sl@0: /* sl@0: ** 2001 September 15 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This file contains C code routines that are called by the parser sl@0: ** to handle INSERT statements in SQLite. sl@0: ** sl@0: ** $Id: insert.c,v 1.249 2008/08/20 16:35:10 drh Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: sl@0: /* sl@0: ** Set P4 of the most recently inserted opcode to a column affinity sl@0: ** string for index pIdx. A column affinity string has one character sl@0: ** for each column in the table, according to the affinity of the column: sl@0: ** sl@0: ** Character Column affinity sl@0: ** ------------------------------ sl@0: ** 'a' TEXT sl@0: ** 'b' NONE sl@0: ** 'c' NUMERIC sl@0: ** 'd' INTEGER sl@0: ** 'e' REAL sl@0: ** sl@0: ** An extra 'b' is appended to the end of the string to cover the sl@0: ** rowid that appears as the last column in every index. sl@0: */ sl@0: void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ sl@0: if( !pIdx->zColAff ){ sl@0: /* The first time a column affinity string for a particular index is sl@0: ** required, it is allocated and populated here. It is then stored as sl@0: ** a member of the Index structure for subsequent use. sl@0: ** sl@0: ** The column affinity string will eventually be deleted by sl@0: ** sqliteDeleteIndex() when the Index structure itself is cleaned sl@0: ** up. sl@0: */ sl@0: int n; sl@0: Table *pTab = pIdx->pTable; sl@0: sqlite3 *db = sqlite3VdbeDb(v); sl@0: pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2); sl@0: if( !pIdx->zColAff ){ sl@0: db->mallocFailed = 1; sl@0: return; sl@0: } sl@0: for(n=0; nnColumn; n++){ sl@0: pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; sl@0: } sl@0: pIdx->zColAff[n++] = SQLITE_AFF_NONE; sl@0: pIdx->zColAff[n] = 0; sl@0: } sl@0: sl@0: sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0); sl@0: } sl@0: sl@0: /* sl@0: ** Set P4 of the most recently inserted opcode to a column affinity sl@0: ** string for table pTab. A column affinity string has one character sl@0: ** for each column indexed by the index, according to the affinity of the sl@0: ** column: sl@0: ** sl@0: ** Character Column affinity sl@0: ** ------------------------------ sl@0: ** 'a' TEXT sl@0: ** 'b' NONE sl@0: ** 'c' NUMERIC sl@0: ** 'd' INTEGER sl@0: ** 'e' REAL sl@0: */ sl@0: void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ sl@0: /* The first time a column affinity string for a particular table sl@0: ** is required, it is allocated and populated here. It is then sl@0: ** stored as a member of the Table structure for subsequent use. sl@0: ** sl@0: ** The column affinity string will eventually be deleted by sl@0: ** sqlite3DeleteTable() when the Table structure itself is cleaned up. sl@0: */ sl@0: if( !pTab->zColAff ){ sl@0: char *zColAff; sl@0: int i; sl@0: sqlite3 *db = sqlite3VdbeDb(v); sl@0: sl@0: zColAff = (char *)sqlite3Malloc(pTab->nCol+1); sl@0: if( !zColAff ){ sl@0: db->mallocFailed = 1; sl@0: return; sl@0: } sl@0: sl@0: for(i=0; inCol; i++){ sl@0: zColAff[i] = pTab->aCol[i].affinity; sl@0: } sl@0: zColAff[pTab->nCol] = '\0'; sl@0: sl@0: pTab->zColAff = zColAff; sl@0: } sl@0: sl@0: sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0); sl@0: } sl@0: sl@0: /* sl@0: ** Return non-zero if the table pTab in database iDb or any of its indices sl@0: ** have been opened at any point in the VDBE program beginning at location sl@0: ** iStartAddr throught the end of the program. This is used to see if sl@0: ** a statement of the form "INSERT INTO SELECT ..." can sl@0: ** run without using temporary table for the results of the SELECT. sl@0: */ sl@0: static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){ sl@0: int i; sl@0: int iEnd = sqlite3VdbeCurrentAddr(v); sl@0: for(i=iStartAddr; iopcode==OP_OpenRead && pOp->p3==iDb ){ sl@0: Index *pIndex; sl@0: int tnum = pOp->p2; sl@0: if( tnum==pTab->tnum ){ sl@0: return 1; sl@0: } sl@0: for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ sl@0: if( tnum==pIndex->tnum ){ sl@0: return 1; sl@0: } sl@0: } sl@0: } sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){ sl@0: assert( pOp->p4.pVtab!=0 ); sl@0: assert( pOp->p4type==P4_VTAB ); sl@0: return 1; sl@0: } sl@0: #endif sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOINCREMENT sl@0: /* sl@0: ** Write out code to initialize the autoincrement logic. This code sl@0: ** looks up the current autoincrement value in the sqlite_sequence sl@0: ** table and stores that value in a register. Code generated by sl@0: ** autoIncStep() will keep that register holding the largest sl@0: ** rowid value. Code generated by autoIncEnd() will write the new sl@0: ** largest value of the counter back into the sqlite_sequence table. sl@0: ** sl@0: ** This routine returns the index of the mem[] cell that contains sl@0: ** the maximum rowid counter. sl@0: ** sl@0: ** Three consecutive registers are allocated by this routine. The sl@0: ** first two hold the name of the target table and the maximum rowid sl@0: ** inserted into the target table, respectively. sl@0: ** The third holds the rowid in sqlite_sequence where we will sl@0: ** write back the revised maximum rowid. This routine returns the sl@0: ** index of the second of these three registers. sl@0: */ sl@0: static int autoIncBegin( sl@0: Parse *pParse, /* Parsing context */ sl@0: int iDb, /* Index of the database holding pTab */ sl@0: Table *pTab /* The table we are writing to */ sl@0: ){ sl@0: int memId = 0; /* Register holding maximum rowid */ sl@0: if( pTab->tabFlags & TF_Autoincrement ){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: Db *pDb = &pParse->db->aDb[iDb]; sl@0: int iCur = pParse->nTab; sl@0: int addr; /* Address of the top of the loop */ sl@0: assert( v ); sl@0: pParse->nMem++; /* Holds name of table */ sl@0: memId = ++pParse->nMem; sl@0: pParse->nMem++; sl@0: sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead); sl@0: addr = sqlite3VdbeCurrentAddr(v); sl@0: sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0); sl@0: sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9); sl@0: sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId); sl@0: sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); sl@0: sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); sl@0: sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1); sl@0: sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); sl@0: sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); sl@0: sqlite3VdbeAddOp2(v, OP_Close, iCur, 0); sl@0: } sl@0: return memId; sl@0: } sl@0: sl@0: /* sl@0: ** Update the maximum rowid for an autoincrement calculation. sl@0: ** sl@0: ** This routine should be called when the top of the stack holds a sl@0: ** new rowid that is about to be inserted. If that new rowid is sl@0: ** larger than the maximum rowid in the memId memory cell, then the sl@0: ** memory cell is updated. The stack is unchanged. sl@0: */ sl@0: static void autoIncStep(Parse *pParse, int memId, int regRowid){ sl@0: if( memId>0 ){ sl@0: sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** After doing one or more inserts, the maximum rowid is stored sl@0: ** in reg[memId]. Generate code to write this value back into the sl@0: ** the sqlite_sequence table. sl@0: */ sl@0: static void autoIncEnd( sl@0: Parse *pParse, /* The parsing context */ sl@0: int iDb, /* Index of the database holding pTab */ sl@0: Table *pTab, /* Table we are inserting into */ sl@0: int memId /* Memory cell holding the maximum rowid */ sl@0: ){ sl@0: if( pTab->tabFlags & TF_Autoincrement ){ sl@0: int iCur = pParse->nTab; sl@0: Vdbe *v = pParse->pVdbe; sl@0: Db *pDb = &pParse->db->aDb[iDb]; sl@0: int j1; sl@0: int iRec = ++pParse->nMem; /* Memory cell used for record */ sl@0: sl@0: assert( v ); sl@0: sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); sl@0: j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); sl@0: sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1); sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); sl@0: sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1); sl@0: sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sl@0: sqlite3VdbeAddOp1(v, OP_Close, iCur); sl@0: } sl@0: } sl@0: #else sl@0: /* sl@0: ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines sl@0: ** above are all no-ops sl@0: */ sl@0: # define autoIncBegin(A,B,C) (0) sl@0: # define autoIncStep(A,B,C) sl@0: # define autoIncEnd(A,B,C,D) sl@0: #endif /* SQLITE_OMIT_AUTOINCREMENT */ sl@0: sl@0: sl@0: /* Forward declaration */ sl@0: static int xferOptimization( sl@0: Parse *pParse, /* Parser context */ sl@0: Table *pDest, /* The table we are inserting into */ sl@0: Select *pSelect, /* A SELECT statement to use as the data source */ sl@0: int onError, /* How to handle constraint errors */ sl@0: int iDbDest /* The database of pDest */ sl@0: ); sl@0: sl@0: /* sl@0: ** This routine is call to handle SQL of the following forms: sl@0: ** sl@0: ** insert into TABLE (IDLIST) values(EXPRLIST) sl@0: ** insert into TABLE (IDLIST) select sl@0: ** sl@0: ** The IDLIST following the table name is always optional. If omitted, sl@0: ** then a list of all columns for the table is substituted. The IDLIST sl@0: ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. sl@0: ** sl@0: ** The pList parameter holds EXPRLIST in the first form of the INSERT sl@0: ** statement above, and pSelect is NULL. For the second form, pList is sl@0: ** NULL and pSelect is a pointer to the select statement used to generate sl@0: ** data for the insert. sl@0: ** sl@0: ** The code generated follows one of four templates. For a simple sl@0: ** select with data coming from a VALUES clause, the code executes sl@0: ** once straight down through. Pseudo-code follows (we call this sl@0: ** the "1st template"): sl@0: ** sl@0: ** open write cursor to and its indices sl@0: ** puts VALUES clause expressions onto the stack sl@0: ** write the resulting record into
sl@0: ** cleanup sl@0: ** sl@0: ** The three remaining templates assume the statement is of the form sl@0: ** sl@0: ** INSERT INTO
SELECT ... sl@0: ** sl@0: ** If the SELECT clause is of the restricted form "SELECT * FROM " - sl@0: ** in other words if the SELECT pulls all columns from a single table sl@0: ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and sl@0: ** if and are distinct tables but have identical sl@0: ** schemas, including all the same indices, then a special optimization sl@0: ** is invoked that copies raw records from over to . sl@0: ** See the xferOptimization() function for the implementation of this sl@0: ** template. This is the 2nd template. sl@0: ** sl@0: ** open a write cursor to
sl@0: ** open read cursor on sl@0: ** transfer all records in over to
sl@0: ** close cursors sl@0: ** foreach index on
sl@0: ** open a write cursor on the
index sl@0: ** open a read cursor on the corresponding index sl@0: ** transfer all records from the read to the write cursors sl@0: ** close cursors sl@0: ** end foreach sl@0: ** sl@0: ** The 3rd template is for when the second template does not apply sl@0: ** and the SELECT clause does not read from
at any time. sl@0: ** The generated code follows this template: sl@0: ** sl@0: ** EOF <- 0 sl@0: ** X <- A sl@0: ** goto B sl@0: ** A: setup for the SELECT sl@0: ** loop over the rows in the SELECT sl@0: ** load values into registers R..R+n sl@0: ** yield X sl@0: ** end loop sl@0: ** cleanup after the SELECT sl@0: ** EOF <- 1 sl@0: ** yield X sl@0: ** goto A sl@0: ** B: open write cursor to
and its indices sl@0: ** C: yield X sl@0: ** if EOF goto D sl@0: ** insert the select result into
from R..R+n sl@0: ** goto C sl@0: ** D: cleanup sl@0: ** sl@0: ** The 4th template is used if the insert statement takes its sl@0: ** values from a SELECT but the data is being inserted into a table sl@0: ** that is also read as part of the SELECT. In the third form, sl@0: ** we have to use a intermediate table to store the results of sl@0: ** the select. The template is like this: sl@0: ** sl@0: ** EOF <- 0 sl@0: ** X <- A sl@0: ** goto B sl@0: ** A: setup for the SELECT sl@0: ** loop over the tables in the SELECT sl@0: ** load value into register R..R+n sl@0: ** yield X sl@0: ** end loop sl@0: ** cleanup after the SELECT sl@0: ** EOF <- 1 sl@0: ** yield X sl@0: ** halt-error sl@0: ** B: open temp table sl@0: ** L: yield X sl@0: ** if EOF goto M sl@0: ** insert row from R..R+n into temp table sl@0: ** goto L sl@0: ** M: open write cursor to
and its indices sl@0: ** rewind temp table sl@0: ** C: loop over rows of intermediate table sl@0: ** transfer values form intermediate table into
sl@0: ** end loop sl@0: ** D: cleanup sl@0: */ sl@0: void sqlite3Insert( sl@0: Parse *pParse, /* Parser context */ sl@0: SrcList *pTabList, /* Name of table into which we are inserting */ sl@0: ExprList *pList, /* List of values to be inserted */ sl@0: Select *pSelect, /* A SELECT statement to use as the data source */ sl@0: IdList *pColumn, /* Column names corresponding to IDLIST. */ sl@0: int onError /* How to handle constraint errors */ sl@0: ){ sl@0: sqlite3 *db; /* The main database structure */ sl@0: Table *pTab; /* The table to insert into. aka TABLE */ sl@0: char *zTab; /* Name of the table into which we are inserting */ sl@0: const char *zDb; /* Name of the database holding this table */ sl@0: int i, j, idx; /* Loop counters */ sl@0: Vdbe *v; /* Generate code into this virtual machine */ sl@0: Index *pIdx; /* For looping over indices of the table */ sl@0: int nColumn; /* Number of columns in the data */ sl@0: int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ sl@0: int baseCur = 0; /* VDBE Cursor number for pTab */ sl@0: int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ sl@0: int endOfLoop; /* Label for the end of the insertion loop */ sl@0: int useTempTable = 0; /* Store SELECT results in intermediate table */ sl@0: int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ sl@0: int addrInsTop = 0; /* Jump to label "D" */ sl@0: int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ sl@0: int addrSelect = 0; /* Address of coroutine that implements the SELECT */ sl@0: SelectDest dest; /* Destination for SELECT on rhs of INSERT */ sl@0: int newIdx = -1; /* Cursor for the NEW pseudo-table */ sl@0: int iDb; /* Index of database holding TABLE */ sl@0: Db *pDb; /* The database containing table being inserted into */ sl@0: int appendFlag = 0; /* True if the insert is likely to be an append */ sl@0: sl@0: /* Register allocations */ sl@0: int regFromSelect; /* Base register for data coming from SELECT */ sl@0: int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ sl@0: int regRowCount = 0; /* Memory cell used for the row counter */ sl@0: int regIns; /* Block of regs holding rowid+data being inserted */ sl@0: int regRowid; /* registers holding insert rowid */ sl@0: int regData; /* register holding first column to insert */ sl@0: int regRecord; /* Holds the assemblied row record */ sl@0: int regEof; /* Register recording end of SELECT data */ sl@0: int *aRegIdx = 0; /* One register allocated to each index */ sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_TRIGGER sl@0: int isView; /* True if attempting to insert into a view */ sl@0: int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ sl@0: #endif sl@0: sl@0: db = pParse->db; sl@0: if( pParse->nErr || db->mallocFailed ){ sl@0: goto insert_cleanup; sl@0: } sl@0: sl@0: /* Locate the table into which we will be inserting new information. sl@0: */ sl@0: assert( pTabList->nSrc==1 ); sl@0: zTab = pTabList->a[0].zName; sl@0: if( zTab==0 ) goto insert_cleanup; sl@0: pTab = sqlite3SrcListLookup(pParse, pTabList); sl@0: if( pTab==0 ){ sl@0: goto insert_cleanup; sl@0: } sl@0: iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sl@0: assert( iDbnDb ); sl@0: pDb = &db->aDb[iDb]; sl@0: zDb = pDb->zName; sl@0: if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ sl@0: goto insert_cleanup; sl@0: } sl@0: sl@0: /* Figure out if we have any triggers and if the table being sl@0: ** inserted into is a view sl@0: */ sl@0: #ifndef SQLITE_OMIT_TRIGGER sl@0: triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0); sl@0: isView = pTab->pSelect!