sl@0: /* fts1 has a design flaw which can lead to database corruption (see sl@0: ** below). It is recommended not to use it any longer, instead use sl@0: ** fts3 (or higher). If you believe that your use of fts1 is safe, sl@0: ** add -DSQLITE_ENABLE_BROKEN_FTS1=1 to your CFLAGS. sl@0: */ sl@0: #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)) \ sl@0: && !defined(SQLITE_ENABLE_BROKEN_FTS1) sl@0: #error fts1 has a design flaw and has been deprecated. sl@0: #endif sl@0: /* The flaw is that fts1 uses the content table's unaliased rowid as sl@0: ** the unique docid. fts1 embeds the rowid in the index it builds, sl@0: ** and expects the rowid to not change. The SQLite VACUUM operation sl@0: ** will renumber such rowids, thereby breaking fts1. If you are using sl@0: ** fts1 in a system which has disabled VACUUM, then you can continue sl@0: ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable sl@0: ** VACUUM, though systems using auto_vacuum are unlikely to invoke sl@0: ** VACUUM. sl@0: ** sl@0: ** fts1 should be safe even across VACUUM if you only insert documents sl@0: ** and never delete. sl@0: */ sl@0: sl@0: /* The author disclaims copyright to this source code. sl@0: * sl@0: * This is an SQLite module implementing full-text search. sl@0: */ sl@0: sl@0: /* sl@0: ** The code in this file is only compiled if: sl@0: ** sl@0: ** * The FTS1 module is being built as an extension sl@0: ** (in which case SQLITE_CORE is not defined), or sl@0: ** sl@0: ** * The FTS1 module is being built into the core of sl@0: ** SQLite (in which case SQLITE_ENABLE_FTS1 is defined). sl@0: */ sl@0: #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) sl@0: sl@0: #if defined(SQLITE_ENABLE_FTS1) && !defined(SQLITE_CORE) sl@0: # define SQLITE_CORE 1 sl@0: #endif sl@0: sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: sl@0: #include "fts1.h" sl@0: #include "fts1_hash.h" sl@0: #include "fts1_tokenizer.h" sl@0: #include "sqlite3.h" sl@0: #include "sqlite3ext.h" sl@0: SQLITE_EXTENSION_INIT1 sl@0: sl@0: sl@0: #if 0 sl@0: # define TRACE(A) printf A; fflush(stdout) sl@0: #else sl@0: # define TRACE(A) sl@0: #endif sl@0: sl@0: /* utility functions */ sl@0: sl@0: typedef struct StringBuffer { sl@0: int len; /* length, not including null terminator */ sl@0: int alloced; /* Space allocated for s[] */ sl@0: char *s; /* Content of the string */ sl@0: } StringBuffer; sl@0: sl@0: static void initStringBuffer(StringBuffer *sb){ sl@0: sb->len = 0; sl@0: sb->alloced = 100; sl@0: sb->s = malloc(100); sl@0: sb->s[0] = '\0'; sl@0: } sl@0: sl@0: static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ sl@0: if( sb->len + nFrom >= sb->alloced ){ sl@0: sb->alloced = sb->len + nFrom + 100; sl@0: sb->s = realloc(sb->s, sb->alloced+1); sl@0: if( sb->s==0 ){ sl@0: initStringBuffer(sb); sl@0: return; sl@0: } sl@0: } sl@0: memcpy(sb->s + sb->len, zFrom, nFrom); sl@0: sb->len += nFrom; sl@0: sb->s[sb->len] = 0; sl@0: } sl@0: static void append(StringBuffer *sb, const char *zFrom){ sl@0: nappend(sb, zFrom, strlen(zFrom)); sl@0: } sl@0: sl@0: /* We encode variable-length integers in little-endian order using seven bits sl@0: * per byte as follows: sl@0: ** sl@0: ** KEY: sl@0: ** A = 0xxxxxxx 7 bits of data and one flag bit sl@0: ** B = 1xxxxxxx 7 bits of data and one flag bit sl@0: ** sl@0: ** 7 bits - A sl@0: ** 14 bits - BA sl@0: ** 21 bits - BBA sl@0: ** and so on. sl@0: */ sl@0: sl@0: /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ sl@0: #define VARINT_MAX 10 sl@0: sl@0: /* Write a 64-bit variable-length integer to memory starting at p[0]. sl@0: * The length of data written will be between 1 and VARINT_MAX bytes. sl@0: * The number of bytes written is returned. */ sl@0: static int putVarint(char *p, sqlite_int64 v){ sl@0: unsigned char *q = (unsigned char *) p; sl@0: sqlite_uint64 vu = v; sl@0: do{ sl@0: *q++ = (unsigned char) ((vu & 0x7f) | 0x80); sl@0: vu >>= 7; sl@0: }while( vu!=0 ); sl@0: q[-1] &= 0x7f; /* turn off high bit in final byte */ sl@0: assert( q - (unsigned char *)p <= VARINT_MAX ); sl@0: return (int) (q - (unsigned char *)p); sl@0: } sl@0: sl@0: /* Read a 64-bit variable-length integer from memory starting at p[0]. sl@0: * Return the number of bytes read, or 0 on error. sl@0: * The value is stored in *v. */ sl@0: static int getVarint(const char *p, sqlite_int64 *v){ sl@0: const unsigned char *q = (const unsigned char *) p; sl@0: sqlite_uint64 x = 0, y = 1; sl@0: while( (*q & 0x80) == 0x80 ){ sl@0: x += y * (*q++ & 0x7f); sl@0: y <<= 7; sl@0: if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ sl@0: assert( 0 ); sl@0: return 0; sl@0: } sl@0: } sl@0: x += y * (*q++); sl@0: *v = (sqlite_int64) x; sl@0: return (int) (q - (unsigned char *)p); sl@0: } sl@0: sl@0: static int getVarint32(const char *p, int *pi){ sl@0: sqlite_int64 i; sl@0: int ret = getVarint(p, &i); sl@0: *pi = (int) i; sl@0: assert( *pi==i ); sl@0: return ret; sl@0: } sl@0: sl@0: /*** Document lists *** sl@0: * sl@0: * A document list holds a sorted list of varint-encoded document IDs. sl@0: * sl@0: * A doclist with type DL_POSITIONS_OFFSETS is stored like this: sl@0: * sl@0: * array { sl@0: * varint docid; sl@0: * array { sl@0: * varint position; (delta from previous position plus POS_BASE) sl@0: * varint startOffset; (delta from previous startOffset) sl@0: * varint endOffset; (delta from startOffset) sl@0: * } sl@0: * } sl@0: * sl@0: * Here, array { X } means zero or more occurrences of X, adjacent in memory. sl@0: * sl@0: * A position list may hold positions for text in multiple columns. A position sl@0: * POS_COLUMN is followed by a varint containing the index of the column for sl@0: * following positions in the list. Any positions appearing before any sl@0: * occurrences of POS_COLUMN are for column 0. sl@0: * sl@0: * A doclist with type DL_POSITIONS is like the above, but holds only docids sl@0: * and positions without offset information. sl@0: * sl@0: * A doclist with type DL_DOCIDS is like the above, but holds only docids sl@0: * without positions or offset information. sl@0: * sl@0: * On disk, every document list has positions and offsets, so we don't bother sl@0: * to serialize a doclist's type. sl@0: * sl@0: * We don't yet delta-encode document IDs; doing so will probably be a sl@0: * modest win. sl@0: * sl@0: * NOTE(shess) I've thought of a slightly (1%) better offset encoding. sl@0: * After the first offset, estimate the next offset by using the sl@0: * current token position and the previous token position and offset, sl@0: * offset to handle some variance. So the estimate would be sl@0: * (iPosition*w->iStartOffset/w->iPosition-64), which is delta-encoded sl@0: * as normal. Offsets more than 64 chars from the estimate are sl@0: * encoded as the delta to the previous start offset + 128. An sl@0: * additional tiny increment can be gained by using the end offset of sl@0: * the previous token to make the estimate a tiny bit more precise. sl@0: */ sl@0: sl@0: /* It is not safe to call isspace(), tolower(), or isalnum() on sl@0: ** hi-bit-set characters. This is the same solution used in the sl@0: ** tokenizer. sl@0: */ sl@0: /* TODO(shess) The snippet-generation code should be using the sl@0: ** tokenizer-generated tokens rather than doing its own local sl@0: ** tokenization. sl@0: */ sl@0: /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ sl@0: static int safe_isspace(char c){ sl@0: return (c&0x80)==0 ? isspace(c) : 0; sl@0: } sl@0: static int safe_tolower(char c){ sl@0: return (c&0x80)==0 ? tolower(c) : c; sl@0: } sl@0: static int safe_isalnum(char c){ sl@0: return (c&0x80)==0 ? isalnum(c) : 0; sl@0: } sl@0: sl@0: typedef enum DocListType { sl@0: DL_DOCIDS, /* docids only */ sl@0: DL_POSITIONS, /* docids + positions */ sl@0: DL_POSITIONS_OFFSETS /* docids + positions + offsets */ sl@0: } DocListType; sl@0: sl@0: /* sl@0: ** By default, only positions and not offsets are stored in the doclists. sl@0: ** To change this so that offsets are stored too, compile with sl@0: ** sl@0: ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS sl@0: ** sl@0: */ sl@0: #ifndef DL_DEFAULT sl@0: # define DL_DEFAULT DL_POSITIONS sl@0: #endif sl@0: sl@0: typedef struct DocList { sl@0: char *pData; sl@0: int nData; sl@0: DocListType iType; sl@0: int iLastColumn; /* the last column written */ sl@0: int iLastPos; /* the last position written */ sl@0: int iLastOffset; /* the last start offset written */ sl@0: } DocList; sl@0: sl@0: enum { sl@0: POS_END = 0, /* end of this position list */ sl@0: POS_COLUMN, /* followed by new column number */ sl@0: POS_BASE sl@0: }; sl@0: sl@0: /* Initialize a new DocList to hold the given data. */ sl@0: static void docListInit(DocList *d, DocListType iType, sl@0: const char *pData, int nData){ sl@0: d->nData = nData; sl@0: if( nData>0 ){ sl@0: d->pData = malloc(nData); sl@0: memcpy(d->pData, pData, nData); sl@0: } else { sl@0: d->pData = NULL; sl@0: } sl@0: d->iType = iType; sl@0: d->iLastColumn = 0; sl@0: d->iLastPos = d->iLastOffset = 0; sl@0: } sl@0: sl@0: /* Create a new dynamically-allocated DocList. */ sl@0: static DocList *docListNew(DocListType iType){ sl@0: DocList *d = (DocList *) malloc(sizeof(DocList)); sl@0: docListInit(d, iType, 0, 0); sl@0: return d; sl@0: } sl@0: sl@0: static void docListDestroy(DocList *d){ sl@0: free(d->pData); sl@0: #ifndef NDEBUG sl@0: memset(d, 0x55, sizeof(*d)); sl@0: #endif sl@0: } sl@0: sl@0: static void docListDelete(DocList *d){ sl@0: docListDestroy(d); sl@0: free(d); sl@0: } sl@0: sl@0: static char *docListEnd(DocList *d){ sl@0: return d->pData + d->nData; sl@0: } sl@0: sl@0: /* Append a varint to a DocList's data. */ sl@0: static void appendVarint(DocList *d, sqlite_int64 i){ sl@0: char c[VARINT_MAX]; sl@0: int n = putVarint(c, i); sl@0: d->pData = realloc(d->pData, d->nData + n); sl@0: memcpy(d->pData + d->nData, c, n); sl@0: d->nData += n; sl@0: } sl@0: sl@0: static void docListAddDocid(DocList *d, sqlite_int64 iDocid){ sl@0: appendVarint(d, iDocid); sl@0: if( d->iType>=DL_POSITIONS ){ sl@0: appendVarint(d, POS_END); /* initially empty position list */ sl@0: d->iLastColumn = 0; sl@0: d->iLastPos = d->iLastOffset = 0; sl@0: } sl@0: } sl@0: sl@0: /* helper function for docListAddPos and docListAddPosOffset */ sl@0: static void addPos(DocList *d, int iColumn, int iPos){ sl@0: assert( d->nData>0 ); sl@0: --d->nData; /* remove previous terminator */ sl@0: if( iColumn!=d->iLastColumn ){ sl@0: assert( iColumn>d->iLastColumn ); sl@0: appendVarint(d, POS_COLUMN); sl@0: appendVarint(d, iColumn); sl@0: d->iLastColumn = iColumn; sl@0: d->iLastPos = d->iLastOffset = 0; sl@0: } sl@0: assert( iPos>=d->iLastPos ); sl@0: appendVarint(d, iPos-d->iLastPos+POS_BASE); sl@0: d->iLastPos = iPos; sl@0: } sl@0: sl@0: /* Add a position to the last position list in a doclist. */ sl@0: static void docListAddPos(DocList *d, int iColumn, int iPos){ sl@0: assert( d->iType==DL_POSITIONS ); sl@0: addPos(d, iColumn, iPos); sl@0: appendVarint(d, POS_END); /* add new terminator */ sl@0: } sl@0: sl@0: /* sl@0: ** Add a position and starting and ending offsets to a doclist. sl@0: ** sl@0: ** If the doclist is setup to handle only positions, then insert sl@0: ** the position only and ignore the offsets. sl@0: */ sl@0: static void docListAddPosOffset( sl@0: DocList *d, /* Doclist under construction */ sl@0: int iColumn, /* Column the inserted term is part of */ sl@0: int iPos, /* Position of the inserted term */ sl@0: int iStartOffset, /* Starting offset of inserted term */ sl@0: int iEndOffset /* Ending offset of inserted term */ sl@0: ){ sl@0: assert( d->iType>=DL_POSITIONS ); sl@0: addPos(d, iColumn, iPos); sl@0: if( d->iType==DL_POSITIONS_OFFSETS ){ sl@0: assert( iStartOffset>=d->iLastOffset ); sl@0: appendVarint(d, iStartOffset-d->iLastOffset); sl@0: d->iLastOffset = iStartOffset; sl@0: assert( iEndOffset>=iStartOffset ); sl@0: appendVarint(d, iEndOffset-iStartOffset); sl@0: } sl@0: appendVarint(d, POS_END); /* add new terminator */ sl@0: } sl@0: sl@0: /* sl@0: ** A DocListReader object is a cursor into a doclist. Initialize sl@0: ** the cursor to the beginning of the doclist by calling readerInit(). sl@0: ** Then use routines sl@0: ** sl@0: ** peekDocid() sl@0: ** readDocid() sl@0: ** readPosition() sl@0: ** skipPositionList() sl@0: ** and so forth... sl@0: ** sl@0: ** to read information out of the doclist. When we reach the end sl@0: ** of the doclist, atEnd() returns TRUE. sl@0: */ sl@0: typedef struct DocListReader { sl@0: DocList *pDoclist; /* The document list we are stepping through */ sl@0: char *p; /* Pointer to next unread byte in the doclist */ sl@0: int iLastColumn; sl@0: int iLastPos; /* the last position read, or -1 when not in a position list */ sl@0: } DocListReader; sl@0: sl@0: /* sl@0: ** Initialize the DocListReader r to point to the beginning of pDoclist. sl@0: */ sl@0: static void readerInit(DocListReader *r, DocList *pDoclist){ sl@0: r->pDoclist = pDoclist; sl@0: if( pDoclist!