sl@0: /* sl@0: ** 2001 September 15 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This module contains C code that generates VDBE code used to process sl@0: ** the WHERE clause of SQL statements. This module is responsible for sl@0: ** generating the code that loops through a table looking for applicable sl@0: ** rows. Indices are selected and used to speed the search when doing sl@0: ** so is applicable. Because this module is responsible for selecting sl@0: ** indices, you might also think of this module as the "query optimizer". sl@0: ** sl@0: ** $Id: where.c,v 1.326 2008/10/11 16:47:36 drh Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: sl@0: /* sl@0: ** The number of bits in a Bitmask. "BMS" means "BitMask Size". sl@0: */ sl@0: #define BMS (sizeof(Bitmask)*8) sl@0: sl@0: /* sl@0: ** Trace output macros sl@0: */ sl@0: #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) sl@0: int sqlite3WhereTrace = 0; sl@0: #endif sl@0: #if 0 sl@0: # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X sl@0: #else sl@0: # define WHERETRACE(X) sl@0: #endif sl@0: sl@0: /* Forward reference sl@0: */ sl@0: typedef struct WhereClause WhereClause; sl@0: typedef struct ExprMaskSet ExprMaskSet; sl@0: sl@0: /* sl@0: ** The query generator uses an array of instances of this structure to sl@0: ** help it analyze the subexpressions of the WHERE clause. Each WHERE sl@0: ** clause subexpression is separated from the others by an AND operator. sl@0: ** sl@0: ** All WhereTerms are collected into a single WhereClause structure. sl@0: ** The following identity holds: sl@0: ** sl@0: ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm sl@0: ** sl@0: ** When a term is of the form: sl@0: ** sl@0: ** X sl@0: ** sl@0: ** where X is a column name and is one of certain operators, sl@0: ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the sl@0: ** cursor number and column number for X. WhereTerm.operator records sl@0: ** the using a bitmask encoding defined by WO_xxx below. The sl@0: ** use of a bitmask encoding for the operator allows us to search sl@0: ** quickly for terms that match any of several different operators. sl@0: ** sl@0: ** prereqRight and prereqAll record sets of cursor numbers, sl@0: ** but they do so indirectly. A single ExprMaskSet structure translates sl@0: ** cursor number into bits and the translated bit is stored in the prereq sl@0: ** fields. The translation is used in order to maximize the number of sl@0: ** bits that will fit in a Bitmask. The VDBE cursor numbers might be sl@0: ** spread out over the non-negative integers. For example, the cursor sl@0: ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet sl@0: ** translates these sparse cursor numbers into consecutive integers sl@0: ** beginning with 0 in order to make the best possible use of the available sl@0: ** bits in the Bitmask. So, in the example above, the cursor numbers sl@0: ** would be mapped into integers 0 through 7. sl@0: */ sl@0: typedef struct WhereTerm WhereTerm; sl@0: struct WhereTerm { sl@0: Expr *pExpr; /* Pointer to the subexpression */ sl@0: i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ sl@0: i16 leftCursor; /* Cursor number of X in "X " */ sl@0: i16 leftColumn; /* Column number of X in "X " */ sl@0: u16 eOperator; /* A WO_xx value describing */ sl@0: u8 flags; /* Bit flags. See below */ sl@0: u8 nChild; /* Number of children that must disable us */ sl@0: WhereClause *pWC; /* The clause this term is part of */ sl@0: Bitmask prereqRight; /* Bitmask of tables used by pRight */ sl@0: Bitmask prereqAll; /* Bitmask of tables referenced by p */ sl@0: }; sl@0: sl@0: /* sl@0: ** Allowed values of WhereTerm.flags sl@0: */ sl@0: #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ sl@0: #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ sl@0: #define TERM_CODED 0x04 /* This term is already coded */ sl@0: #define TERM_COPIED 0x08 /* Has a child */ sl@0: #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ sl@0: sl@0: /* sl@0: ** An instance of the following structure holds all information about a sl@0: ** WHERE clause. Mostly this is a container for one or more WhereTerms. sl@0: */ sl@0: struct WhereClause { sl@0: Parse *pParse; /* The parser context */ sl@0: ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ sl@0: int nTerm; /* Number of terms */ sl@0: int nSlot; /* Number of entries in a[] */ sl@0: WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ sl@0: WhereTerm aStatic[10]; /* Initial static space for a[] */ sl@0: }; sl@0: sl@0: /* sl@0: ** An instance of the following structure keeps track of a mapping sl@0: ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. sl@0: ** sl@0: ** The VDBE cursor numbers are small integers contained in sl@0: ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE sl@0: ** clause, the cursor numbers might not begin with 0 and they might sl@0: ** contain gaps in the numbering sequence. But we want to make maximum sl@0: ** use of the bits in our bitmasks. This structure provides a mapping sl@0: ** from the sparse cursor numbers into consecutive integers beginning sl@0: ** with 0. sl@0: ** sl@0: ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask sl@0: ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<3, 5->1, 8->2, 29->0, sl@0: ** 57->5, 73->4. Or one of 719 other combinations might be used. It sl@0: ** does not really matter. What is important is that sparse cursor sl@0: ** numbers all get mapped into bit numbers that begin with 0 and contain sl@0: ** no gaps. sl@0: */ sl@0: struct ExprMaskSet { sl@0: int n; /* Number of assigned cursor values */ sl@0: int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ sl@0: }; sl@0: sl@0: sl@0: /* sl@0: ** Bitmasks for the operators that indices are able to exploit. An sl@0: ** OR-ed combination of these values can be used when searching for sl@0: ** terms in the where clause. sl@0: */ sl@0: #define WO_IN 1 sl@0: #define WO_EQ 2 sl@0: #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) sl@0: #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) sl@0: #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) sl@0: #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) sl@0: #define WO_MATCH 64 sl@0: #define WO_ISNULL 128 sl@0: sl@0: /* sl@0: ** Value for flags returned by bestIndex(). sl@0: ** sl@0: ** The least significant byte is reserved as a mask for WO_ values above. sl@0: ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. sl@0: ** But if the table is the right table of a left join, WhereLevel.flags sl@0: ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as sl@0: ** the "op" parameter to findTerm when we are resolving equality constraints. sl@0: ** ISNULL constraints will then not be used on the right table of a left sl@0: ** join. Tickets #2177 and #2189. sl@0: */ sl@0: #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ sl@0: #define WHERE_ROWID_RANGE 0x000200 /* rowidEXPR */ sl@0: #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ sl@0: #define WHERE_COLUMN_RANGE 0x002000 /* xEXPR */ sl@0: #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ sl@0: #define WHERE_TOP_LIMIT 0x010000 /* xEXPR or x>=EXPR constraint */ sl@0: #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ sl@0: #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ sl@0: #define WHERE_REVERSE 0x200000 /* Scan in reverse order */ sl@0: #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ sl@0: #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ sl@0: sl@0: /* sl@0: ** Initialize a preallocated WhereClause structure. sl@0: */ sl@0: static void whereClauseInit( sl@0: WhereClause *pWC, /* The WhereClause to be initialized */ sl@0: Parse *pParse, /* The parsing context */ sl@0: ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ sl@0: ){ sl@0: pWC->pParse = pParse; sl@0: pWC->pMaskSet = pMaskSet; sl@0: pWC->nTerm = 0; sl@0: pWC->nSlot = ArraySize(pWC->aStatic); sl@0: pWC->a = pWC->aStatic; sl@0: } sl@0: sl@0: /* sl@0: ** Deallocate a WhereClause structure. The WhereClause structure sl@0: ** itself is not freed. This routine is the inverse of whereClauseInit(). sl@0: */ sl@0: static void whereClauseClear(WhereClause *pWC){ sl@0: int i; sl@0: WhereTerm *a; sl@0: sqlite3 *db = pWC->pParse->db; sl@0: for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ sl@0: if( a->flags & TERM_DYNAMIC ){ sl@0: sqlite3ExprDelete(db, a->pExpr); sl@0: } sl@0: } sl@0: if( pWC->a!=pWC->aStatic ){ sl@0: sqlite3DbFree(db, pWC->a); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Add a new entries to the WhereClause structure. Increase the allocated sl@0: ** space as necessary. sl@0: ** sl@0: ** If the flags argument includes TERM_DYNAMIC, then responsibility sl@0: ** for freeing the expression p is assumed by the WhereClause object. sl@0: ** sl@0: ** WARNING: This routine might reallocate the space used to store sl@0: ** WhereTerms. All pointers to WhereTerms should be invalidated after sl@0: ** calling this routine. Such pointers may be reinitialized by referencing sl@0: ** the pWC->a[] array. sl@0: */ sl@0: static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ sl@0: WhereTerm *pTerm; sl@0: int idx; sl@0: if( pWC->nTerm>=pWC->nSlot ){ sl@0: WhereTerm *pOld = pWC->a; sl@0: sqlite3 *db = pWC->pParse->db; sl@0: pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); sl@0: if( pWC->a==0 ){ sl@0: if( flags & TERM_DYNAMIC ){ sl@0: sqlite3ExprDelete(db, p); sl@0: } sl@0: pWC->a = pOld; sl@0: return 0; sl@0: } sl@0: memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); sl@0: if( pOld!=pWC->aStatic ){ sl@0: sqlite3DbFree(db, pOld); sl@0: } sl@0: pWC->nSlot *= 2; sl@0: } sl@0: pTerm = &pWC->a[idx = pWC->nTerm]; sl@0: pWC->nTerm++; sl@0: pTerm->pExpr = p; sl@0: pTerm->flags = flags; sl@0: pTerm->pWC = pWC; sl@0: pTerm->iParent = -1; sl@0: return idx; sl@0: } sl@0: sl@0: /* sl@0: ** This routine identifies subexpressions in the WHERE clause where sl@0: ** each subexpression is separated by the AND operator or some other sl@0: ** operator specified in the op parameter. The WhereClause structure sl@0: ** is filled with pointers to subexpressions. For example: sl@0: ** sl@0: ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) sl@0: ** \________/ \_______________/ \________________/ sl@0: ** slot[0] slot[1] slot[2] sl@0: ** sl@0: ** The original WHERE clause in pExpr is unaltered. All this routine sl@0: ** does is make slot[] entries point to substructure within pExpr. sl@0: ** sl@0: ** In the previous sentence and in the diagram, "slot[]" refers to sl@0: ** the WhereClause.a[] array. This array grows as needed to contain sl@0: ** all terms of the WHERE clause. sl@0: */ sl@0: static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ sl@0: if( pExpr==0 ) return; sl@0: if( pExpr->op!=op ){ sl@0: whereClauseInsert(pWC, pExpr, 0); sl@0: }else{ sl@0: whereSplit(pWC, pExpr->pLeft, op); sl@0: whereSplit(pWC, pExpr->pRight, op); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Initialize an expression mask set sl@0: */ sl@0: #define initMaskSet(P) memset(P, 0, sizeof(*P)) sl@0: sl@0: /* sl@0: ** Return the bitmask for the given cursor number. Return 0 if sl@0: ** iCursor is not in the set. sl@0: */ sl@0: static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ sl@0: int i; sl@0: for(i=0; in; i++){ sl@0: if( pMaskSet->ix[i]==iCursor ){ sl@0: return ((Bitmask)1)<ix[] sl@0: ** array will never overflow. sl@0: */ sl@0: static void createMask(ExprMaskSet *pMaskSet, int iCursor){ sl@0: assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); sl@0: pMaskSet->ix[pMaskSet->n++] = iCursor; sl@0: } sl@0: sl@0: /* sl@0: ** This routine walks (recursively) an expression tree and generates sl@0: ** a bitmask indicating which tables are used in that expression sl@0: ** tree. sl@0: ** sl@0: ** In order for this routine to work, the calling function must have sl@0: ** previously invoked sqlite3ResolveExprNames() on the expression. See sl@0: ** the header comment on that routine for additional information. sl@0: ** The sqlite3ResolveExprNames() routines looks for column names and sl@0: ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to sl@0: ** the VDBE cursor number of the table. This routine just has to sl@0: ** translate the cursor numbers into bitmask values and OR all sl@0: ** the bitmasks together. sl@0: */ sl@0: static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); sl@0: static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); sl@0: static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ sl@0: Bitmask mask = 0; sl@0: if( p==0 ) return 0; sl@0: if( p->op==TK_COLUMN ){ sl@0: mask = getMask(pMaskSet, p->iTable); sl@0: return mask; sl@0: } sl@0: mask = exprTableUsage(pMaskSet, p->pRight); sl@0: mask |= exprTableUsage(pMaskSet, p->pLeft); sl@0: mask |= exprListTableUsage(pMaskSet, p->pList); sl@0: mask |= exprSelectTableUsage(pMaskSet, p->pSelect); sl@0: return mask; sl@0: } sl@0: static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ sl@0: int i; sl@0: Bitmask mask = 0; sl@0: if( pList ){ sl@0: for(i=0; inExpr; i++){ sl@0: mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); sl@0: } sl@0: } sl@0: return mask; sl@0: } sl@0: static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ sl@0: Bitmask mask = 0; sl@0: while( pS ){ sl@0: mask |= exprListTableUsage(pMaskSet, pS->pEList); sl@0: mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); sl@0: mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); sl@0: mask |= exprTableUsage(pMaskSet, pS->pWhere); sl@0: mask |= exprTableUsage(pMaskSet, pS->pHaving); sl@0: pS = pS->pPrior; sl@0: } sl@0: return mask; sl@0: } sl@0: sl@0: /* sl@0: ** Return TRUE if the given operator is one of the operators that is sl@0: ** allowed for an indexable WHERE clause term. The allowed operators are sl@0: ** "=", "<", ">", "<=", ">=", and "IN". sl@0: */ sl@0: static int allowedOp(int op){ sl@0: assert( TK_GT>TK_EQ && TK_GTTK_EQ && TK_LTTK_EQ && TK_LE=TK_EQ && op<=TK_GE) || op==TK_ISNULL; sl@0: } sl@0: sl@0: /* sl@0: ** Swap two objects of type T. sl@0: */ sl@0: #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} sl@0: sl@0: /* sl@0: ** Commute a comparison operator. Expressions of the form "X op Y" sl@0: ** are converted into "Y op X". sl@0: ** sl@0: ** If a collation sequence is associated with either the left or right sl@0: ** side of the comparison, it remains associated with the same side after sl@0: ** the commutation. So "Y collate NOCASE op X" becomes sl@0: ** "X collate NOCASE op Y". This is because any collation sequence on sl@0: ** the left hand side of a comparison overrides any collation sequence sl@0: ** attached to the right. For the same reason the EP_ExpCollate flag sl@0: ** is not commuted. sl@0: */ sl@0: static void exprCommute(Parse *pParse, Expr *pExpr){ sl@0: u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); sl@0: u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); sl@0: assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); sl@0: pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); sl@0: pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); sl@0: SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); sl@0: pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; sl@0: pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; sl@0: SWAP(Expr*,pExpr->pRight,pExpr->pLeft); sl@0: if( pExpr->op>=TK_GT ){ sl@0: assert( TK_LT==TK_GT+2 ); sl@0: assert( TK_GE==TK_LE+2 ); sl@0: assert( TK_GT>TK_EQ ); sl@0: assert( TK_GTop>=TK_GT && pExpr->op<=TK_GE ); sl@0: pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Translate from TK_xx operator to WO_xx bitmask. sl@0: */ sl@0: static int operatorMask(int op){ sl@0: int c; sl@0: assert( allowedOp(op) ); sl@0: if( op==TK_IN ){ sl@0: c = WO_IN; sl@0: }else if( op==TK_ISNULL ){ sl@0: c = WO_ISNULL; sl@0: }else{ sl@0: c = WO_EQ<<(op-TK_EQ); sl@0: } sl@0: assert( op!=TK_ISNULL || c==WO_ISNULL ); sl@0: assert( op!=TK_IN || c==WO_IN ); sl@0: assert( op!=TK_EQ || c==WO_EQ ); sl@0: assert( op!=TK_LT || c==WO_LT ); sl@0: assert( op!=TK_LE || c==WO_LE ); sl@0: assert( op!=TK_GT || c==WO_GT ); sl@0: assert( op!=TK_GE || c==WO_GE ); sl@0: return c; sl@0: } sl@0: sl@0: /* sl@0: ** Search for a term in the WHERE clause that is of the form "X " sl@0: ** where X is a reference to the iColumn of table iCur and is one of sl@0: ** the WO_xx operator codes specified by the op parameter. sl@0: ** Return a pointer to the term. Return 0 if not found. sl@0: */ sl@0: static WhereTerm *findTerm( sl@0: WhereClause *pWC, /* The WHERE clause to be searched */ sl@0: int iCur, /* Cursor number of LHS */ sl@0: int iColumn, /* Column number of LHS */ sl@0: Bitmask notReady, /* RHS must not overlap with this mask */ sl@0: u16 op, /* Mask of WO_xx values describing operator */ sl@0: Index *pIdx /* Must be compatible with this index, if not NULL */ sl@0: ){ sl@0: WhereTerm *pTerm; sl@0: int k; sl@0: assert( iCur>=0 ); sl@0: for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ sl@0: if( pTerm->leftCursor==iCur sl@0: && (pTerm->prereqRight & notReady)==0 sl@0: && pTerm->leftColumn==iColumn sl@0: && (pTerm->eOperator & op)!=0 sl@0: ){ sl@0: if( pIdx && pTerm->eOperator!=WO_ISNULL ){ sl@0: Expr *pX = pTerm->pExpr; sl@0: CollSeq *pColl; sl@0: char idxaff; sl@0: int j; sl@0: Parse *pParse = pWC->pParse; sl@0: sl@0: idxaff = pIdx->pTable->aCol[iColumn].affinity; sl@0: if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; sl@0: sl@0: /* Figure out the collation sequence required from an index for sl@0: ** it to be useful for optimising expression pX. Store this sl@0: ** value in variable pColl. sl@0: */ sl@0: assert(pX->pLeft); sl@0: pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); sl@0: if( !pColl ){ sl@0: pColl = pParse->db->pDfltColl; sl@0: } sl@0: sl@0: for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ sl@0: if( NEVER(j>=pIdx->nColumn) ) return 0; sl@0: } sl@0: if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; sl@0: } sl@0: return pTerm; sl@0: } sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* Forward reference */ sl@0: static void exprAnalyze(SrcList*, WhereClause*, int); sl@0: sl@0: /* sl@0: ** Call exprAnalyze on all terms in a WHERE clause. sl@0: ** sl@0: ** sl@0: */ sl@0: static void exprAnalyzeAll( sl@0: SrcList *pTabList, /* the FROM clause */ sl@0: WhereClause *pWC /* the WHERE clause to be analyzed */ sl@0: ){ sl@0: int i; sl@0: for(i=pWC->nTerm-1; i>=0; i--){ sl@0: exprAnalyze(pTabList, pWC, i); sl@0: } sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION sl@0: /* sl@0: ** Check to see if the given expression is a LIKE or GLOB operator that sl@0: ** can be optimized using inequality constraints. Return TRUE if it is sl@0: ** so and false if not. sl@0: ** sl@0: ** In order for the operator to be optimizible, the RHS must be a string sl@0: ** literal that does not begin with a wildcard. sl@0: */ sl@0: static int isLikeOrGlob( sl@0: Parse *pParse, /* Parsing and code generating context */ sl@0: Expr *pExpr, /* Test this expression */ sl@0: int *pnPattern, /* Number of non-wildcard prefix characters */ sl@0: int *pisComplete, /* True if the only wildcard is % in the last character */ sl@0: int *pnoCase /* True if uppercase is equivalent to lowercase */ sl@0: ){ sl@0: const char *z; sl@0: Expr *pRight, *pLeft; sl@0: ExprList *pList; sl@0: int c, cnt; sl@0: char wc[3]; sl@0: CollSeq *pColl; sl@0: sqlite3 *db = pParse->db; sl@0: sl@0: if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ sl@0: return 0; sl@0: } sl@0: #ifdef SQLITE_EBCDIC sl@0: if( *pnoCase ) return 0; sl@0: #endif sl@0: pList = pExpr->pList; sl@0: pRight = pList->a[0].pExpr; sl@0: if( pRight->op!=TK_STRING sl@0: && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){ sl@0: return 0; sl@0: } sl@0: pLeft = pList->a[1].pExpr; sl@0: if( pLeft->op!=TK_COLUMN ){ sl@0: return 0; sl@0: } sl@0: pColl = sqlite3ExprCollSeq(pParse, pLeft); sl@0: assert( pColl!=0 || pLeft->iColumn==-1 ); sl@0: if( pColl==0 ){ sl@0: /* No collation is defined for the ROWID. Use the default. */ sl@0: pColl = db->pDfltColl; sl@0: } sl@0: if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && sl@0: (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ sl@0: return 0; sl@0: } sl@0: sqlite3DequoteExpr(db, pRight); sl@0: z = (char *)pRight->token.z; sl@0: cnt = 0; sl@0: if( z ){ sl@0: while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } sl@0: } sl@0: if( cnt==0 || 255==(u8)z[cnt] ){ sl@0: return 0; sl@0: } sl@0: *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; sl@0: *pnPattern = cnt; sl@0: return 1; sl@0: } sl@0: #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: /* sl@0: ** Check to see if the given expression is of the form sl@0: ** sl@0: ** column MATCH expr sl@0: ** sl@0: ** If it is then return TRUE. If not, return FALSE. sl@0: */ sl@0: static int isMatchOfColumn( sl@0: Expr *pExpr /* Test this expression */ sl@0: ){ sl@0: ExprList *pList; sl@0: sl@0: if( pExpr->op!=TK_FUNCTION ){ sl@0: return 0; sl@0: } sl@0: if( pExpr->token.n!=5 || sl@0: sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ sl@0: return 0; sl@0: } sl@0: pList = pExpr->pList; sl@0: if( pList->nExpr!=2 ){ sl@0: return 0; sl@0: } sl@0: if( pList->a[1].pExpr->op != TK_COLUMN ){ sl@0: return 0; sl@0: } sl@0: return 1; sl@0: } sl@0: #endif /* SQLITE_OMIT_VIRTUALTABLE */ sl@0: sl@0: /* sl@0: ** If the pBase expression originated in the ON or USING clause of sl@0: ** a join, then transfer the appropriate markings over to derived. sl@0: */ sl@0: static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ sl@0: pDerived->flags |= pBase->flags & EP_FromJoin; sl@0: pDerived->iRightJoinTable = pBase->iRightJoinTable; sl@0: } sl@0: sl@0: #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) sl@0: /* sl@0: ** Return TRUE if the given term of an OR clause can be converted sl@0: ** into an IN clause. The iCursor and iColumn define the left-hand sl@0: ** side of the IN clause. sl@0: ** sl@0: ** The context is that we have multiple OR-connected equality terms sl@0: ** like this: sl@0: ** sl@0: ** a= OR a= OR b= OR ... sl@0: ** sl@0: ** The pOrTerm input to this routine corresponds to a single term of sl@0: ** this OR clause. In order for the term to be a candidate for sl@0: ** conversion to an IN operator, the following must be true: sl@0: ** sl@0: ** * The left-hand side of the term must be the column which sl@0: ** is identified by iCursor and iColumn. sl@0: ** sl@0: ** * If the right-hand side is also a column, then the affinities sl@0: ** of both right and left sides must be such that no type sl@0: ** conversions are required on the right. (Ticket #2249) sl@0: ** sl@0: ** If both of these conditions are true, then return true. Otherwise sl@0: ** return false. sl@0: */ sl@0: static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ sl@0: int affLeft, affRight; sl@0: assert( pOrTerm->eOperator==WO_EQ ); sl@0: if( pOrTerm->leftCursor!=iCursor ){ sl@0: return 0; sl@0: } sl@0: if( pOrTerm->leftColumn!=iColumn ){ sl@0: return 0; sl@0: } sl@0: affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); sl@0: if( affRight==0 ){ sl@0: return 1; sl@0: } sl@0: affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); sl@0: if( affRight!=affLeft ){ sl@0: return 0; sl@0: } sl@0: return 1; sl@0: } sl@0: sl@0: /* sl@0: ** Return true if the given term of an OR clause can be ignored during sl@0: ** a check to make sure all OR terms are candidates for optimization. sl@0: ** In other words, return true if a call to the orTermIsOptCandidate() sl@0: ** above returned false but it is not necessary to disqualify the sl@0: ** optimization. sl@0: ** sl@0: ** Suppose the original OR phrase was this: sl@0: ** sl@0: ** a=4 OR a=11 OR a=b sl@0: ** sl@0: ** During analysis, the third term gets flipped around and duplicate sl@0: ** so that we are left with this: sl@0: ** sl@0: ** a=4 OR a=11 OR a=b OR b=a sl@0: ** sl@0: ** Since the last two terms are duplicates, only one of them sl@0: ** has to qualify in order for the whole phrase to qualify. When sl@0: ** this routine is called, we know that pOrTerm did not qualify. sl@0: ** This routine merely checks to see if pOrTerm has a duplicate that sl@0: ** might qualify. If there is a duplicate that has not yet been sl@0: ** disqualified, then return true. If there are no duplicates, or sl@0: ** the duplicate has also been disqualified, return false. sl@0: */ sl@0: static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ sl@0: if( pOrTerm->flags & TERM_COPIED ){ sl@0: /* This is the original term. The duplicate is to the left had sl@0: ** has not yet been analyzed and thus has not yet been disqualified. */ sl@0: return 1; sl@0: } sl@0: if( (pOrTerm->flags & TERM_VIRTUAL)!=0 sl@0: && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){ sl@0: /* This is a duplicate term. The original qualified so this one sl@0: ** does not have to. */ sl@0: return 1; sl@0: } sl@0: /* This is either a singleton term or else it is a duplicate for sl@0: ** which the original did not qualify. Either way we are done for. */ sl@0: return 0; sl@0: } sl@0: #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ sl@0: sl@0: /* sl@0: ** The input to this routine is an WhereTerm structure with only the sl@0: ** "pExpr" field filled in. The job of this routine is to analyze the sl@0: ** subexpression and populate all the other fields of the WhereTerm sl@0: ** structure. sl@0: ** sl@0: ** If the expression is of the form " X" it gets commuted sl@0: ** to the standard form of "X ". If the expression is of sl@0: ** the form "X Y" where both X and Y are columns, then the original sl@0: ** expression is unchanged and a new virtual expression of the form sl@0: ** "Y X" is added to the WHERE clause and analyzed separately. sl@0: */ sl@0: static void exprAnalyze( sl@0: SrcList *pSrc, /* the FROM clause */ sl@0: WhereClause *pWC, /* the WHERE clause */ sl@0: int idxTerm /* Index of the term to be analyzed */ sl@0: ){ sl@0: WhereTerm *pTerm; sl@0: ExprMaskSet *pMaskSet; sl@0: Expr *pExpr; sl@0: Bitmask prereqLeft; sl@0: Bitmask prereqAll; sl@0: Bitmask extraRight = 0; sl@0: int nPattern; sl@0: int isComplete; sl@0: int noCase; sl@0: int op; sl@0: Parse *pParse = pWC->pParse; sl@0: sqlite3 *db = pParse->db; sl@0: sl@0: if( db->mallocFailed ){ sl@0: return; sl@0: } sl@0: pTerm = &pWC->a[idxTerm]; sl@0: pMaskSet = pWC->pMaskSet; sl@0: pExpr = pTerm->pExpr; sl@0: prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); sl@0: op = pExpr->op; sl@0: if( op==TK_IN ){ sl@0: assert( pExpr->pRight==0 ); sl@0: pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) sl@0: | exprSelectTableUsage(pMaskSet, pExpr->pSelect); sl@0: }else if( op==TK_ISNULL ){ sl@0: pTerm->prereqRight = 0; sl@0: }else{ sl@0: pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); sl@0: } sl@0: prereqAll = exprTableUsage(pMaskSet, pExpr); sl@0: if( ExprHasProperty(pExpr, EP_FromJoin) ){ sl@0: Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); sl@0: prereqAll |= x; sl@0: extraRight = x-1; /* ON clause terms may not be used with an index sl@0: ** on left table of a LEFT JOIN. Ticket #3015 */ sl@0: } sl@0: pTerm->prereqAll = prereqAll; sl@0: pTerm->leftCursor = -1; sl@0: pTerm->iParent = -1; sl@0: pTerm->eOperator = 0; sl@0: if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ sl@0: Expr *pLeft = pExpr->pLeft; sl@0: Expr *pRight = pExpr->pRight; sl@0: if( pLeft->op==TK_COLUMN ){ sl@0: pTerm->leftCursor = pLeft->iTable; sl@0: pTerm->leftColumn = pLeft->iColumn; sl@0: pTerm->eOperator = operatorMask(op); sl@0: } sl@0: if( pRight && pRight->op==TK_COLUMN ){ sl@0: WhereTerm *pNew; sl@0: Expr *pDup; sl@0: if( pTerm->leftCursor>=0 ){ sl@0: int idxNew; sl@0: pDup = sqlite3ExprDup(db, pExpr); sl@0: if( db->mallocFailed ){ sl@0: sqlite3ExprDelete(db, pDup); sl@0: return; sl@0: } sl@0: idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); sl@0: if( idxNew==0 ) return; sl@0: pNew = &pWC->a[idxNew]; sl@0: pNew->iParent = idxTerm; sl@0: pTerm = &pWC->a[idxTerm]; sl@0: pTerm->nChild = 1; sl@0: pTerm->flags |= TERM_COPIED; sl@0: }else{ sl@0: pDup = pExpr; sl@0: pNew = pTerm; sl@0: } sl@0: exprCommute(pParse, pDup); sl@0: pLeft = pDup->pLeft; sl@0: pNew->leftCursor = pLeft->iTable; sl@0: pNew->leftColumn = pLeft->iColumn; sl@0: pNew->prereqRight = prereqLeft; sl@0: pNew->prereqAll = prereqAll; sl@0: pNew->eOperator = operatorMask(pDup->op); sl@0: } sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION sl@0: /* If a term is the BETWEEN operator, create two new virtual terms sl@0: ** that define the range that the BETWEEN implements. sl@0: */ sl@0: else if( pExpr->op==TK_BETWEEN ){ sl@0: ExprList *pList = pExpr->pList; sl@0: int i; sl@0: static const u8 ops[] = {TK_GE, TK_LE}; sl@0: assert( pList!