=0; sl@0: #else sl@0: # define triggers_exist 0 sl@0: # define isView 0 sl@0: #endif sl@0: #ifdef SQLITE_OMIT_VIEW sl@0: # undef isView sl@0: # define isView 0 sl@0: #endif sl@0: sl@0: /* Ensure that: sl@0: * (a) the table is not read-only, sl@0: * (b) that if it is a view then ON INSERT triggers exist sl@0: */ sl@0: if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ sl@0: goto insert_cleanup; sl@0: } sl@0: assert( pTab!=0 ); sl@0: sl@0: /* If pTab is really a view, make sure it has been initialized. sl@0: ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual sl@0: ** module table). sl@0: */ sl@0: if( sqlite3ViewGetColumnNames(pParse, pTab) ){ sl@0: goto insert_cleanup; sl@0: } sl@0: sl@0: /* Allocate a VDBE sl@0: */ sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) goto insert_cleanup; sl@0: if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sl@0: sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb); sl@0: sl@0: /* if there are row triggers, allocate a temp table for new.* references. */ sl@0: if( triggers_exist ){ sl@0: newIdx = pParse->nTab++; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_XFER_OPT sl@0: /* If the statement is of the form sl@0: ** sl@0: ** INSERT INTO SELECT * FROM ; sl@0: ** sl@0: ** Then special optimizations can be applied that make the transfer sl@0: ** very fast and which reduce fragmentation of indices. sl@0: ** sl@0: ** This is the 2nd template. sl@0: */ sl@0: if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ sl@0: assert( !triggers_exist ); sl@0: assert( pList==0 ); sl@0: goto insert_cleanup; sl@0: } sl@0: #endif /* SQLITE_OMIT_XFER_OPT */ sl@0: sl@0: /* If this is an AUTOINCREMENT table, look up the sequence number in the sl@0: ** sqlite_sequence table and store it in memory cell regAutoinc. sl@0: */ sl@0: regAutoinc = autoIncBegin(pParse, iDb, pTab); sl@0: sl@0: /* Figure out how many columns of data are supplied. If the data sl@0: ** is coming from a SELECT statement, then generate a co-routine that sl@0: ** produces a single row of the SELECT on each invocation. The sl@0: ** co-routine is the common header to the 3rd and 4th templates. sl@0: */ sl@0: if( pSelect ){ sl@0: /* Data is coming from a SELECT. Generate code to implement that SELECT sl@0: ** as a co-routine. The code is common to both the 3rd and 4th sl@0: ** templates: sl@0: ** sl@0: ** EOF <- 0 sl@0: ** X <- A sl@0: ** goto B sl@0: ** A: setup for the SELECT sl@0: ** loop over the tables in the SELECT sl@0: ** load value into register R..R+n sl@0: ** yield X sl@0: ** end loop sl@0: ** cleanup after the SELECT sl@0: ** EOF <- 1 sl@0: ** yield X sl@0: ** halt-error sl@0: ** sl@0: ** On each invocation of the co-routine, it puts a single row of the sl@0: ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1. sl@0: ** (These output registers are allocated by sqlite3Select().) When sl@0: ** the SELECT completes, it sets the EOF flag stored in regEof. sl@0: */ sl@0: int rc, j1; sl@0: sl@0: regEof = ++pParse->nMem; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ sl@0: VdbeComment((v, "SELECT eof flag")); sl@0: sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); sl@0: addrSelect = sqlite3VdbeCurrentAddr(v)+2; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); sl@0: j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); sl@0: VdbeComment((v, "Jump over SELECT coroutine")); sl@0: sl@0: /* Resolve the expressions in the SELECT statement and execute it. */ sl@0: rc = sqlite3Select(pParse, pSelect, &dest); sl@0: if( rc || pParse->nErr || db->mallocFailed ){ sl@0: goto insert_cleanup; sl@0: } sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ sl@0: sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */ sl@0: sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); sl@0: VdbeComment((v, "End of SELECT coroutine")); sl@0: sqlite3VdbeJumpHere(v, j1); /* label B: */ sl@0: sl@0: regFromSelect = dest.iMem; sl@0: assert( pSelect->pEList ); sl@0: nColumn = pSelect->pEList->nExpr; sl@0: assert( dest.nMem==nColumn ); sl@0: sl@0: /* Set useTempTable to TRUE if the result of the SELECT statement sl@0: ** should be written into a temporary table (template 4). Set to sl@0: ** FALSE if each* row of the SELECT can be written directly into sl@0: ** the destination table (template 3). sl@0: ** sl@0: ** A temp table must be used if the table being updated is also one sl@0: ** of the tables being read by the SELECT statement. Also use a sl@0: ** temp table in the case of row triggers. sl@0: */ sl@0: if( triggers_exist || readsTable(v, addrSelect, iDb, pTab) ){ sl@0: useTempTable = 1; sl@0: } sl@0: sl@0: if( useTempTable ){ sl@0: /* Invoke the coroutine to extract information from the SELECT sl@0: ** and add it to a transient table srcTab. The code generated sl@0: ** here is from the 4th template: sl@0: ** sl@0: ** B: open temp table sl@0: ** L: yield X sl@0: ** if EOF goto M sl@0: ** insert row from R..R+n into temp table sl@0: ** goto L sl@0: ** M: ... sl@0: */ sl@0: int regRec; /* Register to hold packed record */ sl@0: int regRowid; /* Register to hold temp table ROWID */ sl@0: int addrTop; /* Label "L" */ sl@0: int addrIf; /* Address of jump to M */ sl@0: sl@0: srcTab = pParse->nTab++; sl@0: regRec = sqlite3GetTempReg(pParse); sl@0: regRowid = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); sl@0: addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); sl@0: addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); sl@0: sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid); sl@0: sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); sl@0: sqlite3VdbeJumpHere(v, addrIf); sl@0: sqlite3ReleaseTempReg(pParse, regRec); sl@0: sqlite3ReleaseTempReg(pParse, regRowid); sl@0: } sl@0: }else{ sl@0: /* This is the case if the data for the INSERT is coming from a VALUES sl@0: ** clause sl@0: */ sl@0: NameContext sNC; sl@0: memset(&sNC, 0, sizeof(sNC)); sl@0: sNC.pParse = pParse; sl@0: srcTab = -1; sl@0: assert( useTempTable==0 ); sl@0: nColumn = pList ? pList->nExpr : 0; sl@0: for(i=0; ia[i].pExpr) ){ sl@0: goto insert_cleanup; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Make sure the number of columns in the source data matches the number sl@0: ** of columns to be inserted into the table. sl@0: */ sl@0: if( IsVirtual(pTab) ){ sl@0: for(i=0; inCol; i++){ sl@0: nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); sl@0: } sl@0: } sl@0: if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ sl@0: sqlite3ErrorMsg(pParse, sl@0: "table %S has %d columns but %d values were supplied", sl@0: pTabList, 0, pTab->nCol, nColumn); sl@0: goto insert_cleanup; sl@0: } sl@0: if( pColumn!=0 && nColumn!