=NULL ){ sl@0: r->p = pDoclist->pData; sl@0: } sl@0: r->iLastColumn = -1; sl@0: r->iLastPos = -1; sl@0: } sl@0: sl@0: /* sl@0: ** Return TRUE if we have reached then end of pReader and there is sl@0: ** nothing else left to read. sl@0: */ sl@0: static int atEnd(DocListReader *pReader){ sl@0: return pReader->pDoclist==0 || (pReader->p >= docListEnd(pReader->pDoclist)); sl@0: } sl@0: sl@0: /* Peek at the next docid without advancing the read pointer. sl@0: */ sl@0: static sqlite_int64 peekDocid(DocListReader *pReader){ sl@0: sqlite_int64 ret; sl@0: assert( !atEnd(pReader) ); sl@0: assert( pReader->iLastPos==-1 ); sl@0: getVarint(pReader->p, &ret); sl@0: return ret; sl@0: } sl@0: sl@0: /* Read the next docid. See also nextDocid(). sl@0: */ sl@0: static sqlite_int64 readDocid(DocListReader *pReader){ sl@0: sqlite_int64 ret; sl@0: assert( !atEnd(pReader) ); sl@0: assert( pReader->iLastPos==-1 ); sl@0: pReader->p += getVarint(pReader->p, &ret); sl@0: if( pReader->pDoclist->iType>=DL_POSITIONS ){ sl@0: pReader->iLastColumn = 0; sl@0: pReader->iLastPos = 0; sl@0: } sl@0: return ret; sl@0: } sl@0: sl@0: /* Read the next position and column index from a position list. sl@0: * Returns the position, or -1 at the end of the list. */ sl@0: static int readPosition(DocListReader *pReader, int *iColumn){ sl@0: int i; sl@0: int iType = pReader->pDoclist->iType; sl@0: sl@0: if( pReader->iLastPos==-1 ){ sl@0: return -1; sl@0: } sl@0: assert( !atEnd(pReader) ); sl@0: sl@0: if( iTypep += getVarint32(pReader->p, &i); sl@0: if( i==POS_END ){ sl@0: pReader->iLastColumn = pReader->iLastPos = -1; sl@0: *iColumn = -1; sl@0: return -1; sl@0: } sl@0: if( i==POS_COLUMN ){ sl@0: pReader->p += getVarint32(pReader->p, &pReader->iLastColumn); sl@0: pReader->iLastPos = 0; sl@0: pReader->p += getVarint32(pReader->p, &i); sl@0: assert( i>=POS_BASE ); sl@0: } sl@0: pReader->iLastPos += ((int) i)-POS_BASE; sl@0: if( iType>=DL_POSITIONS_OFFSETS ){ sl@0: /* Skip over offsets, ignoring them for now. */ sl@0: int iStart, iEnd; sl@0: pReader->p += getVarint32(pReader->p, &iStart); sl@0: pReader->p += getVarint32(pReader->p, &iEnd); sl@0: } sl@0: *iColumn = pReader->iLastColumn; sl@0: return pReader->iLastPos; sl@0: } sl@0: sl@0: /* Skip past the end of a position list. */ sl@0: static void skipPositionList(DocListReader *pReader){ sl@0: DocList *p = pReader->pDoclist; sl@0: if( p && p->iType>=DL_POSITIONS ){ sl@0: int iColumn; sl@0: while( readPosition(pReader, &iColumn)!=-1 ){} sl@0: } sl@0: } sl@0: sl@0: /* Skip over a docid, including its position list if the doclist has sl@0: * positions. */ sl@0: static void skipDocument(DocListReader *pReader){ sl@0: readDocid(pReader); sl@0: skipPositionList(pReader); sl@0: } sl@0: sl@0: /* Skip past all docids which are less than [iDocid]. Returns 1 if a docid sl@0: * matching [iDocid] was found. */ sl@0: static int skipToDocid(DocListReader *pReader, sqlite_int64 iDocid){ sl@0: sqlite_int64 d = 0; sl@0: while( !atEnd(pReader) && (d=peekDocid(pReader))iType>=DL_POSITIONS ){ sl@0: int iPos, iCol; sl@0: const char *zDiv = ""; sl@0: printf("("); sl@0: while( (iPos = readPosition(&r, &iCol))>=0 ){ sl@0: printf("%s%d:%d", zDiv, iCol, iPos); sl@0: zDiv = ":"; sl@0: } sl@0: printf(")"); sl@0: } sl@0: } sl@0: printf("\n"); sl@0: fflush(stdout); sl@0: } sl@0: #endif /* SQLITE_DEBUG */ sl@0: sl@0: /* Trim the given doclist to contain only positions in column sl@0: * [iRestrictColumn]. */ sl@0: static void docListRestrictColumn(DocList *in, int iRestrictColumn){ sl@0: DocListReader r; sl@0: DocList out; sl@0: sl@0: assert( in->iType>=DL_POSITIONS ); sl@0: readerInit(&r, in); sl@0: docListInit(&out, DL_POSITIONS, NULL, 0); sl@0: sl@0: while( !atEnd(&r) ){ sl@0: sqlite_int64 iDocid = readDocid(&r); sl@0: int iPos, iColumn; sl@0: sl@0: docListAddDocid(&out, iDocid); sl@0: while( (iPos = readPosition(&r, &iColumn)) != -1 ){ sl@0: if( iColumn==iRestrictColumn ){ sl@0: docListAddPos(&out, iColumn, iPos); sl@0: } sl@0: } sl@0: } sl@0: sl@0: docListDestroy(in); sl@0: *in = out; sl@0: } sl@0: sl@0: /* Trim the given doclist by discarding any docids without any remaining sl@0: * positions. */ sl@0: static void docListDiscardEmpty(DocList *in) { sl@0: DocListReader r; sl@0: DocList out; sl@0: sl@0: /* TODO: It would be nice to implement this operation in place; that sl@0: * could save a significant amount of memory in queries with long doclists. */ sl@0: assert( in->iType>=DL_POSITIONS ); sl@0: readerInit(&r, in); sl@0: docListInit(&out, DL_POSITIONS, NULL, 0); sl@0: sl@0: while( !atEnd(&r) ){ sl@0: sqlite_int64 iDocid = readDocid(&r); sl@0: int match = 0; sl@0: int iPos, iColumn; sl@0: while( (iPos = readPosition(&r, &iColumn)) != -1 ){ sl@0: if( !match ){ sl@0: docListAddDocid(&out, iDocid); sl@0: match = 1; sl@0: } sl@0: docListAddPos(&out, iColumn, iPos); sl@0: } sl@0: } sl@0: sl@0: docListDestroy(in); sl@0: *in = out; sl@0: } sl@0: sl@0: /* Helper function for docListUpdate() and docListAccumulate(). sl@0: ** Splices a doclist element into the doclist represented by r, sl@0: ** leaving r pointing after the newly spliced element. sl@0: */ sl@0: static void docListSpliceElement(DocListReader *r, sqlite_int64 iDocid, sl@0: const char *pSource, int nSource){ sl@0: DocList *d = r->pDoclist; sl@0: char *pTarget; sl@0: int nTarget, found; sl@0: sl@0: found = skipToDocid(r, iDocid); sl@0: sl@0: /* Describe slice in d to place pSource/nSource. */ sl@0: pTarget = r->p; sl@0: if( found ){ sl@0: skipDocument(r); sl@0: nTarget = r->p-pTarget; sl@0: }else{ sl@0: nTarget = 0; sl@0: } sl@0: sl@0: /* The sense of the following is that there are three possibilities. sl@0: ** If nTarget==nSource, we should not move any memory nor realloc. sl@0: ** If nTarget>nSource, trim target and realloc. sl@0: ** If nTargetnSource ){ sl@0: memmove(pTarget+nSource, pTarget+nTarget, docListEnd(d)-(pTarget+nTarget)); sl@0: } sl@0: if( nTarget!=nSource ){ sl@0: int iDoclist = pTarget-d->pData; sl@0: d->pData = realloc(d->pData, d->nData+nSource-nTarget); sl@0: pTarget = d->pData+iDoclist; sl@0: } sl@0: if( nTargetnData += nSource-nTarget; sl@0: r->p = pTarget+nSource; sl@0: } sl@0: sl@0: /* Insert/update pUpdate into the doclist. */ sl@0: static void docListUpdate(DocList *d, DocList *pUpdate){ sl@0: DocListReader reader; sl@0: sl@0: assert( d!=NULL && pUpdate!=NULL ); sl@0: assert( d->iType==pUpdate->iType); sl@0: sl@0: readerInit(&reader, d); sl@0: docListSpliceElement(&reader, firstDocid(pUpdate), sl@0: pUpdate->pData, pUpdate->nData); sl@0: } sl@0: sl@0: /* Propagate elements from pUpdate to pAcc, overwriting elements with sl@0: ** matching docids. sl@0: */ sl@0: static void docListAccumulate(DocList *pAcc, DocList *pUpdate){ sl@0: DocListReader accReader, updateReader; sl@0: sl@0: /* Handle edge cases where one doclist is empty. */ sl@0: assert( pAcc!=NULL ); sl@0: if( pUpdate==NULL || pUpdate->nData==0 ) return; sl@0: if( pAcc->nData==0 ){ sl@0: pAcc->pData = malloc(pUpdate->nData); sl@0: memcpy(pAcc->pData, pUpdate->pData, pUpdate->nData); sl@0: pAcc->nData = pUpdate->nData; sl@0: return; sl@0: } sl@0: sl@0: readerInit(&accReader, pAcc); sl@0: readerInit(&updateReader, pUpdate); sl@0: sl@0: while( !atEnd(&updateReader) ){ sl@0: char *pSource = updateReader.p; sl@0: sqlite_int64 iDocid = readDocid(&updateReader); sl@0: skipPositionList(&updateReader); sl@0: docListSpliceElement(&accReader, iDocid, pSource, updateReader.p-pSource); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Read the next docid off of pIn. Return 0 if we reach the end. sl@0: * sl@0: * TODO: This assumes that docids are never 0, but they may actually be 0 since sl@0: * users can choose docids when inserting into a full-text table. Fix this. sl@0: */ sl@0: static sqlite_int64 nextDocid(DocListReader *pIn){ sl@0: skipPositionList(pIn); sl@0: return atEnd(pIn) ? 0 : readDocid(pIn); sl@0: } sl@0: sl@0: /* sl@0: ** pLeft and pRight are two DocListReaders that are pointing to sl@0: ** positions lists of the same document: iDocid. sl@0: ** sl@0: ** If there are no instances in pLeft or pRight where the position sl@0: ** of pLeft is one less than the position of pRight, then this sl@0: ** routine adds nothing to pOut. sl@0: ** sl@0: ** If there are one or more instances where positions from pLeft sl@0: ** are exactly one less than positions from pRight, then add a new sl@0: ** document record to pOut. If pOut wants to hold positions, then sl@0: ** include the positions from pRight that are one more than a sl@0: ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. sl@0: ** sl@0: ** pLeft and pRight are left pointing at the next document record. sl@0: */ sl@0: static void mergePosList( sl@0: DocListReader *pLeft, /* Left position list */ sl@0: DocListReader *pRight, /* Right position list */ sl@0: sqlite_int64 iDocid, /* The docid from pLeft and pRight */ sl@0: DocList *pOut /* Write the merged document record here */ sl@0: ){ sl@0: int iLeftCol, iLeftPos = readPosition(pLeft, &iLeftCol); sl@0: int iRightCol, iRightPos = readPosition(pRight, &iRightCol); sl@0: int match = 0; sl@0: sl@0: /* Loop until we've reached the end of both position lists. */ sl@0: while( iLeftPos!=-1 && iRightPos!=-1 ){ sl@0: if( iLeftCol==iRightCol && iLeftPos+1==iRightPos ){ sl@0: if( !match ){ sl@0: docListAddDocid(pOut, iDocid); sl@0: match = 1; sl@0: } sl@0: if( pOut->iType>=DL_POSITIONS ){ sl@0: docListAddPos(pOut, iRightCol, iRightPos); sl@0: } sl@0: iLeftPos = readPosition(pLeft, &iLeftCol); sl@0: iRightPos = readPosition(pRight, &iRightCol); sl@0: }else if( iRightCol=0 ) skipPositionList(pLeft); sl@0: if( iRightPos>=0 ) skipPositionList(pRight); sl@0: } sl@0: sl@0: /* We have two doclists: pLeft and pRight. sl@0: ** Write the phrase intersection of these two doclists into pOut. sl@0: ** sl@0: ** A phrase intersection means that two documents only match sl@0: ** if pLeft.iPos+1==pRight.iPos. sl@0: ** sl@0: ** The output pOut may or may not contain positions. If pOut sl@0: ** does contain positions, they are the positions of pRight. sl@0: */ sl@0: static void docListPhraseMerge( sl@0: DocList *pLeft, /* Doclist resulting from the words on the left */ sl@0: DocList *pRight, /* Doclist for the next word to the right */ sl@0: DocList *pOut /* Write the combined doclist here */ sl@0: ){ sl@0: DocListReader left, right; sl@0: sqlite_int64 docidLeft, docidRight; sl@0: sl@0: readerInit(&left, pLeft); sl@0: readerInit(&right, pRight); sl@0: docidLeft = nextDocid(&left); sl@0: docidRight = nextDocid(&right); sl@0: sl@0: while( docidLeft>0 && docidRight>0 ){ sl@0: if( docidLeftiType0 && docidRight>0 ){ sl@0: if( docidLeft0 && docidRight>0 ){ sl@0: if( docidLeft<=docidRight ){ sl@0: docListAddDocid(pOut, docidLeft); sl@0: }else{ sl@0: docListAddDocid(pOut, docidRight); sl@0: } sl@0: priorLeft = docidLeft; sl@0: if( docidLeft<=docidRight ){ sl@0: docidLeft = nextDocid(&left); sl@0: } sl@0: if( docidRight>0 && docidRight<=priorLeft ){ sl@0: docidRight = nextDocid(&right); sl@0: } sl@0: } sl@0: while( docidLeft>0 ){ sl@0: docListAddDocid(pOut, docidLeft); sl@0: docidLeft = nextDocid(&left); sl@0: } sl@0: while( docidRight>0 ){ sl@0: docListAddDocid(pOut, docidRight); sl@0: docidRight = nextDocid(&right); sl@0: } sl@0: } sl@0: sl@0: /* We have two doclists: pLeft and pRight. sl@0: ** Write into pOut all documents that occur in pLeft but not sl@0: ** in pRight. sl@0: ** sl@0: ** Only docids are matched. Position information is ignored. sl@0: ** sl@0: ** The output pOut never holds positions. sl@0: */ sl@0: static void docListExceptMerge( sl@0: DocList *pLeft, /* Doclist resulting from the words on the left */ sl@0: DocList *pRight, /* Doclist for the next word to the right */ sl@0: DocList *pOut /* Write the combined doclist here */ sl@0: ){ sl@0: DocListReader left, right; sl@0: sqlite_int64 docidLeft, docidRight, priorLeft; sl@0: sl@0: readerInit(&left, pLeft); sl@0: readerInit(&right, pRight); sl@0: docidLeft = nextDocid(&left); sl@0: docidRight = nextDocid(&right); sl@0: sl@0: while( docidLeft>0 && docidRight>0 ){ sl@0: priorLeft = docidLeft; sl@0: if( docidLeft0 && docidRight<=priorLeft ){ sl@0: docidRight = nextDocid(&right); sl@0: } sl@0: } sl@0: while( docidLeft>0 ){ sl@0: docListAddDocid(pOut, docidLeft); sl@0: docidLeft = nextDocid(&left); sl@0: } sl@0: } sl@0: sl@0: static char *string_dup_n(const char *s, int n){ sl@0: char *str = malloc(n + 1); sl@0: memcpy(str, s, n); sl@0: str[n] = '\0'; sl@0: return str; sl@0: } sl@0: sl@0: /* Duplicate a string; the caller must free() the returned string. sl@0: * (We don't use strdup() since it is not part of the standard C library and sl@0: * may not be available everywhere.) */ sl@0: static char *string_dup(const char *s){ sl@0: return string_dup_n(s, strlen(s)); sl@0: } sl@0: sl@0: /* Format a string, replacing each occurrence of the % character with sl@0: * zDb.zName. This may be more convenient than sqlite_mprintf() sl@0: * when one string is used repeatedly in a format string. sl@0: * The caller must free() the returned string. */ sl@0: static char *string_format(const char *zFormat, sl@0: const char *zDb, const char *zName){ sl@0: const char *p; sl@0: size_t len = 0; sl@0: size_t nDb = strlen(zDb); sl@0: size_t nName = strlen(zName); sl@0: size_t nFullTableName = nDb+1+nName; sl@0: char *result; sl@0: char *r; sl@0: sl@0: /* first compute length needed */ sl@0: for(p = zFormat ; *p ; ++p){ sl@0: len += (*p=='%' ? nFullTableName : 1); sl@0: } sl@0: len += 1; /* for null terminator */ sl@0: sl@0: r = result = malloc(len); sl@0: for(p = zFormat; *p; ++p){ sl@0: if( *p=='%' ){ sl@0: memcpy(r, zDb, nDb); sl@0: r += nDb; sl@0: *r++ = '.'; sl@0: memcpy(r, zName, nName); sl@0: r += nName; sl@0: } else { sl@0: *r++ = *p; sl@0: } sl@0: } sl@0: *r++ = '\0'; sl@0: assert( r == result + len ); sl@0: return result; sl@0: } sl@0: sl@0: static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, sl@0: const char *zFormat){ sl@0: char *zCommand = string_format(zFormat, zDb, zName); sl@0: int rc; sl@0: TRACE(("FTS1 sql: %s\n", zCommand)); sl@0: rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); sl@0: free(zCommand); sl@0: return rc; sl@0: } sl@0: sl@0: static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, sl@0: sqlite3_stmt **ppStmt, const char *zFormat){ sl@0: char *zCommand = string_format(zFormat, zDb, zName); sl@0: int rc; sl@0: TRACE(("FTS1 prepare: %s\n", zCommand)); sl@0: rc = sqlite3_prepare(db, zCommand, -1, ppStmt, NULL); sl@0: free(zCommand); sl@0: return rc; sl@0: } sl@0: sl@0: /* end utility functions */ sl@0: sl@0: /* Forward reference */ sl@0: typedef struct fulltext_vtab fulltext_vtab; sl@0: sl@0: /* A single term in a query is represented by an instances of sl@0: ** the following structure. sl@0: */ sl@0: typedef struct QueryTerm { sl@0: short int nPhrase; /* How many following terms are part of the same phrase */ sl@0: short int iPhrase; /* This is the i-th term of a phrase. */ sl@0: short int iColumn; /* Column of the index that must match this term */ sl@0: signed char isOr; /* this term is preceded by "OR" */ sl@0: signed char isNot; /* this term is preceded by "-" */ sl@0: char *pTerm; /* text of the term. '\000' terminated. malloced */ sl@0: int nTerm; /* Number of bytes in pTerm[] */ sl@0: } QueryTerm; sl@0: sl@0: sl@0: /* A query string is parsed into a Query structure. sl@0: * sl@0: * We could, in theory, allow query strings to be complicated sl@0: * nested expressions with precedence determined by parentheses. sl@0: * But none of the major search engines do this. (Perhaps the sl@0: * feeling is that an parenthesized expression is two complex of sl@0: * an idea for the average user to grasp.) Taking our lead from sl@0: * the major search engines, we will allow queries to be a list sl@0: * of terms (with an implied AND operator) or phrases in double-quotes, sl@0: * with a single optional "-" before each non-phrase term to designate sl@0: * negation and an optional OR connector. sl@0: * sl@0: * OR binds more tightly than the implied AND, which is what the sl@0: * major search engines seem to do. So, for example: sl@0: * sl@0: * [one two OR three] ==> one AND (two OR three) sl@0: * [one OR two three] ==> (one OR two) AND three sl@0: * sl@0: * A "-" before a term matches all entries that lack that term. sl@0: * The "-" must occur immediately before the term with in intervening sl@0: * space. This is how the search engines do it. sl@0: * sl@0: * A NOT term cannot be the right-hand operand of an OR. If this sl@0: * occurs in the query string, the NOT is ignored: sl@0: * sl@0: * [one OR -two] ==> one OR two sl@0: * sl@0: */ sl@0: typedef struct Query { sl@0: fulltext_vtab *pFts; /* The full text index */ sl@0: int nTerms; /* Number of terms in the query */ sl@0: QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ sl@0: int nextIsOr; /* Set the isOr flag on the next inserted term */ sl@0: int nextColumn; /* Next word parsed must be in this column */ sl@0: int dfltColumn; /* The default column */ sl@0: } Query; sl@0: sl@0: sl@0: /* sl@0: ** An instance of the following structure keeps track of generated sl@0: ** matching-word offset information and snippets. sl@0: */ sl@0: typedef struct Snippet { sl@0: int nMatch; /* Total number of matches */ sl@0: int nAlloc; /* Space allocated for aMatch[] */ sl@0: struct snippetMatch { /* One entry for each matching term */ sl@0: char snStatus; /* Status flag for use while constructing snippets */ sl@0: short int iCol; /* The column that contains the match */ sl@0: short int iTerm; /* The index in Query.pTerms[] of the matching term */ sl@0: short int nByte; /* Number of bytes in the term */ sl@0: int iStart; /* The offset to the first character of the term */ sl@0: } *aMatch; /* Points to space obtained from malloc */ sl@0: char *zOffset; /* Text rendering of aMatch[] */ sl@0: int nOffset; /* strlen(zOffset) */ sl@0: char *zSnippet; /* Snippet text */ sl@0: int nSnippet; /* strlen(zSnippet) */ sl@0: } Snippet; sl@0: sl@0: sl@0: typedef enum QueryType { sl@0: QUERY_GENERIC, /* table scan */ sl@0: QUERY_ROWID, /* lookup by rowid */ sl@0: QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ sl@0: } QueryType; sl@0: sl@0: /* TODO(shess) CHUNK_MAX controls how much data we allow in segment 0 sl@0: ** before we start aggregating into larger segments. Lower CHUNK_MAX sl@0: ** means that for a given input we have more individual segments per sl@0: ** term, which means more rows in the table and a bigger index (due to sl@0: ** both more rows and bigger rowids). But it also reduces the average sl@0: ** cost of adding new elements to the segment 0 doclist, and it seems sl@0: ** to reduce the number of pages read and written during inserts. 256 sl@0: ** was chosen by measuring insertion times for a certain input (first sl@0: ** 10k documents of Enron corpus), though including query performance sl@0: ** in the decision may argue for a larger value. sl@0: */ sl@0: #define CHUNK_MAX 256 sl@0: sl@0: typedef enum fulltext_statement { sl@0: CONTENT_INSERT_STMT, sl@0: CONTENT_SELECT_STMT, sl@0: CONTENT_UPDATE_STMT, sl@0: CONTENT_DELETE_STMT, sl@0: sl@0: TERM_SELECT_STMT, sl@0: TERM_SELECT_ALL_STMT, sl@0: TERM_INSERT_STMT, sl@0: TERM_UPDATE_STMT, sl@0: TERM_DELETE_STMT, sl@0: sl@0: MAX_STMT /* Always at end! */ sl@0: } fulltext_statement; sl@0: sl@0: /* These must exactly match the enum above. */ sl@0: /* TODO(adam): Is there some risk that a statement (in particular, sl@0: ** pTermSelectStmt) will be used in two cursors at once, e.g. if a sl@0: ** query joins a virtual table to itself? If so perhaps we should sl@0: ** move some of these to the cursor object. sl@0: */ sl@0: static const char *const fulltext_zStatement[MAX_STMT] = { sl@0: /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ sl@0: /* CONTENT_SELECT */ "select * from %_content where rowid = ?", sl@0: /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ sl@0: /* CONTENT_DELETE */ "delete from %_content where rowid = ?", sl@0: sl@0: /* TERM_SELECT */ sl@0: "select rowid, doclist from %_term where term = ? and segment = ?", sl@0: /* TERM_SELECT_ALL */ sl@0: "select doclist from %_term where term = ? order by segment", sl@0: /* TERM_INSERT */ sl@0: "insert into %_term (rowid, term, segment, doclist) values (?, ?, ?, ?)", sl@0: /* TERM_UPDATE */ "update %_term set doclist = ? where rowid = ?", sl@0: /* TERM_DELETE */ "delete from %_term where rowid = ?", sl@0: }; sl@0: sl@0: /* sl@0: ** A connection to a fulltext index is an instance of the following sl@0: ** structure. The xCreate and xConnect methods create an instance sl@0: ** of this structure and xDestroy and xDisconnect free that instance. sl@0: ** All other methods receive a pointer to the structure as one of their sl@0: ** arguments. sl@0: */ sl@0: struct fulltext_vtab { sl@0: sqlite3_vtab base; /* Base class used by SQLite core */ sl@0: sqlite3 *db; /* The database connection */ sl@0: const char *zDb; /* logical database name */ sl@0: const char *zName; /* virtual table name */ sl@0: int nColumn; /* number of columns in virtual table */ sl@0: char **azColumn; /* column names. malloced */ sl@0: char **azContentColumn; /* column names in content table; malloced */ sl@0: sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ sl@0: sl@0: /* Precompiled statements which we keep as long as the table is sl@0: ** open. sl@0: */ sl@0: sqlite3_stmt *pFulltextStatements[MAX_STMT]; sl@0: }; sl@0: sl@0: /* sl@0: ** When the core wants to do a query, it create a cursor using a sl@0: ** call to xOpen. This structure is an instance of a cursor. It sl@0: ** is destroyed by xClose. sl@0: */ sl@0: typedef struct fulltext_cursor { sl@0: sqlite3_vtab_cursor base; /* Base class used by SQLite core */ sl@0: QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ sl@0: sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ sl@0: int eof; /* True if at End Of Results */ sl@0: Query q; /* Parsed query string */ sl@0: Snippet snippet; /* Cached snippet for the current row */ sl@0: int iColumn; /* Column being searched */ sl@0: DocListReader result; /* used when iCursorType == QUERY_FULLTEXT */ sl@0: } fulltext_cursor; sl@0: sl@0: static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ sl@0: return (fulltext_vtab *) c->base.pVtab; sl@0: } sl@0: sl@0: static const sqlite3_module fulltextModule; /* forward declaration */ sl@0: sl@0: /* Append a list of strings separated by commas to a StringBuffer. */ sl@0: static void appendList(StringBuffer *sb, int nString, char **azString){ sl@0: int i; sl@0: for(i=0; i0 ) append(sb, ", "); sl@0: append(sb, azString[i]); sl@0: } sl@0: } sl@0: sl@0: /* Return a dynamically generated statement of the form sl@0: * insert into %_content (rowid, ...) values (?, ...) sl@0: */ sl@0: static const char *contentInsertStatement(fulltext_vtab *v){ sl@0: StringBuffer sb; sl@0: int i; sl@0: sl@0: initStringBuffer(&sb); sl@0: append(&sb, "insert into %_content (rowid, "); sl@0: appendList(&sb, v->nColumn, v->azContentColumn); sl@0: append(&sb, ") values (?"); sl@0: for(i=0; inColumn; ++i) sl@0: append(&sb, ", ?"); sl@0: append(&sb, ")"); sl@0: return sb.s; sl@0: } sl@0: sl@0: /* Return a dynamically generated statement of the form sl@0: * update %_content set [col_0] = ?, [col_1] = ?, ... sl@0: * where rowid = ? sl@0: */ sl@0: static const char *contentUpdateStatement(fulltext_vtab *v){ sl@0: StringBuffer sb; sl@0: int i; sl@0: sl@0: initStringBuffer(&sb); sl@0: append(&sb, "update %_content set "); sl@0: for(i=0; inColumn; ++i) { sl@0: if( i>0 ){ sl@0: append(&sb, ", "); sl@0: } sl@0: append(&sb, v->azContentColumn[i]); sl@0: append(&sb, " = ?"); sl@0: } sl@0: append(&sb, " where rowid = ?"); sl@0: return sb.s; sl@0: } sl@0: sl@0: /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. sl@0: ** If the indicated statement has never been prepared, it is prepared sl@0: ** and cached, otherwise the cached version is reset. sl@0: */ sl@0: static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, sl@0: sqlite3_stmt **ppStmt){ sl@0: assert( iStmtpFulltextStatements[iStmt]==NULL ){ sl@0: const char *zStmt; sl@0: int rc; sl@0: switch( iStmt ){ sl@0: case CONTENT_INSERT_STMT: sl@0: zStmt = contentInsertStatement(v); break; sl@0: case CONTENT_UPDATE_STMT: sl@0: zStmt = contentUpdateStatement(v); break; sl@0: default: sl@0: zStmt = fulltext_zStatement[iStmt]; sl@0: } sl@0: rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], sl@0: zStmt); sl@0: if( zStmt != fulltext_zStatement[iStmt]) free((void *) zStmt); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } else { sl@0: int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: *ppStmt = v->pFulltextStatements[iStmt]; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Step the indicated statement, handling errors SQLITE_BUSY (by sl@0: ** retrying) and SQLITE_SCHEMA (by re-preparing and transferring sl@0: ** bindings to the new statement). sl@0: ** TODO(adam): We should extend this function so that it can work with sl@0: ** statements declared locally, not only globally cached statements. sl@0: */ sl@0: static int sql_step_statement(fulltext_vtab *v, fulltext_statement iStmt, sl@0: sqlite3_stmt **ppStmt){ sl@0: int rc; sl@0: sqlite3_stmt *s = *ppStmt; sl@0: assert( iStmtpFulltextStatements[iStmt] ); sl@0: sl@0: while( (rc=sqlite3_step(s))!