=0 ); sl@0: assert( pList->nExpr==2 ); sl@0: for(i=0; i<2; i++){ sl@0: Expr *pNewExpr; sl@0: int idxNew; sl@0: pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft), sl@0: sqlite3ExprDup(db, pList->a[i].pExpr), 0); sl@0: idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); sl@0: exprAnalyze(pSrc, pWC, idxNew); sl@0: pTerm = &pWC->a[idxTerm]; sl@0: pWC->a[idxNew].iParent = idxTerm; sl@0: } sl@0: pTerm->nChild = 2; sl@0: } sl@0: #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ sl@0: sl@0: #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) sl@0: /* Attempt to convert OR-connected terms into an IN operator so that sl@0: ** they can make use of indices. Example: sl@0: ** sl@0: ** x = expr1 OR expr2 = x OR x = expr3 sl@0: ** sl@0: ** is converted into sl@0: ** sl@0: ** x IN (expr1,expr2,expr3) sl@0: ** sl@0: ** This optimization must be omitted if OMIT_SUBQUERY is defined because sl@0: ** the compiler for the the IN operator is part of sub-queries. sl@0: */ sl@0: else if( pExpr->op==TK_OR ){ sl@0: int ok; sl@0: int i, j; sl@0: int iColumn, iCursor; sl@0: WhereClause sOr; sl@0: WhereTerm *pOrTerm; sl@0: sl@0: assert( (pTerm->flags & TERM_DYNAMIC)==0 ); sl@0: whereClauseInit(&sOr, pWC->pParse, pMaskSet); sl@0: whereSplit(&sOr, pExpr, TK_OR); sl@0: exprAnalyzeAll(pSrc, &sOr); sl@0: assert( sOr.nTerm>=2 ); sl@0: j = 0; sl@0: if( db->mallocFailed ) goto or_not_possible; sl@0: do{ sl@0: assert( j=0; sl@0: for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ sl@0: if( pOrTerm->eOperator!=WO_EQ ){ sl@0: goto or_not_possible; sl@0: } sl@0: if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ sl@0: pOrTerm->flags |= TERM_OR_OK; sl@0: }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ sl@0: pOrTerm->flags &= ~TERM_OR_OK; sl@0: }else{ sl@0: ok = 0; sl@0: } sl@0: } sl@0: }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 ); sl@0: if( ok ){ sl@0: ExprList *pList = 0; sl@0: Expr *pNew, *pDup; sl@0: Expr *pLeft = 0; sl@0: for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0; i--, pOrTerm++){ sl@0: if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; sl@0: pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight); sl@0: pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); sl@0: pLeft = pOrTerm->pExpr->pLeft; sl@0: } sl@0: assert( pLeft!=0 ); sl@0: pDup = sqlite3ExprDup(db, pLeft); sl@0: pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); sl@0: if( pNew ){ sl@0: int idxNew; sl@0: transferJoinMarkings(pNew, pExpr); sl@0: pNew->pList = pList; sl@0: idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); sl@0: exprAnalyze(pSrc, pWC, idxNew); sl@0: pTerm = &pWC->a[idxTerm]; sl@0: pWC->a[idxNew].iParent = idxTerm; sl@0: pTerm->nChild = 1; sl@0: }else{ sl@0: sqlite3ExprListDelete(db, pList); sl@0: } sl@0: } sl@0: or_not_possible: sl@0: whereClauseClear(&sOr); sl@0: } sl@0: #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ sl@0: sl@0: #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION sl@0: /* Add constraints to reduce the search space on a LIKE or GLOB sl@0: ** operator. sl@0: ** sl@0: ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints sl@0: ** sl@0: ** x>='abc' AND x<'abd' AND x LIKE 'abc%' sl@0: ** sl@0: ** The last character of the prefix "abc" is incremented to form the sl@0: ** termination condition "abd". sl@0: */ sl@0: if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase) ){ sl@0: Expr *pLeft, *pRight; sl@0: Expr *pStr1, *pStr2; sl@0: Expr *pNewExpr1, *pNewExpr2; sl@0: int idxNew1, idxNew2; sl@0: sl@0: pLeft = pExpr->pList->a[1].pExpr; sl@0: pRight = pExpr->pList->a[0].pExpr; sl@0: pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); sl@0: if( pStr1 ){ sl@0: sqlite3TokenCopy(db, &pStr1->token, &pRight->token); sl@0: pStr1->token.n = nPattern; sl@0: pStr1->flags = EP_Dequoted; sl@0: } sl@0: pStr2 = sqlite3ExprDup(db, pStr1); sl@0: if( !db->mallocFailed ){ sl@0: u8 c, *pC; sl@0: assert( pStr2->token.dyn ); sl@0: pC = (u8*)&pStr2->token.z[nPattern-1]; sl@0: c = *pC; sl@0: if( noCase ){ sl@0: if( c=='@' ) isComplete = 0; sl@0: c = sqlite3UpperToLower[c]; sl@0: } sl@0: *pC = c + 1; sl@0: } sl@0: pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0); sl@0: idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); sl@0: exprAnalyze(pSrc, pWC, idxNew1); sl@0: pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0); sl@0: idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); sl@0: exprAnalyze(pSrc, pWC, idxNew2); sl@0: pTerm = &pWC->a[idxTerm]; sl@0: if( isComplete ){ sl@0: pWC->a[idxNew1].iParent = idxTerm; sl@0: pWC->a[idxNew2].iParent = idxTerm; sl@0: pTerm->nChild = 2; sl@0: } sl@0: } sl@0: #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ sl@0: sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: /* Add a WO_MATCH auxiliary term to the constraint set if the sl@0: ** current expression is of the form: column MATCH expr. sl@0: ** This information is used by the xBestIndex methods of sl@0: ** virtual tables. The native query optimizer does not attempt sl@0: ** to do anything with MATCH functions. sl@0: */ sl@0: if( isMatchOfColumn(pExpr) ){ sl@0: int idxNew; sl@0: Expr *pRight, *pLeft; sl@0: WhereTerm *pNewTerm; sl@0: Bitmask prereqColumn, prereqExpr; sl@0: sl@0: pRight = pExpr->pList->a[0].pExpr; sl@0: pLeft = pExpr->pList->a[1].pExpr; sl@0: prereqExpr = exprTableUsage(pMaskSet, pRight); sl@0: prereqColumn = exprTableUsage(pMaskSet, pLeft); sl@0: if( (prereqExpr & prereqColumn)==0 ){ sl@0: Expr *pNewExpr; sl@0: pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0); sl@0: idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); sl@0: pNewTerm = &pWC->a[idxNew]; sl@0: pNewTerm->prereqRight = prereqExpr; sl@0: pNewTerm->leftCursor = pLeft->iTable; sl@0: pNewTerm->leftColumn = pLeft->iColumn; sl@0: pNewTerm->eOperator = WO_MATCH; sl@0: pNewTerm->iParent = idxTerm; sl@0: pTerm = &pWC->a[idxTerm]; sl@0: pTerm->nChild = 1; sl@0: pTerm->flags |= TERM_COPIED; sl@0: pNewTerm->prereqAll = pTerm->prereqAll; sl@0: } sl@0: } sl@0: #endif /* SQLITE_OMIT_VIRTUALTABLE */ sl@0: sl@0: /* Prevent ON clause terms of a LEFT JOIN from being used to drive sl@0: ** an index for tables to the left of the join. sl@0: */ sl@0: pTerm->prereqRight |= extraRight; sl@0: } sl@0: sl@0: /* sl@0: ** Return TRUE if any of the expressions in pList->a[iFirst...] contain sl@0: ** a reference to any table other than the iBase table. sl@0: */ sl@0: static int referencesOtherTables( sl@0: ExprList *pList, /* Search expressions in ths list */ sl@0: ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ sl@0: int iFirst, /* Be searching with the iFirst-th expression */ sl@0: int iBase /* Ignore references to this table */ sl@0: ){ sl@0: Bitmask allowed = ~getMask(pMaskSet, iBase); sl@0: while( iFirstnExpr ){ sl@0: if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ sl@0: return 1; sl@0: } sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** This routine decides if pIdx can be used to satisfy the ORDER BY sl@0: ** clause. If it can, it returns 1. If pIdx cannot satisfy the sl@0: ** ORDER BY clause, this routine returns 0. sl@0: ** sl@0: ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the sl@0: ** left-most table in the FROM clause of that same SELECT statement and sl@0: ** the table has a cursor number of "base". pIdx is an index on pTab. sl@0: ** sl@0: ** nEqCol is the number of columns of pIdx that are used as equality sl@0: ** constraints. Any of these columns may be missing from the ORDER BY sl@0: ** clause and the match can still be a success. sl@0: ** sl@0: ** All terms of the ORDER BY that match against the index must be either sl@0: ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE sl@0: ** index do not need to satisfy this constraint.) The *pbRev value is sl@0: ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if sl@0: ** the ORDER BY clause is all ASC. sl@0: */ sl@0: static int isSortingIndex( sl@0: Parse *pParse, /* Parsing context */ sl@0: ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ sl@0: Index *pIdx, /* The index we are testing */ sl@0: int base, /* Cursor number for the table to be sorted */ sl@0: ExprList *pOrderBy, /* The ORDER BY clause */ sl@0: int nEqCol, /* Number of index columns with == constraints */ sl@0: int *pbRev /* Set to 1 if ORDER BY is DESC */ sl@0: ){ sl@0: int i, j; /* Loop counters */ sl@0: int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ sl@0: int nTerm; /* Number of ORDER BY terms */ sl@0: struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ sl@0: sqlite3 *db = pParse->db; sl@0: sl@0: assert( pOrderBy!=0 ); sl@0: nTerm = pOrderBy->nExpr; sl@0: assert( nTerm>0 ); sl@0: sl@0: /* Match terms of the ORDER BY clause against columns of sl@0: ** the index. sl@0: ** sl@0: ** Note that indices have pIdx->nColumn regular columns plus sl@0: ** one additional column containing the rowid. The rowid column sl@0: ** of the index is also allowed to match against the ORDER BY sl@0: ** clause. sl@0: */ sl@0: for(i=j=0, pTerm=pOrderBy->a; jnColumn; i++){ sl@0: Expr *pExpr; /* The expression of the ORDER BY pTerm */ sl@0: CollSeq *pColl; /* The collating sequence of pExpr */ sl@0: int termSortOrder; /* Sort order for this term */ sl@0: int iColumn; /* The i-th column of the index. -1 for rowid */ sl@0: int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ sl@0: const char *zColl; /* Name of the collating sequence for i-th index term */ sl@0: sl@0: pExpr = pTerm->pExpr; sl@0: if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ sl@0: /* Can not use an index sort on anything that is not a column in the sl@0: ** left-most table of the FROM clause */ sl@0: break; sl@0: } sl@0: pColl = sqlite3ExprCollSeq(pParse, pExpr); sl@0: if( !pColl ){ sl@0: pColl = db->pDfltColl; sl@0: } sl@0: if( inColumn ){ sl@0: iColumn = pIdx->aiColumn[i]; sl@0: if( iColumn==pIdx->pTable->iPKey ){ sl@0: iColumn = -1; sl@0: } sl@0: iSortOrder = pIdx->aSortOrder[i]; sl@0: zColl = pIdx->azColl[i]; sl@0: }else{ sl@0: iColumn = -1; sl@0: iSortOrder = 0; sl@0: zColl = pColl->zName; sl@0: } sl@0: if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ sl@0: /* Term j of the ORDER BY clause does not match column i of the index */ sl@0: if( inColumn ){ sl@0: /* Index column i is the rowid. All other terms match. */ sl@0: break; sl@0: }else{ sl@0: /* If an index column fails to match and is not constrained by == sl@0: ** then the index cannot satisfy the ORDER BY constraint. sl@0: */ sl@0: return 0; sl@0: } sl@0: } sl@0: assert( pIdx->aSortOrder!=0 ); sl@0: assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); sl@0: assert( iSortOrder==0 || iSortOrder==1 ); sl@0: termSortOrder = iSortOrder ^ pTerm->sortOrder; sl@0: if( i>nEqCol ){ sl@0: if( termSortOrder!=sortOrder ){ sl@0: /* Indices can only be used if all ORDER BY terms past the sl@0: ** equality constraints are all either DESC or ASC. */ sl@0: return 0; sl@0: } sl@0: }else{ sl@0: sortOrder = termSortOrder; sl@0: } sl@0: j++; sl@0: pTerm++; sl@0: if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ sl@0: /* If the indexed column is the primary key and everything matches sl@0: ** so far and none of the ORDER BY terms to the right reference other sl@0: ** tables in the join, then we are assured that the index can be used sl@0: ** to sort because the primary key is unique and so none of the other sl@0: ** columns will make any difference sl@0: */ sl@0: j = nTerm; sl@0: } sl@0: } sl@0: sl@0: *pbRev = sortOrder!