=pColumn->nId ){ sl@0: sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); sl@0: goto insert_cleanup; sl@0: } sl@0: sl@0: /* If the INSERT statement included an IDLIST term, then make sure sl@0: ** all elements of the IDLIST really are columns of the table and sl@0: ** remember the column indices. sl@0: ** sl@0: ** If the table has an INTEGER PRIMARY KEY column and that column sl@0: ** is named in the IDLIST, then record in the keyColumn variable sl@0: ** the index into IDLIST of the primary key column. keyColumn is sl@0: ** the index of the primary key as it appears in IDLIST, not as sl@0: ** is appears in the original table. (The index of the primary sl@0: ** key in the original table is pTab->iPKey.) sl@0: */ sl@0: if( pColumn ){ sl@0: for(i=0; inId; i++){ sl@0: pColumn->a[i].idx = -1; sl@0: } sl@0: for(i=0; inId; i++){ sl@0: for(j=0; jnCol; j++){ sl@0: if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ sl@0: pColumn->a[i].idx = j; sl@0: if( j==pTab->iPKey ){ sl@0: keyColumn = i; sl@0: } sl@0: break; sl@0: } sl@0: } sl@0: if( j>=pTab->nCol ){ sl@0: if( sqlite3IsRowid(pColumn->a[i].zName) ){ sl@0: keyColumn = i; sl@0: }else{ sl@0: sqlite3ErrorMsg(pParse, "table %S has no column named %s", sl@0: pTabList, 0, pColumn->a[i].zName); sl@0: pParse->nErr++; sl@0: goto insert_cleanup; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* If there is no IDLIST term but the table has an integer primary sl@0: ** key, the set the keyColumn variable to the primary key column index sl@0: ** in the original table definition. sl@0: */ sl@0: if( pColumn==0 && nColumn>0 ){ sl@0: keyColumn = pTab->iPKey; sl@0: } sl@0: sl@0: /* Open the temp table for FOR EACH ROW triggers sl@0: */ sl@0: if( triggers_exist ){ sl@0: sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol); sl@0: sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0); sl@0: } sl@0: sl@0: /* Initialize the count of rows to be inserted sl@0: */ sl@0: if( db->flags & SQLITE_CountRows ){ sl@0: regRowCount = ++pParse->nMem; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); sl@0: } sl@0: sl@0: /* If this is not a view, open the table and and all indices */ sl@0: if( !isView ){ sl@0: int nIdx; sl@0: int i; sl@0: sl@0: baseCur = pParse->nTab; sl@0: nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); sl@0: aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); sl@0: if( aRegIdx==0 ){ sl@0: goto insert_cleanup; sl@0: } sl@0: for(i=0; inMem; sl@0: } sl@0: } sl@0: sl@0: /* This is the top of the main insertion loop */ sl@0: if( useTempTable ){ sl@0: /* This block codes the top of loop only. The complete loop is the sl@0: ** following pseudocode (template 4): sl@0: ** sl@0: ** rewind temp table sl@0: ** C: loop over rows of intermediate table sl@0: ** transfer values form intermediate table into
sl@0: ** end loop sl@0: ** D: ... sl@0: */ sl@0: addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); sl@0: addrCont = sqlite3VdbeCurrentAddr(v); sl@0: }else if( pSelect ){ sl@0: /* This block codes the top of loop only. The complete loop is the sl@0: ** following pseudocode (template 3): sl@0: ** sl@0: ** C: yield X sl@0: ** if EOF goto D sl@0: ** insert the select result into
from R..R+n sl@0: ** goto C sl@0: ** D: ... sl@0: */ sl@0: addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); sl@0: addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); sl@0: } sl@0: sl@0: /* Allocate registers for holding the rowid of the new row, sl@0: ** the content of the new row, and the assemblied row record. sl@0: */ sl@0: regRecord = ++pParse->nMem; sl@0: regRowid = regIns = pParse->nMem+1; sl@0: pParse->nMem += pTab->nCol + 1; sl@0: if( IsVirtual(pTab) ){ sl@0: regRowid++; sl@0: pParse->nMem++; sl@0: } sl@0: regData = regRowid+1; sl@0: sl@0: /* Run the BEFORE and INSTEAD OF triggers, if there are any sl@0: */ sl@0: endOfLoop = sqlite3VdbeMakeLabel(v); sl@0: if( triggers_exist & TRIGGER_BEFORE ){ sl@0: int regRowid; sl@0: int regCols; sl@0: int regRec; sl@0: sl@0: /* build the NEW.* reference row. Note that if there is an INTEGER sl@0: ** PRIMARY KEY into which a NULL is being inserted, that NULL will be sl@0: ** translated into a unique ID for the row. But on a BEFORE trigger, sl@0: ** we do not know what the unique ID will be (because the insert has sl@0: ** not happened yet) so we substitute a rowid of -1 sl@0: */ sl@0: regRowid = sqlite3GetTempReg(pParse); sl@0: if( keyColumn<0 ){ sl@0: sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); sl@0: }else if( useTempTable ){ sl@0: sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); sl@0: }else{ sl@0: int j1; sl@0: assert( pSelect==0 ); /* Otherwise useTempTable is true */ sl@0: sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); sl@0: j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); sl@0: } sl@0: sl@0: /* Cannot have triggers on a virtual table. If it were possible, sl@0: ** this block would have to account for hidden column. sl@0: */ sl@0: assert(!IsVirtual(pTab)); sl@0: sl@0: /* Create the new column data sl@0: */ sl@0: regCols = sqlite3GetTempRange(pParse, pTab->nCol); sl@0: for(i=0; inCol; i++){ sl@0: if( pColumn==0 ){ sl@0: j = i; sl@0: }else{ sl@0: for(j=0; jnId; j++){ sl@0: if( pColumn->a[j].idx==i ) break; sl@0: } sl@0: } sl@0: if( pColumn && j>=pColumn->nId ){ sl@0: sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i); sl@0: }else if( useTempTable ){ sl@0: sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i); sl@0: }else{ sl@0: assert( pSelect==0 ); /* Otherwise useTempTable is true */ sl@0: sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i); sl@0: } sl@0: } sl@0: regRec = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec); sl@0: sl@0: /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, sl@0: ** do not attempt any conversions before assembling the record. sl@0: ** If this is a real table, attempt conversions as required by the sl@0: ** table column affinities. sl@0: */ sl@0: if( !isView ){ sl@0: sqlite3TableAffinityStr(v, pTab); sl@0: } sl@0: sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid); sl@0: sqlite3ReleaseTempReg(pParse, regRec); sl@0: sqlite3ReleaseTempReg(pParse, regRowid); sl@0: sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol); sl@0: sl@0: /* Fire BEFORE or INSTEAD OF triggers */ sl@0: if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, sl@0: newIdx, -1, onError, endOfLoop, 0, 0) ){ sl@0: goto insert_cleanup; sl@0: } sl@0: } sl@0: sl@0: /* Push the record number for the new entry onto the stack. The sl@0: ** record number is a randomly generate integer created by NewRowid sl@0: ** except when the table has an INTEGER PRIMARY KEY column, in which sl@0: ** case the record number is the same as that column. sl@0: */ sl@0: if( !isView ){ sl@0: if( IsVirtual(pTab) ){ sl@0: /* The row that the VUpdate opcode will delete: none */ sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); sl@0: } sl@0: if( keyColumn>=0 ){ sl@0: if( useTempTable ){ sl@0: sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); sl@0: }else if( pSelect ){ sl@0: sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); sl@0: }else{ sl@0: VdbeOp *pOp; sl@0: sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); sl@0: pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1); sl@0: if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ sl@0: appendFlag = 1; sl@0: pOp->opcode = OP_NewRowid; sl@0: pOp->p1 = baseCur; sl@0: pOp->p2 = regRowid; sl@0: pOp->p3 = regAutoinc; sl@0: } sl@0: } sl@0: /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid sl@0: ** to generate a unique primary key value. sl@0: */ sl@0: if( !appendFlag ){ sl@0: int j1; sl@0: if( !IsVirtual(pTab) ){ sl@0: j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); sl@0: sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: }else{ sl@0: j1 = sqlite3VdbeCurrentAddr(v); sl@0: sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); sl@0: } sl@0: sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); sl@0: } sl@0: }else if( IsVirtual(pTab) ){ sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); sl@0: }else{ sl@0: sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); sl@0: appendFlag = 1; sl@0: } sl@0: autoIncStep(pParse, regAutoinc, regRowid); sl@0: sl@0: /* Push onto the stack, data for all columns of the new entry, beginning sl@0: ** with the first column. sl@0: */ sl@0: nHidden = 0; sl@0: for(i=0; inCol; i++){ sl@0: int iRegStore = regRowid+1+i; sl@0: if( i==pTab->iPKey ){ sl@0: /* The value of the INTEGER PRIMARY KEY column is always a NULL. sl@0: ** Whenever this column is read, the record number will be substituted sl@0: ** in