sl@0: /* sl@0: ** 2006 September 30 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** Implementation of the full-text-search tokenizer that implements sl@0: ** a Porter stemmer. sl@0: */ sl@0: sl@0: /* sl@0: ** The code in this file is only compiled if: sl@0: ** sl@0: ** * The FTS3 module is being built as an extension sl@0: ** (in which case SQLITE_CORE is not defined), or sl@0: ** sl@0: ** * The FTS3 module is being built into the core of sl@0: ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). sl@0: */ sl@0: #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) sl@0: sl@0: sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: sl@0: #include "fts3_tokenizer.h" sl@0: sl@0: /* sl@0: ** Class derived from sqlite3_tokenizer sl@0: */ sl@0: typedef struct porter_tokenizer { sl@0: sqlite3_tokenizer base; /* Base class */ sl@0: } porter_tokenizer; sl@0: sl@0: /* sl@0: ** Class derived from sqlit3_tokenizer_cursor sl@0: */ sl@0: typedef struct porter_tokenizer_cursor { sl@0: sqlite3_tokenizer_cursor base; sl@0: const char *zInput; /* input we are tokenizing */ sl@0: int nInput; /* size of the input */ sl@0: int iOffset; /* current position in zInput */ sl@0: int iToken; /* index of next token to be returned */ sl@0: char *zToken; /* storage for current token */ sl@0: int nAllocated; /* space allocated to zToken buffer */ sl@0: } porter_tokenizer_cursor; sl@0: sl@0: sl@0: /* Forward declaration */ sl@0: static const sqlite3_tokenizer_module porterTokenizerModule; sl@0: sl@0: sl@0: /* sl@0: ** Create a new tokenizer instance. sl@0: */ sl@0: static int porterCreate( sl@0: int argc, const char * const *argv, sl@0: sqlite3_tokenizer **ppTokenizer sl@0: ){ sl@0: porter_tokenizer *t; sl@0: t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t)); sl@0: if( t==NULL ) return SQLITE_NOMEM; sl@0: memset(t, 0, sizeof(*t)); sl@0: *ppTokenizer = &t->base; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Destroy a tokenizer sl@0: */ sl@0: static int porterDestroy(sqlite3_tokenizer *pTokenizer){ sl@0: sqlite3_free(pTokenizer); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Prepare to begin tokenizing a particular string. The input sl@0: ** string to be tokenized is zInput[0..nInput-1]. A cursor sl@0: ** used to incrementally tokenize this string is returned in sl@0: ** *ppCursor. sl@0: */ sl@0: static int porterOpen( sl@0: sqlite3_tokenizer *pTokenizer, /* The tokenizer */ sl@0: const char *zInput, int nInput, /* String to be tokenized */ sl@0: sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */ sl@0: ){ sl@0: porter_tokenizer_cursor *c; sl@0: sl@0: c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c)); sl@0: if( c==NULL ) return SQLITE_NOMEM; sl@0: sl@0: c->zInput = zInput; sl@0: if( zInput==0 ){ sl@0: c->nInput = 0; sl@0: }else if( nInput<0 ){ sl@0: c->nInput = (int)strlen(zInput); sl@0: }else{ sl@0: c->nInput = nInput; sl@0: } sl@0: c->iOffset = 0; /* start tokenizing at the beginning */ sl@0: c->iToken = 0; sl@0: c->zToken = NULL; /* no space allocated, yet. */ sl@0: c->nAllocated = 0; sl@0: sl@0: *ppCursor = &c->base; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Close a tokenization cursor previously opened by a call to sl@0: ** porterOpen() above. sl@0: */ sl@0: static int porterClose(sqlite3_tokenizer_cursor *pCursor){ sl@0: porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; sl@0: sqlite3_free(c->zToken); sl@0: sqlite3_free(c); sl@0: return SQLITE_OK; sl@0: } sl@0: /* sl@0: ** Vowel or consonant sl@0: */ sl@0: static const char cType[] = { sl@0: 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, sl@0: 1, 1, 1, 2, 1 sl@0: }; sl@0: sl@0: /* sl@0: ** isConsonant() and isVowel() determine if their first character in sl@0: ** the string they point to is a consonant or a vowel, according sl@0: ** to Porter ruls. sl@0: ** sl@0: ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'. sl@0: ** 'Y' is a consonant unless it follows another consonant, sl@0: ** in which case it is a vowel. sl@0: ** sl@0: ** In these routine, the letters are in reverse order. So the 'y' rule sl@0: ** is that 'y' is a consonant unless it is followed by another sl@0: ** consonent. sl@0: */ sl@0: static int isVowel(const char*); sl@0: static int isConsonant(const char *z){ sl@0: int j; sl@0: char x = *z; sl@0: if( x==0 ) return 0; sl@0: assert( x>='a' && x<='z' ); sl@0: j = cType[x-'a']; sl@0: if( j<2 ) return j; sl@0: return z[1]==0 || isVowel(z + 1); sl@0: } sl@0: static int isVowel(const char *z){ sl@0: int j; sl@0: char x = *z; sl@0: if( x==0 ) return 0; sl@0: assert( x>='a' && x<='z' ); sl@0: j = cType[x-'a']; sl@0: if( j<2 ) return 1-j; sl@0: return isConsonant(z + 1); sl@0: } sl@0: sl@0: /* sl@0: ** Let any sequence of one or more vowels be represented by V and let sl@0: ** C be sequence of one or more consonants. Then every word can be sl@0: ** represented as: sl@0: ** sl@0: ** [C] (VC){m} [V] sl@0: ** sl@0: ** In prose: A word is an optional consonant followed by zero or sl@0: ** vowel-consonant pairs followed by an optional vowel. "m" is the sl@0: ** number of vowel consonant pairs. This routine computes the value sl@0: ** of m for the first i bytes of a word. sl@0: ** sl@0: ** Return true if the m-value for z is 1 or more. In other words, sl@0: ** return true if z contains at least one vowel that is followed sl@0: ** by a consonant. sl@0: ** sl@0: ** In this routine z[] is in reverse order. So we are really looking sl@0: ** for an instance of of a consonant followed by a vowel. sl@0: */ sl@0: static int m_gt_0(const char *z){ sl@0: while( isVowel(z) ){ z++; } sl@0: if( *z==0 ) return 0; sl@0: while( isConsonant(z) ){ z++; } sl@0: return *z!=0; sl@0: } sl@0: sl@0: /* Like mgt0 above except we are looking for a value of m which is sl@0: ** exactly 1 sl@0: */ sl@0: static int m_eq_1(const char *z){ sl@0: while( isVowel(z) ){ z++; } sl@0: if( *z==0 ) return 0; sl@0: while( isConsonant(z) ){ z++; } sl@0: if( *z==0 ) return 0; sl@0: while( isVowel(z) ){ z++; } sl@0: if( *z==0 ) return 1; sl@0: while( isConsonant(z) ){ z++; } sl@0: return *z==0; sl@0: } sl@0: sl@0: /* Like mgt0 above except we are looking for a value of m>1 instead sl@0: ** or m>0 sl@0: */ sl@0: static int m_gt_1(const char *z){ sl@0: while( isVowel(z) ){ z++; } sl@0: if( *z==0 ) return 0; sl@0: while( isConsonant(z) ){ z++; } sl@0: if( *z==0 ) return 0; sl@0: while( isVowel(z) ){ z++; } sl@0: if( *z==0 ) return 0; sl@0: while( isConsonant(z) ){ z++; } sl@0: return *z!=0; sl@0: } sl@0: sl@0: /* sl@0: ** Return TRUE if there is a vowel anywhere within z[0..n-1] sl@0: */ sl@0: static int hasVowel(const char *z){ sl@0: while( isConsonant(z) ){ z++; } sl@0: return *z!