=0; sl@0: if( j>=nTerm ){ sl@0: /* All terms of the ORDER BY clause are covered by this index so sl@0: ** this index can be used for sorting. */ sl@0: return 1; sl@0: } sl@0: if( pIdx->onError!=OE_None && i==pIdx->nColumn sl@0: && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ sl@0: /* All terms of this index match some prefix of the ORDER BY clause sl@0: ** and the index is UNIQUE and no terms on the tail of the ORDER BY sl@0: ** clause reference other tables in a join. If this is all true then sl@0: ** the order by clause is superfluous. */ sl@0: return 1; sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied sl@0: ** by sorting in order of ROWID. Return true if so and set *pbRev to be sl@0: ** true for reverse ROWID and false for forward ROWID order. sl@0: */ sl@0: static int sortableByRowid( sl@0: int base, /* Cursor number for table to be sorted */ sl@0: ExprList *pOrderBy, /* The ORDER BY clause */ sl@0: ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ sl@0: int *pbRev /* Set to 1 if ORDER BY is DESC */ sl@0: ){ sl@0: Expr *p; sl@0: sl@0: assert( pOrderBy!=0 ); sl@0: assert( pOrderBy->nExpr>0 ); sl@0: p = pOrderBy->a[0].pExpr; sl@0: if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 sl@0: && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ sl@0: *pbRev = pOrderBy->a[0].sortOrder; sl@0: return 1; sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Prepare a crude estimate of the logarithm of the input value. sl@0: ** The results need not be exact. This is only used for estimating sl@0: ** the total cost of performing operations with O(logN) or O(NlogN) sl@0: ** complexity. Because N is just a guess, it is no great tragedy if sl@0: ** logN is a little off. sl@0: */ sl@0: static double estLog(double N){ sl@0: double logN = 1; sl@0: double x = 10; sl@0: while( N>x ){ sl@0: logN += 1; sl@0: x *= 10; sl@0: } sl@0: return logN; sl@0: } sl@0: sl@0: /* sl@0: ** Two routines for printing the content of an sqlite3_index_info sl@0: ** structure. Used for testing and debugging only. If neither sl@0: ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines sl@0: ** are no-ops. sl@0: */ sl@0: #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) sl@0: static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ sl@0: int i; sl@0: if( !sqlite3WhereTrace ) return; sl@0: for(i=0; inConstraint; i++){ sl@0: sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", sl@0: i, sl@0: p->aConstraint[i].iColumn, sl@0: p->aConstraint[i].iTermOffset, sl@0: p->aConstraint[i].op, sl@0: p->aConstraint[i].usable); sl@0: } sl@0: for(i=0; inOrderBy; i++){ sl@0: sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", sl@0: i, sl@0: p->aOrderBy[i].iColumn, sl@0: p->aOrderBy[i].desc); sl@0: } sl@0: } sl@0: static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ sl@0: int i; sl@0: if( !sqlite3WhereTrace ) return; sl@0: for(i=0; inConstraint; i++){ sl@0: sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", sl@0: i, sl@0: p->aConstraintUsage[i].argvIndex, sl@0: p->aConstraintUsage[i].omit); sl@0: } sl@0: sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); sl@0: sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); sl@0: sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); sl@0: sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); sl@0: } sl@0: #else sl@0: #define TRACE_IDX_INPUTS(A) sl@0: #define TRACE_IDX_OUTPUTS(A) sl@0: #endif sl@0: sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: /* sl@0: ** Compute the best index for a virtual table. sl@0: ** sl@0: ** The best index is computed by the xBestIndex method of the virtual sl@0: ** table module. This routine is really just a wrapper that sets up sl@0: ** the sqlite3_index_info structure that is used to communicate with sl@0: ** xBestIndex. sl@0: ** sl@0: ** In a join, this routine might be called multiple times for the sl@0: ** same virtual table. The sqlite3_index_info structure is created sl@0: ** and initialized on the first invocation and reused on all subsequent sl@0: ** invocations. The sqlite3_index_info structure is also used when sl@0: ** code is generated to access the virtual table. The whereInfoDelete() sl@0: ** routine takes care of freeing the sqlite3_index_info structure after sl@0: ** everybody has finished with it. sl@0: */ sl@0: static double bestVirtualIndex( sl@0: Parse *pParse, /* The parsing context */ sl@0: WhereClause *pWC, /* The WHERE clause */ sl@0: struct SrcList_item *pSrc, /* The FROM clause term to search */ sl@0: Bitmask notReady, /* Mask of cursors that are not available */ sl@0: ExprList *pOrderBy, /* The order by clause */ sl@0: int orderByUsable, /* True if we can potential sort */ sl@0: sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ sl@0: ){ sl@0: Table *pTab = pSrc->pTab; sl@0: sqlite3_vtab *pVtab = pTab->pVtab; sl@0: sqlite3_index_info *pIdxInfo; sl@0: struct sqlite3_index_constraint *pIdxCons; sl@0: struct sqlite3_index_orderby *pIdxOrderBy; sl@0: struct sqlite3_index_constraint_usage *pUsage; sl@0: WhereTerm *pTerm; sl@0: int i, j; sl@0: int nOrderBy; sl@0: int rc; sl@0: sl@0: /* If the sqlite3_index_info structure has not been previously sl@0: ** allocated and initialized for this virtual table, then allocate sl@0: ** and initialize it now sl@0: */ sl@0: pIdxInfo = *ppIdxInfo; sl@0: if( pIdxInfo==0 ){ sl@0: WhereTerm *pTerm; sl@0: int nTerm; sl@0: WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); sl@0: sl@0: /* Count the number of possible WHERE clause constraints referring sl@0: ** to this virtual table */ sl@0: for(i=nTerm=0, pTerm=pWC->a; inTerm; i++, pTerm++){ sl@0: if( pTerm->leftCursor != pSrc->iCursor ) continue; sl@0: assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); sl@0: testcase( pTerm->eOperator==WO_IN ); sl@0: testcase( pTerm->eOperator==WO_ISNULL ); sl@0: if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; sl@0: nTerm++; sl@0: } sl@0: sl@0: /* If the ORDER BY clause contains only columns in the current sl@0: ** virtual table then allocate space for the aOrderBy part of sl@0: ** the sqlite3_index_info structure. sl@0: */ sl@0: nOrderBy = 0; sl@0: if( pOrderBy ){ sl@0: for(i=0; inExpr; i++){ sl@0: Expr *pExpr = pOrderBy->a[i].pExpr; sl@0: if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; sl@0: } sl@0: if( i==pOrderBy->nExpr ){ sl@0: nOrderBy = pOrderBy->nExpr; sl@0: } sl@0: } sl@0: sl@0: /* Allocate the sqlite3_index_info structure sl@0: */ sl@0: pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) sl@0: + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm sl@0: + sizeof(*pIdxOrderBy)*nOrderBy ); sl@0: if( pIdxInfo==0 ){ sl@0: sqlite3ErrorMsg(pParse, "out of memory"); sl@0: return 0.0; sl@0: } sl@0: *ppIdxInfo = pIdxInfo; sl@0: sl@0: /* Initialize the structure. The sqlite3_index_info structure contains sl@0: ** many fields that are declared "const" to prevent xBestIndex from sl@0: ** changing them. We have to do some funky casting in order to sl@0: ** initialize those fields. sl@0: */ sl@0: pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; sl@0: pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; sl@0: pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; sl@0: *(int*)&pIdxInfo->nConstraint = nTerm; sl@0: *(int*)&pIdxInfo->nOrderBy = nOrderBy; sl@0: *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; sl@0: *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; sl@0: *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = sl@0: pUsage; sl@0: sl@0: for(i=j=0, pTerm=pWC->a; inTerm; i++, pTerm++){ sl@0: if( pTerm->leftCursor != pSrc->iCursor ) continue; sl@0: assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); sl@0: testcase( pTerm->eOperator==WO_IN ); sl@0: testcase( pTerm->eOperator==WO_ISNULL ); sl@0: if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; sl@0: pIdxCons[j].iColumn = pTerm->leftColumn; sl@0: pIdxCons[j].iTermOffset = i; sl@0: pIdxCons[j].op = pTerm->eOperator; sl@0: /* The direct assignment in the previous line is possible only because sl@0: ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The sl@0: ** following asserts verify this fact. */ sl@0: assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); sl@0: assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); sl@0: assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); sl@0: assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); sl@0: assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); sl@0: assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); sl@0: assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); sl@0: j++; sl@0: } sl@0: for(i=0; ia[i].pExpr; sl@0: pIdxOrderBy[i].iColumn = pExpr->iColumn; sl@0: pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; sl@0: } sl@0: } sl@0: sl@0: /* At this point, the sqlite3_index_info structure that pIdxInfo points sl@0: ** to will have been initialized, either during the current invocation or sl@0: ** during some prior invocation. Now we just have to customize the sl@0: ** details of pIdxInfo for the current invocation and pass it to sl@0: ** xBestIndex. sl@0: */ sl@0: sl@0: /* The module name must be defined. Also, by this point there must sl@0: ** be a pointer to an sqlite3_vtab structure. Otherwise sl@0: ** sqlite3ViewGetColumnNames() would have picked up the error. sl@0: */ sl@0: assert( pTab->azModuleArg && pTab->azModuleArg[0] ); sl@0: assert( pVtab ); sl@0: #if 0 sl@0: if( pTab->pVtab==0 ){ sl@0: sqlite3ErrorMsg(pParse, "undefined module %s for table %s", sl@0: pTab->azModuleArg[0], pTab->zName); sl@0: return 0.0; sl@0: } sl@0: #endif sl@0: sl@0: /* Set the aConstraint[].usable fields and initialize all sl@0: ** output variables to zero. sl@0: ** sl@0: ** aConstraint[].usable is true for constraints where the right-hand sl@0: ** side contains only references to tables to the left of the current sl@0: ** table. In other words, if the constraint is of the form: sl@0: ** sl@0: ** column = expr sl@0: ** sl@0: ** and we are evaluating a join, then the constraint on column is sl@0: ** only valid if all tables referenced in expr occur to the left sl@0: ** of the table containing column. sl@0: ** sl@0: ** The aConstraints[] array contains entries for all constraints sl@0: ** on the current table. That way we only have to compute it once sl@0: ** even though we might try to pick the best index multiple times. sl@0: ** For each attempt at picking an index, the order of tables in the sl@0: ** join might be different so we have to recompute the usable flag sl@0: ** each time. sl@0: */ sl@0: pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; sl@0: pUsage = pIdxInfo->aConstraintUsage; sl@0: for(i=0; inConstraint; i++, pIdxCons++){ sl@0: j = pIdxCons->iTermOffset; sl@0: pTerm = &pWC->a[j]; sl@0: pIdxCons->usable = (pTerm->prereqRight & notReady)==0; sl@0: } sl@0: memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); sl@0: if( pIdxInfo->needToFreeIdxStr ){ sl@0: sqlite3_free(pIdxInfo->idxStr); sl@0: } sl@0: pIdxInfo->idxStr = 0; sl@0: pIdxInfo->idxNum = 0; sl@0: pIdxInfo->needToFreeIdxStr = 0; sl@0: pIdxInfo->orderByConsumed = 0; sl@0: pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; sl@0: nOrderBy = pIdxInfo->nOrderBy; sl@0: if( pIdxInfo->nOrderBy && !orderByUsable ){ sl@0: *(int*)&pIdxInfo->nOrderBy = 0; sl@0: } sl@0: sl@0: (void)sqlite3SafetyOff(pParse->db); sl@0: WHERETRACE(("xBestIndex for %s\n", pTab->zName)); sl@0: TRACE_IDX_INPUTS(pIdxInfo); sl@0: rc = pVtab->pModule->xBestIndex(pVtab, pIdxInfo); sl@0: TRACE_IDX_OUTPUTS(pIdxInfo); sl@0: (void)sqlite3SafetyOn(pParse->db); sl@0: sl@0: if( rc!