=SQLITE_DONE && rc!=SQLITE_ROW ){ sl@0: if( rc==SQLITE_BUSY ) continue; sl@0: if( rc!=SQLITE_ERROR ) return rc; sl@0: sl@0: /* If an SQLITE_SCHEMA error has occured, then finalizing this sl@0: * statement is going to delete the fulltext_vtab structure. If sl@0: * the statement just executed is in the pFulltextStatements[] sl@0: * array, it will be finalized twice. So remove it before sl@0: * calling sqlite3_finalize(). sl@0: */ sl@0: v->pFulltextStatements[iStmt] = NULL; sl@0: rc = sqlite3_finalize(s); sl@0: break; sl@0: } sl@0: return rc; sl@0: sl@0: err: sl@0: sqlite3_finalize(s); sl@0: return rc; sl@0: } sl@0: sl@0: /* Like sql_step_statement(), but convert SQLITE_DONE to SQLITE_OK. sl@0: ** Useful for statements like UPDATE, where we expect no results. sl@0: */ sl@0: static int sql_single_step_statement(fulltext_vtab *v, sl@0: fulltext_statement iStmt, sl@0: sqlite3_stmt **ppStmt){ sl@0: int rc = sql_step_statement(v, iStmt, ppStmt); sl@0: return (rc==SQLITE_DONE) ? SQLITE_OK : rc; sl@0: } sl@0: sl@0: /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ sl@0: static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, sl@0: sqlite3_value **pValues){ sl@0: sqlite3_stmt *s; sl@0: int i; sl@0: int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_value(s, 1, rowid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: for(i=0; inColumn; ++i){ sl@0: rc = sqlite3_bind_value(s, 2+i, pValues[i]); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: return sql_single_step_statement(v, CONTENT_INSERT_STMT, &s); sl@0: } sl@0: sl@0: /* update %_content set col0 = pValues[0], col1 = pValues[1], ... sl@0: * where rowid = [iRowid] */ sl@0: static int content_update(fulltext_vtab *v, sqlite3_value **pValues, sl@0: sqlite_int64 iRowid){ sl@0: sqlite3_stmt *s; sl@0: int i; sl@0: int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: for(i=0; inColumn; ++i){ sl@0: rc = sqlite3_bind_value(s, 1+i, pValues[i]); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: sl@0: rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step_statement(v, CONTENT_UPDATE_STMT, &s); sl@0: } sl@0: sl@0: static void freeStringArray(int nString, const char **pString){ sl@0: int i; sl@0: sl@0: for (i=0 ; i < nString ; ++i) { sl@0: if( pString[i]!=NULL ) free((void *) pString[i]); sl@0: } sl@0: free((void *) pString); sl@0: } sl@0: sl@0: /* select * from %_content where rowid = [iRow] sl@0: * The caller must delete the returned array and all strings in it. sl@0: * null fields will be NULL in the returned array. sl@0: * sl@0: * TODO: Perhaps we should return pointer/length strings here for consistency sl@0: * with other code which uses pointer/length. */ sl@0: static int content_select(fulltext_vtab *v, sqlite_int64 iRow, sl@0: const char ***pValues){ sl@0: sqlite3_stmt *s; sl@0: const char **values; sl@0: int i; sl@0: int rc; sl@0: sl@0: *pValues = NULL; sl@0: sl@0: rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 1, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sql_step_statement(v, CONTENT_SELECT_STMT, &s); sl@0: if( rc!=SQLITE_ROW ) return rc; sl@0: sl@0: values = (const char **) malloc(v->nColumn * sizeof(const char *)); sl@0: for(i=0; inColumn; ++i){ sl@0: if( sqlite3_column_type(s, i)==SQLITE_NULL ){ sl@0: values[i] = NULL; sl@0: }else{ sl@0: values[i] = string_dup((char*)sqlite3_column_text(s, i)); sl@0: } sl@0: } sl@0: sl@0: /* We expect only one row. We must execute another sqlite3_step() sl@0: * to complete the iteration; otherwise the table will remain locked. */ sl@0: rc = sqlite3_step(s); sl@0: if( rc==SQLITE_DONE ){ sl@0: *pValues = values; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: freeStringArray(v->nColumn, values); sl@0: return rc; sl@0: } sl@0: sl@0: /* delete from %_content where rowid = [iRow ] */ sl@0: static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 1, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step_statement(v, CONTENT_DELETE_STMT, &s); sl@0: } sl@0: sl@0: /* select rowid, doclist from %_term sl@0: * where term = [pTerm] and segment = [iSegment] sl@0: * If found, returns SQLITE_ROW; the caller must free the sl@0: * returned doclist. If no rows found, returns SQLITE_DONE. */ sl@0: static int term_select(fulltext_vtab *v, const char *pTerm, int nTerm, sl@0: int iSegment, sl@0: sqlite_int64 *rowid, DocList *out){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, TERM_SELECT_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_text(s, 1, pTerm, nTerm, SQLITE_STATIC); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int(s, 2, iSegment); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sql_step_statement(v, TERM_SELECT_STMT, &s); sl@0: if( rc!=SQLITE_ROW ) return rc; sl@0: sl@0: *rowid = sqlite3_column_int64(s, 0); sl@0: docListInit(out, DL_DEFAULT, sl@0: sqlite3_column_blob(s, 1), sqlite3_column_bytes(s, 1)); sl@0: sl@0: /* We expect only one row. We must execute another sqlite3_step() sl@0: * to complete the iteration; otherwise the table will remain locked. */ sl@0: rc = sqlite3_step(s); sl@0: return rc==SQLITE_DONE ? SQLITE_ROW : rc; sl@0: } sl@0: sl@0: /* Load the segment doclists for term pTerm and merge them in sl@0: ** appropriate order into out. Returns SQLITE_OK if successful. If sl@0: ** there are no segments for pTerm, successfully returns an empty sl@0: ** doclist in out. sl@0: ** sl@0: ** Each document consists of 1 or more "columns". The number of sl@0: ** columns is v->nColumn. If iColumn==v->nColumn, then return sl@0: ** position information about all columns. If iColumnnColumn, sl@0: ** then only return position information about the iColumn-th column sl@0: ** (where the first column is 0). sl@0: */ sl@0: static int term_select_all( sl@0: fulltext_vtab *v, /* The fulltext index we are querying against */ sl@0: int iColumn, /* If nColumn ){ /* querying a single column */ sl@0: docListRestrictColumn(&old, iColumn); sl@0: } sl@0: sl@0: /* doclist contains the newer data, so write it over old. Then sl@0: ** steal accumulated result for doclist. sl@0: */ sl@0: docListAccumulate(&old, &doclist); sl@0: docListDestroy(&doclist); sl@0: doclist = old; sl@0: } sl@0: if( rc!=SQLITE_DONE ){ sl@0: docListDestroy(&doclist); sl@0: return rc; sl@0: } sl@0: sl@0: docListDiscardEmpty(&doclist); sl@0: *out = doclist; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* insert into %_term (rowid, term, segment, doclist) sl@0: values ([piRowid], [pTerm], [iSegment], [doclist]) sl@0: ** Lets sqlite select rowid if piRowid is NULL, else uses *piRowid. sl@0: ** sl@0: ** NOTE(shess) piRowid is IN, with values of "space of int64" plus sl@0: ** null, it is not used to pass data back to the caller. sl@0: */ sl@0: static int term_insert(fulltext_vtab *v, sqlite_int64 *piRowid, sl@0: const char *pTerm, int nTerm, sl@0: int iSegment, DocList *doclist){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, TERM_INSERT_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: if( piRowid==NULL ){ sl@0: rc = sqlite3_bind_null(s, 1); sl@0: }else{ sl@0: rc = sqlite3_bind_int64(s, 1, *piRowid); sl@0: } sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_text(s, 2, pTerm, nTerm, SQLITE_STATIC); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int(s, 3, iSegment); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_blob(s, 4, doclist->pData, doclist->nData, SQLITE_STATIC); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step_statement(v, TERM_INSERT_STMT, &s); sl@0: } sl@0: sl@0: /* update %_term set doclist = [doclist] where rowid = [rowid] */ sl@0: static int term_update(fulltext_vtab *v, sqlite_int64 rowid, sl@0: DocList *doclist){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, TERM_UPDATE_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_blob(s, 1, doclist->pData, doclist->nData, SQLITE_STATIC); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 2, rowid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step_statement(v, TERM_UPDATE_STMT, &s); sl@0: } sl@0: sl@0: static int term_delete(fulltext_vtab *v, sqlite_int64 rowid){ sl@0: sqlite3_stmt *s; sl@0: int rc = sql_get_statement(v, TERM_DELETE_STMT, &s); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = sqlite3_bind_int64(s, 1, rowid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: return sql_single_step_statement(v, TERM_DELETE_STMT, &s); sl@0: } sl@0: sl@0: /* sl@0: ** Free the memory used to contain a fulltext_vtab structure. sl@0: */ sl@0: static void fulltext_vtab_destroy(fulltext_vtab *v){ sl@0: int iStmt, i; sl@0: sl@0: TRACE(("FTS1 Destroy %p\n", v)); sl@0: for( iStmt=0; iStmtpFulltextStatements[iStmt]!=NULL ){ sl@0: sqlite3_finalize(v->pFulltextStatements[iStmt]); sl@0: v->pFulltextStatements[iStmt] = NULL; sl@0: } sl@0: } sl@0: sl@0: if( v->pTokenizer!=NULL ){ sl@0: v->pTokenizer->pModule->xDestroy(v->pTokenizer); sl@0: v->pTokenizer = NULL; sl@0: } sl@0: sl@0: free(v->azColumn); sl@0: for(i = 0; i < v->nColumn; ++i) { sl@0: sqlite3_free(v->azContentColumn[i]); sl@0: } sl@0: free(v->azContentColumn); sl@0: free(v); sl@0: } sl@0: sl@0: /* sl@0: ** Token types for parsing the arguments to xConnect or xCreate. sl@0: */ sl@0: #define TOKEN_EOF 0 /* End of file */ sl@0: #define TOKEN_SPACE 1 /* Any kind of whitespace */ sl@0: #define TOKEN_ID 2 /* An identifier */ sl@0: #define TOKEN_STRING 3 /* A string literal */ sl@0: #define TOKEN_PUNCT 4 /* A single punctuation character */ sl@0: sl@0: /* sl@0: ** If X is a character that can be used in an identifier then sl@0: ** IdChar(X) will be true. Otherwise it is false. sl@0: ** sl@0: ** For ASCII, any character with the high-order bit set is sl@0: ** allowed in an identifier. For 7-bit characters, sl@0: ** sqlite3IsIdChar[X] must be 1. sl@0: ** sl@0: ** Ticket #1066. the SQL standard does not allow '$' in the sl@0: ** middle of identfiers. But many SQL implementations do. sl@0: ** SQLite will allow '$' in identifiers for compatibility. sl@0: ** But the feature is undocumented. sl@0: */ sl@0: static const char isIdChar[] = { sl@0: /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ sl@0: 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ sl@0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ sl@0: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ sl@0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ sl@0: 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ sl@0: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ sl@0: }; sl@0: #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) sl@0: sl@0: sl@0: /* sl@0: ** Return the length of the token that begins at z[0]. sl@0: ** Store the token type in *tokenType before returning. sl@0: */ sl@0: static int getToken(const char *z, int *tokenType){ sl@0: int i, c; sl@0: switch( *z ){ sl@0: case 0: { sl@0: *tokenType = TOKEN_EOF; sl@0: return 0; sl@0: } sl@0: case ' ': case '\t': case '\n': case '\f': case '\r': { sl@0: for(i=1; safe_isspace(z[i]); i++){} sl@0: *tokenType = TOKEN_SPACE; sl@0: return i; sl@0: } sl@0: case '`': sl@0: case '\'': sl@0: case '"': { sl@0: int delim = z[0]; sl@0: for(i=1; (c=z[i])!