=0; sl@0: } sl@0: sl@0: /* sl@0: ** Return TRUE if the word ends in a double consonant. sl@0: ** sl@0: ** The text is reversed here. So we are really looking at sl@0: ** the first two characters of z[]. sl@0: */ sl@0: static int doubleConsonant(const char *z){ sl@0: return isConsonant(z) && z[0]==z[1] && isConsonant(z+1); sl@0: } sl@0: sl@0: /* sl@0: ** Return TRUE if the word ends with three letters which sl@0: ** are consonant-vowel-consonent and where the final consonant sl@0: ** is not 'w', 'x', or 'y'. sl@0: ** sl@0: ** The word is reversed here. So we are really checking the sl@0: ** first three letters and the first one cannot be in [wxy]. sl@0: */ sl@0: static int star_oh(const char *z){ sl@0: return sl@0: z[0]!=0 && isConsonant(z) && sl@0: z[0]!='w' && z[0]!='x' && z[0]!='y' && sl@0: z[1]!=0 && isVowel(z+1) && sl@0: z[2]!=0 && isConsonant(z+2); sl@0: } sl@0: sl@0: /* sl@0: ** If the word ends with zFrom and xCond() is true for the stem sl@0: ** of the word that preceeds the zFrom ending, then change the sl@0: ** ending to zTo. sl@0: ** sl@0: ** The input word *pz and zFrom are both in reverse order. zTo sl@0: ** is in normal order. sl@0: ** sl@0: ** Return TRUE if zFrom matches. Return FALSE if zFrom does not sl@0: ** match. Not that TRUE is returned even if xCond() fails and sl@0: ** no substitution occurs. sl@0: */ sl@0: static int stem( sl@0: char **pz, /* The word being stemmed (Reversed) */ sl@0: const char *zFrom, /* If the ending matches this... (Reversed) */ sl@0: const char *zTo, /* ... change the ending to this (not reversed) */ sl@0: int (*xCond)(const char*) /* Condition that must be true */ sl@0: ){ sl@0: char *z = *pz; sl@0: while( *zFrom && *zFrom==*z ){ z++; zFrom++; } sl@0: if( *zFrom!=0 ) return 0; sl@0: if( xCond && !xCond(z) ) return 1; sl@0: while( *zTo ){ sl@0: *(--z) = *(zTo++); sl@0: } sl@0: *pz = z; sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: ** This is the fallback stemmer used when the porter stemmer is sl@0: ** inappropriate. The input word is copied into the output with sl@0: ** US-ASCII case folding. If the input word is too long (more sl@0: ** than 20 bytes if it contains no digits or more than 6 bytes if sl@0: ** it contains digits) then word is truncated to 20 or 6 bytes sl@0: ** by taking 10 or 3 bytes from the beginning and end. sl@0: */ sl@0: static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){ sl@0: int i, mx, j; sl@0: int hasDigit = 0; sl@0: for(i=0; i='A' && c<='Z' ){ sl@0: zOut[i] = c - 'A' + 'a'; sl@0: }else{ sl@0: if( c>='0' && c<='9' ) hasDigit = 1; sl@0: zOut[i] = c; sl@0: } sl@0: } sl@0: mx = hasDigit ? 3 : 10; sl@0: if( nIn>mx*2 ){ sl@0: for(j=mx, i=nIn-mx; i=sizeof(zReverse)-7 ){ sl@0: /* The word is too big or too small for the porter stemmer. sl@0: ** Fallback to the copy stemmer */ sl@0: copy_stemmer(zIn, nIn, zOut, pnOut); sl@0: return; sl@0: } sl@0: for(i=0, j=sizeof(zReverse)-6; i='A' && c<='Z' ){ sl@0: zReverse[j] = c + 'a' - 'A'; sl@0: }else if( c>='a' && c<='z' ){ sl@0: zReverse[j] = c; sl@0: }else{ sl@0: /* The use of a character not in [a-zA-Z] means that we fallback sl@0: ** to the copy stemmer */ sl@0: copy_stemmer(zIn, nIn, zOut, pnOut); sl@0: return; sl@0: } sl@0: } sl@0: memset(&zReverse[sizeof(zReverse)-5], 0, 5); sl@0: z = &zReverse[j+1]; sl@0: sl@0: sl@0: /* Step 1a */ sl@0: if( z[0]=='s' ){ sl@0: if( sl@0: !stem(&z, "sess", "ss", 0) && sl@0: !stem(&z, "sei", "i", 0) && sl@0: !stem(&z, "ss", "ss", 0) sl@0: ){ sl@0: z++; sl@0: } sl@0: } sl@0: sl@0: /* Step 1b */ sl@0: z2 = z; sl@0: if( stem(&z, "dee", "ee", m_gt_0) ){ sl@0: /* Do nothing. The work was all in the test */ sl@0: }else if( sl@0: (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel)) sl@0: && z!