=SQLITE_OK ){ sl@0: if( rc==SQLITE_NOMEM ){ sl@0: pParse->db->mallocFailed = 1; sl@0: }else if( !pVtab->zErrMsg ){ sl@0: sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); sl@0: }else{ sl@0: sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); sl@0: } sl@0: } sl@0: sqlite3DbFree(pParse->db, pVtab->zErrMsg); sl@0: pVtab->zErrMsg = 0; sl@0: sl@0: for(i=0; inConstraint; i++){ sl@0: if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){ sl@0: sqlite3ErrorMsg(pParse, sl@0: "table %s: xBestIndex returned an invalid plan", pTab->zName); sl@0: return 0.0; sl@0: } sl@0: } sl@0: sl@0: *(int*)&pIdxInfo->nOrderBy = nOrderBy; sl@0: return pIdxInfo->estimatedCost; sl@0: } sl@0: #endif /* SQLITE_OMIT_VIRTUALTABLE */ sl@0: sl@0: /* sl@0: ** Find the best index for accessing a particular table. Return a pointer sl@0: ** to the index, flags that describe how the index should be used, the sl@0: ** number of equality constraints, and the "cost" for this index. sl@0: ** sl@0: ** The lowest cost index wins. The cost is an estimate of the amount of sl@0: ** CPU and disk I/O need to process the request using the selected index. sl@0: ** Factors that influence cost include: sl@0: ** sl@0: ** * The estimated number of rows that will be retrieved. (The sl@0: ** fewer the better.) sl@0: ** sl@0: ** * Whether or not sorting must occur. sl@0: ** sl@0: ** * Whether or not there must be separate lookups in the sl@0: ** index and in the main table. sl@0: ** sl@0: ** If there was an INDEXED BY clause attached to the table in the SELECT sl@0: ** statement, then this function only considers strategies using the sl@0: ** named index. If one cannot be found, then the returned cost is sl@0: ** SQLITE_BIG_DBL. If a strategy can be found that uses the named index, sl@0: ** then the cost is calculated in the usual way. sl@0: ** sl@0: ** If a NOT INDEXED clause was attached to the table in the SELECT sl@0: ** statement, then no indexes are considered. However, the selected sl@0: ** stategy may still take advantage of the tables built-in rowid sl@0: ** index. sl@0: */ sl@0: static double bestIndex( sl@0: Parse *pParse, /* The parsing context */ sl@0: WhereClause *pWC, /* The WHERE clause */ sl@0: struct SrcList_item *pSrc, /* The FROM clause term to search */ sl@0: Bitmask notReady, /* Mask of cursors that are not available */ sl@0: ExprList *pOrderBy, /* The order by clause */ sl@0: Index **ppIndex, /* Make *ppIndex point to the best index */ sl@0: int *pFlags, /* Put flags describing this choice in *pFlags */ sl@0: int *pnEq /* Put the number of == or IN constraints here */ sl@0: ){ sl@0: WhereTerm *pTerm; sl@0: Index *bestIdx = 0; /* Index that gives the lowest cost */ sl@0: double lowestCost; /* The cost of using bestIdx */ sl@0: int bestFlags = 0; /* Flags associated with bestIdx */ sl@0: int bestNEq = 0; /* Best value for nEq */ sl@0: int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ sl@0: Index *pProbe; /* An index we are evaluating */ sl@0: int rev; /* True to scan in reverse order */ sl@0: int flags; /* Flags associated with pProbe */ sl@0: int nEq; /* Number of == or IN constraints */ sl@0: int eqTermMask; /* Mask of valid equality operators */ sl@0: double cost; /* Cost of using pProbe */ sl@0: sl@0: WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName, notReady)); sl@0: lowestCost = SQLITE_BIG_DBL; sl@0: pProbe = pSrc->pTab->pIndex; sl@0: if( pSrc->notIndexed ){ sl@0: pProbe = 0; sl@0: } sl@0: sl@0: /* If the table has no indices and there are no terms in the where sl@0: ** clause that refer to the ROWID, then we will never be able to do sl@0: ** anything other than a full table scan on this table. We might as sl@0: ** well put it first in the join order. That way, perhaps it can be sl@0: ** referenced by other tables in the join. sl@0: */ sl@0: if( pProbe==0 && sl@0: findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && sl@0: (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ sl@0: *pFlags = 0; sl@0: *ppIndex = 0; sl@0: *pnEq = 0; sl@0: return 0.0; sl@0: } sl@0: sl@0: /* Check for a rowid=EXPR or rowid IN (...) constraints. If there was sl@0: ** an INDEXED BY clause attached to this table, skip this step. sl@0: */ sl@0: if( !pSrc->pIndex ){ sl@0: pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); sl@0: if( pTerm ){ sl@0: Expr *pExpr; sl@0: *ppIndex = 0; sl@0: bestFlags = WHERE_ROWID_EQ; sl@0: if( pTerm->eOperator & WO_EQ ){ sl@0: /* Rowid== is always the best pick. Look no further. Because only sl@0: ** a single row is generated, output is always in sorted order */ sl@0: *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; sl@0: *pnEq = 1; sl@0: WHERETRACE(("... best is rowid\n")); sl@0: return 0.0; sl@0: }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ sl@0: /* Rowid IN (LIST): cost is NlogN where N is the number of list sl@0: ** elements. */ sl@0: lowestCost = pExpr->pList->nExpr; sl@0: lowestCost *= estLog(lowestCost); sl@0: }else{ sl@0: /* Rowid IN (SELECT): cost is NlogN where N is the number of rows sl@0: ** in the result of the inner select. We have no way to estimate sl@0: ** that value so make a wild guess. */ sl@0: lowestCost = 200; sl@0: } sl@0: WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); sl@0: } sl@0: sl@0: /* Estimate the cost of a table scan. If we do not know how many sl@0: ** entries are in the table, use 1 million as a guess. sl@0: */ sl@0: cost = pProbe ? pProbe->aiRowEst[0] : 1000000; sl@0: WHERETRACE(("... table scan base cost: %.9g\n", cost)); sl@0: flags = WHERE_ROWID_RANGE; sl@0: sl@0: /* Check for constraints on a range of rowids in a table scan. sl@0: */ sl@0: pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); sl@0: if( pTerm ){ sl@0: if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ sl@0: flags |= WHERE_TOP_LIMIT; sl@0: cost /= 3; /* Guess that rowidEXPR eliminates two-thirds of rows */ sl@0: } sl@0: WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); sl@0: }else{ sl@0: flags = 0; sl@0: } sl@0: sl@0: /* If the table scan does not satisfy the ORDER BY clause, increase sl@0: ** the cost by NlogN to cover the expense of sorting. */ sl@0: if( pOrderBy ){ sl@0: if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ sl@0: flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; sl@0: if( rev ){ sl@0: flags |= WHERE_REVERSE; sl@0: } sl@0: }else{ sl@0: cost += cost*estLog(cost); sl@0: WHERETRACE(("... sorting increases cost to %.9g\n", cost)); sl@0: } sl@0: } sl@0: if( costjointype & JT_LEFT)!=0 ){ sl@0: eqTermMask = WO_EQ|WO_IN; sl@0: }else{ sl@0: eqTermMask = WO_EQ|WO_IN|WO_ISNULL; sl@0: } sl@0: sl@0: /* Look at each index. sl@0: */ sl@0: if( pSrc->pIndex ){ sl@0: pProbe = pSrc->pIndex; sl@0: } sl@0: for(; pProbe; pProbe=(pSrc->pIndex ? 0 : pProbe->pNext)){ sl@0: int i; /* Loop counter */ sl@0: double inMultiplier = 1; sl@0: sl@0: WHERETRACE(("... index %s:\n", pProbe->zName)); sl@0: sl@0: /* Count the number of columns in the index that are satisfied sl@0: ** by x=EXPR constraints or x IN (...) constraints. sl@0: */ sl@0: flags = 0; sl@0: for(i=0; inColumn; i++){ sl@0: int j = pProbe->aiColumn[i]; sl@0: pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); sl@0: if( pTerm==0 ) break; sl@0: flags |= WHERE_COLUMN_EQ; sl@0: if( pTerm->eOperator & WO_IN ){ sl@0: Expr *pExpr = pTerm->pExpr; sl@0: flags |= WHERE_COLUMN_IN; sl@0: if( pExpr->pSelect!=0 ){ sl@0: inMultiplier *= 25; sl@0: }else if( ALWAYS(pExpr->pList) ){ sl@0: inMultiplier *= pExpr->pList->nExpr + 1; sl@0: } sl@0: } sl@0: } sl@0: cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); sl@0: nEq = i; sl@0: if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 sl@0: && nEq==pProbe->nColumn ){ sl@0: flags |= WHERE_UNIQUE; sl@0: } sl@0: WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost)); sl@0: sl@0: /* Look for range constraints sl@0: */ sl@0: if( nEqnColumn ){ sl@0: int j = pProbe->aiColumn[nEq]; sl@0: pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); sl@0: if( pTerm ){ sl@0: flags |= WHERE_COLUMN_RANGE; sl@0: if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ sl@0: flags |= WHERE_TOP_LIMIT; sl@0: cost /= 3; sl@0: } sl@0: if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ sl@0: flags |= WHERE_BTM_LIMIT; sl@0: cost /= 3; sl@0: } sl@0: WHERETRACE(("...... range reduces cost to %.9g\n", cost)); sl@0: } sl@0: } sl@0: sl@0: /* Add the additional cost of sorting if that is a factor. sl@0: */ sl@0: if( pOrderBy ){ sl@0: if( (flags & WHERE_COLUMN_IN)==0 && sl@0: isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ sl@0: if( flags==0 ){ sl@0: flags = WHERE_COLUMN_RANGE; sl@0: } sl@0: flags |= WHERE_ORDERBY; sl@0: if( rev ){ sl@0: flags |= WHERE_REVERSE; sl@0: } sl@0: }else{ sl@0: cost += cost*estLog(cost); sl@0: WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); sl@0: } sl@0: } sl@0: sl@0: /* Check to see if we can get away with using just the index without sl@0: ** ever reading the table. If that is the case, then halve the sl@0: ** cost of this index. sl@0: */ sl@0: if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ sl@0: Bitmask m = pSrc->colUsed; sl@0: int j; sl@0: for(j=0; jnColumn; j++){ sl@0: int x = pProbe->aiColumn[j]; sl@0: if( xzName : "(none)", lowestCost, bestFlags, bestNEq)); sl@0: *pFlags = bestFlags | eqTermMask; sl@0: *pnEq = bestNEq; sl@0: return lowestCost; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Disable a term in the WHERE clause. Except, do not disable the term sl@0: ** if it controls a LEFT OUTER JOIN and it did not originate in the ON sl@0: ** or USING clause of that join. sl@0: ** sl@0: ** Consider the term t2.z='ok' in the following queries: sl@0: ** sl@0: ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' sl@0: ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' sl@0: ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' sl@0: ** sl@0: ** The t2.z='ok' is disabled in the in (2) because it originates sl@0: ** in the ON clause. The term is disabled in (3) because it is not part sl@0: ** of a LEFT OUTER JOIN. In (1), the term is not disabled. sl@0: ** sl@0: ** Disabling a term causes that term to not be tested in the inner loop sl@0: ** of the join. Disabling is an optimization. When terms are satisfied sl@0: ** by indices, we disable them to prevent redundant tests in the inner sl@0: ** loop. We would get the correct results if nothing were ever disabled, sl@0: ** but joins might run a little slower. The trick is to disable as much sl@0: ** as we can without disabling too much. If we disabled in (1), we'd get sl@0: ** the wrong answer. See ticket #813. sl@0: */ sl@0: static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ sl@0: if( pTerm sl@0: && ALWAYS((pTerm->flags & TERM_CODED)==0) sl@0: && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) sl@0: ){ sl@0: pTerm->flags |= TERM_CODED; sl@0: if( pTerm->iParent>=0 ){ sl@0: WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; sl@0: if( (--pOther->nChild)==0 ){ sl@0: disableTerm(pLevel, pOther); sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Apply the affinities associated with the first n columns of index sl@0: ** pIdx to the values in the n registers starting at base. sl@0: */ sl@0: static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){ sl@0: if( n>0 ){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: assert( v!=0 ); sl@0: sqlite3VdbeAddOp2(v, OP_Affinity, base, n); sl@0: sqlite3IndexAffinityStr(v, pIdx); sl@0: sqlite3ExprCacheAffinityChange(pParse, base, n); sl@0: } sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Generate code for a single equality term of the WHERE clause. An equality sl@0: ** term can be either X=expr or X IN (...). pTerm is the term to be sl@0: ** coded. sl@0: ** sl@0: ** The current value for the constraint is left in register iReg. sl@0: ** sl@0: ** For a constraint of the form X=expr, the expression is evaluated and its sl@0: ** result is left on the stack. For constraints of the form X IN (...) sl@0: ** this routine sets up a loop that will iterate over all values of X. sl@0: */ sl@0: static int codeEqualityTerm( sl@0: Parse *pParse, /* The parsing context */ sl@0: WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ sl@0: WhereLevel *pLevel, /* When level of the FROM clause we are working on */ sl@0: int iTarget /* Attempt to leave results in this register */ sl@0: ){ sl@0: Expr *pX = pTerm->pExpr; sl@0: Vdbe *v = pParse->pVdbe; sl@0: int iReg; /* Register holding results */ sl@0: sl@0: assert( iTarget>0 ); sl@0: if( pX->op==TK_EQ ){ sl@0: iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); sl@0: }else if( pX->op==TK_ISNULL ){ sl@0: iReg = iTarget; sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: }else{ sl@0: int eType; sl@0: int iTab; sl@0: struct InLoop *pIn; sl@0: sl@0: assert( pX->op==TK_IN ); sl@0: iReg = iTarget; sl@0: eType = sqlite3FindInIndex(pParse, pX, 0); sl@0: iTab = pX->iTable; sl@0: sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); sl@0: VdbeComment((v, "%.*s", pX->span.n, pX->span.z)); sl@0: if( pLevel->nIn==0 ){ sl@0: pLevel->nxt = sqlite3VdbeMakeLabel(v); sl@0: } sl@0: pLevel->nIn++; sl@0: pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop, sl@0: sizeof(pLevel->aInLoop[0])*pLevel->nIn); sl@0: pIn = pLevel->aInLoop; sl@0: if( pIn ){ sl@0: pIn += pLevel->nIn - 1; sl@0: pIn->iCur = iTab; sl@0: if( eType==IN_INDEX_ROWID ){ sl@0: pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); sl@0: }else{ sl@0: pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); sl@0: } sl@0: sqlite3VdbeAddOp1(v, OP_IsNull, iReg); sl@0: }else{ sl@0: pLevel->nIn = 0; sl@0: } sl@0: #endif sl@0: } sl@0: disableTerm(pLevel, pTerm); sl@0: return iReg; sl@0: } sl@0: sl@0: /* sl@0: ** Generate code that will evaluate all == and IN constraints for an sl@0: ** index. The values for all constraints are left on the stack. sl@0: ** sl@0: ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). sl@0: ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 sl@0: ** The index has as many as three equality constraints, but in this sl@0: ** example, the third "c" value is an inequality. So only two sl@0: ** constraints are coded. This routine will generate code to evaluate sl@0: ** a==5 and b IN (1,2,3). The current values for a and b will be left sl@0: ** on the stack - a is the deepest and b the shallowest. sl@0: ** sl@0: ** In the example above nEq==2. But this subroutine works for any value sl@0: ** of nEq including 0. If nEq==0, this routine is nearly a no-op. sl@0: ** The only thing it does is allocate the pLevel->iMem memory cell. sl@0: ** sl@0: ** This routine always allocates at least one memory cell and puts sl@0: ** the address of that memory cell in pLevel->iMem. The code that sl@0: ** calls this routine will use pLevel->iMem to store the termination sl@0: ** key value of the loop. If one or more IN operators appear, then sl@0: ** this routine allocates an additional nEq memory cells for internal sl@0: ** use. sl@0: */ sl@0: static int codeAllEqualityTerms( sl@0: Parse *pParse, /* Parsing context */ sl@0: WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ sl@0: WhereClause *pWC, /* The WHERE clause */ sl@0: Bitmask notReady, /* Which parts of FROM have not yet been coded */ sl@0: int nExtraReg /* Number of extra registers to allocate */ sl@0: ){ sl@0: int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ sl@0: Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ sl@0: Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ sl@0: int iCur = pLevel->iTabCur; /* The cursor of the table */ sl@0: WhereTerm *pTerm; /* A single constraint term */ sl@0: int j; /* Loop counter */ sl@0: int regBase; /* Base register */ sl@0: sl@0: /* Figure out how many memory cells we will need then allocate them. sl@0: ** We always need at least one used to store the loop terminator sl@0: ** value. If there are IN operators we'll need one for each == or sl@0: ** IN constraint. sl@0: */ sl@0: pLevel->iMem = pParse->nMem + 1; sl@0: regBase = pParse->nMem + 2; sl@0: pParse->nMem += pLevel->nEq + 2 + nExtraReg; sl@0: sl@0: /* Evaluate the equality constraints sl@0: */ sl@0: assert( pIdx->nColumn>=nEq ); sl@0: for(j=0; jaiColumn[j]; sl@0: pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); sl@0: if( NEVER(pTerm==0) ) break; sl@0: assert( (pTerm->flags & TERM_CODED)==0 ); sl@0: r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); sl@0: if( r1!=regBase+j ){ sl@0: sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); sl@0: } sl@0: testcase( pTerm->eOperator & WO_ISNULL ); sl@0: testcase( pTerm->eOperator & WO_IN ); sl@0: if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ sl@0: sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk); sl@0: } sl@0: } sl@0: return regBase; sl@0: } sl@0: sl@0: #if defined(SQLITE_TEST) sl@0: /* sl@0: ** The following variable holds a text description of query plan generated sl@0: ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin sl@0: ** overwrites the previous. This information is used for testing and sl@0: ** analysis only. sl@0: */ sl@0: char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ sl@0: static int nQPlan = 0; /* Next free slow in _query_plan[] */ sl@0: sl@0: #endif /* SQLITE_TEST */ sl@0: sl@0: sl@0: /* sl@0: ** Free a WhereInfo structure sl@0: */ sl@0: static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ sl@0: if( pWInfo ){ sl@0: int i; sl@0: for(i=0; inLevel; i++){ sl@0: sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; sl@0: if( pInfo ){ sl@0: assert( pInfo->needToFreeIdxStr==0 ); sl@0: sqlite3DbFree(db, pInfo); sl@0: } sl@0: } sl@0: sqlite3DbFree(db, pWInfo); sl@0: } sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Generate the beginning of the loop used for WHERE clause processing. sl@0: ** The return value is a pointer to an opaque structure that contains sl@0: ** information needed to terminate the loop. Later, the calling routine sl@0: ** should invoke sqlite3WhereEnd() with the return value of this function sl@0: ** in order to complete the WHERE clause processing. sl@0: ** sl@0: ** If an error occurs, this routine returns NULL. sl@0: ** sl@0: ** The basic idea is to do a nested loop, one loop for each table in sl@0: ** the FROM clause of a select. (INSERT and UPDATE statements are the sl@0: ** same as a SELECT with only a single table in the FROM clause.) For sl@0: ** example, if the SQL is this: sl@0: ** sl@0: ** SELECT * FROM t1, t2, t3 WHERE ...; sl@0: ** sl@0: ** Then the code generated is conceptually like the following: sl@0: ** sl@0: ** foreach row1 in t1 do \ Code generated sl@0: ** foreach row2 in t2 do |-- by sqlite3WhereBegin() sl@0: ** foreach row3 in t3 do / sl@0: ** ... sl@0: ** end \ Code generated sl@0: ** end |-- by sqlite3WhereEnd() sl@0: ** end / sl@0: ** sl@0: ** Note that the loops might not be nested in the order in which they sl@0: ** appear in the FROM clause if a different order is better able to make sl@0: ** use of indices. Note also that when the IN operator appears in sl@0: ** the WHERE clause, it might result in additional nested loops for sl@0: ** scanning through all values on the right-hand side of the IN. sl@0: ** sl@0: ** There are Btree cursors associated with each table. t1 uses cursor sl@0: ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. sl@0: ** And so forth. This routine generates code to open those VDBE cursors sl@0: ** and sqlite3WhereEnd() generates the code to close them. sl@0: ** sl@0: ** The code that sqlite3WhereBegin() generates leaves the cursors named sl@0: ** in pTabList pointing at their appropriate entries. The [...] code sl@0: ** can use OP_Column and OP_Rowid opcodes on these cursors to extract sl@0: ** data from the various tables of the loop. sl@0: ** sl@0: ** If the WHERE clause is empty, the foreach loops must each scan their sl@0: ** entire tables. Thus a three-way join is an O(N^3) operation. But if sl@0: ** the tables have indices and there are terms in the WHERE clause that sl@0: ** refer to those indices, a complete table scan can be avoided and the sl@0: ** code will run much faster. Most of the work of this routine is checking sl@0: ** to see if there are indices that can be used to speed up the loop. sl@0: ** sl@0: ** Terms of the WHERE clause are also used to limit which rows actually sl@0: ** make it to the "..." in the middle of the loop. After each "foreach", sl@0: ** terms of the WHERE clause that use only terms in that loop and outer sl@0: ** loops are evaluated and if false a jump is made around all subsequent sl@0: ** inner loops (or around the "..." if the test occurs within the inner- sl@0: ** most loop) sl@0: ** sl@0: ** OUTER JOINS sl@0: ** sl@0: ** An outer join of tables t1 and t2 is conceptally coded as follows: sl@0: ** sl@0: ** foreach row1 in t1 do sl@0: ** flag = 0 sl@0: ** foreach row2 in t2 do sl@0: ** start: sl@0: ** ... sl@0: ** flag = 1 sl@0: ** end sl@0: ** if flag==0 then sl@0: ** move the row2 cursor to a null row sl@0: ** goto start sl@0: ** fi sl@0: ** end sl@0: ** sl@0: ** ORDER BY CLAUSE PROCESSING sl@0: ** sl@0: ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, sl@0: ** if there is one. If there is no ORDER BY clause or if this routine sl@0: ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. sl@0: ** sl@0: ** If an index can be used so that the natural output order of the table sl@0: ** scan is correct for the ORDER BY clause, then that index is used and sl@0: ** *ppOrderBy is set to NULL. This is an optimization that prevents an sl@0: ** unnecessary sort of the result set if an index appropriate for the sl@0: ** ORDER BY clause already exists. sl@0: ** sl@0: ** If the where clause loops cannot be arranged to provide the correct sl@0: ** output order, then the *ppOrderBy is unchanged. sl@0: */ sl@0: WhereInfo *sqlite3WhereBegin( sl@0: Parse *pParse, /* The parser context */ sl@0: SrcList *pTabList, /* A list of all tables to be scanned */ sl@0: Expr *pWhere, /* The WHERE clause */ sl@0: ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ sl@0: u8 wflags /* One of the WHERE_* flags defined in sqliteInt.h */ sl@0: ){ sl@0: int i; /* Loop counter */ sl@0: WhereInfo *pWInfo; /* Will become the return value of this function */ sl@0: Vdbe *v = pParse->pVdbe; /* The virtual database engine */ sl@0: int brk, cont = 0; /* Addresses used during code generation */ sl@0: Bitmask notReady; /* Cursors that are not yet positioned */ sl@0: WhereTerm *pTerm; /* A single term in the WHERE clause */ sl@0: ExprMaskSet maskSet; /* The expression mask set */ sl@0: WhereClause wc; /* The WHERE clause is divided into these terms */ sl@0: struct SrcList_item *pTabItem; /* A single entry from pTabList */ sl@0: WhereLevel *pLevel; /* A single level in the pWInfo list */ sl@0: int iFrom; /* First unused FROM clause element */ sl@0: int andFlags; /* AND-ed combination of all wc.a[].flags */ sl@0: sqlite3 *db; /* Database connection */ sl@0: ExprList *pOrderBy = 0; sl@0: sl@0: /* The number of tables in the FROM clause is limited by the number of sl@0: ** bits in a Bitmask sl@0: */ sl@0: if( pTabList->nSrc>BMS ){ sl@0: sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); sl@0: return 0; sl@0: } sl@0: sl@0: if( ppOrderBy ){ sl@0: pOrderBy = *ppOrderBy; sl@0: } sl@0: sl@0: /* Split the WHERE clause into separate subexpressions where each sl@0: ** subexpression is separated by an AND operator. sl@0: */ sl@0: initMaskSet(&maskSet); sl@0: whereClauseInit(&wc, pParse, &maskSet); sl@0: sqlite3ExprCodeConstants(pParse, pWhere); sl@0: whereSplit(&wc, pWhere, TK_AND); sl@0: sl@0: /* Allocate and initialize the WhereInfo structure that will become the sl@0: ** return value. sl@0: */ sl@0: db = pParse->db; sl@0: pWInfo = sqlite3DbMallocZero(db, sl@0: sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); sl@0: if( db->mallocFailed ){ sl@0: goto whereBeginError; sl@0: } sl@0: pWInfo->nLevel = pTabList->nSrc; sl@0: pWInfo->pParse = pParse; sl@0: pWInfo->pTabList = pTabList; sl@0: pWInfo->iBreak = sqlite3VdbeMakeLabel(v); sl@0: sl@0: /* Special case: a WHERE clause that is constant. Evaluate the sl@0: ** expression and either jump over all of the code or fall thru. sl@0: */ sl@0: if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ sl@0: sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); sl@0: pWhere = 0; sl@0: } sl@0: sl@0: /* Assign a bit from the bitmask to every term in the FROM clause. sl@0: ** sl@0: ** When assigning bitmask values to FROM clause cursors, it must be sl@0: ** the case that if X is the bitmask for the N-th FROM clause term then sl@0: ** the bitmask for all FROM clause terms to the left of the N-th term sl@0: ** is (X-1). An expression from the ON clause of a LEFT JOIN can use sl@0: ** its Expr.iRightJoinTable value to find the bitmask of the right table sl@0: ** of the join. Subtracting one from the right table bitmask gives a sl@0: ** bitmask for all tables to the left of the join. Knowing the bitmask sl@0: ** for all tables to the left of a left join is important. Ticket #3015. sl@0: */ sl@0: for(i=0; inSrc; i++){ sl@0: createMask(&maskSet, pTabList->a[i].iCursor); sl@0: } sl@0: #ifndef NDEBUG sl@0: { sl@0: Bitmask toTheLeft = 0; sl@0: for(i=0; inSrc; i++){ sl@0: Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor); sl@0: assert( (m-1)==toTheLeft ); sl@0: toTheLeft |= m; sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* Analyze all of the subexpressions. Note that exprAnalyze() might sl@0: ** add new virtual terms onto the end of the WHERE clause. We do not sl@0: ** want to analyze these virtual terms, so start analyzing at the end sl@0: ** and work forward so that the added virtual terms are never processed. sl@0: */ sl@0: exprAnalyzeAll(pTabList, &wc); sl@0: if( db->mallocFailed ){ sl@0: goto whereBeginError; sl@0: } sl@0: sl@0: /* Chose the best index to use for each table in the FROM clause. sl@0: ** sl@0: ** This loop fills in the following fields: sl@0: ** sl@0: ** pWInfo->a[].pIdx The index to use for this level of the loop. sl@0: ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx sl@0: ** pWInfo->a[].nEq The number of == and IN constraints sl@0: ** pWInfo->a[].iFrom Which term of the FROM clause is being coded sl@0: ** pWInfo->a[].iTabCur The VDBE cursor for the database table sl@0: ** pWInfo->a[].iIdxCur The VDBE cursor for the index sl@0: ** sl@0: ** This loop also figures out the nesting order of tables in the FROM sl@0: ** clause. sl@0: */ sl@0: notReady = ~(Bitmask)0; sl@0: pTabItem = pTabList->a; sl@0: pLevel = pWInfo->a; sl@0: andFlags = ~0; sl@0: WHERETRACE(("*** Optimizer Start ***\n")); sl@0: for(i=iFrom=0, pLevel=pWInfo->a; inSrc; i++, pLevel++){ sl@0: Index *pIdx; /* Index for FROM table at pTabItem */ sl@0: int flags; /* Flags asssociated with pIdx */ sl@0: int nEq; /* Number of == or IN constraints */ sl@0: double cost; /* The cost for pIdx */ sl@0: int j; /* For looping over FROM tables */ sl@0: Index *pBest = 0; /* The best index seen so far */ sl@0: int bestFlags = 0; /* Flags associated with pBest */ sl@0: int bestNEq = 0; /* nEq associated with pBest */ sl@0: double lowestCost; /* Cost of the pBest */ sl@0: int bestJ = 0; /* The value of j */ sl@0: Bitmask m; /* Bitmask value for j or bestJ */ sl@0: int once = 0; /* True when first table is seen */ sl@0: sqlite3_index_info *pIndex; /* Current virtual index */ sl@0: sl@0: lowestCost = SQLITE_BIG_DBL; sl@0: for(j=iFrom, pTabItem=&pTabList->a[j]; jnSrc; j++, pTabItem++){ sl@0: int doNotReorder; /* True if this table should not be reordered */ sl@0: sl@0: doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; sl@0: if( once && doNotReorder ) break; sl@0: m = getMask(&maskSet, pTabItem->iCursor); sl@0: if( (m & notReady)==0 ){ sl@0: if( j==iFrom ) iFrom++; sl@0: continue; sl@0: } sl@0: assert( pTabItem->pTab ); sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( IsVirtual(pTabItem->pTab) ){ sl@0: sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; sl@0: cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, sl@0: ppOrderBy ? *ppOrderBy : 0, i==0, sl@0: ppIdxInfo); sl@0: flags = WHERE_VIRTUALTABLE; sl@0: pIndex = *ppIdxInfo; sl@0: if( pIndex && pIndex->orderByConsumed ){ sl@0: flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; sl@0: } sl@0: pIdx = 0; sl@0: nEq = 0; sl@0: if( (SQLITE_BIG_DBL/2.0)pBestIdx never set. sl@0: */ sl@0: cost = (SQLITE_BIG_DBL/2.0); sl@0: } sl@0: }else sl@0: #endif sl@0: { sl@0: cost = bestIndex(pParse, &wc, pTabItem, notReady, sl@0: (i==0 && ppOrderBy) ? *ppOrderBy : 0, sl@0: &pIdx, &flags, &nEq); sl@0: pIndex = 0; sl@0: } sl@0: if( costpBestIdx = pIndex; sl@0: } sl@0: if( doNotReorder ) break; sl@0: } sl@0: WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, sl@0: pLevel-pWInfo->a)); sl@0: if( (bestFlags & WHERE_ORDERBY)!