its place. So will fill this column with a NULL to avoid sl@0: ** taking up data space with information that will never be used. */ sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); sl@0: continue; sl@0: } sl@0: if( pColumn==0 ){ sl@0: if( IsHiddenColumn(&pTab->aCol[i]) ){ sl@0: assert( IsVirtual(pTab) ); sl@0: j = -1; sl@0: nHidden++; sl@0: }else{ sl@0: j = i - nHidden; sl@0: } sl@0: }else{ sl@0: for(j=0; jnId; j++){ sl@0: if( pColumn->a[j].idx==i ) break; sl@0: } sl@0: } sl@0: if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ sl@0: sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); sl@0: }else if( useTempTable ){ sl@0: sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); sl@0: }else if( pSelect ){ sl@0: sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); sl@0: }else{ sl@0: sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); sl@0: } sl@0: } sl@0: sl@0: /* Generate code to check constraints and generate index keys and sl@0: ** do the insertion. sl@0: */ sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( IsVirtual(pTab) ){ sl@0: sqlite3VtabMakeWritable(pParse, pTab); sl@0: sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, sl@0: (const char*)pTab->pVtab, P4_VTAB); sl@0: }else sl@0: #endif sl@0: { sl@0: sqlite3GenerateConstraintChecks( sl@0: pParse, sl@0: pTab, sl@0: baseCur, sl@0: regIns, sl@0: aRegIdx, sl@0: keyColumn>=0, sl@0: 0, sl@0: onError, sl@0: endOfLoop sl@0: ); sl@0: sqlite3CompleteInsertion( sl@0: pParse, sl@0: pTab, sl@0: baseCur, sl@0: regIns, sl@0: aRegIdx, sl@0: 0, sl@0: 0, sl@0: (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1, sl@0: appendFlag sl@0: ); sl@0: } sl@0: } sl@0: sl@0: /* Update the count of rows that are inserted sl@0: */ sl@0: if( (db->flags & SQLITE_CountRows)!=0 ){ sl@0: sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); sl@0: } sl@0: sl@0: if( triggers_exist ){ sl@0: /* Code AFTER triggers */ sl@0: if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab, sl@0: newIdx, -1, onError, endOfLoop, 0, 0) ){ sl@0: goto insert_cleanup; sl@0: } sl@0: } sl@0: sl@0: /* The bottom of the main insertion loop, if the data source sl@0: ** is a SELECT statement. sl@0: */ sl@0: sqlite3VdbeResolveLabel(v, endOfLoop); sl@0: if( useTempTable ){ sl@0: sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); sl@0: sqlite3VdbeJumpHere(v, addrInsTop); sl@0: sqlite3VdbeAddOp1(v, OP_Close, srcTab); sl@0: }else if( pSelect ){ sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); sl@0: sqlite3VdbeJumpHere(v, addrInsTop); sl@0: } sl@0: sl@0: if( !IsVirtual(pTab) && !isView ){ sl@0: /* Close all tables opened */ sl@0: sqlite3VdbeAddOp1(v, OP_Close, baseCur); sl@0: for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ sl@0: sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); sl@0: } sl@0: } sl@0: sl@0: /* Update the sqlite_sequence table by storing the content of the sl@0: ** counter value in memory regAutoinc back into the sqlite_sequence sl@0: ** table. sl@0: */ sl@0: autoIncEnd(pParse, iDb, pTab, regAutoinc); sl@0: sl@0: /* sl@0: ** Return the number of rows inserted. If this routine is sl@0: ** generating code because of a call to sqlite3NestedParse(), do not sl@0: ** invoke the callback function. sl@0: */ sl@0: if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ sl@0: sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); sl@0: sqlite3VdbeSetNumCols(v, 1); sl@0: sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC); sl@0: } sl@0: sl@0: insert_cleanup: sl@0: sqlite3SrcListDelete(db, pTabList); sl@0: sqlite3ExprListDelete(db, pList); sl@0: sqlite3SelectDelete(db, pSelect); sl@0: sqlite3IdListDelete(db, pColumn); sl@0: sqlite3DbFree(db, aRegIdx); sl@0: } sl@0: sl@0: /* sl@0: ** Generate code to do constraint checks prior to an INSERT or an UPDATE. sl@0: ** sl@0: ** The input is a range of consecutive registers as follows: sl@0: ** sl@0: ** 1. The rowid of the row to be updated before the update. This sl@0: ** value is omitted unless we are doing an UPDATE that involves a sl@0: ** change to the record number or writing to a virtual table. sl@0: ** sl@0: ** 2. The rowid of the row after the update. sl@0: ** sl@0: ** 3. The data in the first column of the entry after the update. sl@0: ** sl@0: ** i. Data from middle columns... sl@0: ** sl@0: ** N. The data in the last column of the entry after the update. sl@0: ** sl@0: ** The regRowid parameter is the index of the register containing (2). sl@0: ** sl@0: ** The old rowid shown as entry (1) above is omitted unless both isUpdate sl@0: ** and rowidChng are 1. isUpdate is true for UPDATEs and false for sl@0: ** INSERTs. RowidChng means that the new rowid is explicitly specified by sl@0: ** the update or insert statement. If rowidChng is false, it means that sl@0: ** the rowid is computed automatically in an insert or that the rowid value sl@0: ** is not modified by the update. sl@0: ** sl@0: ** The code generated by this routine store new index entries into sl@0: ** registers identified by aRegIdx[]. No index entry is created for sl@0: ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is sl@0: ** the same as the order of indices on the linked list of indices sl@0: ** attached to the table. sl@0: ** sl@0: ** This routine also generates code to check constraints. NOT NULL, sl@0: ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, sl@0: ** then the appropriate action is performed. There are five possible sl@0: ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. sl@0: ** sl@0: ** Constraint type Action What Happens sl@0: ** --------------- ---------- ---------------------------------------- sl@0: ** any ROLLBACK The current transaction is rolled back and sl@0: ** sqlite3_exec() returns immediately with a sl@0: ** return code of SQLITE_CONSTRAINT. sl@0: ** sl@0: ** any ABORT Back out changes from the current command sl@0: ** only (do not do a complete rollback) then sl@0: ** cause sqlite3_exec() to return immediately sl@0: ** with SQLITE_CONSTRAINT. sl@0: ** sl@0: ** any FAIL Sqlite_exec() returns immediately with a sl@0: ** return code of SQLITE_CONSTRAINT. The sl@0: ** transaction is not rolled back and any sl@0: ** prior changes are retained. sl@0: ** sl@0: ** any IGNORE The record number and data is popped from sl@0: ** the stack and there is an immediate jump sl@0: ** to label ignoreDest. sl@0: ** sl@0: ** NOT NULL REPLACE The NULL value is replace by the default sl@0: ** value for that column. If the default value sl@0: ** is NULL, the action is the same as ABORT. sl@0: ** sl@0: ** UNIQUE REPLACE The other row that conflicts with the row sl@0: ** being inserted is removed. sl@0: ** sl@0: ** CHECK REPLACE Illegal. The results in an exception. sl@0: ** sl@0: ** Which action to take is determined by the overrideError parameter. sl@0: ** Or if overrideError==OE_Default, then the pParse->onError parameter sl@0: ** is used. Or if pParse->onError==OE_Default then the onError value sl@0: ** for the constraint is used. sl@0: ** sl@0: ** The calling routine must open a read/write cursor for pTab with sl@0: ** cursor number "baseCur". All indices of pTab must also have open sl@0: ** read/write cursors with cursor number baseCur+i for the i-th cursor. sl@0: ** Except, if there is no possibility of a REPLACE action then sl@0: ** cursors do not need to be open for indices where aRegIdx[i]==0. sl@0: */ sl@0: void sqlite3GenerateConstraintChecks( sl@0: Parse *pParse, /* The parser context */ sl@0: Table *pTab, /* the table into which we are inserting */ sl@0: int baseCur, /* Index of a read/write cursor pointing at pTab */ sl@0: int regRowid, /* Index of the range of input registers */ sl@0: int *aRegIdx, /* Register used by each index. 