afpLockingContext *pCtx; sl@0: pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) ); sl@0: if( pCtx==0 ){ sl@0: rc = SQLITE_NOMEM; sl@0: }else{ sl@0: /* NB: zFilename exists and remains valid until the file is closed sl@0: ** according to requirement F11141. So we do not need to make a sl@0: ** copy of the filename. */ sl@0: pCtx->filePath = zFilename; sl@0: srandomdev(); sl@0: } sl@0: break; sl@0: } sl@0: sl@0: case LOCKING_STYLE_DOTFILE: { sl@0: /* Dotfile locking uses the file path so it needs to be included in sl@0: ** the dotlockLockingContext sl@0: */ sl@0: char *zLockFile; sl@0: int nFilename; sl@0: nFilename = strlen(zFilename) + 6; sl@0: zLockFile = (char *)sqlite3_malloc(nFilename); sl@0: if( zLockFile==0 ){ sl@0: rc = SQLITE_NOMEM; sl@0: }else{ sl@0: sqlite3_snprintf(nFilename, zLockFile, "%s.lock", zFilename); sl@0: } sl@0: pNew->lockingContext = zLockFile; sl@0: break; sl@0: } sl@0: sl@0: case LOCKING_STYLE_FLOCK: sl@0: case LOCKING_STYLE_NONE: sl@0: break; sl@0: #endif sl@0: } sl@0: sl@0: pNew->lastErrno = 0; sl@0: if( rc!=SQLITE_OK ){ sl@0: if( dirfd>=0 ) close(dirfd); sl@0: close(h); sl@0: }else{ sl@0: pNew->pMethod = &aIoMethod[eLockingStyle-1]; sl@0: OpenCounter(+1); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Open a file descriptor to the directory containing file zFilename. sl@0: ** If successful, *pFd is set to the opened file descriptor and sl@0: ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM sl@0: ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined sl@0: ** value. sl@0: ** sl@0: ** If SQLITE_OK is returned, the caller is responsible for closing sl@0: ** the file descriptor *pFd using close(). sl@0: */ sl@0: static int openDirectory(const char *zFilename, int *pFd){ sl@0: int ii; sl@0: int fd = -1; sl@0: char zDirname[MAX_PATHNAME+1]; sl@0: sl@0: sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); sl@0: for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--); sl@0: if( ii>0 ){ sl@0: zDirname[ii] = '\0'; sl@0: fd = open(zDirname, O_RDONLY|O_BINARY, 0); sl@0: if( fd>=0 ){ sl@0: #ifdef FD_CLOEXEC sl@0: fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC); sl@0: #endif sl@0: OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname); sl@0: } sl@0: } sl@0: *pFd = fd; sl@0: return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN); sl@0: } sl@0: sl@0: /* sl@0: ** Create a temporary file name in zBuf. zBuf must be allocated sl@0: ** by the calling process and must be big enough to hold at least sl@0: ** pVfs->mxPathname bytes. sl@0: */ sl@0: static int getTempname(int nBuf, char *zBuf){ sl@0: static const char *azDirs[] = { sl@0: 0, sl@0: "/var/tmp", sl@0: "/usr/tmp", sl@0: "/tmp", sl@0: ".", sl@0: }; sl@0: static const unsigned char zChars[] = sl@0: "abcdefghijklmnopqrstuvwxyz" sl@0: "ABCDEFGHIJKLMNOPQRSTUVWXYZ" sl@0: "0123456789"; sl@0: int i, j; sl@0: struct stat buf; sl@0: const char *zDir = "."; sl@0: sl@0: /* It's odd to simulate an io-error here, but really this is just sl@0: ** using the io-error infrastructure to test that SQLite handles this sl@0: ** function failing. sl@0: */ sl@0: SimulateIOError( return SQLITE_IOERR ); sl@0: sl@0: azDirs[0] = sqlite3_temp_directory; sl@0: for(i=0; i= nBuf ){ sl@0: return SQLITE_ERROR; sl@0: } sl@0: sl@0: do{ sl@0: sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); sl@0: j = strlen(zBuf); sl@0: sqlite3_randomness(15, &zBuf[j]); sl@0: for(i=0; i<15; i++, j++){ sl@0: zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; sl@0: } sl@0: zBuf[j] = 0; sl@0: }while( access(zBuf,0)==0 ); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Open