=0; i++){ sl@0: if( c==delim ){ sl@0: if( z[i+1]==delim ){ sl@0: i++; sl@0: }else{ sl@0: break; sl@0: } sl@0: } sl@0: } sl@0: *tokenType = TOKEN_STRING; sl@0: return i + (c!=0); sl@0: } sl@0: case '[': { sl@0: for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} sl@0: *tokenType = TOKEN_ID; sl@0: return i; sl@0: } sl@0: default: { sl@0: if( !IdChar(*z) ){ sl@0: break; sl@0: } sl@0: for(i=1; IdChar(z[i]); i++){} sl@0: *tokenType = TOKEN_ID; sl@0: return i; sl@0: } sl@0: } sl@0: *tokenType = TOKEN_PUNCT; sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: ** A token extracted from a string is an instance of the following sl@0: ** structure. sl@0: */ sl@0: typedef struct Token { sl@0: const char *z; /* Pointer to token text. Not '\000' terminated */ sl@0: short int n; /* Length of the token text in bytes. */ sl@0: } Token; sl@0: sl@0: /* sl@0: ** Given a input string (which is really one of the argv[] parameters sl@0: ** passed into xConnect or xCreate) split the string up into tokens. sl@0: ** Return an array of pointers to '\000' terminated strings, one string sl@0: ** for each non-whitespace token. sl@0: ** sl@0: ** The returned array is terminated by a single NULL pointer. sl@0: ** sl@0: ** Space to hold the returned array is obtained from a single sl@0: ** malloc and should be freed by passing the return value to free(). sl@0: ** The individual strings within the token list are all a part of sl@0: ** the single memory allocation and will all be freed at once. sl@0: */ sl@0: static char **tokenizeString(const char *z, int *pnToken){ sl@0: int nToken = 0; sl@0: Token *aToken = malloc( strlen(z) * sizeof(aToken[0]) ); sl@0: int n = 1; sl@0: int e, i; sl@0: int totalSize = 0; sl@0: char **azToken; sl@0: char *zCopy; sl@0: while( n>0 ){ sl@0: n = getToken(z, &e); sl@0: if( e!=TOKEN_SPACE ){ sl@0: aToken[nToken].z = z; sl@0: aToken[nToken].n = n; sl@0: nToken++; sl@0: totalSize += n+1; sl@0: } sl@0: z += n; sl@0: } sl@0: azToken = (char**)malloc( nToken*sizeof(char*) + totalSize ); sl@0: zCopy = (char*)&azToken[nToken]; sl@0: nToken--; sl@0: for(i=0; i=0 ){ sl@0: azIn[j] = azIn[i]; sl@0: } sl@0: j++; sl@0: } sl@0: } sl@0: azIn[j] = 0; sl@0: } sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Find the first alphanumeric token in the string zIn. Null-terminate sl@0: ** this token. Remove any quotation marks. And return a pointer to sl@0: ** the result. sl@0: */ sl@0: static char *firstToken(char *zIn, char **pzTail){ sl@0: int n, ttype; sl@0: while(1){ sl@0: n = getToken(zIn, &ttype); sl@0: if( ttype==TOKEN_SPACE ){ sl@0: zIn += n; sl@0: }else if( ttype==TOKEN_EOF ){ sl@0: *pzTail = zIn; sl@0: return 0; sl@0: }else{ sl@0: zIn[n] = 0; sl@0: *pzTail = &zIn[1]; sl@0: dequoteString(zIn); sl@0: return zIn; sl@0: } sl@0: } sl@0: /*NOTREACHED*/ sl@0: } sl@0: sl@0: /* Return true if... sl@0: ** sl@0: ** * s begins with the string t, ignoring case sl@0: ** * s is longer than t sl@0: ** * The first character of s beyond t is not a alphanumeric sl@0: ** sl@0: ** Ignore leading space in *s. sl@0: ** sl@0: ** To put it another way, return true if the first token of sl@0: ** s[] is t[]. sl@0: */ sl@0: static int startsWith(const char *s, const char *t){ sl@0: while( safe_isspace(*s) ){ s++; } sl@0: while( *t ){ sl@0: if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; sl@0: } sl@0: return *s!='_' && !safe_isalnum(*s); sl@0: } sl@0: sl@0: /* sl@0: ** An instance of this structure defines the "spec" of a sl@0: ** full text index. This structure is populated by parseSpec sl@0: ** and use by fulltextConnect and fulltextCreate. sl@0: */ sl@0: typedef struct TableSpec { sl@0: const char *zDb; /* Logical database name */ sl@0: const char *zName; /* Name of the full-text index */ sl@0: int nColumn; /* Number of columns to be indexed */ sl@0: char **azColumn; /* Original names of columns to be indexed */ sl@0: char **azContentColumn; /* Column names for %_content */ sl@0: char **azTokenizer; /* Name of tokenizer and its arguments */ sl@0: } TableSpec; sl@0: sl@0: /* sl@0: ** Reclaim all of the memory used by a TableSpec sl@0: */ sl@0: static void clearTableSpec(TableSpec *p) { sl@0: free(p->azColumn); sl@0: free(p->azContentColumn); sl@0: free(p->azTokenizer); sl@0: } sl@0: sl@0: /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: sl@0: * sl@0: * CREATE VIRTUAL TABLE email sl@0: * USING fts1(subject, body, tokenize mytokenizer(myarg)) sl@0: * sl@0: * We return parsed information in a TableSpec structure. sl@0: * sl@0: */ sl@0: static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, sl@0: char**pzErr){ sl@0: int i, n; sl@0: char *z, *zDummy; sl@0: char **azArg; sl@0: const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ sl@0: sl@0: assert( argc>=3 ); sl@0: /* Current interface: sl@0: ** argv[0] - module name sl@0: ** argv[1] - database name sl@0: ** argv[2] - table name sl@0: ** argv[3..] - columns, optionally followed by tokenizer specification sl@0: ** and snippet delimiters specification. sl@0: */ sl@0: sl@0: /* Make a copy of the complete argv[][] array in a single allocation. sl@0: ** The argv[][] array is read-only and transient. We can write to the sl@0: ** copy in order to modify things and the copy is persistent. sl@0: */ sl@0: memset(pSpec, 0, sizeof(*pSpec)); sl@0: for(i=n=0; izDb = azArg[1]; sl@0: pSpec->zName = azArg[2]; sl@0: pSpec->nColumn = 0; sl@0: pSpec->azColumn = azArg; sl@0: zTokenizer = "tokenize simple"; sl@0: for(i=3; inColumn] = firstToken(azArg[i], &zDummy); sl@0: pSpec->nColumn++; sl@0: } sl@0: } sl@0: if( pSpec->nColumn==0 ){ sl@0: azArg[0] = "content"; sl@0: pSpec->nColumn = 1; sl@0: } sl@0: sl@0: /* sl@0: ** Construct the list of content column names. sl@0: ** sl@0: ** Each content column name will be of the form cNNAAAA sl@0: ** where NN is the column number and AAAA is the sanitized sl@0: ** column name. "sanitized" means that special characters are sl@0: ** converted to "_". The cNN prefix guarantees that all column sl@0: ** names are unique. sl@0: ** sl@0: ** The AAAA suffix is not strictly necessary. It is included sl@0: ** for the convenience of people who might examine the generated sl@0: ** %_content table and wonder what the columns are used for. sl@0: */ sl@0: pSpec->azContentColumn = malloc( pSpec->nColumn * sizeof(char *) ); sl@0: if( pSpec->azContentColumn==0 ){ sl@0: clearTableSpec(pSpec); sl@0: return SQLITE_NOMEM; sl@0: } sl@0: for(i=0; inColumn; i++){ sl@0: char *p; sl@0: pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); sl@0: for (p = pSpec->azContentColumn[i]; *p ; ++p) { sl@0: if( !safe_isalnum(*p) ) *p = '_'; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Parse the tokenizer specification string. sl@0: */ sl@0: pSpec->azTokenizer = tokenizeString(zTokenizer, &n); sl@0: tokenListToIdList(pSpec->azTokenizer); sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Generate a CREATE TABLE statement that describes the schema of sl@0: ** the virtual table. Return a pointer to this schema string. sl@0: ** sl@0: ** Space is obtained from sqlite3_mprintf() and should be freed sl@0: ** using sqlite3_free(). sl@0: */ sl@0: static char *fulltextSchema( sl@0: int nColumn, /* Number of columns */ sl@0: const char *const* azColumn, /* List of columns */ sl@0: const char *zTableName /* Name of the table */ sl@0: ){ sl@0: int i; sl@0: char *zSchema, *zNext; sl@0: const char *zSep = "("; sl@0: zSchema = sqlite3_mprintf("CREATE TABLE x"); sl@0: for(i=0; ibase */ sl@0: v->db = db; sl@0: v->zDb = spec->zDb; /* Freed when azColumn is freed */ sl@0: v->zName = spec->zName; /* Freed when azColumn is freed */ sl@0: v->nColumn = spec->nColumn; sl@0: v->azContentColumn = spec->azContentColumn; sl@0: spec->azContentColumn = 0; sl@0: v->azColumn = spec->azColumn; sl@0: spec->azColumn = 0; sl@0: sl@0: if( spec->azTokenizer==0 ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: /* TODO(shess) For now, add new tokenizers as else if clauses. */ sl@0: if( spec->azTokenizer[0]==0 || startsWith(spec->azTokenizer[0], "simple") ){ sl@0: sqlite3Fts1SimpleTokenizerModule(&m); sl@0: }else if( startsWith(spec->azTokenizer[0], "porter") ){ sl@0: sqlite3Fts1PorterTokenizerModule(&m); sl@0: }else{ sl@0: *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); sl@0: rc = SQLITE_ERROR; sl@0: goto err; sl@0: } sl@0: for(n=0; spec->azTokenizer[n]; n++){} sl@0: if( n ){ sl@0: rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], sl@0: &v->pTokenizer); sl@0: }else{ sl@0: rc = m->xCreate(0, 0, &v->pTokenizer); sl@0: } sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: v->pTokenizer->pModule = m; sl@0: sl@0: /* TODO: verify the existence of backing tables foo_content, foo_term */ sl@0: sl@0: schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, sl@0: spec->zName); sl@0: rc = sqlite3_declare_vtab(db, schema); sl@0: sqlite3_free(schema); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: sl@0: memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); sl@0: sl@0: *ppVTab = &v->base; sl@0: TRACE(("FTS1 Connect %p\n", v)); sl@0: sl@0: return rc; sl@0: sl@0: err: sl@0: fulltext_vtab_destroy(v); sl@0: return rc; sl@0: } sl@0: sl@0: static int fulltextConnect( sl@0: sqlite3 *db, sl@0: void *pAux, sl@0: int argc, const char *const*argv, sl@0: sqlite3_vtab **ppVTab, sl@0: char **pzErr sl@0: ){ sl@0: TableSpec spec; sl@0: int rc = parseSpec(&spec, argc, argv, pzErr); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = constructVtab(db, &spec, ppVTab, pzErr); sl@0: clearTableSpec(&spec); sl@0: return rc; sl@0: } sl@0: sl@0: /* The %_content table holds the text of each document, with sl@0: ** the rowid used as the docid. sl@0: ** sl@0: ** The %_term table maps each term to a document list blob sl@0: ** containing elements sorted by ascending docid, each element sl@0: ** encoded as: sl@0: ** sl@0: ** docid varint-encoded sl@0: ** token elements: sl@0: ** position+1 varint-encoded as delta from previous position sl@0: ** start offset varint-encoded as delta from previous start offset sl@0: ** end offset varint-encoded as delta from start offset sl@0: ** sl@0: ** The sentinel position of 0 indicates the end of the token list. sl@0: ** sl@0: ** Additionally, doclist blobs are chunked into multiple segments, sl@0: ** using segment to order the segments. New elements are added to sl@0: ** the segment at segment 0, until it exceeds CHUNK_MAX. Then sl@0: ** segment 0 is deleted, and the doclist is inserted at segment 1. sl@0: ** If there is already a doclist at segment 1, the segment 0 doclist sl@0: ** is merged with it, the segment 1 doclist is deleted, and the sl@0: ** merged doclist is inserted at segment 2, repeating those sl@0: ** operations until an insert succeeds. sl@0: ** sl@0: ** Since this structure doesn't allow us to update elements in place sl@0: ** in case of deletion or update, these are simply written to sl@0: ** segment 0 (with an empty token list in case of deletion), with sl@0: ** docListAccumulate() taking care to retain lower-segment sl@0: ** information in preference to higher-segment information. sl@0: */ sl@0: /* TODO(shess) Provide a VACUUM type operation which both removes sl@0: ** deleted elements which are no longer necessary, and duplicated sl@0: ** elements. I suspect this will probably not be necessary in sl@0: ** practice, though. sl@0: */ sl@0: static int fulltextCreate(sqlite3 *db, void *pAux, sl@0: int argc, const char * const *argv, sl@0: sqlite3_vtab **ppVTab, char **pzErr){ sl@0: int rc; sl@0: TableSpec spec; sl@0: StringBuffer schema; sl@0: TRACE(("FTS1 Create\n")); sl@0: sl@0: rc = parseSpec(&spec, argc, argv, pzErr); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: initStringBuffer(&schema); sl@0: append(&schema, "CREATE TABLE %_content("); sl@0: appendList(&schema, spec.nColumn, spec.azContentColumn); sl@0: append(&schema, ")"); sl@0: rc = sql_exec(db, spec.zDb, spec.zName, schema.s); sl@0: free(schema.s); sl@0: if( rc!=SQLITE_OK ) goto out; sl@0: sl@0: rc = sql_exec(db, spec.zDb, spec.zName, sl@0: "create table %_term(term text, segment integer, doclist blob, " sl@0: "primary key(term, segment));"); sl@0: if( rc!