=z2 sl@0: ){ sl@0: if( stem(&z, "ta", "ate", 0) || sl@0: stem(&z, "lb", "ble", 0) || sl@0: stem(&z, "zi", "ize", 0) ){ sl@0: /* Do nothing. The work was all in the test */ sl@0: }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){ sl@0: z++; sl@0: }else if( m_eq_1(z) && star_oh(z) ){ sl@0: *(--z) = 'e'; sl@0: } sl@0: } sl@0: sl@0: /* Step 1c */ sl@0: if( z[0]=='y' && hasVowel(z+1) ){ sl@0: z[0] = 'i'; sl@0: } sl@0: sl@0: /* Step 2 */ sl@0: switch( z[1] ){ sl@0: case 'a': sl@0: stem(&z, "lanoita", "ate", m_gt_0) || sl@0: stem(&z, "lanoit", "tion", m_gt_0); sl@0: break; sl@0: case 'c': sl@0: stem(&z, "icne", "ence", m_gt_0) || sl@0: stem(&z, "icna", "ance", m_gt_0); sl@0: break; sl@0: case 'e': sl@0: stem(&z, "rezi", "ize", m_gt_0); sl@0: break; sl@0: case 'g': sl@0: stem(&z, "igol", "log", m_gt_0); sl@0: break; sl@0: case 'l': sl@0: stem(&z, "ilb", "ble", m_gt_0) || sl@0: stem(&z, "illa", "al", m_gt_0) || sl@0: stem(&z, "iltne", "ent", m_gt_0) || sl@0: stem(&z, "ile", "e", m_gt_0) || sl@0: stem(&z, "ilsuo", "ous", m_gt_0); sl@0: break; sl@0: case 'o': sl@0: stem(&z, "noitazi", "ize", m_gt_0) || sl@0: stem(&z, "noita", "ate", m_gt_0) || sl@0: stem(&z, "rota", "ate", m_gt_0); sl@0: break; sl@0: case 's': sl@0: stem(&z, "msila", "al", m_gt_0) || sl@0: stem(&z, "ssenevi", "ive", m_gt_0) || sl@0: stem(&z, "ssenluf", "ful", m_gt_0) || sl@0: stem(&z, "ssensuo", "ous", m_gt_0); sl@0: break; sl@0: case 't': sl@0: stem(&z, "itila", "al", m_gt_0) || sl@0: stem(&z, "itivi", "ive", m_gt_0) || sl@0: stem(&z, "itilib", "ble", m_gt_0); sl@0: break; sl@0: } sl@0: sl@0: /* Step 3 */ sl@0: switch( z[0] ){ sl@0: case 'e': sl@0: stem(&z, "etaci", "ic", m_gt_0) || sl@0: stem(&z, "evita", "", m_gt_0) || sl@0: stem(&z, "ezila", "al", m_gt_0); sl@0: break; sl@0: case 'i': sl@0: stem(&z, "itici", "ic", m_gt_0); sl@0: break; sl@0: case 'l': sl@0: stem(&z, "laci", "ic", m_gt_0) || sl@0: stem(&z, "luf", "", m_gt_0); sl@0: break; sl@0: case 's': sl@0: stem(&z, "ssen", "", m_gt_0); sl@0: break; sl@0: } sl@0: sl@0: /* Step 4 */ sl@0: switch( z[1] ){ sl@0: case 'a': sl@0: if( z[0]=='l' && m_gt_1(z+2) ){ sl@0: z += 2; sl@0: } sl@0: break; sl@0: case 'c': sl@0: if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){ sl@0: z += 4; sl@0: } sl@0: break; sl@0: case 'e': sl@0: if( z[0]=='r' && m_gt_1(z+2) ){ sl@0: z += 2; sl@0: } sl@0: break; sl@0: case 'i': sl@0: if( z[0]=='c' && m_gt_1(z+2) ){ sl@0: z += 2; sl@0: } sl@0: break; sl@0: case 'l': sl@0: if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){ sl@0: z += 4; sl@0: } sl@0: break; sl@0: case 'n': sl@0: if( z[0]=='t' ){ sl@0: if( z[2]=='a' ){ sl@0: if( m_gt_1(z+3) ){ sl@0: z += 3; sl@0: } sl@0: }else if( z[2]=='e' ){ sl@0: stem(&z, "tneme", "", m_gt_1) || sl@0: stem(&z, "tnem", "", m_gt_1) || sl@0: stem(&z, "tne", "", m_gt_1); sl@0: } sl@0: } sl@0: break; sl@0: case 'o': sl@0: if( z[0]=='u' ){ sl@0: if( m_gt_1(z+2) ){ sl@0: z += 2; sl@0: } sl@0: }else if( z[3]=='s' || z[3]=='t' ){ sl@0: stem(&z, "noi", "", m_gt_1); sl@0: } sl@0: break; sl@0: case 's': sl@0: if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){ sl@0: z += 3; sl@0: } sl@0: break; sl@0: case 't': sl@0: stem(&z, "eta", "", m_gt_1) || sl@0: stem(&z, "iti", "", m_gt_1); sl@0: break; sl@0: case 'u': sl@0: if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){ sl@0: z += 3; sl@0: } sl@0: break; sl@0: case 'v': sl@0: case 'z': sl@0: if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){ sl@0: z += 3; sl@0: } sl@0: break; sl@0: } sl@0: sl@0: /* Step 5a */ sl@0: if( z[0]=='e' ){ sl@0: if( m_gt_1(z+1) ){ sl@0: z++; sl@0: }else if( m_eq_1(z+1) && !star_oh(z+1) ){ sl@0: z++; sl@0: } sl@0: } sl@0: sl@0: /* Step 5b */ sl@0: if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){ sl@0: z++; sl@0: } sl@0: sl@0: /* z[] is now the stemmed word in reverse order. Flip it back sl@0: ** around into forward order and return. sl@0: */ sl@0: *pnOut = i = strlen(z); sl@0: zOut[i] = 0; sl@0: while( *z ){ sl@0: zOut[--i] = *(z++); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Characters that can be part of a token. We assume any character sl@0: ** whose value is greater than 0x80 (any UTF character) can be sl@0: ** part of a token. In other words, delimiters all must have sl@0: ** values of 0x7f or lower. sl@0: */ sl@0: static const char porterIdChar[] = { sl@0: /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ sl@0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ sl@0: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ sl@0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ sl@0: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ sl@0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ sl@0: }; sl@0: #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30])) sl@0: sl@0: /* sl@0: ** Extract the next token from a tokenization cursor. The cursor must sl@0: ** have been opened by a prior call to porterOpen(). sl@0: */ sl@0: static int porterNext( sl@0: sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */ sl@0: const char **pzToken, /* OUT: *pzToken is the token text */ sl@0: int *pnBytes, /* OUT: Number of bytes in token */ sl@0: int *piStartOffset, /* OUT: Starting offset of token */ sl@0: int *piEndOffset, /* OUT: Ending offset of token */ sl@0: int *piPosition /* OUT: Position integer of token */ sl@0: ){ sl@0: porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor; sl@0: const char *z = c->zInput; sl@0: sl@0: while( c->iOffsetnInput ){ sl@0: int iStartOffset, ch; sl@0: sl@0: /* Scan past delimiter characters */ sl@0: while( c->iOffsetnInput && isDelim(z[c->iOffset]) ){ sl@0: c->iOffset++; sl@0: } sl@0: sl@0: /* Count non-delimiter characters. */ sl@0: iStartOffset = c->iOffset; sl@0: while( c->iOffsetnInput && !isDelim(z[c->iOffset]) ){ sl@0: c->iOffset++; sl@0: } sl@0: sl@0: if( c->iOffset>iStartOffset ){ sl@0: int n = c->iOffset-iStartOffset; sl@0: if( n>c->nAllocated ){ sl@0: c->nAllocated = n+20; sl@0: c->zToken = sqlite3_realloc(c->zToken, c->nAllocated); sl@0: if( c->zToken==NULL ) return SQLITE_NOMEM; sl@0: } sl@0: porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes); sl@0: *pzToken = c->zToken; sl@0: *piStartOffset = iStartOffset; sl@0: *piEndOffset = c->iOffset; sl@0: *piPosition = c->iToken++; sl@0: return SQLITE_OK; sl@0: } sl@0: } sl@0: return SQLITE_DONE; sl@0: } sl@0: sl@0: /* sl@0: ** The set of routines that implement the porter-stemmer tokenizer sl@0: */ sl@0: static const sqlite3_tokenizer_module porterTokenizerModule = { sl@0: 0, sl@0: porterCreate, sl@0: porterDestroy, sl@0: porterOpen, sl@0: porterClose, sl@0: porterNext, sl@0: }; sl@0: sl@0: /* sl@0: ** Allocate a new porter tokenizer. Return a pointer to the new sl@0: ** tokenizer in *ppModule sl@0: */ sl@0: void sqlite3Fts3PorterTokenizerModule( sl@0: sqlite3_tokenizer_module const**ppModule sl@0: ){ sl@0: *ppModule = &porterTokenizerModule; sl@0: } sl@0: sl@0: #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) */