=0 ){ sl@0: *ppOrderBy = 0; sl@0: } sl@0: andFlags &= bestFlags; sl@0: pLevel->flags = bestFlags; sl@0: pLevel->pIdx = pBest; sl@0: pLevel->nEq = bestNEq; sl@0: pLevel->aInLoop = 0; sl@0: pLevel->nIn = 0; sl@0: if( pBest ){ sl@0: pLevel->iIdxCur = pParse->nTab++; sl@0: }else{ sl@0: pLevel->iIdxCur = -1; sl@0: } sl@0: notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); sl@0: pLevel->iFrom = bestJ; sl@0: sl@0: /* Check that if the table scanned by this loop iteration had an sl@0: ** INDEXED BY clause attached to it, that the named index is being sl@0: ** used for the scan. If not, then query compilation has failed. sl@0: ** Return an error. sl@0: */ sl@0: pIdx = pTabList->a[bestJ].pIndex; sl@0: assert( !pIdx || !pBest || pIdx==pBest ); sl@0: if( pIdx && pBest!=pIdx ){ sl@0: sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); sl@0: goto whereBeginError; sl@0: } sl@0: } sl@0: WHERETRACE(("*** Optimizer Finished ***\n")); sl@0: sl@0: /* If the total query only selects a single row, then the ORDER BY sl@0: ** clause is irrelevant. sl@0: */ sl@0: if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ sl@0: *ppOrderBy = 0; sl@0: } sl@0: sl@0: /* If the caller is an UPDATE or DELETE statement that is requesting sl@0: ** to use a one-pass algorithm, determine if this is appropriate. sl@0: ** The one-pass algorithm only works if the WHERE clause constraints sl@0: ** the statement to update a single row. sl@0: */ sl@0: assert( (wflags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); sl@0: if( (wflags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ sl@0: pWInfo->okOnePass = 1; sl@0: pWInfo->a[0].flags &= ~WHERE_IDX_ONLY; sl@0: } sl@0: sl@0: /* Open all tables in the pTabList and any indices selected for sl@0: ** searching those tables. sl@0: */ sl@0: sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ sl@0: for(i=0, pLevel=pWInfo->a; inSrc; i++, pLevel++){ sl@0: Table *pTab; /* Table to open */ sl@0: Index *pIx; /* Index used to access pTab (if any) */ sl@0: int iDb; /* Index of database containing table/index */ sl@0: int iIdxCur = pLevel->iIdxCur; sl@0: sl@0: #ifndef SQLITE_OMIT_EXPLAIN sl@0: if( pParse->explain==2 ){ sl@0: char *zMsg; sl@0: struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; sl@0: zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); sl@0: if( pItem->zAlias ){ sl@0: zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); sl@0: } sl@0: if( (pIx = pLevel->pIdx)!=0 ){ sl@0: zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", zMsg, pIx->zName); sl@0: }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ sl@0: zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg); sl@0: } sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: else if( pLevel->pBestIdx ){ sl@0: sqlite3_index_info *pBestIdx = pLevel->pBestIdx; sl@0: zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, sl@0: pBestIdx->idxNum, pBestIdx->idxStr); sl@0: } sl@0: #endif sl@0: if( pLevel->flags & WHERE_ORDERBY ){ sl@0: zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg); sl@0: } sl@0: sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); sl@0: } sl@0: #endif /* SQLITE_OMIT_EXPLAIN */ sl@0: pTabItem = &pTabList->a[pLevel->iFrom]; sl@0: pTab = pTabItem->pTab; sl@0: iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sl@0: if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( pLevel->pBestIdx ){ sl@0: int iCur = pTabItem->iCursor; sl@0: sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, sl@0: (const char*)pTab->pVtab, P4_VTAB); sl@0: }else sl@0: #endif sl@0: if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ sl@0: int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; sl@0: sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); sl@0: if( !pWInfo->okOnePass && pTab->nCol<(sizeof(Bitmask)*8) ){ sl@0: Bitmask b = pTabItem->colUsed; sl@0: int n = 0; sl@0: for(; b; b=b>>1, n++){} sl@0: sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n); sl@0: assert( n<=pTab->nCol ); sl@0: } sl@0: }else{ sl@0: sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); sl@0: } sl@0: pLevel->iTabCur = pTabItem->iCursor; sl@0: if( (pIx = pLevel->pIdx)!=0 ){ sl@0: KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); sl@0: assert( pIx->pSchema==pTab->pSchema ); sl@0: sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1); sl@0: sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, sl@0: (char*)pKey, P4_KEYINFO_HANDOFF); sl@0: VdbeComment((v, "%s", pIx->zName)); sl@0: } sl@0: sqlite3CodeVerifySchema(pParse, iDb); sl@0: } sl@0: pWInfo->iTop = sqlite3VdbeCurrentAddr(v); sl@0: sl@0: /* Generate the code to do the search. Each iteration of the for sl@0: ** loop below generates code for a single nested loop of the VM sl@0: ** program. sl@0: */ sl@0: notReady = ~(Bitmask)0; sl@0: for(i=0, pLevel=pWInfo->a; inSrc; i++, pLevel++){ sl@0: int j, k; sl@0: int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ sl@0: Index *pIdx; /* The index we will be using */ sl@0: int nxt; /* Where to jump to continue with the next IN case */ sl@0: int iIdxCur; /* The VDBE cursor for the index */ sl@0: int omitTable; /* True if we use the index only */ sl@0: int bRev; /* True if we need to scan in reverse order */ sl@0: sl@0: pTabItem = &pTabList->a[pLevel->iFrom]; sl@0: iCur = pTabItem->iCursor; sl@0: pIdx = pLevel->pIdx; sl@0: iIdxCur = pLevel->iIdxCur; sl@0: bRev = (pLevel->flags & WHERE_REVERSE)!=0; sl@0: omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; sl@0: sl@0: /* Create labels for the "break" and "continue" instructions sl@0: ** for the current loop. Jump to brk to break out of a loop. sl@0: ** Jump to cont to go immediately to the next iteration of the sl@0: ** loop. sl@0: ** sl@0: ** When there is an IN operator, we also have a "nxt" label that sl@0: ** means to continue with the next IN value combination. When sl@0: ** there are no IN operators in the constraints, the "nxt" label sl@0: ** is the same as "brk". sl@0: */ sl@0: brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); sl@0: cont = pLevel->cont = sqlite3VdbeMakeLabel(v); sl@0: sl@0: /* If this is the right table of a LEFT OUTER JOIN, allocate and sl@0: ** initialize a memory cell that records if this table matches any sl@0: ** row of the left table of the join. sl@0: */ sl@0: if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ sl@0: pLevel->iLeftJoin = ++pParse->nMem; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); sl@0: VdbeComment((v, "init LEFT JOIN no-match flag")); sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( pLevel->pBestIdx ){ sl@0: /* Case 0: The table is a virtual-table. Use the VFilter and VNext sl@0: ** to access the data. sl@0: */ sl@0: int j; sl@0: int iReg; /* P3 Value for OP_VFilter */ sl@0: sqlite3_index_info *pBestIdx = pLevel->pBestIdx; sl@0: int nConstraint = pBestIdx->nConstraint; sl@0: struct sqlite3_index_constraint_usage *aUsage = sl@0: pBestIdx->aConstraintUsage; sl@0: const struct sqlite3_index_constraint *aConstraint = sl@0: pBestIdx->aConstraint; sl@0: sl@0: iReg = sqlite3GetTempRange(pParse, nConstraint+2); sl@0: pParse->disableColCache++; sl@0: for(j=1; j<=nConstraint; j++){ sl@0: int k; sl@0: for(k=0; kdisableColCache ); sl@0: sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1); sl@0: break; sl@0: } sl@0: } sl@0: if( k==nConstraint ) break; sl@0: } sl@0: assert( pParse->disableColCache ); sl@0: pParse->disableColCache--; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); sl@0: sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr, sl@0: pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); sl@0: sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); sl@0: pBestIdx->needToFreeIdxStr = 0; sl@0: for(j=0; jop = OP_VNext; sl@0: pLevel->p1 = iCur; sl@0: pLevel->p2 = sqlite3VdbeCurrentAddr(v); sl@0: }else sl@0: #endif /* SQLITE_OMIT_VIRTUALTABLE */ sl@0: sl@0: if( pLevel->flags & WHERE_ROWID_EQ ){ sl@0: /* Case 1: We can directly reference a single row using an sl@0: ** equality comparison against the ROWID field. Or sl@0: ** we reference multiple rows using a "rowid IN (...)" sl@0: ** construct. sl@0: */ sl@0: int r1; sl@0: int rtmp = sqlite3GetTempReg(pParse); sl@0: pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); sl@0: assert( pTerm!=0 ); sl@0: assert( pTerm->pExpr!=0 ); sl@0: assert( pTerm->leftCursor==iCur ); sl@0: assert( omitTable==0 ); sl@0: r1 = codeEqualityTerm(pParse, pTerm, pLevel, rtmp); sl@0: nxt = pLevel->nxt; sl@0: sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt); sl@0: sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1); sl@0: sqlite3ReleaseTempReg(pParse, rtmp); sl@0: VdbeComment((v, "pk")); sl@0: pLevel->op = OP_Noop; sl@0: }else if( pLevel->flags & WHERE_ROWID_RANGE ){ sl@0: /* Case 2: We have an inequality comparison against the ROWID field. sl@0: */ sl@0: int testOp = OP_Noop; sl@0: int start; sl@0: WhereTerm *pStart, *pEnd; sl@0: sl@0: assert( omitTable==0 ); sl@0: pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); sl@0: pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); sl@0: if( bRev ){ sl@0: pTerm = pStart; sl@0: pStart = pEnd; sl@0: pEnd = pTerm; sl@0: } sl@0: if( pStart ){ sl@0: Expr *pX; sl@0: int r1; sl@0: pX = pStart->pExpr; sl@0: assert( pX!=0 ); sl@0: assert( pStart->leftCursor==iCur ); sl@0: sl@0: /* The ForceInt instruction may modify the register that it operates sl@0: ** on. For example it may replace a real value with an integer one, sl@0: ** or if p3 is true it may increment the register value. For this sl@0: ** reason we need to make sure that register r1 is really a newly sl@0: ** allocated temporary register, and not part of the column-cache. sl@0: ** For this reason we cannot use sqlite3ExprCodeTemp() here. sl@0: */ sl@0: r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3ExprCode(pParse, pX->pRight, r1); sl@0: sl@0: sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk, sl@0: pX->op==TK_LE || pX->op==TK_GT); sl@0: sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1); sl@0: VdbeComment((v, "pk")); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: disableTerm(pLevel, pStart); sl@0: }else{ sl@0: sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk); sl@0: } sl@0: if( pEnd ){ sl@0: Expr *pX; sl@0: pX = pEnd->pExpr; sl@0: assert( pX!=0 ); sl@0: assert( pEnd->leftCursor==iCur ); sl@0: pLevel->iMem = ++pParse->nMem; sl@0: sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem); sl@0: if( pX->op==TK_LT || pX->op==TK_GT ){ sl@0: testOp = bRev ? OP_Le : OP_Ge; sl@0: }else{ sl@0: testOp = bRev ? OP_Lt : OP_Gt; sl@0: } sl@0: disableTerm(pLevel, pEnd); sl@0: } sl@0: start = sqlite3VdbeCurrentAddr(v); sl@0: pLevel->op = bRev ? OP_Prev : OP_Next; sl@0: pLevel->p1 = iCur; sl@0: pLevel->p2 = start; sl@0: if( testOp!=OP_Noop ){ sl@0: int r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); sl@0: /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */ sl@0: sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1); sl@0: sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: } sl@0: }else if( pLevel->flags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ sl@0: /* Case 3: A scan using an index. sl@0: ** sl@0: ** The WHERE clause may contain zero or more equality sl@0: ** terms ("==" or "IN" operators) that refer to the N sl@0: ** left-most columns of the index. It may also contain sl@0: ** inequality constraints (>, <, >= or <=) on the indexed sl@0: ** column that immediately follows the N equalities. Only sl@0: ** the right-most column can be an inequality - the rest must sl@0: ** use the "==" and "IN" operators. For example, if the sl@0: ** index is on (x,y,z), then the following clauses are all sl@0: ** optimized: sl@0: ** sl@0: ** x=5 sl@0: ** x=5 AND y=10 sl@0: ** x=5 AND y<10 sl@0: ** x=5 AND y>5 AND y<10 sl@0: ** x=5 AND y=5 AND z<=10 sl@0: ** sl@0: ** The z<10 term of the following cannot be used, only sl@0: ** the x=5 term: sl@0: ** sl@0: ** x=5 AND z<10 sl@0: ** sl@0: ** N may be zero if there are inequality constraints. sl@0: ** If there are no inequality constraints, then N is at sl@0: ** least one. sl@0: ** sl@0: ** This case is also used when there are no WHERE clause sl@0: ** constraints but an index is selected anyway, in order sl@0: ** to force the output order to conform to an ORDER BY. sl@0: */ sl@0: int aStartOp[] = { sl@0: 0, sl@0: 0, sl@0: OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ sl@0: OP_Last, /* 3: (!start_constraints && startEq && bRev) */ sl@0: OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */ sl@0: OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */ sl@0: OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */ sl@0: OP_MoveLe /* 7: (start_constraints && startEq && bRev) */ sl@0: }; sl@0: int aEndOp[] = { sl@0: OP_Noop, /* 0: (!end_constraints) */ sl@0: OP_IdxGE, /* 1: (end_constraints && !bRev) */ sl@0: OP_IdxLT /* 2: (end_constraints && bRev) */ sl@0: }; sl@0: int nEq = pLevel->nEq; sl@0: int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ sl@0: int regBase; /* Base register holding constraint values */ sl@0: int r1; /* Temp register */ sl@0: WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ sl@0: WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ sl@0: int startEq; /* True if range start uses ==, >= or <= */ sl@0: int endEq; /* True if range end uses ==, >= or <= */ sl@0: int start_constraints; /* Start of range is constrained */ sl@0: int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ sl@0: int nConstraint; /* Number of constraint terms */ sl@0: int op; sl@0: sl@0: /* Generate code to evaluate all constraint terms using == or IN sl@0: ** and store the values of those terms in an array of registers sl@0: ** starting at regBase. sl@0: */ sl@0: regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2); sl@0: nxt = pLevel->nxt; sl@0: sl@0: /* If this loop satisfies a sort order (pOrderBy) request that sl@0: ** was passed to this function to implement a "SELECT min(x) ..." sl@0: ** query, then the caller will only allow the loop to run for sl@0: ** a single iteration. This means that the first row returned sl@0: ** should not have a NULL value stored in 'x'. If column 'x' is sl@0: ** the first one after the nEq equality constraints in the index, sl@0: ** this requires some special handling. sl@0: */ sl@0: if( (wflags&WHERE_ORDERBY_MIN)!=0 sl@0: && (pLevel->flags&WHERE_ORDERBY) sl@0: && (pIdx->nColumn>nEq) sl@0: ){ sl@0: assert( pOrderBy->nExpr==1 ); sl@0: assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); sl@0: isMinQuery = 1; sl@0: } sl@0: sl@0: /* Find any inequality constraint terms for the start and end sl@0: ** of the range. sl@0: */ sl@0: if( pLevel->flags & WHERE_TOP_LIMIT ){ sl@0: pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx); sl@0: } sl@0: if( pLevel->flags & WHERE_BTM_LIMIT ){ sl@0: pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx); sl@0: } sl@0: sl@0: /* If we are doing a reverse order scan on an ascending index, or sl@0: ** a forward order scan on a descending index, interchange the sl@0: ** start and end terms (pRangeStart and pRangeEnd). sl@0: */ sl@0: if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ sl@0: SWAP(WhereTerm *, pRangeEnd, pRangeStart); sl@0: } sl@0: sl@0: testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); sl@0: testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); sl@0: testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); sl@0: testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); sl@0: startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); sl@0: endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); sl@0: start_constraints = pRangeStart || nEq>0; sl@0: sl@0: /* Seek the index cursor to the start of the range. */ sl@0: nConstraint = nEq; sl@0: if( pRangeStart ){ sl@0: int dcc = pParse->disableColCache; sl@0: if( pRangeEnd ){ sl@0: pParse->disableColCache++; sl@0: } sl@0: sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq); sl@0: pParse->disableColCache = dcc; sl@0: sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); sl@0: nConstraint++; sl@0: }else if( isMinQuery ){ sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); sl@0: nConstraint++; sl@0: startEq = 0; sl@0: start_constraints = 1; sl@0: } sl@0: codeApplyAffinity(pParse, regBase, nConstraint, pIdx); sl@0: op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; sl@0: assert( op!=0 ); sl@0: testcase( op==OP_Rewind ); sl@0: testcase( op==OP_Last ); sl@0: testcase( op==OP_MoveGt ); sl@0: testcase( op==OP_MoveGe ); sl@0: testcase( op==OP_MoveLe ); sl@0: testcase( op==OP_MoveLt ); sl@0: sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, sl@0: SQLITE_INT_TO_PTR(nConstraint), P4_INT32); sl@0: sl@0: /* Load the value for the inequality constraint at the end of the sl@0: ** range (if any). sl@0: */ sl@0: nConstraint = nEq; sl@0: if( pRangeEnd ){ sl@0: sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq); sl@0: sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); sl@0: codeApplyAffinity(pParse, regBase, nEq+1, pIdx); sl@0: nConstraint++; sl@0: } sl@0: sl@0: /* Top of the loop body */ sl@0: pLevel->p2 = sqlite3VdbeCurrentAddr(v); sl@0: sl@0: /* Check if the index cursor is past the end of the range. */ sl@0: op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; sl@0: testcase( op==OP_Noop ); sl@0: testcase( op==OP_IdxGE ); sl@0: testcase( op==OP_IdxLT ); sl@0: sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, sl@0: SQLITE_INT_TO_PTR(nConstraint), P4_INT32); sl@0: sqlite3VdbeChangeP5(v, endEq!=bRev); sl@0: sl@0: /* If there are inequality constraints, check that the value sl@0: ** of the table column that the inequality contrains is not NULL. sl@0: ** If it is, jump to the next iteration of the loop. sl@0: */ sl@0: r1 = sqlite3GetTempReg(pParse); sl@0: testcase( pLevel->flags & WHERE_BTM_LIMIT ); sl@0: testcase( pLevel->flags & WHERE_TOP_LIMIT ); sl@0: if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ sl@0: sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); sl@0: sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont); sl@0: } sl@0: sl@0: /* Seek the table cursor, if required */ sl@0: if( !omitTable ){ sl@0: sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1); sl@0: sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */ sl@0: } sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: sl@0: /* Record the instruction used to terminate the loop. Disable sl@0: ** WHERE clause terms made redundant by the index range scan. sl@0: */ sl@0: pLevel->op = bRev ? OP_Prev : OP_Next; sl@0: pLevel->p1 = iIdxCur; sl@0: disableTerm(pLevel, pRangeStart); sl@0: disableTerm(pLevel, pRangeEnd); sl@0: }else{ sl@0: /* Case 4: There is no usable index. We must do a complete sl@0: ** scan of the entire table. sl@0: */ sl@0: assert( omitTable==0 ); sl@0: assert( bRev==0 ); sl@0: pLevel->op = OP_Next; sl@0: pLevel->p1 = iCur; sl@0: pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk); sl@0: pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; sl@0: } sl@0: notReady &= ~getMask(&maskSet, iCur); sl@0: sl@0: /* Insert code to test every subexpression that can be completely sl@0: ** computed using the current set of tables. sl@0: */ sl@0: k = 0; sl@0: for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ sl@0: Expr *pE; sl@0: testcase( pTerm->flags & TERM_VIRTUAL ); sl@0: testcase( pTerm->flags & TERM_CODED ); sl@0: if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; sl@0: if( (pTerm->prereqAll & notReady)!=0 ) continue; sl@0: pE = pTerm->pExpr; sl@0: assert( pE!=0 ); sl@0: if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ sl@0: continue; sl@0: } sl@0: pParse->disableColCache += k; sl@0: sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL); sl@0: pParse->disableColCache -= k; sl@0: k = 1; sl@0: pTerm->flags |= TERM_CODED; sl@0: } sl@0: sl@0: /* For a LEFT OUTER JOIN, generate code that will record the fact that sl@0: ** at least one row of the right table has matched the left table. sl@0: */ sl@0: if( pLevel->iLeftJoin ){ sl@0: pLevel->top = sqlite3VdbeCurrentAddr(v); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); sl@0: VdbeComment((v, "record LEFT JOIN hit")); sl@0: sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur); sl@0: sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur); sl@0: for(pTerm=wc.a, j=0; jflags & TERM_VIRTUAL ); sl@0: testcase( pTerm->flags & TERM_CODED ); sl@0: if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; sl@0: if( (pTerm->prereqAll & notReady)!=0 ) continue; sl@0: assert( pTerm->pExpr ); sl@0: sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL); sl@0: pTerm->flags |= TERM_CODED; sl@0: } sl@0: } sl@0: } sl@0: sl@0: #ifdef SQLITE_TEST /* For testing and debugging use only */ sl@0: /* Record in the query plan information about the current table sl@0: ** and the index used to access it (if any). If the table itself sl@0: ** is not used, its name is just '{}'. If no index is used sl@0: ** the index is listed as "{}". If the primary key is used the sl@0: ** index name is '*'. sl@0: */ sl@0: for(i=0; inSrc; i++){ sl@0: char *z; sl@0: int n; sl@0: pLevel = &pWInfo->a[i]; sl@0: pTabItem = &pTabList->a[pLevel->iFrom]; sl@0: z = pTabItem->zAlias; sl@0: if( z==0 ) z = pTabItem->pTab->zName; sl@0: n = strlen(z); sl@0: if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ sl@0: if( pLevel->flags & WHERE_IDX_ONLY ){ sl@0: memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); sl@0: nQPlan += 2; sl@0: }else{ sl@0: memcpy(&sqlite3_query_plan[nQPlan], z, n); sl@0: nQPlan += n; sl@0: } sl@0: sqlite3_query_plan[nQPlan++] = ' '; sl@0: } sl@0: testcase( pLevel->flags & WHERE_ROWID_EQ ); sl@0: testcase( pLevel->flags & WHERE_ROWID_RANGE ); sl@0: if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ sl@0: memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); sl@0: nQPlan += 2; sl@0: }else if( pLevel->pIdx==0 ){ sl@0: memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); sl@0: nQPlan += 3; sl@0: }else{ sl@0: n = strlen(pLevel->pIdx->zName); sl@0: if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ sl@0: memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); sl@0: nQPlan += n; sl@0: sqlite3_query_plan[nQPlan++] = ' '; sl@0: } sl@0: } sl@0: } sl@0: while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ sl@0: sqlite3_query_plan[--nQPlan] = 0; sl@0: } sl@0: sqlite3_query_plan[nQPlan] = 0; sl@0: nQPlan = 0; sl@0: #endif /* SQLITE_TEST // Testing and debugging use only */ sl@0: sl@0: /* Record the continuation address in the WhereInfo structure. Then sl@0: ** clean up and return. sl@0: */ sl@0: pWInfo->iContinue = cont; sl@0: whereClauseClear(&wc); sl@0: return pWInfo; sl@0: sl@0: /* Jump here if malloc fails */ sl@0: whereBeginError: sl@0: whereClauseClear(&wc); sl@0: whereInfoFree(db, pWInfo); sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Generate the end of the WHERE loop. See comments on sl@0: ** sqlite3WhereBegin() for additional information. sl@0: */ sl@0: void sqlite3WhereEnd(WhereInfo *pWInfo){ sl@0: Parse *pParse = pWInfo->pParse; sl@0: Vdbe *v = pParse->pVdbe; sl@0: int i; sl@0: WhereLevel *pLevel; sl@0: SrcList *pTabList = pWInfo->pTabList; sl@0: sqlite3 *db = pParse->db; sl@0: sl@0: /* Generate loop termination code. sl@0: */ sl@0: sqlite3ExprClearColumnCache(pParse, -1); sl@0: for(i=pTabList->nSrc-1; i>=0; i--){ sl@0: pLevel = &pWInfo->a[i]; sl@0: sqlite3VdbeResolveLabel(v, pLevel->cont); sl@0: if( pLevel->op!=OP_Noop ){ sl@0: sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); sl@0: sqlite3VdbeChangeP5(v, pLevel->p5); sl@0: } sl@0: if( pLevel->nIn ){ sl@0: struct InLoop *pIn; sl@0: int j; sl@0: sqlite3VdbeResolveLabel(v, pLevel->nxt); sl@0: for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ sl@0: sqlite3VdbeJumpHere(v, pIn->topAddr+1); sl@0: sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr); sl@0: sqlite3VdbeJumpHere(v, pIn->topAddr-1); sl@0: } sl@0: sqlite3DbFree(db, pLevel->aInLoop); sl@0: } sl@0: sqlite3VdbeResolveLabel(v, pLevel->brk); sl@0: if( pLevel->iLeftJoin ){ sl@0: int addr; sl@0: addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); sl@0: sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); sl@0: if( pLevel->iIdxCur>=0 ){ sl@0: sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); sl@0: } sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top); sl@0: sqlite3VdbeJumpHere(v, addr); sl@0: } sl@0: } sl@0: sl@0: /* The "break" point is here, just past the end of the outer loop. sl@0: ** Set it. sl@0: */ sl@0: sqlite3VdbeResolveLabel(v, pWInfo->iBreak); sl@0: sl@0: /* Close all of the cursors that were opened by sqlite3WhereBegin. sl@0: */ sl@0: for(i=0, pLevel=pWInfo->a; inSrc; i++, pLevel++){ sl@0: struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; sl@0: Table *pTab = pTabItem->pTab; sl@0: assert( pTab!=0 ); sl@0: if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; sl@0: if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){ sl@0: sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); sl@0: } sl@0: if( pLevel->pIdx!=0 ){ sl@0: sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); sl@0: } sl@0: sl@0: /* If this scan uses an index, make code substitutions to read data sl@0: ** from the index in preference to the table. Sometimes, this means sl@0: ** the table need never be read from. This is a performance boost, sl@0: ** as the vdbe level waits until the table is read before actually sl@0: ** seeking the table cursor to the record corresponding to the current sl@0: ** position in the index. sl@0: ** sl@0: ** Calls to the code generator in between sqlite3WhereBegin and sl@0: ** sqlite3WhereEnd will have created code that references the table sl@0: ** directly. This loop scans all that code looking for opcodes sl@0: ** that reference the table and converts them into opcodes that sl@0: ** reference the index. sl@0: */ sl@0: if( pLevel->pIdx ){ sl@0: int k, j, last; sl@0: VdbeOp *pOp; sl@0: Index *pIdx = pLevel->pIdx; sl@0: int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY; sl@0: sl@0: assert( pIdx!=0 ); sl@0: pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); sl@0: last = sqlite3VdbeCurrentAddr(v); sl@0: for(k=pWInfo->iTop; kp1!=pLevel->iTabCur ) continue; sl@0: if( pOp->opcode==OP_Column ){ sl@0: for(j=0; jnColumn; j++){ sl@0: if( pOp->p2==pIdx->aiColumn[j] ){ sl@0: pOp->p2 = j; sl@0: pOp->p1 = pLevel->iIdxCur; sl@0: break; sl@0: } sl@0: } sl@0: assert(!useIndexOnly || jnColumn); sl@0: }else if( pOp->opcode==OP_Rowid ){ sl@0: pOp->p1 = pLevel->iIdxCur; sl@0: pOp->opcode = OP_IdxRowid; sl@0: }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ sl@0: pOp->opcode = OP_Noop; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Final cleanup sl@0: */ sl@0: whereInfoFree(db, pWInfo); sl@0: return; sl@0: }