0 for unused indices */ sl@0: int rowidChng, /* True if the rowid might collide with existing entry */ sl@0: int isUpdate, /* True for UPDATE, False for INSERT */ sl@0: int overrideError, /* Override onError to this if not OE_Default */ sl@0: int ignoreDest /* Jump to this label on an OE_Ignore resolution */ sl@0: ){ sl@0: int i; sl@0: Vdbe *v; sl@0: int nCol; sl@0: int onError; sl@0: int j1, j2, j3; /* Addresses of jump instructions */ sl@0: int regData; /* Register containing first data column */ sl@0: int iCur; sl@0: Index *pIdx; sl@0: int seenReplace = 0; sl@0: int hasTwoRowids = (isUpdate && rowidChng); sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: assert( v!=0 ); sl@0: assert( pTab->pSelect==0 ); /* This table is not a VIEW */ sl@0: nCol = pTab->nCol; sl@0: regData = regRowid + 1; sl@0: sl@0: sl@0: /* Test all NOT NULL constraints. sl@0: */ sl@0: for(i=0; iiPKey ){ sl@0: continue; sl@0: } sl@0: onError = pTab->aCol[i].notNull; sl@0: if( onError==OE_None ) continue; sl@0: if( overrideError!=OE_Default ){ sl@0: onError = overrideError; sl@0: }else if( onError==OE_Default ){ sl@0: onError = OE_Abort; sl@0: } sl@0: if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ sl@0: onError = OE_Abort; sl@0: } sl@0: j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); sl@0: assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail sl@0: || onError==OE_Ignore || onError==OE_Replace ); sl@0: switch( onError ){ sl@0: case OE_Rollback: sl@0: case OE_Abort: sl@0: case OE_Fail: { sl@0: char *zMsg; sl@0: sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError); sl@0: zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", sl@0: pTab->zName, pTab->aCol[i].zName); sl@0: sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); sl@0: break; sl@0: } sl@0: case OE_Ignore: { sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); sl@0: break; sl@0: } sl@0: case OE_Replace: { sl@0: sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); sl@0: break; sl@0: } sl@0: } sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: } sl@0: sl@0: /* Test all CHECK constraints sl@0: */ sl@0: #ifndef SQLITE_OMIT_CHECK sl@0: if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ sl@0: int allOk = sqlite3VdbeMakeLabel(v); sl@0: pParse->ckBase = regData; sl@0: sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); sl@0: onError = overrideError!=OE_Default ? overrideError : OE_Abort; sl@0: if( onError==OE_Ignore ){ sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); sl@0: }else{ sl@0: sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError); sl@0: } sl@0: sqlite3VdbeResolveLabel(v, allOk); sl@0: } sl@0: #endif /* !defined(SQLITE_OMIT_CHECK) */ sl@0: sl@0: /* If we have an INTEGER PRIMARY KEY, make sure the primary key sl@0: ** of the new record does not previously exist. Except, if this sl@0: ** is an UPDATE and the primary key is not changing, that is OK. sl@0: */ sl@0: if( rowidChng ){ sl@0: onError = pTab->keyConf; sl@0: if( overrideError!=OE_Default ){ sl@0: onError = overrideError; sl@0: }else if( onError==OE_Default ){ sl@0: onError = OE_Abort; sl@0: } sl@0: sl@0: if( onError!=OE_Replace || pTab->pIndex ){ sl@0: if( isUpdate ){ sl@0: j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1); sl@0: } sl@0: j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); sl@0: switch( onError ){ sl@0: default: { sl@0: onError = OE_Abort; sl@0: /* Fall thru into the next case */ sl@0: } sl@0: case OE_Rollback: sl@0: case OE_Abort: sl@0: case OE_Fail: { sl@0: sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, sl@0: "PRIMARY KEY must be unique", P4_STATIC); sl@0: break; sl@0: } sl@0: case OE_Replace: { sl@0: sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); sl@0: seenReplace = 1; sl@0: break; sl@0: } sl@0: case OE_Ignore: { sl@0: assert( seenReplace==0 ); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); sl@0: break; sl@0: } sl@0: } sl@0: sqlite3VdbeJumpHere(v, j3); sl@0: if( isUpdate ){ sl@0: sqlite3VdbeJumpHere(v, j2); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Test all UNIQUE constraints by creating entries for each UNIQUE sl@0: ** index and making sure that duplicate entries do not already exist. sl@0: ** Add the new records to the indices as we go. sl@0: */ sl@0: for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ sl@0: int regIdx; sl@0: int regR; sl@0: sl@0: if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ sl@0: sl@0: /* Create a key for accessing the index entry */ sl@0: regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); sl@0: for(i=0; inColumn; i++){ sl@0: int idx = pIdx->aiColumn[i]; sl@0: if( idx==pTab->iPKey ){ sl@0: sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sl@0: }else{ sl@0: sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); sl@0: } sl@0: } sl@0: sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); sl@0: sqlite3IndexAffinityStr(v, pIdx); sl@0: sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); sl@0: sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); sl@0: sl@0: /* Find out what action to take in case there is an indexing conflict */ sl@0: onError = pIdx->onError; sl@0: if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ sl@0: if( overrideError!=OE_Default ){ sl@0: onError = overrideError; sl@0: }else if( onError==OE_Default ){ sl@0: onError = OE_Abort; sl@0: } sl@0: if( seenReplace ){ sl@0: if( onError==OE_Ignore ) onError = OE_Replace; sl@0: else if( onError==OE_Fail ) onError = OE_Abort; sl@0: } sl@0: sl@0: sl@0: /* Check to see if the new index entry will be unique */ sl@0: j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn); sl@0: regR = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR); sl@0: j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, sl@0: regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]), sl@0: P4_INT32); sl@0: sl@0: /* Generate code that executes if the new index entry is not unique */ sl@0: assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail sl@0: || onError==OE_Ignore || onError==OE_Replace ); sl@0: switch( onError ){ sl@0: case OE_Rollback: sl@0: case OE_Abort: sl@0: case OE_Fail: { sl@0: int j, n1, n2; sl@0: char zErrMsg[200]; sl@0: sqlite3_snprintf(sizeof(zErrMsg), zErrMsg, sl@0: pIdx->nColumn>1 ? "columns " : "column "); sl@0: n1 = strlen(zErrMsg); sl@0: for(j=0; jnColumn && n1aCol[pIdx->aiColumn[j]].zName; sl@0: n2 = strlen(zCol); sl@0: if( j>0 ){ sl@0: sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", "); sl@0: n1 += 2; sl@0: } sl@0: if( n1+n2>sizeof(zErrMsg)-30 ){ sl@0: sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "..."); sl@0: n1 += 3; sl@0: break; sl@0: }else{ sl@0: sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol); sl@0: n1 += n2; sl@0: } sl@0: } sl@0: sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], sl@0: pIdx->nColumn>1 ? " are not unique" : " is not unique"); sl@0: sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0); sl@0: break; sl@0: } sl@0: case OE_Ignore: { sl@0: assert( seenReplace==0 ); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); sl@0: break; sl@0: } sl@0: case OE_Replace: { sl@0: sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0); sl@0: seenReplace = 1; sl@0: break; sl@0: } sl@0: } sl@0: sqlite3VdbeJumpHere(v, j2); sl@0: sqlite3VdbeJumpHere(v, j3); sl@0: sqlite3ReleaseTempReg(pParse, regR); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This routine generates code to finish the INSERT or UPDATE operation sl@0: ** that was started by a prior call to sqlite3GenerateConstraintChecks. sl@0: ** A consecutive range of registers starting at regRowid contains the sl@0: ** rowid and the content to be inserted. sl@0: ** sl@0: ** The arguments to this routine should be the same as the first six sl@0: ** arguments to sqlite3GenerateConstraintChecks. sl@0: */ sl@0: void sqlite3CompleteInsertion( sl@0: Parse *pParse, /* The parser context */ sl@0: Table *pTab, /* the table into which we are inserting */ sl@0: int baseCur, /* Index of a read/write cursor pointing at pTab */ sl@0: int regRowid, /* Range of content */ sl@0: int *aRegIdx, /* Register used by each index. 0 for unused indices */ sl@0: int rowidChng, /* True if the record number will change */ sl@0: int isUpdate, /* True for UPDATE, False for INSERT */ sl@0: int newIdx, /* Index of NEW table for triggers. -1 if none */ sl@0: int appendBias /* True if this is likely to be an append */ sl@0: ){ sl@0: int i; sl@0: Vdbe *v; sl@0: int nIdx; sl@0: Index *pIdx; sl@0: int pik_flags; sl@0: int regData; sl@0: int regRec; sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: assert( v!=0 ); sl@0: assert( pTab->pSelect==0 ); /* This table is not a VIEW */ sl@0: for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} sl@0: for(i=nIdx-1; i>=0; i--){ sl@0: if( aRegIdx[i]==0 ) continue; sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); sl@0: } sl@0: regData = regRowid + 1; sl@0: regRec = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); sl@0: sqlite3TableAffinityStr(v, pTab); sl@0: sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); sl@0: #ifndef SQLITE_OMIT_TRIGGER sl@0: if( newIdx>=0 ){ sl@0: sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid); sl@0: } sl@0: #endif sl@0: if( pParse->nested ){ sl@0: pik_flags = 0; sl@0: }else{ sl@0: pik_flags = OPFLAG_NCHANGE; sl@0: pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); sl@0: } sl@0: if( appendBias ){ sl@0: pik_flags |= OPFLAG_APPEND; sl@0: } sl@0: sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); sl@0: if( !pParse->nested ){ sl@0: sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); sl@0: } sl@0: sqlite3VdbeChangeP5(v, pik_flags); sl@0: } sl@0: sl@0: /* sl@0: ** Generate code that will open cursors for a table and for all sl@0: ** indices of that table. The "baseCur" parameter is the cursor number used sl@0: ** for the table. Indices are opened on subsequent cursors. sl@0: ** sl@0: ** Return the number of indices on the table. sl@0: */ sl@0: int sqlite3OpenTableAndIndices( sl@0: Parse *pParse, /* Parsing context */ sl@0: Table *pTab, /* Table to be opened */ sl@0: int baseCur, /* Cursor number assigned to the table */ sl@0: int op /* OP_OpenRead or OP_OpenWrite */ sl@0: ){ sl@0: int i; sl@0: int iDb; sl@0: Index *pIdx; sl@0: Vdbe *v; sl@0: sl@0: if( IsVirtual(pTab) ) return 0; sl@0: iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sl@0: v = sqlite3GetVdbe(pParse); sl@0: assert( v!=0 ); sl@0: sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); sl@0: for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ sl@0: KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); sl@0: assert( pIdx->pSchema==pTab->pSchema ); sl@0: sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, sl@0: (char*)pKey, P4_KEYINFO_HANDOFF); sl@0: VdbeComment((v, "%s", pIdx->zName)); sl@0: } sl@0: if( pParse->nTab<=baseCur+i ){ sl@0: pParse->nTab = baseCur+i; sl@0: } sl@0: return i-1; sl@0: } sl@0: sl@0: sl@0: #ifdef SQLITE_TEST sl@0: /* sl@0: ** The following global variable is incremented whenever the sl@0: ** transfer optimization is used. This is used for testing sl@0: ** purposes only - to make sure the transfer optimization really sl@0: ** is happening when it is suppose to. sl@0: */ sl@0: int sqlite3_xferopt_count; sl@0: #endif /* SQLITE_TEST */ sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_XFER_OPT sl@0: /* sl@0: ** Check to collation names to see if they are compatible. sl@0: */ sl@0: static int xferCompatibleCollation(const char *z1, const char *z2){ sl@0: if( z1==0 ){ sl@0: return z2==0; sl@0: } sl@0: if( z2==0 ){ sl@0: return 0; sl@0: } sl@0: return sqlite3StrICmp(z1, z2)==0; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Check to see if index pSrc is compatible as a source of data sl@0: ** for index pDest in an insert transfer optimization. The rules sl@0: ** for a compatible index: sl@0: ** sl@0: ** * The index is over the same set of columns sl@0: ** * The same DESC and ASC markings occurs on all columns sl@0: ** * The same onError processing (OE_Abort, OE_Ignore, etc) sl@0: ** * The same collating sequence on each column sl@0: */ sl@0: static int xferCompatibleIndex(Index *pDest, Index *pSrc){ sl@0: int i; sl@0: assert( pDest && pSrc ); sl@0: assert( pDest->pTable!=pSrc->pTable ); sl@0: if( pDest->nColumn!=pSrc->nColumn ){ sl@0: return 0; /* Different number of columns */ sl@0: } sl@0: if( pDest->onError!=pSrc->onError ){ sl@0: return 0; /* Different conflict resolution strategies */ sl@0: } sl@0: for(i=0; inColumn; i++){ sl@0: if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ sl@0: return 0; /* Different columns indexed */ sl@0: } sl@0: if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ sl@0: return 0; /* Different sort orders */ sl@0: } sl@0: if( pSrc->azColl[i]!=pDest->azColl[i] ){ sl@0: return 0; /* Different collating sequences */ sl@0: } sl@0: } sl@0: sl@0: /* If no test above fails then the indices must be compatible */ sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: ** Attempt the transfer optimization on INSERTs of the form sl@0: ** sl@0: ** INSERT INTO tab1 SELECT * FROM tab2; sl@0: ** sl@0: ** This optimization is only attempted if sl@0: ** sl@0: ** (1) tab1 and tab2 have identical schemas including all the sl@0: ** same indices and constraints sl@0: ** sl@0: ** (2) tab1 and tab2 are different tables sl@0: ** sl@0: ** (3) There must be no triggers on tab1 sl@0: ** sl@0: ** (4) The result set of the SELECT statement is "*" sl@0: ** sl@0: ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, sl@0: ** or LIMIT clause. sl@0: ** sl@0: ** (6) The SELECT statement is a simple (not a compound) select that sl@0: ** contains only tab2 in its FROM clause sl@0: ** sl@0: ** This method for implementing the INSERT transfers raw records from sl@0: ** tab2 over to tab1. The columns are not decoded. Raw records from sl@0: ** the indices of tab2 are transfered to tab1 as well. In so doing, sl@0: ** the resulting tab1 has much less fragmentation. sl@0: ** sl@0: ** This routine returns TRUE if the optimization is attempted. If any sl@0: ** of the conditions above fail so that the optimization should not sl@0: ** be attempted, then this routine returns FALSE. sl@0: */ sl@0: static int xferOptimization( sl@0: Parse *pParse, /* Parser context */ sl@0: Table *pDest, /* The table we are inserting into */ sl@0: Select *pSelect, /* A SELECT statement to use as the data source */ sl@0: int onError, /* How to handle constraint errors */ sl@0: int iDbDest /* The database of pDest */ sl@0: ){ sl@0: ExprList *pEList; /* The result set of the SELECT */ sl@0: Table *pSrc; /* The table in the FROM clause of SELECT */ sl@0: Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ sl@0: struct SrcList_item *pItem; /* An element of pSelect->pSrc */ sl@0: int i; /* Loop counter */ sl@0: int iDbSrc; /* The database of pSrc */ sl@0: int iSrc, iDest; /* Cursors from source and destination */ sl@0: int addr1, addr2; /* Loop addresses */ sl@0: int emptyDestTest; /* Address of test for empty pDest */ sl@0: int emptySrcTest; /* Address of test for empty pSrc */ sl@0: Vdbe *v; /* The VDBE we are building */ sl@0: KeyInfo *pKey; /* Key information for an index */ sl@0: int regAutoinc; /* Memory register used by AUTOINC */ sl@0: int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ sl@0: int regData, regRowid; /* Registers holding data and rowid */ sl@0: sl@0: if( pSelect==0 ){ sl@0: return 0; /* Must be of the form INSERT INTO ... SELECT ... */ sl@0: } sl@0: if( pDest->pTrigger ){ sl@0: return 0; /* tab1 must not have triggers */ sl@0: } sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( pDest->tabFlags & TF_Virtual ){ sl@0: return 0; /* tab1 must not be a virtual table */ sl@0: } sl@0: #endif sl@0: if( onError==OE_Default ){ sl@0: onError = OE_Abort; sl@0: } sl@0: if( onError!=OE_Abort && onError!