=SQLITE_OK ) goto out; sl@0: sl@0: rc = constructVtab(db, &spec, ppVTab, pzErr); sl@0: sl@0: out: sl@0: clearTableSpec(&spec); sl@0: return rc; sl@0: } sl@0: sl@0: /* Decide how to handle an SQL query. */ sl@0: static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ sl@0: int i; sl@0: TRACE(("FTS1 BestIndex\n")); sl@0: sl@0: for(i=0; inConstraint; ++i){ sl@0: const struct sqlite3_index_constraint *pConstraint; sl@0: pConstraint = &pInfo->aConstraint[i]; sl@0: if( pConstraint->usable ) { sl@0: if( pConstraint->iColumn==-1 && sl@0: pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ sl@0: pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ sl@0: TRACE(("FTS1 QUERY_ROWID\n")); sl@0: } else if( pConstraint->iColumn>=0 && sl@0: pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ sl@0: /* full-text search */ sl@0: pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; sl@0: TRACE(("FTS1 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); sl@0: } else continue; sl@0: sl@0: pInfo->aConstraintUsage[i].argvIndex = 1; sl@0: pInfo->aConstraintUsage[i].omit = 1; sl@0: sl@0: /* An arbitrary value for now. sl@0: * TODO: Perhaps rowid matches should be considered cheaper than sl@0: * full-text searches. */ sl@0: pInfo->estimatedCost = 1.0; sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: } sl@0: pInfo->idxNum = QUERY_GENERIC; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int fulltextDisconnect(sqlite3_vtab *pVTab){ sl@0: TRACE(("FTS1 Disconnect %p\n", pVTab)); sl@0: fulltext_vtab_destroy((fulltext_vtab *)pVTab); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int fulltextDestroy(sqlite3_vtab *pVTab){ sl@0: fulltext_vtab *v = (fulltext_vtab *)pVTab; sl@0: int rc; sl@0: sl@0: TRACE(("FTS1 Destroy %p\n", pVTab)); sl@0: rc = sql_exec(v->db, v->zDb, v->zName, sl@0: "drop table if exists %_content;" sl@0: "drop table if exists %_term;" sl@0: ); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: fulltext_vtab_destroy((fulltext_vtab *)pVTab); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ sl@0: fulltext_cursor *c; sl@0: sl@0: c = (fulltext_cursor *) calloc(sizeof(fulltext_cursor), 1); sl@0: /* sqlite will initialize c->base */ sl@0: *ppCursor = &c->base; sl@0: TRACE(("FTS1 Open %p: %p\n", pVTab, c)); sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: sl@0: /* Free all of the dynamically allocated memory held by *q sl@0: */ sl@0: static void queryClear(Query *q){ sl@0: int i; sl@0: for(i = 0; i < q->nTerms; ++i){ sl@0: free(q->pTerms[i].pTerm); sl@0: } sl@0: free(q->pTerms); sl@0: memset(q, 0, sizeof(*q)); sl@0: } sl@0: sl@0: /* Free all of the dynamically allocated memory held by the sl@0: ** Snippet sl@0: */ sl@0: static void snippetClear(Snippet *p){ sl@0: free(p->aMatch); sl@0: free(p->zOffset); sl@0: free(p->zSnippet); sl@0: memset(p, 0, sizeof(*p)); sl@0: } sl@0: /* sl@0: ** Append a single entry to the p->aMatch[] log. sl@0: */ sl@0: static void snippetAppendMatch( sl@0: Snippet *p, /* Append the entry to this snippet */ sl@0: int iCol, int iTerm, /* The column and query term */ sl@0: int iStart, int nByte /* Offset and size of the match */ sl@0: ){ sl@0: int i; sl@0: struct snippetMatch *pMatch; sl@0: if( p->nMatch+1>=p->nAlloc ){ sl@0: p->nAlloc = p->nAlloc*2 + 10; sl@0: p->aMatch = realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); sl@0: if( p->aMatch==0 ){ sl@0: p->nMatch = 0; sl@0: p->nAlloc = 0; sl@0: return; sl@0: } sl@0: } sl@0: i = p->nMatch++; sl@0: pMatch = &p->aMatch[i]; sl@0: pMatch->iCol = iCol; sl@0: pMatch->iTerm = iTerm; sl@0: pMatch->iStart = iStart; sl@0: pMatch->nByte = nByte; sl@0: } sl@0: sl@0: /* sl@0: ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() sl@0: */ sl@0: #define FTS1_ROTOR_SZ (32) sl@0: #define FTS1_ROTOR_MASK (FTS1_ROTOR_SZ-1) sl@0: sl@0: /* sl@0: ** Add entries to pSnippet->aMatch[] for every match that occurs against sl@0: ** document zDoc[0..nDoc-1] which is stored in column iColumn. sl@0: */ sl@0: static void snippetOffsetsOfColumn( sl@0: Query *pQuery, sl@0: Snippet *pSnippet, sl@0: int iColumn, sl@0: const char *zDoc, sl@0: int nDoc sl@0: ){ sl@0: const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ sl@0: sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ sl@0: sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ sl@0: fulltext_vtab *pVtab; /* The full text index */ sl@0: int nColumn; /* Number of columns in the index */ sl@0: const QueryTerm *aTerm; /* Query string terms */ sl@0: int nTerm; /* Number of query string terms */ sl@0: int i, j; /* Loop counters */ sl@0: int rc; /* Return code */ sl@0: unsigned int match, prevMatch; /* Phrase search bitmasks */ sl@0: const char *zToken; /* Next token from the tokenizer */ sl@0: int nToken; /* Size of zToken */ sl@0: int iBegin, iEnd, iPos; /* Offsets of beginning and end */ sl@0: sl@0: /* The following variables keep a circular buffer of the last sl@0: ** few tokens */ sl@0: unsigned int iRotor = 0; /* Index of current token */ sl@0: int iRotorBegin[FTS1_ROTOR_SZ]; /* Beginning offset of token */ sl@0: int iRotorLen[FTS1_ROTOR_SZ]; /* Length of token */ sl@0: sl@0: pVtab = pQuery->pFts; sl@0: nColumn = pVtab->nColumn; sl@0: pTokenizer = pVtab->pTokenizer; sl@0: pTModule = pTokenizer->pModule; sl@0: rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); sl@0: if( rc ) return; sl@0: pTCursor->pTokenizer = pTokenizer; sl@0: aTerm = pQuery->pTerms; sl@0: nTerm = pQuery->nTerms; sl@0: if( nTerm>=FTS1_ROTOR_SZ ){ sl@0: nTerm = FTS1_ROTOR_SZ - 1; sl@0: } sl@0: prevMatch = 0; sl@0: while(1){ sl@0: rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); sl@0: if( rc ) break; sl@0: iRotorBegin[iRotor&FTS1_ROTOR_MASK] = iBegin; sl@0: iRotorLen[iRotor&FTS1_ROTOR_MASK] = iEnd-iBegin; sl@0: match = 0; sl@0: for(i=0; i=0 && iCol1 && (prevMatch & (1<=0; j--){ sl@0: int k = (iRotor-j) & FTS1_ROTOR_MASK; sl@0: snippetAppendMatch(pSnippet, iColumn, i-j, sl@0: iRotorBegin[k], iRotorLen[k]); sl@0: } sl@0: } sl@0: } sl@0: prevMatch = match<<1; sl@0: iRotor++; sl@0: } sl@0: pTModule->xClose(pTCursor); sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Compute all offsets for the current row of the query. sl@0: ** If the offsets have already been computed, this routine is a no-op. sl@0: */ sl@0: static void snippetAllOffsets(fulltext_cursor *p){ sl@0: int nColumn; sl@0: int iColumn, i; sl@0: int iFirst, iLast; sl@0: fulltext_vtab *pFts; sl@0: sl@0: if( p->snippet.nMatch ) return; sl@0: if( p->q.nTerms==0 ) return; sl@0: pFts = p->q.pFts; sl@0: nColumn = pFts->nColumn; sl@0: iColumn = p->iCursorType - QUERY_FULLTEXT; sl@0: if( iColumn<0 || iColumn>=nColumn ){ sl@0: iFirst = 0; sl@0: iLast = nColumn-1; sl@0: }else{ sl@0: iFirst = iColumn; sl@0: iLast = iColumn; sl@0: } sl@0: for(i=iFirst; i<=iLast; i++){ sl@0: const char *zDoc; sl@0: int nDoc; sl@0: zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); sl@0: nDoc = sqlite3_column_bytes(p->pStmt, i+1); sl@0: snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Convert the information in the aMatch[] array of the snippet sl@0: ** into the string zOffset[0..nOffset-1]. sl@0: */ sl@0: static void snippetOffsetText(Snippet *p){ sl@0: int i; sl@0: int cnt = 0; sl@0: StringBuffer sb; sl@0: char zBuf[200]; sl@0: if( p->zOffset ) return; sl@0: initStringBuffer(&sb); sl@0: for(i=0; inMatch; i++){ sl@0: struct snippetMatch *pMatch = &p->aMatch[i]; sl@0: zBuf[0] = ' '; sl@0: sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", sl@0: pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); sl@0: append(&sb, zBuf); sl@0: cnt++; sl@0: } sl@0: p->zOffset = sb.s; sl@0: p->nOffset = sb.len; sl@0: } sl@0: sl@0: /* sl@0: ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set sl@0: ** of matching words some of which might be in zDoc. zDoc is column sl@0: ** number iCol. sl@0: ** sl@0: ** iBreak is suggested spot in zDoc where we could begin or end an sl@0: ** excerpt. Return a value similar to iBreak but possibly adjusted sl@0: ** to be a little left or right so that the break point is better. sl@0: */ sl@0: static int wordBoundary( sl@0: int iBreak, /* The suggested break point */ sl@0: const char *zDoc, /* Document text */ sl@0: int nDoc, /* Number of bytes in zDoc[] */ sl@0: struct snippetMatch *aMatch, /* Matching words */ sl@0: int nMatch, /* Number of entries in aMatch[] */ sl@0: int iCol /* The column number for zDoc[] */ sl@0: ){ sl@0: int i; sl@0: if( iBreak<=10 ){ sl@0: return 0; sl@0: } sl@0: if( iBreak>=nDoc-10 ){ sl@0: return nDoc; sl@0: } sl@0: for(i=0; i0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ sl@0: return aMatch[i-1].iStart; sl@0: } sl@0: } sl@0: for(i=1; i<=10; i++){ sl@0: if( safe_isspace(zDoc[iBreak-i]) ){ sl@0: return iBreak - i + 1; sl@0: } sl@0: if( safe_isspace(zDoc[iBreak+i]) ){ sl@0: return iBreak + i + 1; sl@0: } sl@0: } sl@0: return iBreak; sl@0: } sl@0: sl@0: /* sl@0: ** If the StringBuffer does not end in white space, add a single sl@0: ** space character to the end. sl@0: */ sl@0: static void appendWhiteSpace(StringBuffer *p){ sl@0: if( p->len==0 ) return; sl@0: if( safe_isspace(p->s[p->len-1]) ) return; sl@0: append(p, " "); sl@0: } sl@0: sl@0: /* sl@0: ** Remove white space from teh end of the StringBuffer sl@0: */ sl@0: static void trimWhiteSpace(StringBuffer *p){ sl@0: while( p->len>0 && safe_isspace(p->s[p->len-1]) ){ sl@0: p->len--; sl@0: } sl@0: } sl@0: sl@0: sl@0: sl@0: /* sl@0: ** Allowed values for Snippet.aMatch[].snStatus sl@0: */ sl@0: #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ sl@0: #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ sl@0: sl@0: /* sl@0: ** Generate the text of a snippet. sl@0: */ sl@0: static void snippetText( sl@0: fulltext_cursor *pCursor, /* The cursor we need the snippet for */ sl@0: const char *zStartMark, /* Markup to appear before each match */ sl@0: const char *zEndMark, /* Markup to appear after each match */ sl@0: const char *zEllipsis /* Ellipsis mark */ sl@0: ){ sl@0: int i, j; sl@0: struct snippetMatch *aMatch; sl@0: int nMatch; sl@0: int nDesired; sl@0: StringBuffer sb; sl@0: int tailCol; sl@0: int tailOffset; sl@0: int iCol; sl@0: int nDoc; sl@0: const char *zDoc; sl@0: int iStart, iEnd; sl@0: int tailEllipsis = 0; sl@0: int iMatch; sl@0: sl@0: sl@0: free(pCursor->snippet.zSnippet); sl@0: pCursor->snippet.zSnippet = 0; sl@0: aMatch = pCursor->snippet.aMatch; sl@0: nMatch = pCursor->snippet.nMatch; sl@0: initStringBuffer(&sb); sl@0: sl@0: for(i=0; iq.nTerms; i++){ sl@0: for(j=0; j0; i++){ sl@0: if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; sl@0: nDesired--; sl@0: iCol = aMatch[i].iCol; sl@0: zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); sl@0: nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); sl@0: iStart = aMatch[i].iStart - 40; sl@0: iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); sl@0: if( iStart<=10 ){ sl@0: iStart = 0; sl@0: } sl@0: if( iCol==tailCol && iStart<=tailOffset+20 ){ sl@0: iStart = tailOffset; sl@0: } sl@0: if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ sl@0: trimWhiteSpace(&sb); sl@0: appendWhiteSpace(&sb); sl@0: append(&sb, zEllipsis); sl@0: appendWhiteSpace(&sb); sl@0: } sl@0: iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; sl@0: iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); sl@0: if( iEnd>=nDoc-10 ){ sl@0: iEnd = nDoc; sl@0: tailEllipsis = 0; sl@0: }else{ sl@0: tailEllipsis = 1; sl@0: } sl@0: while( iMatchsnippet.zSnippet = sb.s; sl@0: pCursor->snippet.nSnippet = sb.len; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Close the cursor. For additional information see the documentation sl@0: ** on the xClose method of the virtual table interface. sl@0: */ sl@0: static int fulltextClose(sqlite3_vtab_cursor *pCursor){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: TRACE(("FTS1 Close %p\n", c)); sl@0: sqlite3_finalize(c->pStmt); sl@0: queryClear(&c->q); sl@0: snippetClear(&c->snippet); sl@0: if( c->result.pDoclist!