the file zPath. sl@0: ** sl@0: ** Previously, the SQLite OS layer used three functions in place of this sl@0: ** one: sl@0: ** sl@0: ** sqlite3OsOpenReadWrite(); sl@0: ** sqlite3OsOpenReadOnly(); sl@0: ** sqlite3OsOpenExclusive(); sl@0: ** sl@0: ** These calls correspond to the following combinations of flags: sl@0: ** sl@0: ** ReadWrite() -> (READWRITE | CREATE) sl@0: ** ReadOnly() -> (READONLY) sl@0: ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) sl@0: ** sl@0: ** The old OpenExclusive() accepted a boolean argument - "delFlag". If sl@0: ** true, the file was configured to be automatically deleted when the sl@0: ** file handle closed. To achieve the same effect using this new sl@0: ** interface, add the DELETEONCLOSE flag to those specified above for sl@0: ** OpenExclusive(). sl@0: */ sl@0: static int unixOpen( sl@0: sqlite3_vfs *pVfs, sl@0: const char *zPath, sl@0: sqlite3_file *pFile, sl@0: int flags, sl@0: int *pOutFlags sl@0: ){ sl@0: int fd = 0; /* File descriptor returned by open() */ sl@0: int dirfd = -1; /* Directory file descriptor */ sl@0: int oflags = 0; /* Flags to pass to open() */ sl@0: int eType = flags&0xFFFFFF00; /* Type of file to open */ sl@0: int noLock; /* True to omit locking primitives */ sl@0: sl@0: int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); sl@0: int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); sl@0: int isCreate = (flags & SQLITE_OPEN_CREATE); sl@0: int isReadonly = (flags & SQLITE_OPEN_READONLY); sl@0: int isReadWrite = (flags & SQLITE_OPEN_READWRITE); sl@0: sl@0: /* If creating a master or main-file journal, this function will open sl@0: ** a file-descriptor on the directory too. The first time unixSync() sl@0: ** is called the directory file descriptor will be fsync()ed and close()d. sl@0: */ sl@0: int isOpenDirectory = (isCreate && sl@0: (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL) sl@0: ); sl@0: sl@0: /* If argument zPath is a NULL pointer, this function is required to open sl@0: ** a temporary file. Use this buffer to store the file name in. sl@0: */ sl@0: char zTmpname[MAX_PATHNAME+1]; sl@0: const char *zName = zPath; sl@0: sl@0: /* Check the following statements are true: sl@0: ** sl@0: ** (a) Exactly one of the READWRITE and READONLY flags must be set, and sl@0: ** (b) if CREATE is set, then READWRITE must also be set, and sl@0: ** (c) if EXCLUSIVE is set, then CREATE must also be set. sl@0: ** (d) if DELETEONCLOSE is set, then CREATE must also be set. sl@0: */ sl@0: assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); sl@0: assert(isCreate==0 || isReadWrite); sl@0: assert(isExclusive==0 || isCreate); sl@0: assert(isDelete==0 || isCreate); sl@0: sl@0: /* The main DB, main journal, and master journal are never automatically sl@0: ** deleted sl@0: */ sl@0: assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete ); sl@0: assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete ); sl@0: assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete ); sl@0: sl@0: /* Assert that the upper layer has set one of the "file-type" flags. */ sl@0: assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB sl@0: || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL sl@0: || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL sl@0: || eType==SQLITE_OPEN_TRANSIENT_DB sl@0: ); sl@0: sl@0: memset(pFile, 0, sizeof(unixFile)); sl@0: sl@0: if( !zName ){ sl@0: int rc; sl@0: assert(isDelete && !isOpenDirectory); sl@0: rc = getTempname(MAX_PATHNAME+1, zTmpname); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: zName = zTmpname; sl@0: } sl@0: sl@0: if( isReadonly ) oflags |= O_RDONLY; sl@0: if( isReadWrite ) oflags |= O_RDWR; sl@0: if( isCreate ) oflags |= O_CREAT; sl@0: if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW); sl@0: oflags |= (O_LARGEFILE|O_BINARY); sl@0: sl@0: fd = open(zName, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS); sl@0: if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ sl@0: /* Failed to open the file for read/write access. Try read-only. */ sl@0: flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); sl@0: flags |= SQLITE_OPEN_READONLY; sl@0: return unixOpen(pVfs, zPath, pFile, flags, pOutFlags); sl@0: } sl@0: if( fd<0 ){ sl@0: return SQLITE_CANTOPEN; sl@0: } sl@0: if( isDelete ){ sl@0: unlink(zName); sl@0: } sl@0: if( pOutFlags ){ sl@0: *pOutFlags = flags; sl@0: } sl@0: sl@0: assert(fd!=0); sl@0: if( isOpenDirectory ){ sl@0: int rc = openDirectory(zPath, &dirfd); sl@0: if( rc!=SQLITE_OK ){ sl@0: close(fd); sl@0: return rc; sl@0: } sl@0: } sl@0: sl@0: #ifdef FD_CLOEXEC sl@0: fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC); sl@0: #endif sl@0: sl@0: noLock = eType!=SQLITE_OPEN_MAIN_DB; sl@0: return fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock); sl@0: } sl@0: sl@0: /* sl@0: ** Delete the file at zPath. If the dirSync argument is true, fsync() sl@0: ** the directory after deleting the file. sl@0: */ sl@0: static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ sl@0: int rc = SQLITE_OK; sl@0: SimulateIOError(return SQLITE_IOERR_DELETE); sl@0: unlink(zPath); sl@0: if( dirSync ){ sl@0: int fd; sl@0: rc = openDirectory(zPath, &fd); sl@0: if( rc==SQLITE_OK ){ sl@0: if( fsync(fd) ){ sl@0: rc = SQLITE_IOERR_DIR_FSYNC; sl@0: } sl@0: close(fd); sl@0: } sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Test the existance of or access permissions of file zPath. The sl@0: ** test performed depends on the value of flags: sl@0: ** sl@0: ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists sl@0: ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. sl@0: ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. sl@0: ** sl@0: ** Otherwise return 0. sl@0: */ sl@0: static int unixAccess( sl@0: sqlite3_vfs *pVfs, sl@0: const char *zPath, sl@0: int flags, sl@0: int *pResOut sl@0: ){ sl@0: int amode = 0; sl@0: SimulateIOError( return SQLITE_IOERR_ACCESS; ); sl@0: switch( flags ){ sl@0: case SQLITE_ACCESS_EXISTS: sl@0: amode = F_OK; sl@0: break; sl@0: case SQLITE_ACCESS_READWRITE: sl@0: amode = W_OK|R_OK; sl@0: break; sl@0: case SQLITE_ACCESS_READ: sl@0: amode = R_OK; sl@0: break; sl@0: sl@0: default: sl@0: assert(!"Invalid flags argument"); sl@0: } sl@0: *pResOut = (access(zPath, amode)==0); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Turn a relative pathname into a full pathname. The relative path sl@0: ** is stored as a nul-terminated string in the buffer pointed to by sl@0: ** zPath. sl@0: ** sl@0: ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes sl@0: ** (in this case, MAX_PATHNAME bytes). The full-path is written to sl@0: ** this buffer before returning. sl@0: */ sl@0: static int unixFullPathname( sl@0: sqlite3_vfs *pVfs, /* Pointer to vfs object */ sl@0: const char *zPath, /* Possibly relative input path */ sl@0: int nOut, /* Size of output buffer in bytes */ sl@0: char *zOut /* Output buffer */ sl@0: ){ sl@0: sl@0: /* It's odd to simulate an io-error here, but really this is just sl@0: ** using the io-error infrastructure to test that SQLite handles this sl@0: ** function failing. This function could fail if, for example, the sl@0: ** current working directly has been unlinked. sl@0: */ sl@0: SimulateIOError( return SQLITE_ERROR ); sl@0: sl@0: assert( pVfs->mxPathname==MAX_PATHNAME ); sl@0: zOut[nOut-1] = '\0'; sl@0: if( zPath[0]=='/' ){ sl@0: sqlite3_snprintf(nOut, zOut, "%s", zPath); sl@0: }else{ sl@0: int nCwd; sl@0: if( getcwd(zOut, nOut-1)==0 ){ sl@0: return SQLITE_CANTOPEN; sl@0: } sl@0: nCwd = strlen(zOut); sl@0: sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); sl@0: } sl@0: return SQLITE_OK; sl@0: sl@0: #if 0 sl@0: /* sl@0: ** Remove "/./" path elements and convert "/A/./" path elements sl@0: ** to just "/". sl@0: */ sl@0: if( zFull ){ sl@0: int i, j; sl@0: for(i=j=0; zFull[i]; i++){ sl@0: if( zFull[i]=='/' ){ sl@0: if( zFull[i+1]=='/' ) continue; sl@0: if( zFull[i+1]=='.' && zFull[i+2]=='/' ){ sl@0: i += 1; sl@0: continue; sl@0: } sl@0: if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){ sl@0: while( j>0 && zFull[j-1]!='/' ){ j--; } sl@0: i += 3; sl@0: continue; sl@0: } sl@0: } sl@0: zFull[j++] = zFull[i]; sl@0: } sl@0: zFull[j] = 0; sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_LOAD_EXTENSION sl@0: /* sl@0: ** Interfaces for opening a shared library, finding entry points sl@0: ** within the shared library, and closing the shared library. sl@0: */ sl@0: #include sl@0: static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ sl@0: return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); sl@0: } sl@0: sl@0: /* sl@0: ** SQLite calls this function immediately after a call to unixDlSym() or sl@0: ** unixDlOpen() fails (returns a null pointer). If a more detailed error sl@0: ** message is available, it is written to zBufOut. If no error message sl@0: ** is available, zBufOut is left unmodified and SQLite uses a default sl@0: ** error message. sl@0: */ sl@0: static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ sl@0: char *zErr; sl@0: enterMutex(); sl@0: zErr = dlerror(); sl@0: if( zErr ){ sl@0: sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); sl@0: } sl@0: leaveMutex(); sl@0: } sl@0: static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){ sl@0: return dlsym(pHandle, zSymbol); sl@0: } sl@0: static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){ sl@0: dlclose(pHandle); sl@0: } sl@0: #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ sl@0: #define unixDlOpen 0 sl@0: #define unixDlError 0 sl@0: #define unixDlSym 0 sl@0: #define unixDlClose 0 sl@0: #endif sl@0: sl@0: /* sl@0: ** Write nBuf bytes of random data to the supplied buffer zBuf. sl@0: */ sl@0: static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ sl@0: sl@0: assert(nBuf>=(sizeof(time_t)+sizeof(int))); sl@0: sl@0: /* We have to initialize zBuf to prevent valgrind from reporting sl@0: ** errors. The reports issued by valgrind are incorrect - we would sl@0: ** prefer that the randomness be increased by making use of the sl@0: ** uninitialized space in zBuf - but valgrind errors tend to worry sl@0: ** some users. Rather than argue, it seems easier just to initialize sl@0: ** the whole array and silence valgrind, even if that means less randomness sl@0: ** in the random seed. sl@0: ** sl@0: ** When testing, initializing zBuf[] to zero is all we do. That means sl@0: ** that we always use the same random number sequence. This makes the sl@0: ** tests repeatable. sl@0: */ sl@0: memset(zBuf, 0, nBuf); sl@0: #if !defined(SQLITE_TEST) sl@0: { sl@0: int pid, fd; sl@0: fd = open("/dev/urandom", O_RDONLY); sl@0: if( fd<0 ){ sl@0: time_t t; sl@0: time(&t); sl@0: memcpy(zBuf, &t, sizeof(t)); sl@0: pid = getpid(); sl@0: memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid)); sl@0: }else{ sl@0: read(fd, zBuf, nBuf); sl@0: close(fd); sl@0: } sl@0: } sl@0: #endif sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Sleep for a little while. Return the amount of time slept. sl@0: ** The argument is the number of microseconds we want to sleep. sl@0: ** The return value is the number of microseconds of sleep actually sl@0: ** requested from the underlying operating system, a number which sl@0: ** might be greater than or equal to the argument, but not less sl@0: ** than the argument. sl@0: */ sl@0: static int unixSleep(sqlite3_vfs *pVfs, int microseconds){ sl@0: #if defined(HAVE_USLEEP) && HAVE_USLEEP sl@0: usleep(microseconds); sl@0: return microseconds; sl@0: #else sl@0: int seconds = (microseconds+999999)/1000000; sl@0: sleep(seconds); sl@0: return seconds*1000000; sl@0: #endif sl@0: } sl@0: sl@0: /* sl@0: ** The following variable, if set to a non-zero value, becomes the result sl@0: ** returned from sqlite3OsCurrentTime(). This is used for testing. sl@0: */ sl@0: #ifdef SQLITE_TEST sl@0: int sqlite3_current_time = 0; sl@0: #endif sl@0: sl@0: /* sl@0: ** Find the current time (in Universal Coordinated Time). Write the sl@0: ** current time and date as a Julian Day number into *prNow and sl@0: ** return 0. Return 1 if the time and date cannot be found. sl@0: */ sl@0: static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){ sl@0: #ifdef NO_GETTOD sl@0: time_t t; sl@0: time(&t); sl@0: *prNow = t/86400.0 + 2440587.5; sl@0: #else sl@0: struct timeval sNow; sl@0: gettimeofday(&sNow, 0); sl@0: *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0; sl@0: #endif sl@0: #ifdef SQLITE_TEST sl@0: if( sqlite3_current_time ){ sl@0: *prNow = sqlite3_current_time/86400.0 + 2440587.5; sl@0: } sl@0: #endif sl@0: return 0; sl@0: } sl@0: sl@0: static int unixGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Initialize the operating system interface. sl@0: */ sl@0: int sqlite3_os_init(void){ sl@0: /* Macro to define the static contents of an sqlite3_vfs structure for sl@0: ** the unix backend. The two parameters are the values to use for sl@0: ** the sqlite3_vfs.zName and sqlite3_vfs.pAppData fields, respectively. sl@0: ** sl@0: */ sl@0: #define UNIXVFS(zVfsName, pVfsAppData) { \ sl@0: 1, /* iVersion */ \ sl@0: sizeof(unixFile), /* szOsFile */ \ sl@0: MAX_PATHNAME, /* mxPathname */ \ sl@0: 0, /* pNext */ \ sl@0: zVfsName, /* zName */ \ sl@0: (void *)pVfsAppData, /* pAppData */ \ sl@0: unixOpen, /* xOpen */ \ sl@0: unixDelete, /* xDelete */ \ sl@0: unixAccess, /* xAccess */ \ sl@0: unixFullPathname, /* xFullPathname */ \ sl@0: unixDlOpen, /* xDlOpen */ \ sl@0: unixDlError, /* xDlError */ \ sl@0: unixDlSym, /* xDlSym */ \ sl@0: unixDlClose, /* xDlClose */ \ sl@0: unixRandomness, /* xRandomness */ \ sl@0: unixSleep, /* xSleep */ \ sl@0: unixCurrentTime, /* xCurrentTime */ \ sl@0: unixGetLastError /* xGetLastError */ \ sl@0: } sl@0: sl@0: static sqlite3_vfs unixVfs = UNIXVFS("unix", 0); sl@0: #if SQLITE_ENABLE_LOCKING_STYLE sl@0: int i; sl@0: static sqlite3_vfs aVfs[] = { sl@0: UNIXVFS("unix-posix", LOCKING_STYLE_POSIX), sl@0: UNIXVFS("unix-afp", LOCKING_STYLE_AFP), sl@0: UNIXVFS("unix-flock", LOCKING_STYLE_FLOCK), sl@0: UNIXVFS("unix-dotfile", LOCKING_STYLE_DOTFILE), sl@0: UNIXVFS("unix-none", LOCKING_STYLE_NONE) sl@0: }; sl@0: for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ sl@0: sqlite3_vfs_register(&aVfs[i], 0); sl@0: } sl@0: #endif sl@0: sqlite3_vfs_register(&unixVfs, 1); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Shutdown the operating system interface. This is a no-op for unix. sl@0: */ sl@0: int sqlite3_os_end(void){ sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: #endif /* SQLITE_OS_UNIX */