=OE_Rollback ){ sl@0: return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ sl@0: } sl@0: assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ sl@0: if( pSelect->pSrc->nSrc!=1 ){ sl@0: return 0; /* FROM clause must have exactly one term */ sl@0: } sl@0: if( pSelect->pSrc->a[0].pSelect ){ sl@0: return 0; /* FROM clause cannot contain a subquery */ sl@0: } sl@0: if( pSelect->pWhere ){ sl@0: return 0; /* SELECT may not have a WHERE clause */ sl@0: } sl@0: if( pSelect->pOrderBy ){ sl@0: return 0; /* SELECT may not have an ORDER BY clause */ sl@0: } sl@0: /* Do not need to test for a HAVING clause. If HAVING is present but sl@0: ** there is no ORDER BY, we will get an error. */ sl@0: if( pSelect->pGroupBy ){ sl@0: return 0; /* SELECT may not have a GROUP BY clause */ sl@0: } sl@0: if( pSelect->pLimit ){ sl@0: return 0; /* SELECT may not have a LIMIT clause */ sl@0: } sl@0: assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ sl@0: if( pSelect->pPrior ){ sl@0: return 0; /* SELECT may not be a compound query */ sl@0: } sl@0: if( pSelect->selFlags & SF_Distinct ){ sl@0: return 0; /* SELECT may not be DISTINCT */ sl@0: } sl@0: pEList = pSelect->pEList; sl@0: assert( pEList!=0 ); sl@0: if( pEList->nExpr!=1 ){ sl@0: return 0; /* The result set must have exactly one column */ sl@0: } sl@0: assert( pEList->a[0].pExpr ); sl@0: if( pEList->a[0].pExpr->op!=TK_ALL ){ sl@0: return 0; /* The result set must be the special operator "*" */ sl@0: } sl@0: sl@0: /* At this point we have established that the statement is of the sl@0: ** correct syntactic form to participate in this optimization. Now sl@0: ** we have to check the semantics. sl@0: */ sl@0: pItem = pSelect->pSrc->a; sl@0: pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); sl@0: if( pSrc==0 ){ sl@0: return 0; /* FROM clause does not contain a real table */ sl@0: } sl@0: if( pSrc==pDest ){ sl@0: return 0; /* tab1 and tab2 may not be the same table */ sl@0: } sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( pSrc->tabFlags & TF_Virtual ){ sl@0: return 0; /* tab2 must not be a virtual table */ sl@0: } sl@0: #endif sl@0: if( pSrc->pSelect ){ sl@0: return 0; /* tab2 may not be a view */ sl@0: } sl@0: if( pDest->nCol!=pSrc->nCol ){ sl@0: return 0; /* Number of columns must be the same in tab1 and tab2 */ sl@0: } sl@0: if( pDest->iPKey!=pSrc->iPKey ){ sl@0: return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ sl@0: } sl@0: for(i=0; inCol; i++){ sl@0: if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ sl@0: return 0; /* Affinity must be the same on all columns */ sl@0: } sl@0: if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ sl@0: return 0; /* Collating sequence must be the same on all columns */ sl@0: } sl@0: if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ sl@0: return 0; /* tab2 must be NOT NULL if tab1 is */ sl@0: } sl@0: } sl@0: for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ sl@0: if( pDestIdx->onError!=OE_None ){ sl@0: destHasUniqueIdx = 1; sl@0: } sl@0: for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ sl@0: if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; sl@0: } sl@0: if( pSrcIdx==0 ){ sl@0: return 0; /* pDestIdx has no corresponding index in pSrc */ sl@0: } sl@0: } sl@0: #ifndef SQLITE_OMIT_CHECK sl@0: if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ sl@0: return 0; /* Tables have different CHECK constraints. Ticket #2252 */ sl@0: } sl@0: #endif sl@0: sl@0: /* If we get this far, it means either: sl@0: ** sl@0: ** * We can always do the transfer if the table contains an sl@0: ** an integer primary key sl@0: ** sl@0: ** * We can conditionally do the transfer if the destination sl@0: ** table is empty. sl@0: */ sl@0: #ifdef SQLITE_TEST sl@0: sqlite3_xferopt_count++; sl@0: #endif sl@0: iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); sl@0: v = sqlite3GetVdbe(pParse); sl@0: sqlite3CodeVerifySchema(pParse, iDbSrc); sl@0: iSrc = pParse->nTab++; sl@0: iDest = pParse->nTab++; sl@0: regAutoinc = autoIncBegin(pParse, iDbDest, pDest); sl@0: sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); sl@0: if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ sl@0: /* If tables do not have an INTEGER PRIMARY KEY and there sl@0: ** are indices to be copied and the destination is not empty, sl@0: ** we have to disallow the transfer optimization because the sl@0: ** the rowids might change which will mess up indexing. sl@0: ** sl@0: ** Or if the destination has a UNIQUE index and is not empty, sl@0: ** we also disallow the transfer optimization because we cannot sl@0: ** insure that all entries in the union of DEST and SRC will be sl@0: ** unique. sl@0: */ sl@0: addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); sl@0: emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); sl@0: sqlite3VdbeJumpHere(v, addr1); sl@0: }else{ sl@0: emptyDestTest = 0; sl@0: } sl@0: sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); sl@0: emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); sl@0: regData = sqlite3GetTempReg(pParse); sl@0: regRowid = sqlite3GetTempReg(pParse); sl@0: if( pDest->iPKey>=0 ){ sl@0: addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); sl@0: addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); sl@0: sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, sl@0: "PRIMARY KEY must be unique", P4_STATIC); sl@0: sqlite3VdbeJumpHere(v, addr2); sl@0: autoIncStep(pParse, regAutoinc, regRowid); sl@0: }else if( pDest->pIndex==0 ){ sl@0: addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); sl@0: }else{ sl@0: addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); sl@0: assert( (pDest->tabFlags & TF_Autoincrement)==0 ); sl@0: } sl@0: sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); sl@0: sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); sl@0: sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); sl@0: sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); sl@0: sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); sl@0: autoIncEnd(pParse, iDbDest, pDest, regAutoinc); sl@0: for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ sl@0: for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ sl@0: if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; sl@0: } sl@0: assert( pSrcIdx ); sl@0: sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sl@0: sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); sl@0: pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); sl@0: sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, sl@0: (char*)pKey, P4_KEYINFO_HANDOFF); sl@0: VdbeComment((v, "%s", pSrcIdx->zName)); sl@0: pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); sl@0: sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, sl@0: (char*)pKey, P4_KEYINFO_HANDOFF); sl@0: VdbeComment((v, "%s", pDestIdx->zName)); sl@0: addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); sl@0: sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); sl@0: sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); sl@0: sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); sl@0: sqlite3VdbeJumpHere(v, addr1); sl@0: } sl@0: sqlite3VdbeJumpHere(v, emptySrcTest); sl@0: sqlite3ReleaseTempReg(pParse, regRowid); sl@0: sqlite3ReleaseTempReg(pParse, regData); sl@0: sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sl@0: sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); sl@0: if( emptyDestTest ){ sl@0: sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); sl@0: sqlite3VdbeJumpHere(v, emptyDestTest); sl@0: sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); sl@0: return 0; sl@0: }else{ sl@0: return 1; sl@0: } sl@0: } sl@0: #endif /* SQLITE_OMIT_XFER_OPT */ sl@0: sl@0: /* Make sure "isView" gets undefined in case this file becomes part of sl@0: ** the amalgamation - so that subsequent files do not see isView as a sl@0: ** macro. */ sl@0: #undef isView