=NULL ){ sl@0: docListDelete(c->result.pDoclist); sl@0: } sl@0: free(c); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: static int fulltextNext(sqlite3_vtab_cursor *pCursor){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: sqlite_int64 iDocid; sl@0: int rc; sl@0: sl@0: TRACE(("FTS1 Next %p\n", pCursor)); sl@0: snippetClear(&c->snippet); sl@0: if( c->iCursorType < QUERY_FULLTEXT ){ sl@0: /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ sl@0: rc = sqlite3_step(c->pStmt); sl@0: switch( rc ){ sl@0: case SQLITE_ROW: sl@0: c->eof = 0; sl@0: return SQLITE_OK; sl@0: case SQLITE_DONE: sl@0: c->eof = 1; sl@0: return SQLITE_OK; sl@0: default: sl@0: c->eof = 1; sl@0: return rc; sl@0: } sl@0: } else { /* full-text query */ sl@0: rc = sqlite3_reset(c->pStmt); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: iDocid = nextDocid(&c->result); sl@0: if( iDocid==0 ){ sl@0: c->eof = 1; sl@0: return SQLITE_OK; sl@0: } sl@0: rc = sqlite3_bind_int64(c->pStmt, 1, iDocid); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ sl@0: rc = sqlite3_step(c->pStmt); sl@0: if( rc==SQLITE_ROW ){ /* the case we expect */ sl@0: c->eof = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: /* an error occurred; abort */ sl@0: return rc==SQLITE_DONE ? SQLITE_ERROR : rc; sl@0: } sl@0: } sl@0: sl@0: sl@0: /* Return a DocList corresponding to the query term *pTerm. If *pTerm sl@0: ** is the first term of a phrase query, go ahead and evaluate the phrase sl@0: ** query and return the doclist for the entire phrase query. sl@0: ** sl@0: ** The result is stored in pTerm->doclist. sl@0: */ sl@0: static int docListOfTerm( sl@0: fulltext_vtab *v, /* The full text index */ sl@0: int iColumn, /* column to restrict to. No restrition if >=nColumn */ sl@0: QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ sl@0: DocList **ppResult /* Write the result here */ sl@0: ){ sl@0: DocList *pLeft, *pRight, *pNew; sl@0: int i, rc; sl@0: sl@0: pLeft = docListNew(DL_POSITIONS); sl@0: rc = term_select_all(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pLeft); sl@0: if( rc ){ sl@0: docListDelete(pLeft); sl@0: return rc; sl@0: } sl@0: for(i=1; i<=pQTerm->nPhrase; i++){ sl@0: pRight = docListNew(DL_POSITIONS); sl@0: rc = term_select_all(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, pRight); sl@0: if( rc ){ sl@0: docListDelete(pLeft); sl@0: return rc; sl@0: } sl@0: pNew = docListNew(inPhrase ? DL_POSITIONS : DL_DOCIDS); sl@0: docListPhraseMerge(pLeft, pRight, pNew); sl@0: docListDelete(pLeft); sl@0: docListDelete(pRight); sl@0: pLeft = pNew; sl@0: } sl@0: *ppResult = pLeft; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Add a new term pTerm[0..nTerm-1] to the query *q. sl@0: */ sl@0: static void queryAdd(Query *q, const char *pTerm, int nTerm){ sl@0: QueryTerm *t; sl@0: ++q->nTerms; sl@0: q->pTerms = realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); sl@0: if( q->pTerms==0 ){ sl@0: q->nTerms = 0; sl@0: return; sl@0: } sl@0: t = &q->pTerms[q->nTerms - 1]; sl@0: memset(t, 0, sizeof(*t)); sl@0: t->pTerm = malloc(nTerm+1); sl@0: memcpy(t->pTerm, pTerm, nTerm); sl@0: t->pTerm[nTerm] = 0; sl@0: t->nTerm = nTerm; sl@0: t->isOr = q->nextIsOr; sl@0: q->nextIsOr = 0; sl@0: t->iColumn = q->nextColumn; sl@0: q->nextColumn = q->dfltColumn; sl@0: } sl@0: sl@0: /* sl@0: ** Check to see if the string zToken[0...nToken-1] matches any sl@0: ** column name in the virtual table. If it does, sl@0: ** return the zero-indexed column number. If not, return -1. sl@0: */ sl@0: static int checkColumnSpecifier( sl@0: fulltext_vtab *pVtab, /* The virtual table */ sl@0: const char *zToken, /* Text of the token */ sl@0: int nToken /* Number of characters in the token */ sl@0: ){ sl@0: int i; sl@0: for(i=0; inColumn; i++){ sl@0: if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 sl@0: && pVtab->azColumn[i][nToken]==0 ){ sl@0: return i; sl@0: } sl@0: } sl@0: return -1; sl@0: } sl@0: sl@0: /* sl@0: ** Parse the text at pSegment[0..nSegment-1]. Add additional terms sl@0: ** to the query being assemblied in pQuery. sl@0: ** sl@0: ** inPhrase is true if pSegment[0..nSegement-1] is contained within sl@0: ** double-quotes. If inPhrase is true, then the first term sl@0: ** is marked with the number of terms in the phrase less one and sl@0: ** OR and "-" syntax is ignored. If inPhrase is false, then every sl@0: ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. sl@0: */ sl@0: static int tokenizeSegment( sl@0: sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ sl@0: const char *pSegment, int nSegment, /* Query expression being parsed */ sl@0: int inPhrase, /* True if within "..." */ sl@0: Query *pQuery /* Append results here */ sl@0: ){ sl@0: const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; sl@0: sqlite3_tokenizer_cursor *pCursor; sl@0: int firstIndex = pQuery->nTerms; sl@0: int iCol; sl@0: int nTerm = 1; sl@0: sl@0: int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: pCursor->pTokenizer = pTokenizer; sl@0: sl@0: while( 1 ){ sl@0: const char *pToken; sl@0: int nToken, iBegin, iEnd, iPos; sl@0: sl@0: rc = pModule->xNext(pCursor, sl@0: &pToken, &nToken, sl@0: &iBegin, &iEnd, &iPos); sl@0: if( rc!=SQLITE_OK ) break; sl@0: if( !inPhrase && sl@0: pSegment[iEnd]==':' && sl@0: (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ sl@0: pQuery->nextColumn = iCol; sl@0: continue; sl@0: } sl@0: if( !inPhrase && pQuery->nTerms>0 && nToken==2 sl@0: && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ sl@0: pQuery->nextIsOr = 1; sl@0: continue; sl@0: } sl@0: queryAdd(pQuery, pToken, nToken); sl@0: if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ sl@0: pQuery->pTerms[pQuery->nTerms-1].isNot = 1; sl@0: } sl@0: pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; sl@0: if( inPhrase ){ sl@0: nTerm++; sl@0: } sl@0: } sl@0: sl@0: if( inPhrase && pQuery->nTerms>firstIndex ){ sl@0: pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; sl@0: } sl@0: sl@0: return pModule->xClose(pCursor); sl@0: } sl@0: sl@0: /* Parse a query string, yielding a Query object pQuery. sl@0: ** sl@0: ** The calling function will need to queryClear() to clean up sl@0: ** the dynamically allocated memory held by pQuery. sl@0: */ sl@0: static int parseQuery( sl@0: fulltext_vtab *v, /* The fulltext index */ sl@0: const char *zInput, /* Input text of the query string */ sl@0: int nInput, /* Size of the input text */ sl@0: int dfltColumn, /* Default column of the index to match against */ sl@0: Query *pQuery /* Write the parse results here. */ sl@0: ){ sl@0: int iInput, inPhrase = 0; sl@0: sl@0: if( zInput==0 ) nInput = 0; sl@0: if( nInput<0 ) nInput = strlen(zInput); sl@0: pQuery->nTerms = 0; sl@0: pQuery->pTerms = NULL; sl@0: pQuery->nextIsOr = 0; sl@0: pQuery->nextColumn = dfltColumn; sl@0: pQuery->dfltColumn = dfltColumn; sl@0: pQuery->pFts = v; sl@0: sl@0: for(iInput=0; iInputiInput ){ sl@0: tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, sl@0: pQuery); sl@0: } sl@0: iInput = i; sl@0: if( i=nColumn sl@0: ** they are allowed to match against any column. sl@0: */ sl@0: static int fulltextQuery( sl@0: fulltext_vtab *v, /* The full text index */ sl@0: int iColumn, /* Match against this column by default */ sl@0: const char *zInput, /* The query string */ sl@0: int nInput, /* Number of bytes in zInput[] */ sl@0: DocList **pResult, /* Write the result doclist here */ sl@0: Query *pQuery /* Put parsed query string here */ sl@0: ){ sl@0: int i, iNext, rc; sl@0: DocList *pLeft = NULL; sl@0: DocList *pRight, *pNew, *pOr; sl@0: int nNot = 0; sl@0: QueryTerm *aTerm; sl@0: sl@0: rc = parseQuery(v, zInput, nInput, iColumn, pQuery); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* Merge AND terms. */ sl@0: aTerm = pQuery->pTerms; sl@0: for(i = 0; inTerms; i=iNext){ sl@0: if( aTerm[i].isNot ){ sl@0: /* Handle all NOT terms in a separate pass */ sl@0: nNot++; sl@0: iNext = i + aTerm[i].nPhrase+1; sl@0: continue; sl@0: } sl@0: iNext = i + aTerm[i].nPhrase + 1; sl@0: rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); sl@0: if( rc ){ sl@0: queryClear(pQuery); sl@0: return rc; sl@0: } sl@0: while( iNextnTerms && aTerm[iNext].isOr ){ sl@0: rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &pOr); sl@0: iNext += aTerm[iNext].nPhrase + 1; sl@0: if( rc ){ sl@0: queryClear(pQuery); sl@0: return rc; sl@0: } sl@0: pNew = docListNew(DL_DOCIDS); sl@0: docListOrMerge(pRight, pOr, pNew); sl@0: docListDelete(pRight); sl@0: docListDelete(pOr); sl@0: pRight = pNew; sl@0: } sl@0: if( pLeft==0 ){ sl@0: pLeft = pRight; sl@0: }else{ sl@0: pNew = docListNew(DL_DOCIDS); sl@0: docListAndMerge(pLeft, pRight, pNew); sl@0: docListDelete(pRight); sl@0: docListDelete(pLeft); sl@0: pLeft = pNew; sl@0: } sl@0: } sl@0: sl@0: if( nNot && pLeft==0 ){ sl@0: /* We do not yet know how to handle a query of only NOT terms */ sl@0: return SQLITE_ERROR; sl@0: } sl@0: sl@0: /* Do the EXCEPT terms */ sl@0: for(i=0; inTerms; i += aTerm[i].nPhrase + 1){ sl@0: if( !aTerm[i].isNot ) continue; sl@0: rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); sl@0: if( rc ){ sl@0: queryClear(pQuery); sl@0: docListDelete(pLeft); sl@0: return rc; sl@0: } sl@0: pNew = docListNew(DL_DOCIDS); sl@0: docListExceptMerge(pLeft, pRight, pNew); sl@0: docListDelete(pRight); sl@0: docListDelete(pLeft); sl@0: pLeft = pNew; sl@0: } sl@0: sl@0: *pResult = pLeft; sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** This is the xFilter interface for the virtual table. See sl@0: ** the virtual table xFilter method documentation for additional sl@0: ** information. sl@0: ** sl@0: ** If idxNum==QUERY_GENERIC then do a full table scan against sl@0: ** the %_content table. sl@0: ** sl@0: ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry sl@0: ** in the %_content table. sl@0: ** sl@0: ** If idxNum>=QUERY_FULLTEXT then use the full text index. The sl@0: ** column on the left-hand side of the MATCH operator is column sl@0: ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand sl@0: ** side of the MATCH operator. sl@0: */ sl@0: /* TODO(shess) Upgrade the cursor initialization and destruction to sl@0: ** account for fulltextFilter() being called multiple times on the sl@0: ** same cursor. The current solution is very fragile. Apply fix to sl@0: ** fts2 as appropriate. sl@0: */ sl@0: static int fulltextFilter( sl@0: sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ sl@0: int idxNum, const char *idxStr, /* Which indexing scheme to use */ sl@0: int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ sl@0: ){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: fulltext_vtab *v = cursor_vtab(c); sl@0: int rc; sl@0: char *zSql; sl@0: sl@0: TRACE(("FTS1 Filter %p\n",pCursor)); sl@0: sl@0: zSql = sqlite3_mprintf("select rowid, * from %%_content %s", sl@0: idxNum==QUERY_GENERIC ? "" : "where rowid=?"); sl@0: sqlite3_finalize(c->pStmt); sl@0: rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); sl@0: sqlite3_free(zSql); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: c->iCursorType = idxNum; sl@0: switch( idxNum ){ sl@0: case QUERY_GENERIC: sl@0: break; sl@0: sl@0: case QUERY_ROWID: sl@0: rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: break; sl@0: sl@0: default: /* full-text search */ sl@0: { sl@0: const char *zQuery = (const char *)sqlite3_value_text(argv[0]); sl@0: DocList *pResult; sl@0: assert( idxNum<=QUERY_FULLTEXT+v->nColumn); sl@0: assert( argc==1 ); sl@0: queryClear(&c->q); sl@0: rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &pResult, &c->q); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: if( c->result.pDoclist!=NULL ) docListDelete(c->result.pDoclist); sl@0: readerInit(&c->result, pResult); sl@0: break; sl@0: } sl@0: } sl@0: sl@0: return fulltextNext(pCursor); sl@0: } sl@0: sl@0: /* This is the xEof method of the virtual table. The SQLite core sl@0: ** calls this routine to find out if it has reached the end of sl@0: ** a query's results set. sl@0: */ sl@0: static int fulltextEof(sqlite3_vtab_cursor *pCursor){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: return c->eof; sl@0: } sl@0: sl@0: /* This is the xColumn method of the virtual table. The SQLite sl@0: ** core calls this method during a query when it needs the value sl@0: ** of a column from the virtual table. This method needs to use sl@0: ** one of the sqlite3_result_*() routines to store the requested sl@0: ** value back in the pContext. sl@0: */ sl@0: static int fulltextColumn(sqlite3_vtab_cursor *pCursor, sl@0: sqlite3_context *pContext, int idxCol){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: fulltext_vtab *v = cursor_vtab(c); sl@0: sl@0: if( idxColnColumn ){ sl@0: sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); sl@0: sqlite3_result_value(pContext, pVal); sl@0: }else if( idxCol==v->nColumn ){ sl@0: /* The extra column whose name is the same as the table. sl@0: ** Return a blob which is a pointer to the cursor sl@0: */ sl@0: sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* This is the xRowid method. The SQLite core calls this routine to sl@0: ** retrive the rowid for the current row of the result set. The sl@0: ** rowid should be written to *pRowid. sl@0: */ sl@0: static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ sl@0: fulltext_cursor *c = (fulltext_cursor *) pCursor; sl@0: sl@0: *pRowid = sqlite3_column_int64(c->pStmt, 0); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Add all terms in [zText] to the given hash table. If [iColumn] > 0, sl@0: * we also store positions and offsets in the hash table using the given sl@0: * column number. */ sl@0: static int buildTerms(fulltext_vtab *v, fts1Hash *terms, sqlite_int64 iDocid, sl@0: const char *zText, int iColumn){ sl@0: sqlite3_tokenizer *pTokenizer = v->pTokenizer; sl@0: sqlite3_tokenizer_cursor *pCursor; sl@0: const char *pToken; sl@0: int nTokenBytes; sl@0: int iStartOffset, iEndOffset, iPosition; sl@0: int rc; sl@0: sl@0: rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: pCursor->pTokenizer = pTokenizer; sl@0: while( SQLITE_OK==pTokenizer->pModule->xNext(pCursor, sl@0: &pToken, &nTokenBytes, sl@0: &iStartOffset, &iEndOffset, sl@0: &iPosition) ){ sl@0: DocList *p; sl@0: sl@0: /* Positions can't be negative; we use -1 as a terminator internally. */ sl@0: if( iPosition<0 ){ sl@0: pTokenizer->pModule->xClose(pCursor); sl@0: return SQLITE_ERROR; sl@0: } sl@0: sl@0: p = fts1HashFind(terms, pToken, nTokenBytes); sl@0: if( p==NULL ){ sl@0: p = docListNew(DL_DEFAULT); sl@0: docListAddDocid(p, iDocid); sl@0: fts1HashInsert(terms, pToken, nTokenBytes, p); sl@0: } sl@0: if( iColumn>=0 ){ sl@0: docListAddPosOffset(p, iColumn, iPosition, iStartOffset, iEndOffset); sl@0: } sl@0: } sl@0: sl@0: /* TODO(shess) Check return? Should this be able to cause errors at sl@0: ** this point? Actually, same question about sqlite3_finalize(), sl@0: ** though one could argue that failure there means that the data is sl@0: ** not durable. *ponder* sl@0: */ sl@0: pTokenizer->pModule->xClose(pCursor); sl@0: return rc; sl@0: } sl@0: sl@0: /* Update the %_terms table to map the term [pTerm] to the given rowid. */ sl@0: static int index_insert_term(fulltext_vtab *v, const char *pTerm, int nTerm, sl@0: DocList *d){ sl@0: sqlite_int64 iIndexRow; sl@0: DocList doclist; sl@0: int iSegment = 0, rc; sl@0: sl@0: rc = term_select(v, pTerm, nTerm, iSegment, &iIndexRow, &doclist); sl@0: if( rc==SQLITE_DONE ){ sl@0: docListInit(&doclist, DL_DEFAULT, 0, 0); sl@0: docListUpdate(&doclist, d); sl@0: /* TODO(shess) Consider length(doclist)>CHUNK_MAX? */ sl@0: rc = term_insert(v, NULL, pTerm, nTerm, iSegment, &doclist); sl@0: goto err; sl@0: } sl@0: if( rc!=SQLITE_ROW ) return SQLITE_ERROR; sl@0: sl@0: docListUpdate(&doclist, d); sl@0: if( doclist.nData<=CHUNK_MAX ){ sl@0: rc = term_update(v, iIndexRow, &doclist); sl@0: goto err; sl@0: } sl@0: sl@0: /* Doclist doesn't fit, delete what's there, and accumulate sl@0: ** forward. sl@0: */ sl@0: rc = term_delete(v, iIndexRow); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: sl@0: /* Try to insert the doclist into a higher segment bucket. On sl@0: ** failure, accumulate existing doclist with the doclist from that sl@0: ** bucket, and put results in the next bucket. sl@0: */ sl@0: iSegment++; sl@0: while( (rc=term_insert(v, &iIndexRow, pTerm, nTerm, iSegment, sl@0: &doclist))!=SQLITE_OK ){ sl@0: sqlite_int64 iSegmentRow; sl@0: DocList old; sl@0: int rc2; sl@0: sl@0: /* Retain old error in case the term_insert() error was really an sl@0: ** error rather than a bounced insert. sl@0: */ sl@0: rc2 = term_select(v, pTerm, nTerm, iSegment, &iSegmentRow, &old); sl@0: if( rc2!=SQLITE_ROW ) goto err; sl@0: sl@0: rc = term_delete(v, iSegmentRow); sl@0: if( rc!=SQLITE_OK ) goto err; sl@0: sl@0: /* Reusing lowest-number deleted row keeps the index smaller. */ sl@0: if( iSegmentRownColumn ; ++i){ sl@0: char *zText = (char*)sqlite3_value_text(pValues[i]); sl@0: int rc = buildTerms(v, terms, iRowid, zText, i); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Add empty doclists for all terms in the given row's content to the hash sl@0: * table [pTerms]. */ sl@0: static int deleteTerms(fulltext_vtab *v, fts1Hash *pTerms, sqlite_int64 iRowid){ sl@0: const char **pValues; sl@0: int i; sl@0: sl@0: int rc = content_select(v, iRowid, &pValues); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: for(i = 0 ; i < v->nColumn; ++i) { sl@0: rc = buildTerms(v, pTerms, iRowid, pValues[i], -1); sl@0: if( rc!=SQLITE_OK ) break; sl@0: } sl@0: sl@0: freeStringArray(v->nColumn, pValues); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* Insert a row into the %_content table; set *piRowid to be the ID of the sl@0: * new row. Fill [pTerms] with new doclists for the %_term table. */ sl@0: static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, sl@0: sqlite3_value **pValues, sl@0: sqlite_int64 *piRowid, fts1Hash *pTerms){ sl@0: int rc; sl@0: sl@0: rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: *piRowid = sqlite3_last_insert_rowid(v->db); sl@0: return insertTerms(v, pTerms, *piRowid, pValues); sl@0: } sl@0: sl@0: /* Delete a row from the %_content table; fill [pTerms] with empty doclists sl@0: * to be written to the %_term table. */ sl@0: static int index_delete(fulltext_vtab *v, sqlite_int64 iRow, fts1Hash *pTerms){ sl@0: int rc = deleteTerms(v, pTerms, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: return content_delete(v, iRow); /* execute an SQL DELETE */ sl@0: } sl@0: sl@0: /* Update a row in the %_content table; fill [pTerms] with new doclists for the sl@0: * %_term table. */ sl@0: static int index_update(fulltext_vtab *v, sqlite_int64 iRow, sl@0: sqlite3_value **pValues, fts1Hash *pTerms){ sl@0: /* Generate an empty doclist for each term that previously appeared in this sl@0: * row. */ sl@0: int rc = deleteTerms(v, pTerms, iRow); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* Now add positions for terms which appear in the updated row. */ sl@0: return insertTerms(v, pTerms, iRow, pValues); sl@0: } sl@0: sl@0: /* This function implements the xUpdate callback; it is the top-level entry sl@0: * point for inserting, deleting or updating a row in a full-text table. */ sl@0: static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, sl@0: sqlite_int64 *pRowid){ sl@0: fulltext_vtab *v = (fulltext_vtab *) pVtab; sl@0: fts1Hash terms; /* maps term string -> PosList */ sl@0: int rc; sl@0: fts1HashElem *e; sl@0: sl@0: TRACE(("FTS1 Update %p\n", pVtab)); sl@0: sl@0: fts1HashInit(&terms, FTS1_HASH_STRING, 1); sl@0: sl@0: if( nArg<2 ){ sl@0: rc = index_delete(v, sqlite3_value_int64(ppArg[0]), &terms); sl@0: } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ sl@0: /* An update: sl@0: * ppArg[0] = old rowid sl@0: * ppArg[1] = new rowid sl@0: * ppArg[2..2+v->nColumn-1] = values sl@0: * ppArg[2+v->nColumn] = value for magic column (we ignore this) sl@0: */ sl@0: sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); sl@0: if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || sl@0: sqlite3_value_int64(ppArg[1]) != rowid ){ sl@0: rc = SQLITE_ERROR; /* we don't allow changing the rowid */ sl@0: } else { sl@0: assert( nArg==2+v->nColumn+1); sl@0: rc = index_update(v, rowid, &ppArg[2], &terms); sl@0: } sl@0: } else { sl@0: /* An insert: sl@0: * ppArg[1] = requested rowid sl@0: * ppArg[2..2+v->nColumn-1] = values sl@0: * ppArg[2+v->nColumn] = value for magic column (we ignore this) sl@0: */ sl@0: assert( nArg==2+v->nColumn+1); sl@0: rc = index_insert(v, ppArg[1], &ppArg[2], pRowid, &terms); sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: /* Write updated doclists to disk. */ sl@0: for(e=fts1HashFirst(&terms); e; e=fts1HashNext(e)){ sl@0: DocList *p = fts1HashData(e); sl@0: rc = index_insert_term(v, fts1HashKey(e), fts1HashKeysize(e), p); sl@0: if( rc!=SQLITE_OK ) break; sl@0: } sl@0: } sl@0: sl@0: /* clean up */ sl@0: for(e=fts1HashFirst(&terms); e; e=fts1HashNext(e)){ sl@0: DocList *p = fts1HashData(e); sl@0: docListDelete(p); sl@0: } sl@0: fts1HashClear(&terms); sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Implementation of the snippet() function for FTS1 sl@0: */ sl@0: static void snippetFunc( sl@0: sqlite3_context *pContext, sl@0: int argc, sl@0: sqlite3_value **argv sl@0: ){ sl@0: fulltext_cursor *pCursor; sl@0: if( argc<1 ) return; sl@0: if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || sl@0: sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ sl@0: sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); sl@0: }else{ sl@0: const char *zStart = ""; sl@0: const char *zEnd = ""; sl@0: const char *zEllipsis = "..."; sl@0: memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); sl@0: if( argc>=2 ){ sl@0: zStart = (const char*)sqlite3_value_text(argv[1]); sl@0: if( argc>=3 ){ sl@0: zEnd = (const char*)sqlite3_value_text(argv[2]); sl@0: if( argc>=4 ){ sl@0: zEllipsis = (const char*)sqlite3_value_text(argv[3]); sl@0: } sl@0: } sl@0: } sl@0: snippetAllOffsets(pCursor); sl@0: snippetText(pCursor, zStart, zEnd, zEllipsis); sl@0: sqlite3_result_text(pContext, pCursor->snippet.zSnippet, sl@0: pCursor->snippet.nSnippet, SQLITE_STATIC); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Implementation of the offsets() function for FTS1 sl@0: */ sl@0: static void snippetOffsetsFunc( sl@0: sqlite3_context *pContext, sl@0: int argc, sl@0: sqlite3_value **argv sl@0: ){ sl@0: fulltext_cursor *pCursor; sl@0: if( argc<1 ) return; sl@0: if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || sl@0: sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ sl@0: sqlite3_result_error(pContext, "illegal first argument to offsets",-1); sl@0: }else{ sl@0: memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); sl@0: snippetAllOffsets(pCursor); sl@0: snippetOffsetText(&pCursor->snippet); sl@0: sqlite3_result_text(pContext, sl@0: pCursor->snippet.zOffset, pCursor->snippet.nOffset, sl@0: SQLITE_STATIC); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This routine implements the xFindFunction method for the FTS1 sl@0: ** virtual table. sl@0: */ sl@0: static int fulltextFindFunction( sl@0: sqlite3_vtab *pVtab, sl@0: int nArg, sl@0: const char *zName, sl@0: void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), sl@0: void **ppArg sl@0: ){ sl@0: if( strcmp(zName,"snippet")==0 ){ sl@0: *pxFunc = snippetFunc; sl@0: return 1; sl@0: }else if( strcmp(zName,"offsets")==0 ){ sl@0: *pxFunc = snippetOffsetsFunc; sl@0: return 1; sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Rename an fts1 table. sl@0: */ sl@0: static int fulltextRename( sl@0: sqlite3_vtab *pVtab, sl@0: const char *zName sl@0: ){ sl@0: fulltext_vtab *p = (fulltext_vtab *)pVtab; sl@0: int rc = SQLITE_NOMEM; sl@0: char *zSql = sqlite3_mprintf( sl@0: "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" sl@0: "ALTER TABLE %Q.'%q_term' RENAME TO '%q_term';" sl@0: , p->zDb, p->zName, zName sl@0: , p->zDb, p->zName, zName sl@0: ); sl@0: if( zSql ){ sl@0: rc = sqlite3_exec(p->db, zSql, 0, 0, 0); sl@0: sqlite3_free(zSql); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: static const sqlite3_module fulltextModule = { sl@0: /* iVersion */ 0, sl@0: /* xCreate */ fulltextCreate, sl@0: /* xConnect */ fulltextConnect, sl@0: /* xBestIndex */ fulltextBestIndex, sl@0: /* xDisconnect */ fulltextDisconnect, sl@0: /* xDestroy */ fulltextDestroy, sl@0: /* xOpen */ fulltextOpen, sl@0: /* xClose */ fulltextClose, sl@0: /* xFilter */ fulltextFilter, sl@0: /* xNext */ fulltextNext, sl@0: /* xEof */ fulltextEof, sl@0: /* xColumn */ fulltextColumn, sl@0: /* xRowid */ fulltextRowid, sl@0: /* xUpdate */ fulltextUpdate, sl@0: /* xBegin */ 0, sl@0: /* xSync */ 0, sl@0: /* xCommit */ 0, sl@0: /* xRollback */ 0, sl@0: /* xFindFunction */ fulltextFindFunction, sl@0: /* xRename */ fulltextRename, sl@0: }; sl@0: sl@0: int sqlite3Fts1Init(sqlite3 *db){ sl@0: sqlite3_overload_function(db, "snippet", -1); sl@0: sqlite3_overload_function(db, "offsets", -1); sl@0: return sqlite3_create_module(db, "fts1", &fulltextModule, 0); sl@0: } sl@0: sl@0: #if !SQLITE_CORE sl@0: int sqlite3_extension_init(sqlite3 *db, char **pzErrMsg, sl@0: const sqlite3_api_routines *pApi){ sl@0: SQLITE_EXTENSION_INIT2(pApi) sl@0: return sqlite3Fts1Init(db); sl@0: } sl@0: #endif sl@0: sl@0: #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */