sl@0: /* sl@0: ** 2001 September 15 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This file contains C code routines that are called by the parser sl@0: ** to handle SELECT statements in SQLite. sl@0: ** sl@0: ** $Id: select.c,v 1.480 2008/10/07 19:53:14 drh Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: sl@0: sl@0: /* sl@0: ** Delete all the content of a Select structure but do not deallocate sl@0: ** the select structure itself. sl@0: */ sl@0: static void clearSelect(sqlite3 *db, Select *p){ sl@0: sqlite3ExprListDelete(db, p->pEList); sl@0: sqlite3SrcListDelete(db, p->pSrc); sl@0: sqlite3ExprDelete(db, p->pWhere); sl@0: sqlite3ExprListDelete(db, p->pGroupBy); sl@0: sqlite3ExprDelete(db, p->pHaving); sl@0: sqlite3ExprListDelete(db, p->pOrderBy); sl@0: sqlite3SelectDelete(db, p->pPrior); sl@0: sqlite3ExprDelete(db, p->pLimit); sl@0: sqlite3ExprDelete(db, p->pOffset); sl@0: } sl@0: sl@0: /* sl@0: ** Initialize a SelectDest structure. sl@0: */ sl@0: void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ sl@0: pDest->eDest = eDest; sl@0: pDest->iParm = iParm; sl@0: pDest->affinity = 0; sl@0: pDest->iMem = 0; sl@0: pDest->nMem = 0; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Allocate a new Select structure and return a pointer to that sl@0: ** structure. sl@0: */ sl@0: Select *sqlite3SelectNew( sl@0: Parse *pParse, /* Parsing context */ sl@0: ExprList *pEList, /* which columns to include in the result */ sl@0: SrcList *pSrc, /* the FROM clause -- which tables to scan */ sl@0: Expr *pWhere, /* the WHERE clause */ sl@0: ExprList *pGroupBy, /* the GROUP BY clause */ sl@0: Expr *pHaving, /* the HAVING clause */ sl@0: ExprList *pOrderBy, /* the ORDER BY clause */ sl@0: int isDistinct, /* true if the DISTINCT keyword is present */ sl@0: Expr *pLimit, /* LIMIT value. NULL means not used */ sl@0: Expr *pOffset /* OFFSET value. NULL means no offset */ sl@0: ){ sl@0: Select *pNew; sl@0: Select standin; sl@0: sqlite3 *db = pParse->db; sl@0: pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); sl@0: assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ sl@0: if( pNew==0 ){ sl@0: pNew = &standin; sl@0: memset(pNew, 0, sizeof(*pNew)); sl@0: } sl@0: if( pEList==0 ){ sl@0: pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); sl@0: } sl@0: pNew->pEList = pEList; sl@0: pNew->pSrc = pSrc; sl@0: pNew->pWhere = pWhere; sl@0: pNew->pGroupBy = pGroupBy; sl@0: pNew->pHaving = pHaving; sl@0: pNew->pOrderBy = pOrderBy; sl@0: pNew->selFlags = isDistinct ? SF_Distinct : 0; sl@0: pNew->op = TK_SELECT; sl@0: pNew->pLimit = pLimit; sl@0: pNew->pOffset = pOffset; sl@0: pNew->addrOpenEphm[0] = -1; sl@0: pNew->addrOpenEphm[1] = -1; sl@0: pNew->addrOpenEphm[2] = -1; sl@0: if( db->mallocFailed ) { sl@0: clearSelect(db, pNew); sl@0: if( pNew!=&standin ) sqlite3DbFree(db, pNew); sl@0: pNew = 0; sl@0: } sl@0: return pNew; sl@0: } sl@0: sl@0: /* sl@0: ** Delete the given Select structure and all of its substructures. sl@0: */ sl@0: void sqlite3SelectDelete(sqlite3 *db, Select *p){ sl@0: if( p ){ sl@0: clearSelect(db, p); sl@0: sqlite3DbFree(db, p); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the sl@0: ** type of join. Return an integer constant that expresses that type sl@0: ** in terms of the following bit values: sl@0: ** sl@0: ** JT_INNER sl@0: ** JT_CROSS sl@0: ** JT_OUTER sl@0: ** JT_NATURAL sl@0: ** JT_LEFT sl@0: ** JT_RIGHT sl@0: ** sl@0: ** A full outer join is the combination of JT_LEFT and JT_RIGHT. sl@0: ** sl@0: ** If an illegal or unsupported join type is seen, then still return sl@0: ** a join type, but put an error in the pParse structure. sl@0: */ sl@0: int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ sl@0: int jointype = 0; sl@0: Token *apAll[3]; sl@0: Token *p; sl@0: static const struct { sl@0: const char zKeyword[8]; sl@0: u8 nChar; sl@0: u8 code; sl@0: } keywords[] = { sl@0: { "natural", 7, JT_NATURAL }, sl@0: { "left", 4, JT_LEFT|JT_OUTER }, sl@0: { "right", 5, JT_RIGHT|JT_OUTER }, sl@0: { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, sl@0: { "outer", 5, JT_OUTER }, sl@0: { "inner", 5, JT_INNER }, sl@0: { "cross", 5, JT_INNER|JT_CROSS }, sl@0: }; sl@0: int i, j; sl@0: apAll[0] = pA; sl@0: apAll[1] = pB; sl@0: apAll[2] = pC; sl@0: for(i=0; i<3 && apAll[i]; i++){ sl@0: p = apAll[i]; sl@0: for(j=0; jn==keywords[j].nChar sl@0: && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ sl@0: jointype |= keywords[j].code; sl@0: break; sl@0: } sl@0: } sl@0: if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ sl@0: jointype |= JT_ERROR; sl@0: break; sl@0: } sl@0: } sl@0: if( sl@0: (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || sl@0: (jointype & JT_ERROR)!=0 sl@0: ){ sl@0: const char *zSp = " "; sl@0: assert( pB!=0 ); sl@0: if( pC==0 ){ zSp++; } sl@0: sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " sl@0: "%T %T%s%T", pA, pB, zSp, pC); sl@0: jointype = JT_INNER; sl@0: }else if( jointype & JT_RIGHT ){ sl@0: sqlite3ErrorMsg(pParse, sl@0: "RIGHT and FULL OUTER JOINs are not currently supported"); sl@0: jointype = JT_INNER; sl@0: } sl@0: return jointype; sl@0: } sl@0: sl@0: /* sl@0: ** Return the index of a column in a table. Return -1 if the column sl@0: ** is not contained in the table. sl@0: */ sl@0: static int columnIndex(Table *pTab, const char *zCol){ sl@0: int i; sl@0: for(i=0; inCol; i++){ sl@0: if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; sl@0: } sl@0: return -1; sl@0: } sl@0: sl@0: /* sl@0: ** Set the value of a token to a '\000'-terminated string. sl@0: */ sl@0: static void setToken(Token *p, const char *z){ sl@0: p->z = (u8*)z; sl@0: p->n = z ? strlen(z) : 0; sl@0: p->dyn = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Set the token to the double-quoted and escaped version of the string pointed sl@0: ** to by z. For example; sl@0: ** sl@0: ** {a"bc} -> {"a""bc"} sl@0: */ sl@0: static void setQuotedToken(Parse *pParse, Token *p, const char *z){ sl@0: sl@0: /* Check if the string appears to be quoted using "..." or `...` sl@0: ** or [...] or '...' or if the string contains any " characters. sl@0: ** If it does, then record a version of the string with the special sl@0: ** characters escaped. sl@0: */ sl@0: const char *z2 = z; sl@0: if( *z2!='[' && *z2!='`' && *z2!='\'' ){ sl@0: while( *z2 ){ sl@0: if( *z2=='"' ) break; sl@0: z2++; sl@0: } sl@0: } sl@0: sl@0: if( *z2 ){ sl@0: /* String contains " characters - copy and quote the string. */ sl@0: p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); sl@0: if( p->z ){ sl@0: p->n = strlen((char *)p->z); sl@0: p->dyn = 1; sl@0: } sl@0: }else{ sl@0: /* String contains no " characters - copy the pointer. */ sl@0: p->z = (u8*)z; sl@0: p->n = (z2 - z); sl@0: p->dyn = 0; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Create an expression node for an identifier with the name of zName sl@0: */ sl@0: Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ sl@0: Token dummy; sl@0: setToken(&dummy, zName); sl@0: return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); sl@0: } sl@0: sl@0: /* sl@0: ** Add a term to the WHERE expression in *ppExpr that requires the sl@0: ** zCol column to be equal in the two tables pTab1 and pTab2. sl@0: */ sl@0: static void addWhereTerm( sl@0: Parse *pParse, /* Parsing context */ sl@0: const char *zCol, /* Name of the column */ sl@0: const Table *pTab1, /* First table */ sl@0: const char *zAlias1, /* Alias for first table. May be NULL */ sl@0: const Table *pTab2, /* Second table */ sl@0: const char *zAlias2, /* Alias for second table. May be NULL */ sl@0: int iRightJoinTable, /* VDBE cursor for the right table */ sl@0: Expr **ppExpr, /* Add the equality term to this expression */ sl@0: int isOuterJoin /* True if dealing with an OUTER join */ sl@0: ){ sl@0: Expr *pE1a, *pE1b, *pE1c; sl@0: Expr *pE2a, *pE2b, *pE2c; sl@0: Expr *pE; sl@0: sl@0: pE1a = sqlite3CreateIdExpr(pParse, zCol); sl@0: pE2a = sqlite3CreateIdExpr(pParse, zCol); sl@0: if( zAlias1==0 ){ sl@0: zAlias1 = pTab1->zName; sl@0: } sl@0: pE1b = sqlite3CreateIdExpr(pParse, zAlias1); sl@0: if( zAlias2==0 ){ sl@0: zAlias2 = pTab2->zName; sl@0: } sl@0: pE2b = sqlite3CreateIdExpr(pParse, zAlias2); sl@0: pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); sl@0: pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); sl@0: pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); sl@0: if( pE && isOuterJoin ){ sl@0: ExprSetProperty(pE, EP_FromJoin); sl@0: pE->iRightJoinTable = iRightJoinTable; sl@0: } sl@0: *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); sl@0: } sl@0: sl@0: /* sl@0: ** Set the EP_FromJoin property on all terms of the given expression. sl@0: ** And set the Expr.iRightJoinTable to iTable for every term in the sl@0: ** expression. sl@0: ** sl@0: ** The EP_FromJoin property is used on terms of an expression to tell sl@0: ** the LEFT OUTER JOIN processing logic that this term is part of the sl@0: ** join restriction specified in the ON or USING clause and not a part sl@0: ** of the more general WHERE clause. These terms are moved over to the sl@0: ** WHERE clause during join processing but we need to remember that they sl@0: ** originated in the ON or USING clause. sl@0: ** sl@0: ** The Expr.iRightJoinTable tells the WHERE clause processing that the sl@0: ** expression depends on table iRightJoinTable even if that table is not sl@0: ** explicitly mentioned in the expression. That information is needed sl@0: ** for cases like this: sl@0: ** sl@0: ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 sl@0: ** sl@0: ** The where clause needs to defer the handling of the t1.x=5 sl@0: ** term until after the t2 loop of the join. In that way, a sl@0: ** NULL t2 row will be inserted whenever t1.x!=5. If we do not sl@0: ** defer the handling of t1.x=5, it will be processed immediately sl@0: ** after the t1 loop and rows with t1.x!=5 will never appear in sl@0: ** the output, which is incorrect. sl@0: */ sl@0: static void setJoinExpr(Expr *p, int iTable){ sl@0: while( p ){ sl@0: ExprSetProperty(p, EP_FromJoin); sl@0: p->iRightJoinTable = iTable; sl@0: setJoinExpr(p->pLeft, iTable); sl@0: p = p->pRight; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This routine processes the join information for a SELECT statement. sl@0: ** ON and USING clauses are converted into extra terms of the WHERE clause. sl@0: ** NATURAL joins also create extra WHERE clause terms. sl@0: ** sl@0: ** The terms of a FROM clause are contained in the Select.pSrc structure. sl@0: ** The left most table is the first entry in Select.pSrc. The right-most sl@0: ** table is the last entry. The join operator is held in the entry to sl@0: ** the left. Thus entry 0 contains the join operator for the join between sl@0: ** entries 0 and 1. Any ON or USING clauses associated with the join are sl@0: ** also attached to the left entry. sl@0: ** sl@0: ** This routine returns the number of errors encountered. sl@0: */ sl@0: static int sqliteProcessJoin(Parse *pParse, Select *p){ sl@0: SrcList *pSrc; /* All tables in the FROM clause */ sl@0: int i, j; /* Loop counters */ sl@0: struct SrcList_item *pLeft; /* Left table being joined */ sl@0: struct SrcList_item *pRight; /* Right table being joined */ sl@0: sl@0: pSrc = p->pSrc; sl@0: pLeft = &pSrc->a[0]; sl@0: pRight = &pLeft[1]; sl@0: for(i=0; inSrc-1; i++, pRight++, pLeft++){ sl@0: Table *pLeftTab = pLeft->pTab; sl@0: Table *pRightTab = pRight->pTab; sl@0: int isOuter; sl@0: sl@0: if( pLeftTab==0 || pRightTab==0 ) continue; sl@0: isOuter = (pRight->jointype & JT_OUTER)!=0; sl@0: sl@0: /* When the NATURAL keyword is present, add WHERE clause terms for sl@0: ** every column that the two tables have in common. sl@0: */ sl@0: if( pRight->jointype & JT_NATURAL ){ sl@0: if( pRight->pOn || pRight->pUsing ){ sl@0: sqlite3ErrorMsg(pParse, "a NATURAL join may not have " sl@0: "an ON or USING clause", 0); sl@0: return 1; sl@0: } sl@0: for(j=0; jnCol; j++){ sl@0: char *zName = pLeftTab->aCol[j].zName; sl@0: if( columnIndex(pRightTab, zName)>=0 ){ sl@0: addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, sl@0: pRightTab, pRight->zAlias, sl@0: pRight->iCursor, &p->pWhere, isOuter); sl@0: sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Disallow both ON and USING clauses in the same join sl@0: */ sl@0: if( pRight->pOn && pRight->pUsing ){ sl@0: sqlite3ErrorMsg(pParse, "cannot have both ON and USING " sl@0: "clauses in the same join"); sl@0: return 1; sl@0: } sl@0: sl@0: /* Add the ON clause to the end of the WHERE clause, connected by sl@0: ** an AND operator. sl@0: */ sl@0: if( pRight->pOn ){ sl@0: if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); sl@0: p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); sl@0: pRight->pOn = 0; sl@0: } sl@0: sl@0: /* Create extra terms on the WHERE clause for each column named sl@0: ** in the USING clause. Example: If the two tables to be joined are sl@0: ** A and B and the USING clause names X, Y, and Z, then add this sl@0: ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z sl@0: ** Report an error if any column mentioned in the USING clause is sl@0: ** not contained in both tables to be joined. sl@0: */ sl@0: if( pRight->pUsing ){ sl@0: IdList *pList = pRight->pUsing; sl@0: for(j=0; jnId; j++){ sl@0: char *zName = pList->a[j].zName; sl@0: if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ sl@0: sqlite3ErrorMsg(pParse, "cannot join using column %s - column " sl@0: "not present in both tables", zName); sl@0: return 1; sl@0: } sl@0: addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, sl@0: pRightTab, pRight->zAlias, sl@0: pRight->iCursor, &p->pWhere, isOuter); sl@0: } sl@0: } sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Insert code into "v" that will push the record on the top of the sl@0: ** stack into the sorter. sl@0: */ sl@0: static void pushOntoSorter( sl@0: Parse *pParse, /* Parser context */ sl@0: ExprList *pOrderBy, /* The ORDER BY clause */ sl@0: Select *pSelect, /* The whole SELECT statement */ sl@0: int regData /* Register holding data to be sorted */ sl@0: ){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int nExpr = pOrderBy->nExpr; sl@0: int regBase = sqlite3GetTempRange(pParse, nExpr+2); sl@0: int regRecord = sqlite3GetTempReg(pParse); sl@0: sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); sl@0: sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); sl@0: sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); sl@0: sqlite3ReleaseTempReg(pParse, regRecord); sl@0: sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); sl@0: if( pSelect->iLimit ){ sl@0: int addr1, addr2; sl@0: int iLimit; sl@0: if( pSelect->iOffset ){ sl@0: iLimit = pSelect->iOffset+1; sl@0: }else{ sl@0: iLimit = pSelect->iLimit; sl@0: } sl@0: addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); sl@0: sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); sl@0: addr2 = sqlite3VdbeAddOp0(v, OP_Goto); sl@0: sqlite3VdbeJumpHere(v, addr1); sl@0: sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); sl@0: sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); sl@0: sqlite3VdbeJumpHere(v, addr2); sl@0: pSelect->iLimit = 0; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Add code to implement the OFFSET sl@0: */ sl@0: static void codeOffset( sl@0: Vdbe *v, /* Generate code into this VM */ sl@0: Select *p, /* The SELECT statement being coded */ sl@0: int iContinue /* Jump here to skip the current record */ sl@0: ){ sl@0: if( p->iOffset && iContinue!=0 ){ sl@0: int addr; sl@0: sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); sl@0: addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); sl@0: VdbeComment((v, "skip OFFSET records")); sl@0: sqlite3VdbeJumpHere(v, addr); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Add code that will check to make sure the N registers starting at iMem sl@0: ** form a distinct entry. iTab is a sorting index that holds previously sl@0: ** seen combinations of the N values. A new entry is made in iTab sl@0: ** if the current N values are new. sl@0: ** sl@0: ** A jump to addrRepeat is made and the N+1 values are popped from the sl@0: ** stack if the top N elements are not distinct. sl@0: */ sl@0: static void codeDistinct( sl@0: Parse *pParse, /* Parsing and code generating context */ sl@0: int iTab, /* A sorting index used to test for distinctness */ sl@0: int addrRepeat, /* Jump to here if not distinct */ sl@0: int N, /* Number of elements */ sl@0: int iMem /* First element */ sl@0: ){ sl@0: Vdbe *v; sl@0: int r1; sl@0: sl@0: v = pParse->pVdbe; sl@0: r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); sl@0: sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: } sl@0: sl@0: /* sl@0: ** Generate an error message when a SELECT is used within a subexpression sl@0: ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result sl@0: ** column. We do this in a subroutine because the error occurs in multiple sl@0: ** places. sl@0: */ sl@0: static int checkForMultiColumnSelectError( sl@0: Parse *pParse, /* Parse context. */ sl@0: SelectDest *pDest, /* Destination of SELECT results */ sl@0: int nExpr /* Number of result columns returned by SELECT */ sl@0: ){ sl@0: int eDest = pDest->eDest; sl@0: if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ sl@0: sqlite3ErrorMsg(pParse, "only a single result allowed for " sl@0: "a SELECT that is part of an expression"); sl@0: return 1; sl@0: }else{ sl@0: return 0; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This routine generates the code for the inside of the inner loop sl@0: ** of a SELECT. sl@0: ** sl@0: ** If srcTab and nColumn are both zero, then the pEList expressions sl@0: ** are evaluated in order to get the data for this row. If nColumn>0 sl@0: ** then data is pulled from srcTab and pEList is used only to get the sl@0: ** datatypes for each column. sl@0: */ sl@0: static void selectInnerLoop( sl@0: Parse *pParse, /* The parser context */ sl@0: Select *p, /* The complete select statement being coded */ sl@0: ExprList *pEList, /* List of values being extracted */ sl@0: int srcTab, /* Pull data from this table */ sl@0: int nColumn, /* Number of columns in the source table */ sl@0: ExprList *pOrderBy, /* If not NULL, sort results using this key */ sl@0: int distinct, /* If >=0, make sure results are distinct */ sl@0: SelectDest *pDest, /* How to dispose of the results */ sl@0: int iContinue, /* Jump here to continue with next row */ sl@0: int iBreak /* Jump here to break out of the inner loop */ sl@0: ){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int i; sl@0: int hasDistinct; /* True if the DISTINCT keyword is present */ sl@0: int regResult; /* Start of memory holding result set */ sl@0: int eDest = pDest->eDest; /* How to dispose of results */ sl@0: int iParm = pDest->iParm; /* First argument to disposal method */ sl@0: int nResultCol; /* Number of result columns */ sl@0: sl@0: if( v==0 ) return; sl@0: assert( pEList!=0 ); sl@0: hasDistinct = distinct>=0; sl@0: if( pOrderBy==0 && !hasDistinct ){ sl@0: codeOffset(v, p, iContinue); sl@0: } sl@0: sl@0: /* Pull the requested columns. sl@0: */ sl@0: if( nColumn>0 ){ sl@0: nResultCol = nColumn; sl@0: }else{ sl@0: nResultCol = pEList->nExpr; sl@0: } sl@0: if( pDest->iMem==0 ){ sl@0: pDest->iMem = pParse->nMem+1; sl@0: pDest->nMem = nResultCol; sl@0: pParse->nMem += nResultCol; sl@0: }else if( pDest->nMem!=nResultCol ){ sl@0: /* This happens when two SELECTs of a compound SELECT have differing sl@0: ** numbers of result columns. The error message will be generated by sl@0: ** a higher-level routine. */ sl@0: return; sl@0: } sl@0: regResult = pDest->iMem; sl@0: if( nColumn>0 ){ sl@0: for(i=0; inExpr==nColumn ); sl@0: codeDistinct(pParse, distinct, iContinue, nColumn, regResult); sl@0: if( pOrderBy==0 ){ sl@0: codeOffset(v, p, iContinue); sl@0: } sl@0: } sl@0: sl@0: if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ sl@0: return; sl@0: } sl@0: sl@0: switch( eDest ){ sl@0: /* In this mode, write each query result to the key of the temporary sl@0: ** table iParm. sl@0: */ sl@0: #ifndef SQLITE_OMIT_COMPOUND_SELECT sl@0: case SRT_Union: { sl@0: int r1; sl@0: r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: break; sl@0: } sl@0: sl@0: /* Construct a record from the query result, but instead of sl@0: ** saving that record, use it as a key to delete elements from sl@0: ** the temporary table iParm. sl@0: */ sl@0: case SRT_Except: { sl@0: sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); sl@0: break; sl@0: } sl@0: #endif sl@0: sl@0: /* Store the result as data using a unique key. sl@0: */ sl@0: case SRT_Table: sl@0: case SRT_EphemTab: { sl@0: int r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); sl@0: if( pOrderBy ){ sl@0: pushOntoSorter(pParse, pOrderBy, p, r1); sl@0: }else{ sl@0: int r2 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); sl@0: sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); sl@0: sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sl@0: sqlite3ReleaseTempReg(pParse, r2); sl@0: } sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: break; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: /* If we are creating a set for an "expr IN (SELECT ...)" construct, sl@0: ** then there should be a single item on the stack. Write this sl@0: ** item into the set table with bogus data. sl@0: */ sl@0: case SRT_Set: { sl@0: assert( nColumn==1 ); sl@0: p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); sl@0: if( pOrderBy ){ sl@0: /* At first glance you would think we could optimize out the sl@0: ** ORDER BY in this case since the order of entries in the set sl@0: ** does not matter. But there might be a LIMIT clause, in which sl@0: ** case the order does matter */ sl@0: pushOntoSorter(pParse, pOrderBy, p, regResult); sl@0: }else{ sl@0: int r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); sl@0: sqlite3ExprCacheAffinityChange(pParse, regResult, 1); sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: } sl@0: break; sl@0: } sl@0: sl@0: /* If any row exist in the result set, record that fact and abort. sl@0: */ sl@0: case SRT_Exists: { sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); sl@0: /* The LIMIT clause will terminate the loop for us */ sl@0: break; sl@0: } sl@0: sl@0: /* If this is a scalar select that is part of an expression, then sl@0: ** store the results in the appropriate memory cell and break out sl@0: ** of the scan loop. sl@0: */ sl@0: case SRT_Mem: { sl@0: assert( nColumn==1 ); sl@0: if( pOrderBy ){ sl@0: pushOntoSorter(pParse, pOrderBy, p, regResult); sl@0: }else{ sl@0: sqlite3ExprCodeMove(pParse, regResult, iParm, 1); sl@0: /* The LIMIT clause will jump out of the loop for us */ sl@0: } sl@0: break; sl@0: } sl@0: #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ sl@0: sl@0: /* Send the data to the callback function or to a subroutine. In the sl@0: ** case of a subroutine, the subroutine itself is responsible for sl@0: ** popping the data from the stack. sl@0: */ sl@0: case SRT_Coroutine: sl@0: case SRT_Output: { sl@0: if( pOrderBy ){ sl@0: int r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); sl@0: pushOntoSorter(pParse, pOrderBy, p, r1); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: }else if( eDest==SRT_Coroutine ){ sl@0: sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); sl@0: }else{ sl@0: sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); sl@0: sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); sl@0: } sl@0: break; sl@0: } sl@0: sl@0: #if !defined(SQLITE_OMIT_TRIGGER) sl@0: /* Discard the results. This is used for SELECT statements inside sl@0: ** the body of a TRIGGER. The purpose of such selects is to call sl@0: ** user-defined functions that have side effects. We do not care sl@0: ** about the actual results of the select. sl@0: */ sl@0: default: { sl@0: assert( eDest==SRT_Discard ); sl@0: break; sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: /* Jump to the end of the loop if the LIMIT is reached. sl@0: */ sl@0: if( p->iLimit ){ sl@0: assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to sl@0: ** pushOntoSorter() would have cleared p->iLimit */ sl@0: sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); sl@0: sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Given an expression list, generate a KeyInfo structure that records sl@0: ** the collating sequence for each expression in that expression list. sl@0: ** sl@0: ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting sl@0: ** KeyInfo structure is appropriate for initializing a virtual index to sl@0: ** implement that clause. If the ExprList is the result set of a SELECT sl@0: ** then the KeyInfo structure is appropriate for initializing a virtual sl@0: ** index to implement a DISTINCT test. sl@0: ** sl@0: ** Space to hold the KeyInfo structure is obtain from malloc. The calling sl@0: ** function is responsible for seeing that this structure is eventually sl@0: ** freed. Add the KeyInfo structure to the P4 field of an opcode using sl@0: ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. sl@0: */ sl@0: static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ sl@0: sqlite3 *db = pParse->db; sl@0: int nExpr; sl@0: KeyInfo *pInfo; sl@0: struct ExprList_item *pItem; sl@0: int i; sl@0: sl@0: nExpr = pList->nExpr; sl@0: pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); sl@0: if( pInfo ){ sl@0: pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; sl@0: pInfo->nField = nExpr; sl@0: pInfo->enc = ENC(db); sl@0: for(i=0, pItem=pList->a; ipExpr); sl@0: if( !pColl ){ sl@0: pColl = db->pDfltColl; sl@0: } sl@0: pInfo->aColl[i] = pColl; sl@0: pInfo->aSortOrder[i] = pItem->sortOrder; sl@0: } sl@0: } sl@0: return pInfo; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** If the inner loop was generated using a non-null pOrderBy argument, sl@0: ** then the results were placed in a sorter. After the loop is terminated sl@0: ** we need to run the sorter and output the results. The following sl@0: ** routine generates the code needed to do that. sl@0: */ sl@0: static void generateSortTail( sl@0: Parse *pParse, /* Parsing context */ sl@0: Select *p, /* The SELECT statement */ sl@0: Vdbe *v, /* Generate code into this VDBE */ sl@0: int nColumn, /* Number of columns of data */ sl@0: SelectDest *pDest /* Write the sorted results here */ sl@0: ){ sl@0: int brk = sqlite3VdbeMakeLabel(v); sl@0: int cont = sqlite3VdbeMakeLabel(v); sl@0: int addr; sl@0: int iTab; sl@0: int pseudoTab = 0; sl@0: ExprList *pOrderBy = p->pOrderBy; sl@0: sl@0: int eDest = pDest->eDest; sl@0: int iParm = pDest->iParm; sl@0: sl@0: int regRow; sl@0: int regRowid; sl@0: sl@0: iTab = pOrderBy->iECursor; sl@0: if( eDest==SRT_Output || eDest==SRT_Coroutine ){ sl@0: pseudoTab = pParse->nTab++; sl@0: sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn); sl@0: sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output); sl@0: } sl@0: addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk); sl@0: codeOffset(v, p, cont); sl@0: regRow = sqlite3GetTempReg(pParse); sl@0: regRowid = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); sl@0: switch( eDest ){ sl@0: case SRT_Table: sl@0: case SRT_EphemTab: { sl@0: sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); sl@0: sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); sl@0: sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sl@0: break; sl@0: } sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: case SRT_Set: { sl@0: assert( nColumn==1 ); sl@0: sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); sl@0: sqlite3ExprCacheAffinityChange(pParse, regRow, 1); sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); sl@0: break; sl@0: } sl@0: case SRT_Mem: { sl@0: assert( nColumn==1 ); sl@0: sqlite3ExprCodeMove(pParse, regRow, iParm, 1); sl@0: /* The LIMIT clause will terminate the loop for us */ sl@0: break; sl@0: } sl@0: #endif sl@0: case SRT_Output: sl@0: case SRT_Coroutine: { sl@0: int i; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); sl@0: sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); sl@0: for(i=0; iiMem+i ); sl@0: sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); sl@0: } sl@0: if( eDest==SRT_Output ){ sl@0: sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); sl@0: sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); sl@0: }else{ sl@0: sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); sl@0: } sl@0: break; sl@0: } sl@0: default: { sl@0: /* Do nothing */ sl@0: break; sl@0: } sl@0: } sl@0: sqlite3ReleaseTempReg(pParse, regRow); sl@0: sqlite3ReleaseTempReg(pParse, regRowid); sl@0: sl@0: /* LIMIT has been implemented by the pushOntoSorter() routine. sl@0: */ sl@0: assert( p->iLimit==0 ); sl@0: sl@0: /* The bottom of the loop sl@0: */ sl@0: sqlite3VdbeResolveLabel(v, cont); sl@0: sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); sl@0: sqlite3VdbeResolveLabel(v, brk); sl@0: if( eDest==SRT_Output || eDest==SRT_Coroutine ){ sl@0: sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); sl@0: } sl@0: sl@0: } sl@0: sl@0: /* sl@0: ** Return a pointer to a string containing the 'declaration type' of the sl@0: ** expression pExpr. The string may be treated as static by the caller. sl@0: ** sl@0: ** The declaration type is the exact datatype definition extracted from the sl@0: ** original CREATE TABLE statement if the expression is a column. The sl@0: ** declaration type for a ROWID field is INTEGER. Exactly when an expression sl@0: ** is considered a column can be complex in the presence of subqueries. The sl@0: ** result-set expression in all of the following SELECT statements is sl@0: ** considered a column by this function. sl@0: ** sl@0: ** SELECT col FROM tbl; sl@0: ** SELECT (SELECT col FROM tbl; sl@0: ** SELECT (SELECT col FROM tbl); sl@0: ** SELECT abc FROM (SELECT col AS abc FROM tbl); sl@0: ** sl@0: ** The declaration type for any expression other than a column is NULL. sl@0: */ sl@0: static const char *columnType( sl@0: NameContext *pNC, sl@0: Expr *pExpr, sl@0: const char **pzOriginDb, sl@0: const char **pzOriginTab, sl@0: const char **pzOriginCol sl@0: ){ sl@0: char const *zType = 0; sl@0: char const *zOriginDb = 0; sl@0: char const *zOriginTab = 0; sl@0: char const *zOriginCol = 0; sl@0: int j; sl@0: if( pExpr==0 || pNC->pSrcList==0 ) return 0; sl@0: sl@0: switch( pExpr->op ){ sl@0: case TK_AGG_COLUMN: sl@0: case TK_COLUMN: { sl@0: /* The expression is a column. Locate the table the column is being sl@0: ** extracted from in NameContext.pSrcList. This table may be real sl@0: ** database table or a subquery. sl@0: */ sl@0: Table *pTab = 0; /* Table structure column is extracted from */ sl@0: Select *pS = 0; /* Select the column is extracted from */ sl@0: int iCol = pExpr->iColumn; /* Index of column in pTab */ sl@0: while( pNC && !pTab ){ sl@0: SrcList *pTabList = pNC->pSrcList; sl@0: for(j=0;jnSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); sl@0: if( jnSrc ){ sl@0: pTab = pTabList->a[j].pTab; sl@0: pS = pTabList->a[j].pSelect; sl@0: }else{ sl@0: pNC = pNC->pNext; sl@0: } sl@0: } sl@0: sl@0: if( pTab==0 ){ sl@0: /* FIX ME: sl@0: ** This can occurs if you have something like "SELECT new.x;" inside sl@0: ** a trigger. In other words, if you reference the special "new" sl@0: ** table in the result set of a select. We do not have a good way sl@0: ** to find the actual table type, so call it "TEXT". This is really sl@0: ** something of a bug, but I do not know how to fix it. sl@0: ** sl@0: ** This code does not produce the correct answer - it just prevents sl@0: ** a segfault. See ticket #1229. sl@0: */ sl@0: zType = "TEXT"; sl@0: break; sl@0: } sl@0: sl@0: assert( pTab ); sl@0: if( pS ){ sl@0: /* The "table" is actually a sub-select or a view in the FROM clause sl@0: ** of the SELECT statement. Return the declaration type and origin sl@0: ** data for the result-set column of the sub-select. sl@0: */ sl@0: if( iCol>=0 && iColpEList->nExpr ){ sl@0: /* If iCol is less than zero, then the expression requests the sl@0: ** rowid of the sub-select or view. This expression is legal (see sl@0: ** test case misc2.2.2) - it always evaluates to NULL. sl@0: */ sl@0: NameContext sNC; sl@0: Expr *p = pS->pEList->a[iCol].pExpr; sl@0: sNC.pSrcList = pS->pSrc; sl@0: sNC.pNext = 0; sl@0: sNC.pParse = pNC->pParse; sl@0: zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); sl@0: } sl@0: }else if( pTab->pSchema ){ sl@0: /* A real table */ sl@0: assert( !pS ); sl@0: if( iCol<0 ) iCol = pTab->iPKey; sl@0: assert( iCol==-1 || (iCol>=0 && iColnCol) ); sl@0: if( iCol<0 ){ sl@0: zType = "INTEGER"; sl@0: zOriginCol = "rowid"; sl@0: }else{ sl@0: zType = pTab->aCol[iCol].zType; sl@0: zOriginCol = pTab->aCol[iCol].zName; sl@0: } sl@0: zOriginTab = pTab->zName; sl@0: if( pNC->pParse ){ sl@0: int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); sl@0: zOriginDb = pNC->pParse->db->aDb[iDb].zName; sl@0: } sl@0: } sl@0: break; sl@0: } sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: case TK_SELECT: { sl@0: /* The expression is a sub-select. Return the declaration type and sl@0: ** origin info for the single column in the result set of the SELECT sl@0: ** statement. sl@0: */ sl@0: NameContext sNC; sl@0: Select *pS = pExpr->pSelect; sl@0: Expr *p = pS->pEList->a[0].pExpr; sl@0: sNC.pSrcList = pS->pSrc; sl@0: sNC.pNext = pNC; sl@0: sNC.pParse = pNC->pParse; sl@0: zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); sl@0: break; sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: if( pzOriginDb ){ sl@0: assert( pzOriginTab && pzOriginCol ); sl@0: *pzOriginDb = zOriginDb; sl@0: *pzOriginTab = zOriginTab; sl@0: *pzOriginCol = zOriginCol; sl@0: } sl@0: return zType; sl@0: } sl@0: sl@0: /* sl@0: ** Generate code that will tell the VDBE the declaration types of columns sl@0: ** in the result set. sl@0: */ sl@0: static void generateColumnTypes( sl@0: Parse *pParse, /* Parser context */ sl@0: SrcList *pTabList, /* List of tables */ sl@0: ExprList *pEList /* Expressions defining the result set */ sl@0: ){ sl@0: #ifndef SQLITE_OMIT_DECLTYPE sl@0: Vdbe *v = pParse->pVdbe; sl@0: int i; sl@0: NameContext sNC; sl@0: sNC.pSrcList = pTabList; sl@0: sNC.pParse = pParse; sl@0: for(i=0; inExpr; i++){ sl@0: Expr *p = pEList->a[i].pExpr; sl@0: const char *zType; sl@0: #ifdef SQLITE_ENABLE_COLUMN_METADATA sl@0: const char *zOrigDb = 0; sl@0: const char *zOrigTab = 0; sl@0: const char *zOrigCol = 0; sl@0: zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); sl@0: sl@0: /* The vdbe must make its own copy of the column-type and other sl@0: ** column specific strings, in case the schema is reset before this sl@0: ** virtual machine is deleted. sl@0: */ sl@0: sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT); sl@0: sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT); sl@0: sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT); sl@0: #else sl@0: zType = columnType(&sNC, p, 0, 0, 0); sl@0: #endif sl@0: sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT); sl@0: } sl@0: #endif /* SQLITE_OMIT_DECLTYPE */ sl@0: } sl@0: sl@0: /* sl@0: ** Generate code that will tell the VDBE the names of columns sl@0: ** in the result set. This information is used to provide the sl@0: ** azCol[] values in the callback. sl@0: */ sl@0: static void generateColumnNames( sl@0: Parse *pParse, /* Parser context */ sl@0: SrcList *pTabList, /* List of tables */ sl@0: ExprList *pEList /* Expressions defining the result set */ sl@0: ){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int i, j; sl@0: sqlite3 *db = pParse->db; sl@0: int fullNames, shortNames; sl@0: sl@0: #ifndef SQLITE_OMIT_EXPLAIN sl@0: /* If this is an EXPLAIN, skip this step */ sl@0: if( pParse->explain ){ sl@0: return; sl@0: } sl@0: #endif sl@0: sl@0: assert( v!=0 ); sl@0: if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; sl@0: pParse->colNamesSet = 1; sl@0: fullNames = (db->flags & SQLITE_FullColNames)!=0; sl@0: shortNames = (db->flags & SQLITE_ShortColNames)!=0; sl@0: sqlite3VdbeSetNumCols(v, pEList->nExpr); sl@0: for(i=0; inExpr; i++){ sl@0: Expr *p; sl@0: p = pEList->a[i].pExpr; sl@0: if( p==0 ) continue; sl@0: if( pEList->a[i].zName ){ sl@0: char *zName = pEList->a[i].zName; sl@0: sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); sl@0: }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){ sl@0: Table *pTab; sl@0: char *zCol; sl@0: int iCol = p->iColumn; sl@0: for(j=0; jnSrc && pTabList->a[j].iCursor!=p->iTable; j++){} sl@0: assert( jnSrc ); sl@0: pTab = pTabList->a[j].pTab; sl@0: if( iCol<0 ) iCol = pTab->iPKey; sl@0: assert( iCol==-1 || (iCol>=0 && iColnCol) ); sl@0: if( iCol<0 ){ sl@0: zCol = "rowid"; sl@0: }else{ sl@0: zCol = pTab->aCol[iCol].zName; sl@0: } sl@0: if( !shortNames && !fullNames ){ sl@0: sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); sl@0: }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ sl@0: char *zName = 0; sl@0: char *zTab; sl@0: sl@0: zTab = pTabList->a[j].zAlias; sl@0: if( fullNames || zTab==0 ) zTab = pTab->zName; sl@0: zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol); sl@0: sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC); sl@0: }else{ sl@0: sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); sl@0: } sl@0: }else{ sl@0: sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); sl@0: } sl@0: } sl@0: generateColumnTypes(pParse, pTabList, pEList); sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_COMPOUND_SELECT sl@0: /* sl@0: ** Name of the connection operator, used for error messages. sl@0: */ sl@0: static const char *selectOpName(int id){ sl@0: char *z; sl@0: switch( id ){ sl@0: case TK_ALL: z = "UNION ALL"; break; sl@0: case TK_INTERSECT: z = "INTERSECT"; break; sl@0: case TK_EXCEPT: z = "EXCEPT"; break; sl@0: default: z = "UNION"; break; sl@0: } sl@0: return z; sl@0: } sl@0: #endif /* SQLITE_OMIT_COMPOUND_SELECT */ sl@0: sl@0: /* sl@0: ** Given a an expression list (which is really the list of expressions sl@0: ** that form the result set of a SELECT statement) compute appropriate sl@0: ** column names for a table that would hold the expression list. sl@0: ** sl@0: ** All column names will be unique. sl@0: ** sl@0: ** Only the column names are computed. Column.zType, Column.zColl, sl@0: ** and other fields of Column are zeroed. sl@0: ** sl@0: ** Return SQLITE_OK on success. If a memory allocation error occurs, sl@0: ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. sl@0: */ sl@0: static int selectColumnsFromExprList( sl@0: Parse *pParse, /* Parsing context */ sl@0: ExprList *pEList, /* Expr list from which to derive column names */ sl@0: int *pnCol, /* Write the number of columns here */ sl@0: Column **paCol /* Write the new column list here */ sl@0: ){ sl@0: sqlite3 *db = pParse->db; sl@0: int i, j, cnt; sl@0: Column *aCol, *pCol; sl@0: int nCol; sl@0: Expr *p; sl@0: char *zName; sl@0: int nName; sl@0: sl@0: *pnCol = nCol = pEList->nExpr; sl@0: aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); sl@0: if( aCol==0 ) return SQLITE_NOMEM; sl@0: for(i=0, pCol=aCol; ia[i].pExpr; sl@0: assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); sl@0: if( (zName = pEList->a[i].zName)!=0 ){ sl@0: /* If the column contains an "AS " phrase, use as the name */ sl@0: zName = sqlite3DbStrDup(db, zName); sl@0: }else{ sl@0: Expr *pCol = p; sl@0: Table *pTab; sl@0: while( pCol->op==TK_DOT ) pCol = pCol->pRight; sl@0: if( pCol->op==TK_COLUMN && (pTab = pCol->pTab)!=0 ){ sl@0: /* For columns use the column name name */ sl@0: int iCol = pCol->iColumn; sl@0: if( iCol<0 ) iCol = pTab->iPKey; sl@0: zName = sqlite3MPrintf(db, "%s", sl@0: iCol>=0 ? pTab->aCol[iCol].zName : "rowid"); sl@0: }else{ sl@0: /* Use the original text of the column expression as its name */ sl@0: Token *pToken = (pCol->span.z?&pCol->span:&pCol->token); sl@0: zName = sqlite3MPrintf(db, "%T", pToken); sl@0: } sl@0: } sl@0: if( db->mallocFailed ){ sl@0: sqlite3DbFree(db, zName); sl@0: break; sl@0: } sl@0: sqlite3Dequote(zName); sl@0: sl@0: /* Make sure the column name is unique. If the name is not unique, sl@0: ** append a integer to the name so that it becomes unique. sl@0: */ sl@0: nName = strlen(zName); sl@0: for(j=cnt=0; jzName = zName; sl@0: } sl@0: if( db->mallocFailed ){ sl@0: int j; sl@0: for(j=0; jdb; sl@0: NameContext sNC; sl@0: Column *pCol; sl@0: CollSeq *pColl; sl@0: int i; sl@0: Expr *p; sl@0: struct ExprList_item *a; sl@0: sl@0: assert( pSelect!=0 ); sl@0: assert( (pSelect->selFlags & SF_Resolved)!=0 ); sl@0: assert( nCol==pSelect->pEList->nExpr || db->mallocFailed ); sl@0: if( db->mallocFailed ) return; sl@0: memset(&sNC, 0, sizeof(sNC)); sl@0: sNC.pSrcList = pSelect->pSrc; sl@0: a = pSelect->pEList->a; sl@0: for(i=0, pCol=aCol; izType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); sl@0: pCol->affinity = sqlite3ExprAffinity(p); sl@0: pColl = sqlite3ExprCollSeq(pParse, p); sl@0: if( pColl ){ sl@0: pCol->zColl = sqlite3DbStrDup(db, pColl->zName); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Given a SELECT statement, generate a Table structure that describes sl@0: ** the result set of that SELECT. sl@0: */ sl@0: Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ sl@0: Table *pTab; sl@0: sqlite3 *db = pParse->db; sl@0: int savedFlags; sl@0: sl@0: savedFlags = db->flags; sl@0: db->flags &= ~SQLITE_FullColNames; sl@0: db->flags |= SQLITE_ShortColNames; sl@0: sqlite3SelectPrep(pParse, pSelect, 0); sl@0: if( pParse->nErr ) return 0; sl@0: while( pSelect->pPrior ) pSelect = pSelect->pPrior; sl@0: db->flags = savedFlags; sl@0: pTab = sqlite3DbMallocZero(db, sizeof(Table) ); sl@0: if( pTab==0 ){ sl@0: return 0; sl@0: } sl@0: pTab->db = db; sl@0: pTab->nRef = 1; sl@0: pTab->zName = 0; sl@0: selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); sl@0: selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect); sl@0: pTab->iPKey = -1; sl@0: if( db->mallocFailed ){ sl@0: sqlite3DeleteTable(pTab); sl@0: return 0; sl@0: } sl@0: return pTab; sl@0: } sl@0: sl@0: /* sl@0: ** Get a VDBE for the given parser context. Create a new one if necessary. sl@0: ** If an error occurs, return NULL and leave a message in pParse. sl@0: */ sl@0: Vdbe *sqlite3GetVdbe(Parse *pParse){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: if( v==0 ){ sl@0: v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); sl@0: #ifndef SQLITE_OMIT_TRACE sl@0: if( v ){ sl@0: sqlite3VdbeAddOp0(v, OP_Trace); sl@0: } sl@0: #endif sl@0: } sl@0: return v; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Compute the iLimit and iOffset fields of the SELECT based on the sl@0: ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions sl@0: ** that appear in the original SQL statement after the LIMIT and OFFSET sl@0: ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset sl@0: ** are the integer memory register numbers for counters used to compute sl@0: ** the limit and offset. If there is no limit and/or offset, then sl@0: ** iLimit and iOffset are negative. sl@0: ** sl@0: ** This routine changes the values of iLimit and iOffset only if sl@0: ** a limit or offset is defined by pLimit and pOffset. iLimit and sl@0: ** iOffset should have been preset to appropriate default values sl@0: ** (usually but not always -1) prior to calling this routine. sl@0: ** Only if pLimit!=0 or pOffset!=0 do the limit registers get sl@0: ** redefined. The UNION ALL operator uses this property to force sl@0: ** the reuse of the same limit and offset registers across multiple sl@0: ** SELECT statements. sl@0: */ sl@0: static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ sl@0: Vdbe *v = 0; sl@0: int iLimit = 0; sl@0: int iOffset; sl@0: int addr1; sl@0: if( p->iLimit ) return; sl@0: sl@0: /* sl@0: ** "LIMIT -1" always shows all rows. There is some sl@0: ** contraversy about what the correct behavior should be. sl@0: ** The current implementation interprets "LIMIT 0" to mean sl@0: ** no rows. sl@0: */ sl@0: if( p->pLimit ){ sl@0: p->iLimit = iLimit = ++pParse->nMem; sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) return; sl@0: sqlite3ExprCode(pParse, p->pLimit, iLimit); sl@0: sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); sl@0: VdbeComment((v, "LIMIT counter")); sl@0: sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); sl@0: } sl@0: if( p->pOffset ){ sl@0: p->iOffset = iOffset = ++pParse->nMem; sl@0: if( p->pLimit ){ sl@0: pParse->nMem++; /* Allocate an extra register for limit+offset */ sl@0: } sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) return; sl@0: sqlite3ExprCode(pParse, p->pOffset, iOffset); sl@0: sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); sl@0: VdbeComment((v, "OFFSET counter")); sl@0: addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); sl@0: sqlite3VdbeJumpHere(v, addr1); sl@0: if( p->pLimit ){ sl@0: sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); sl@0: VdbeComment((v, "LIMIT+OFFSET")); sl@0: addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); sl@0: sqlite3VdbeJumpHere(v, addr1); sl@0: } sl@0: } sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_COMPOUND_SELECT sl@0: /* sl@0: ** Return the appropriate collating sequence for the iCol-th column of sl@0: ** the result set for the compound-select statement "p". Return NULL if sl@0: ** the column has no default collating sequence. sl@0: ** sl@0: ** The collating sequence for the compound select is taken from the sl@0: ** left-most term of the select that has a collating sequence. sl@0: */ sl@0: static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ sl@0: CollSeq *pRet; sl@0: if( p->pPrior ){ sl@0: pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); sl@0: }else{ sl@0: pRet = 0; sl@0: } sl@0: if( pRet==0 ){ sl@0: pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); sl@0: } sl@0: return pRet; sl@0: } sl@0: #endif /* SQLITE_OMIT_COMPOUND_SELECT */ sl@0: sl@0: /* Forward reference */ sl@0: static int multiSelectOrderBy( sl@0: Parse *pParse, /* Parsing context */ sl@0: Select *p, /* The right-most of SELECTs to be coded */ sl@0: SelectDest *pDest /* What to do with query results */ sl@0: ); sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_COMPOUND_SELECT sl@0: /* sl@0: ** This routine is called to process a compound query form from sl@0: ** two or more separate queries using UNION, UNION ALL, EXCEPT, or sl@0: ** INTERSECT sl@0: ** sl@0: ** "p" points to the right-most of the two queries. the query on the sl@0: ** left is p->pPrior. The left query could also be a compound query sl@0: ** in which case this routine will be called recursively. sl@0: ** sl@0: ** The results of the total query are to be written into a destination sl@0: ** of type eDest with parameter iParm. sl@0: ** sl@0: ** Example 1: Consider a three-way compound SQL statement. sl@0: ** sl@0: ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 sl@0: ** sl@0: ** This statement is parsed up as follows: sl@0: ** sl@0: ** SELECT c FROM t3 sl@0: ** | sl@0: ** `-----> SELECT b FROM t2 sl@0: ** | sl@0: ** `------> SELECT a FROM t1 sl@0: ** sl@0: ** The arrows in the diagram above represent the Select.pPrior pointer. sl@0: ** So if this routine is called with p equal to the t3 query, then sl@0: ** pPrior will be the t2 query. p->op will be TK_UNION in this case. sl@0: ** sl@0: ** Notice that because of the way SQLite parses compound SELECTs, the sl@0: ** individual selects always group from left to right. sl@0: */ sl@0: static int multiSelect( sl@0: Parse *pParse, /* Parsing context */ sl@0: Select *p, /* The right-most of SELECTs to be coded */ sl@0: SelectDest *pDest /* What to do with query results */ sl@0: ){ sl@0: int rc = SQLITE_OK; /* Success code from a subroutine */ sl@0: Select *pPrior; /* Another SELECT immediately to our left */ sl@0: Vdbe *v; /* Generate code to this VDBE */ sl@0: SelectDest dest; /* Alternative data destination */ sl@0: Select *pDelete = 0; /* Chain of simple selects to delete */ sl@0: sqlite3 *db; /* Database connection */ sl@0: sl@0: /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only sl@0: ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. sl@0: */ sl@0: assert( p && p->pPrior ); /* Calling function guarantees this much */ sl@0: db = pParse->db; sl@0: pPrior = p->pPrior; sl@0: assert( pPrior->pRightmost!=pPrior ); sl@0: assert( pPrior->pRightmost==p->pRightmost ); sl@0: dest = *pDest; sl@0: if( pPrior->pOrderBy ){ sl@0: sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", sl@0: selectOpName(p->op)); sl@0: rc = 1; sl@0: goto multi_select_end; sl@0: } sl@0: if( pPrior->pLimit ){ sl@0: sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", sl@0: selectOpName(p->op)); sl@0: rc = 1; sl@0: goto multi_select_end; sl@0: } sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: assert( v!=0 ); /* The VDBE already created by calling function */ sl@0: sl@0: /* Create the destination temporary table if necessary sl@0: */ sl@0: if( dest.eDest==SRT_EphemTab ){ sl@0: assert( p->pEList ); sl@0: sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); sl@0: dest.eDest = SRT_Table; sl@0: } sl@0: sl@0: /* Make sure all SELECTs in the statement have the same number of elements sl@0: ** in their result sets. sl@0: */ sl@0: assert( p->pEList && pPrior->pEList ); sl@0: if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ sl@0: sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" sl@0: " do not have the same number of result columns", selectOpName(p->op)); sl@0: rc = 1; sl@0: goto multi_select_end; sl@0: } sl@0: sl@0: /* Compound SELECTs that have an ORDER BY clause are handled separately. sl@0: */ sl@0: if( p->pOrderBy ){ sl@0: return multiSelectOrderBy(pParse, p, pDest); sl@0: } sl@0: sl@0: /* Generate code for the left and right SELECT statements. sl@0: */ sl@0: switch( p->op ){ sl@0: case TK_ALL: { sl@0: int addr = 0; sl@0: assert( !pPrior->pLimit ); sl@0: pPrior->pLimit = p->pLimit; sl@0: pPrior->pOffset = p->pOffset; sl@0: rc = sqlite3Select(pParse, pPrior, &dest); sl@0: p->pLimit = 0; sl@0: p->pOffset = 0; sl@0: if( rc ){ sl@0: goto multi_select_end; sl@0: } sl@0: p->pPrior = 0; sl@0: p->iLimit = pPrior->iLimit; sl@0: p->iOffset = pPrior->iOffset; sl@0: if( p->iLimit ){ sl@0: addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); sl@0: VdbeComment((v, "Jump ahead if LIMIT reached")); sl@0: } sl@0: rc = sqlite3Select(pParse, p, &dest); sl@0: pDelete = p->pPrior; sl@0: p->pPrior = pPrior; sl@0: if( rc ){ sl@0: goto multi_select_end; sl@0: } sl@0: if( addr ){ sl@0: sqlite3VdbeJumpHere(v, addr); sl@0: } sl@0: break; sl@0: } sl@0: case TK_EXCEPT: sl@0: case TK_UNION: { sl@0: int unionTab; /* Cursor number of the temporary table holding result */ sl@0: int op = 0; /* One of the SRT_ operations to apply to self */ sl@0: int priorOp; /* The SRT_ operation to apply to prior selects */ sl@0: Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ sl@0: int addr; sl@0: SelectDest uniondest; sl@0: sl@0: priorOp = SRT_Union; sl@0: if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){ sl@0: /* We can reuse a temporary table generated by a SELECT to our sl@0: ** right. sl@0: */ sl@0: unionTab = dest.iParm; sl@0: }else{ sl@0: /* We will need to create our own temporary table to hold the sl@0: ** intermediate results. sl@0: */ sl@0: unionTab = pParse->nTab++; sl@0: assert( p->pOrderBy==0 ); sl@0: addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); sl@0: assert( p->addrOpenEphm[0] == -1 ); sl@0: p->addrOpenEphm[0] = addr; sl@0: p->pRightmost->selFlags |= SF_UsesEphemeral; sl@0: assert( p->pEList ); sl@0: } sl@0: sl@0: /* Code the SELECT statements to our left sl@0: */ sl@0: assert( !pPrior->pOrderBy ); sl@0: sqlite3SelectDestInit(&uniondest, priorOp, unionTab); sl@0: rc = sqlite3Select(pParse, pPrior, &uniondest); sl@0: if( rc ){ sl@0: goto multi_select_end; sl@0: } sl@0: sl@0: /* Code the current SELECT statement sl@0: */ sl@0: if( p->op==TK_EXCEPT ){ sl@0: op = SRT_Except; sl@0: }else{ sl@0: assert( p->op==TK_UNION ); sl@0: op = SRT_Union; sl@0: } sl@0: p->pPrior = 0; sl@0: pLimit = p->pLimit; sl@0: p->pLimit = 0; sl@0: pOffset = p->pOffset; sl@0: p->pOffset = 0; sl@0: uniondest.eDest = op; sl@0: rc = sqlite3Select(pParse, p, &uniondest); sl@0: /* Query flattening in sqlite3Select() might refill p->pOrderBy. sl@0: ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ sl@0: sqlite3ExprListDelete(db, p->pOrderBy); sl@0: pDelete = p->pPrior; sl@0: p->pPrior = pPrior; sl@0: p->pOrderBy = 0; sl@0: sqlite3ExprDelete(db, p->pLimit); sl@0: p->pLimit = pLimit; sl@0: p->pOffset = pOffset; sl@0: p->iLimit = 0; sl@0: p->iOffset = 0; sl@0: if( rc ){ sl@0: goto multi_select_end; sl@0: } sl@0: sl@0: sl@0: /* Convert the data in the temporary table into whatever form sl@0: ** it is that we currently need. sl@0: */ sl@0: if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ sl@0: int iCont, iBreak, iStart; sl@0: assert( p->pEList ); sl@0: if( dest.eDest==SRT_Output ){ sl@0: Select *pFirst = p; sl@0: while( pFirst->pPrior ) pFirst = pFirst->pPrior; sl@0: generateColumnNames(pParse, 0, pFirst->pEList); sl@0: } sl@0: iBreak = sqlite3VdbeMakeLabel(v); sl@0: iCont = sqlite3VdbeMakeLabel(v); sl@0: computeLimitRegisters(pParse, p, iBreak); sl@0: sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); sl@0: iStart = sqlite3VdbeCurrentAddr(v); sl@0: selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, sl@0: 0, -1, &dest, iCont, iBreak); sl@0: sqlite3VdbeResolveLabel(v, iCont); sl@0: sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); sl@0: sqlite3VdbeResolveLabel(v, iBreak); sl@0: sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); sl@0: } sl@0: break; sl@0: } sl@0: case TK_INTERSECT: { sl@0: int tab1, tab2; sl@0: int iCont, iBreak, iStart; sl@0: Expr *pLimit, *pOffset; sl@0: int addr; sl@0: SelectDest intersectdest; sl@0: int r1; sl@0: sl@0: /* INTERSECT is different from the others since it requires sl@0: ** two temporary tables. Hence it has its own case. Begin sl@0: ** by allocating the tables we will need. sl@0: */ sl@0: tab1 = pParse->nTab++; sl@0: tab2 = pParse->nTab++; sl@0: assert( p->pOrderBy==0 ); sl@0: sl@0: addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); sl@0: assert( p->addrOpenEphm[0] == -1 ); sl@0: p->addrOpenEphm[0] = addr; sl@0: p->pRightmost->selFlags |= SF_UsesEphemeral; sl@0: assert( p->pEList ); sl@0: sl@0: /* Code the SELECTs to our left into temporary table "tab1". sl@0: */ sl@0: sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); sl@0: rc = sqlite3Select(pParse, pPrior, &intersectdest); sl@0: if( rc ){ sl@0: goto multi_select_end; sl@0: } sl@0: sl@0: /* Code the current SELECT into temporary table "tab2" sl@0: */ sl@0: addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); sl@0: assert( p->addrOpenEphm[1] == -1 ); sl@0: p->addrOpenEphm[1] = addr; sl@0: p->pPrior = 0; sl@0: pLimit = p->pLimit; sl@0: p->pLimit = 0; sl@0: pOffset = p->pOffset; sl@0: p->pOffset = 0; sl@0: intersectdest.iParm = tab2; sl@0: rc = sqlite3Select(pParse, p, &intersectdest); sl@0: pDelete = p->pPrior; sl@0: p->pPrior = pPrior; sl@0: sqlite3ExprDelete(db, p->pLimit); sl@0: p->pLimit = pLimit; sl@0: p->pOffset = pOffset; sl@0: if( rc ){ sl@0: goto multi_select_end; sl@0: } sl@0: sl@0: /* Generate code to take the intersection of the two temporary sl@0: ** tables. sl@0: */ sl@0: assert( p->pEList ); sl@0: if( dest.eDest==SRT_Output ){ sl@0: Select *pFirst = p; sl@0: while( pFirst->pPrior ) pFirst = pFirst->pPrior; sl@0: generateColumnNames(pParse, 0, pFirst->pEList); sl@0: } sl@0: iBreak = sqlite3VdbeMakeLabel(v); sl@0: iCont = sqlite3VdbeMakeLabel(v); sl@0: computeLimitRegisters(pParse, p, iBreak); sl@0: sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); sl@0: r1 = sqlite3GetTempReg(pParse); sl@0: iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); sl@0: sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, sl@0: 0, -1, &dest, iCont, iBreak); sl@0: sqlite3VdbeResolveLabel(v, iCont); sl@0: sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); sl@0: sqlite3VdbeResolveLabel(v, iBreak); sl@0: sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); sl@0: sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); sl@0: break; sl@0: } sl@0: } sl@0: sl@0: /* Compute collating sequences used by sl@0: ** temporary tables needed to implement the compound select. sl@0: ** Attach the KeyInfo structure to all temporary tables. sl@0: ** sl@0: ** This section is run by the right-most SELECT statement only. sl@0: ** SELECT statements to the left always skip this part. The right-most sl@0: ** SELECT might also skip this part if it has no ORDER BY clause and sl@0: ** no temp tables are required. sl@0: */ sl@0: if( p->selFlags & SF_UsesEphemeral ){ sl@0: int i; /* Loop counter */ sl@0: KeyInfo *pKeyInfo; /* Collating sequence for the result set */ sl@0: Select *pLoop; /* For looping through SELECT statements */ sl@0: CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ sl@0: int nCol; /* Number of columns in result set */ sl@0: sl@0: assert( p->pRightmost==p ); sl@0: nCol = p->pEList->nExpr; sl@0: pKeyInfo = sqlite3DbMallocZero(db, sl@0: sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); sl@0: if( !pKeyInfo ){ sl@0: rc = SQLITE_NOMEM; sl@0: goto multi_select_end; sl@0: } sl@0: sl@0: pKeyInfo->enc = ENC(db); sl@0: pKeyInfo->nField = nCol; sl@0: sl@0: for(i=0, apColl=pKeyInfo->aColl; ipDfltColl; sl@0: } sl@0: } sl@0: sl@0: for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ sl@0: for(i=0; i<2; i++){ sl@0: int addr = pLoop->addrOpenEphm[i]; sl@0: if( addr<0 ){ sl@0: /* If [0] is unused then [1] is also unused. So we can sl@0: ** always safely abort as soon as the first unused slot is found */ sl@0: assert( pLoop->addrOpenEphm[1]<0 ); sl@0: break; sl@0: } sl@0: sqlite3VdbeChangeP2(v, addr, nCol); sl@0: sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); sl@0: pLoop->addrOpenEphm[i] = -1; sl@0: } sl@0: } sl@0: sqlite3DbFree(db, pKeyInfo); sl@0: } sl@0: sl@0: multi_select_end: sl@0: pDest->iMem = dest.iMem; sl@0: pDest->nMem = dest.nMem; sl@0: sqlite3SelectDelete(db, pDelete); sl@0: return rc; sl@0: } sl@0: #endif /* SQLITE_OMIT_COMPOUND_SELECT */ sl@0: sl@0: /* sl@0: ** Code an output subroutine for a coroutine implementation of a sl@0: ** SELECT statment. sl@0: ** sl@0: ** The data to be output is contained in pIn->iMem. There are sl@0: ** pIn->nMem columns to be output. pDest is where the output should sl@0: ** be sent. sl@0: ** sl@0: ** regReturn is the number of the register holding the subroutine sl@0: ** return address. sl@0: ** sl@0: ** If regPrev>0 then it is a the first register in a vector that sl@0: ** records the previous output. mem[regPrev] is a flag that is false sl@0: ** if there has been no previous output. If regPrev>0 then code is sl@0: ** generated to suppress duplicates. pKeyInfo is used for comparing sl@0: ** keys. sl@0: ** sl@0: ** If the LIMIT found in p->iLimit is reached, jump immediately to sl@0: ** iBreak. sl@0: */ sl@0: static int generateOutputSubroutine( sl@0: Parse *pParse, /* Parsing context */ sl@0: Select *p, /* The SELECT statement */ sl@0: SelectDest *pIn, /* Coroutine supplying data */ sl@0: SelectDest *pDest, /* Where to send the data */ sl@0: int regReturn, /* The return address register */ sl@0: int regPrev, /* Previous result register. No uniqueness if 0 */ sl@0: KeyInfo *pKeyInfo, /* For comparing with previous entry */ sl@0: int p4type, /* The p4 type for pKeyInfo */ sl@0: int iBreak /* Jump here if we hit the LIMIT */ sl@0: ){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int iContinue; sl@0: int addr; sl@0: sl@0: addr = sqlite3VdbeCurrentAddr(v); sl@0: iContinue = sqlite3VdbeMakeLabel(v); sl@0: sl@0: /* Suppress duplicates for UNION, EXCEPT, and INTERSECT sl@0: */ sl@0: if( regPrev ){ sl@0: int j1, j2; sl@0: j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); sl@0: j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, sl@0: (char*)pKeyInfo, p4type); sl@0: sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); sl@0: } sl@0: if( pParse->db->mallocFailed ) return 0; sl@0: sl@0: /* Suppress the the first OFFSET entries if there is an OFFSET clause sl@0: */ sl@0: codeOffset(v, p, iContinue); sl@0: sl@0: switch( pDest->eDest ){ sl@0: /* Store the result as data using a unique key. sl@0: */ sl@0: case SRT_Table: sl@0: case SRT_EphemTab: { sl@0: int r1 = sqlite3GetTempReg(pParse); sl@0: int r2 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); sl@0: sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); sl@0: sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); sl@0: sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sl@0: sqlite3ReleaseTempReg(pParse, r2); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: break; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: /* If we are creating a set for an "expr IN (SELECT ...)" construct, sl@0: ** then there should be a single item on the stack. Write this sl@0: ** item into the set table with bogus data. sl@0: */ sl@0: case SRT_Set: { sl@0: int r1; sl@0: assert( pIn->nMem==1 ); sl@0: p->affinity = sl@0: sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); sl@0: r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); sl@0: sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: break; sl@0: } sl@0: sl@0: #if 0 /* Never occurs on an ORDER BY query */ sl@0: /* If any row exist in the result set, record that fact and abort. sl@0: */ sl@0: case SRT_Exists: { sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); sl@0: /* The LIMIT clause will terminate the loop for us */ sl@0: break; sl@0: } sl@0: #endif sl@0: sl@0: /* If this is a scalar select that is part of an expression, then sl@0: ** store the results in the appropriate memory cell and break out sl@0: ** of the scan loop. sl@0: */ sl@0: case SRT_Mem: { sl@0: assert( pIn->nMem==1 ); sl@0: sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); sl@0: /* The LIMIT clause will jump out of the loop for us */ sl@0: break; sl@0: } sl@0: #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ sl@0: sl@0: /* The results are stored in a sequence of registers sl@0: ** starting at pDest->iMem. Then the co-routine yields. sl@0: */ sl@0: case SRT_Coroutine: { sl@0: if( pDest->iMem==0 ){ sl@0: pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); sl@0: pDest->nMem = pIn->nMem; sl@0: } sl@0: sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); sl@0: sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); sl@0: break; sl@0: } sl@0: sl@0: /* Results are stored in a sequence of registers. Then the sl@0: ** OP_ResultRow opcode is used to cause sqlite3_step() to return sl@0: ** the next row of result. sl@0: */ sl@0: case SRT_Output: { sl@0: sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); sl@0: sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); sl@0: break; sl@0: } sl@0: sl@0: #if !defined(SQLITE_OMIT_TRIGGER) sl@0: /* Discard the results. This is used for SELECT statements inside sl@0: ** the body of a TRIGGER. The purpose of such selects is to call sl@0: ** user-defined functions that have side effects. We do not care sl@0: ** about the actual results of the select. sl@0: */ sl@0: default: { sl@0: break; sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: /* Jump to the end of the loop if the LIMIT is reached. sl@0: */ sl@0: if( p->iLimit ){ sl@0: sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); sl@0: sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); sl@0: } sl@0: sl@0: /* Generate the subroutine return sl@0: */ sl@0: sqlite3VdbeResolveLabel(v, iContinue); sl@0: sqlite3VdbeAddOp1(v, OP_Return, regReturn); sl@0: sl@0: return addr; sl@0: } sl@0: sl@0: /* sl@0: ** Alternative compound select code generator for cases when there sl@0: ** is an ORDER BY clause. sl@0: ** sl@0: ** We assume a query of the following form: sl@0: ** sl@0: ** ORDER BY sl@0: ** sl@0: ** is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea sl@0: ** is to code both and with the ORDER BY clause as sl@0: ** co-routines. Then run the co-routines in parallel and merge the results sl@0: ** into the output. In addition to the two coroutines (called selectA and sl@0: ** selectB) there are 7 subroutines: sl@0: ** sl@0: ** outA: Move the output of the selectA coroutine into the output sl@0: ** of the compound query. sl@0: ** sl@0: ** outB: Move the output of the selectB coroutine into the output sl@0: ** of the compound query. (Only generated for UNION and sl@0: ** UNION ALL. EXCEPT and INSERTSECT never output a row that sl@0: ** appears only in B.) sl@0: ** sl@0: ** AltB: Called when there is data from both coroutines and AB. sl@0: ** sl@0: ** EofA: Called when data is exhausted from selectA. sl@0: ** sl@0: ** EofB: Called when data is exhausted from selectB. sl@0: ** sl@0: ** The implementation of the latter five subroutines depend on which sl@0: ** is used: sl@0: ** sl@0: ** sl@0: ** UNION ALL UNION EXCEPT INTERSECT sl@0: ** ------------- ----------------- -------------- ----------------- sl@0: ** AltB: outA, nextA outA, nextA outA, nextA nextA sl@0: ** sl@0: ** AeqB: outA, nextA nextA nextA outA, nextA sl@0: ** sl@0: ** AgtB: outB, nextB outB, nextB nextB nextB sl@0: ** sl@0: ** EofA: outB, nextB outB, nextB halt halt sl@0: ** sl@0: ** EofB: outA, nextA outA, nextA outA, nextA halt sl@0: ** sl@0: ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA sl@0: ** causes an immediate jump to EofA and an EOF on B following nextB causes sl@0: ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or sl@0: ** following nextX causes a jump to the end of the select processing. sl@0: ** sl@0: ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled sl@0: ** within the output subroutine. The regPrev register set holds the previously sl@0: ** output value. A comparison is made against this value and the output sl@0: ** is skipped if the next results would be the same as the previous. sl@0: ** sl@0: ** The implementation plan is to implement the two coroutines and seven sl@0: ** subroutines first, then put the control logic at the bottom. Like this: sl@0: ** sl@0: ** goto Init sl@0: ** coA: coroutine for left query (A) sl@0: ** coB: coroutine for right query (B) sl@0: ** outA: output one row of A sl@0: ** outB: output one row of B (UNION and UNION ALL only) sl@0: ** EofA: ... sl@0: ** EofB: ... sl@0: ** AltB: ... sl@0: ** AeqB: ... sl@0: ** AgtB: ... sl@0: ** Init: initialize coroutine registers sl@0: ** yield coA sl@0: ** if eof(A) goto EofA sl@0: ** yield coB sl@0: ** if eof(B) goto EofB sl@0: ** Cmpr: Compare A, B sl@0: ** Jump AltB, AeqB, AgtB sl@0: ** End: ... sl@0: ** sl@0: ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not sl@0: ** actually called using Gosub and they do not Return. EofA and EofB loop sl@0: ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, sl@0: ** and AgtB jump to either L2 or to one of EofA or EofB. sl@0: */ sl@0: #ifndef SQLITE_OMIT_COMPOUND_SELECT sl@0: static int multiSelectOrderBy( sl@0: Parse *pParse, /* Parsing context */ sl@0: Select *p, /* The right-most of SELECTs to be coded */ sl@0: SelectDest *pDest /* What to do with query results */ sl@0: ){ sl@0: int i, j; /* Loop counters */ sl@0: Select *pPrior; /* Another SELECT immediately to our left */ sl@0: Vdbe *v; /* Generate code to this VDBE */ sl@0: SelectDest destA; /* Destination for coroutine A */ sl@0: SelectDest destB; /* Destination for coroutine B */ sl@0: int regAddrA; /* Address register for select-A coroutine */ sl@0: int regEofA; /* Flag to indicate when select-A is complete */ sl@0: int regAddrB; /* Address register for select-B coroutine */ sl@0: int regEofB; /* Flag to indicate when select-B is complete */ sl@0: int addrSelectA; /* Address of the select-A coroutine */ sl@0: int addrSelectB; /* Address of the select-B coroutine */ sl@0: int regOutA; /* Address register for the output-A subroutine */ sl@0: int regOutB; /* Address register for the output-B subroutine */ sl@0: int addrOutA; /* Address of the output-A subroutine */ sl@0: int addrOutB; /* Address of the output-B subroutine */ sl@0: int addrEofA; /* Address of the select-A-exhausted subroutine */ sl@0: int addrEofB; /* Address of the select-B-exhausted subroutine */ sl@0: int addrAltB; /* Address of the AB subroutine */ sl@0: int regLimitA; /* Limit register for select-A */ sl@0: int regLimitB; /* Limit register for select-A */ sl@0: int regPrev; /* A range of registers to hold previous output */ sl@0: int savedLimit; /* Saved value of p->iLimit */ sl@0: int savedOffset; /* Saved value of p->iOffset */ sl@0: int labelCmpr; /* Label for the start of the merge algorithm */ sl@0: int labelEnd; /* Label for the end of the overall SELECT stmt */ sl@0: int j1; /* Jump instructions that get retargetted */ sl@0: int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ sl@0: KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ sl@0: KeyInfo *pKeyMerge; /* Comparison information for merging rows */ sl@0: sqlite3 *db; /* Database connection */ sl@0: ExprList *pOrderBy; /* The ORDER BY clause */ sl@0: int nOrderBy; /* Number of terms in the ORDER BY clause */ sl@0: int *aPermute; /* Mapping from ORDER BY terms to result set columns */ sl@0: sl@0: assert( p->pOrderBy!=0 ); sl@0: assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ sl@0: db = pParse->db; sl@0: v = pParse->pVdbe; sl@0: if( v==0 ) return SQLITE_NOMEM; sl@0: labelEnd = sqlite3VdbeMakeLabel(v); sl@0: labelCmpr = sqlite3VdbeMakeLabel(v); sl@0: sl@0: sl@0: /* Patch up the ORDER BY clause sl@0: */ sl@0: op = p->op; sl@0: pPrior = p->pPrior; sl@0: assert( pPrior->pOrderBy==0 ); sl@0: pOrderBy = p->pOrderBy; sl@0: assert( pOrderBy ); sl@0: nOrderBy = pOrderBy->nExpr; sl@0: sl@0: /* For operators other than UNION ALL we have to make sure that sl@0: ** the ORDER BY clause covers every term of the result set. Add sl@0: ** terms to the ORDER BY clause as necessary. sl@0: */ sl@0: if( op!=TK_ALL ){ sl@0: for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ sl@0: struct ExprList_item *pItem; sl@0: for(j=0, pItem=pOrderBy->a; jiCol>0 ); sl@0: if( pItem->iCol==i ) break; sl@0: } sl@0: if( j==nOrderBy ){ sl@0: Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0); sl@0: if( pNew==0 ) return SQLITE_NOMEM; sl@0: pNew->flags |= EP_IntValue; sl@0: pNew->iTable = i; sl@0: pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0); sl@0: pOrderBy->a[nOrderBy++].iCol = i; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Compute the comparison permutation and keyinfo that is used with sl@0: ** the permutation in order to comparisons to determine if the next sl@0: ** row of results comes from selectA or selectB. Also add explicit sl@0: ** collations to the ORDER BY clause terms so that when the subqueries sl@0: ** to the right and the left are evaluated, they use the correct sl@0: ** collation. sl@0: */ sl@0: aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); sl@0: if( aPermute ){ sl@0: struct ExprList_item *pItem; sl@0: for(i=0, pItem=pOrderBy->a; iiCol>0 && pItem->iCol<=p->pEList->nExpr ); sl@0: aPermute[i] = pItem->iCol - 1; sl@0: } sl@0: pKeyMerge = sl@0: sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); sl@0: if( pKeyMerge ){ sl@0: pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; sl@0: pKeyMerge->nField = nOrderBy; sl@0: pKeyMerge->enc = ENC(db); sl@0: for(i=0; ia[i].pExpr; sl@0: if( pTerm->flags & EP_ExpCollate ){ sl@0: pColl = pTerm->pColl; sl@0: }else{ sl@0: pColl = multiSelectCollSeq(pParse, p, aPermute[i]); sl@0: pTerm->flags |= EP_ExpCollate; sl@0: pTerm->pColl = pColl; sl@0: } sl@0: pKeyMerge->aColl[i] = pColl; sl@0: pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; sl@0: } sl@0: } sl@0: }else{ sl@0: pKeyMerge = 0; sl@0: } sl@0: sl@0: /* Reattach the ORDER BY clause to the query. sl@0: */ sl@0: p->pOrderBy = pOrderBy; sl@0: pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy); sl@0: sl@0: /* Allocate a range of temporary registers and the KeyInfo needed sl@0: ** for the logic that removes duplicate result rows when the sl@0: ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). sl@0: */ sl@0: if( op==TK_ALL ){ sl@0: regPrev = 0; sl@0: }else{ sl@0: int nExpr = p->pEList->nExpr; sl@0: assert( nOrderBy>=nExpr ); sl@0: regPrev = sqlite3GetTempRange(pParse, nExpr+1); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); sl@0: pKeyDup = sqlite3DbMallocZero(db, sl@0: sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); sl@0: if( pKeyDup ){ sl@0: pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; sl@0: pKeyDup->nField = nExpr; sl@0: pKeyDup->enc = ENC(db); sl@0: for(i=0; iaColl[i] = multiSelectCollSeq(pParse, p, i); sl@0: pKeyDup->aSortOrder[i] = 0; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Separate the left and the right query from one another sl@0: */ sl@0: p->pPrior = 0; sl@0: pPrior->pRightmost = 0; sl@0: sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); sl@0: if( pPrior->pPrior==0 ){ sl@0: sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); sl@0: } sl@0: sl@0: /* Compute the limit registers */ sl@0: computeLimitRegisters(pParse, p, labelEnd); sl@0: if( p->iLimit && op==TK_ALL ){ sl@0: regLimitA = ++pParse->nMem; sl@0: regLimitB = ++pParse->nMem; sl@0: sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, sl@0: regLimitA); sl@0: sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); sl@0: }else{ sl@0: regLimitA = regLimitB = 0; sl@0: } sl@0: sqlite3ExprDelete(db, p->pLimit); sl@0: p->pLimit = 0; sl@0: sqlite3ExprDelete(db, p->pOffset); sl@0: p->pOffset = 0; sl@0: sl@0: regAddrA = ++pParse->nMem; sl@0: regEofA = ++pParse->nMem; sl@0: regAddrB = ++pParse->nMem; sl@0: regEofB = ++pParse->nMem; sl@0: regOutA = ++pParse->nMem; sl@0: regOutB = ++pParse->nMem; sl@0: sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); sl@0: sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); sl@0: sl@0: /* Jump past the various subroutines and coroutines to the main sl@0: ** merge loop sl@0: */ sl@0: j1 = sqlite3VdbeAddOp0(v, OP_Goto); sl@0: addrSelectA = sqlite3VdbeCurrentAddr(v); sl@0: sl@0: sl@0: /* Generate a coroutine to evaluate the SELECT statement to the sl@0: ** left of the compound operator - the "A" select. sl@0: */ sl@0: VdbeNoopComment((v, "Begin coroutine for left SELECT")); sl@0: pPrior->iLimit = regLimitA; sl@0: sqlite3Select(pParse, pPrior, &destA); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); sl@0: sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); sl@0: VdbeNoopComment((v, "End coroutine for left SELECT")); sl@0: sl@0: /* Generate a coroutine to evaluate the SELECT statement on sl@0: ** the right - the "B" select sl@0: */ sl@0: addrSelectB = sqlite3VdbeCurrentAddr(v); sl@0: VdbeNoopComment((v, "Begin coroutine for right SELECT")); sl@0: savedLimit = p->iLimit; sl@0: savedOffset = p->iOffset; sl@0: p->iLimit = regLimitB; sl@0: p->iOffset = 0; sl@0: sqlite3Select(pParse, p, &destB); sl@0: p->iLimit = savedLimit; sl@0: p->iOffset = savedOffset; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); sl@0: sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); sl@0: VdbeNoopComment((v, "End coroutine for right SELECT")); sl@0: sl@0: /* Generate a subroutine that outputs the current row of the A sl@0: ** select as the next output row of the compound select. sl@0: */ sl@0: VdbeNoopComment((v, "Output routine for A")); sl@0: addrOutA = generateOutputSubroutine(pParse, sl@0: p, &destA, pDest, regOutA, sl@0: regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); sl@0: sl@0: /* Generate a subroutine that outputs the current row of the B sl@0: ** select as the next output row of the compound select. sl@0: */ sl@0: if( op==TK_ALL || op==TK_UNION ){ sl@0: VdbeNoopComment((v, "Output routine for B")); sl@0: addrOutB = generateOutputSubroutine(pParse, sl@0: p, &destB, pDest, regOutB, sl@0: regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); sl@0: } sl@0: sl@0: /* Generate a subroutine to run when the results from select A sl@0: ** are exhausted and only data in select B remains. sl@0: */ sl@0: VdbeNoopComment((v, "eof-A subroutine")); sl@0: if( op==TK_EXCEPT || op==TK_INTERSECT ){ sl@0: addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); sl@0: }else{ sl@0: addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); sl@0: sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); sl@0: sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); sl@0: } sl@0: sl@0: /* Generate a subroutine to run when the results from select B sl@0: ** are exhausted and only data in select A remains. sl@0: */ sl@0: if( op==TK_INTERSECT ){ sl@0: addrEofB = addrEofA; sl@0: }else{ sl@0: VdbeNoopComment((v, "eof-B subroutine")); sl@0: addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); sl@0: sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); sl@0: sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); sl@0: } sl@0: sl@0: /* Generate code to handle the case of AB sl@0: */ sl@0: VdbeNoopComment((v, "A-gt-B subroutine")); sl@0: addrAgtB = sqlite3VdbeCurrentAddr(v); sl@0: if( op==TK_ALL || op==TK_UNION ){ sl@0: sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); sl@0: } sl@0: sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); sl@0: sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); sl@0: sl@0: /* This code runs once to initialize everything. sl@0: */ sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); sl@0: sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); sl@0: sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); sl@0: sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); sl@0: sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); sl@0: sl@0: /* Implement the main merge loop sl@0: */ sl@0: sqlite3VdbeResolveLabel(v, labelCmpr); sl@0: sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); sl@0: sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, sl@0: (char*)pKeyMerge, P4_KEYINFO_HANDOFF); sl@0: sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); sl@0: sl@0: /* Release temporary registers sl@0: */ sl@0: if( regPrev ){ sl@0: sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); sl@0: } sl@0: sl@0: /* Jump to the this point in order to terminate the query. sl@0: */ sl@0: sqlite3VdbeResolveLabel(v, labelEnd); sl@0: sl@0: /* Set the number of output columns sl@0: */ sl@0: if( pDest->eDest==SRT_Output ){ sl@0: Select *pFirst = pPrior; sl@0: while( pFirst->pPrior ) pFirst = pFirst->pPrior; sl@0: generateColumnNames(pParse, 0, pFirst->pEList); sl@0: } sl@0: sl@0: /* Reassembly the compound query so that it will be freed correctly sl@0: ** by the calling function */ sl@0: if( p->pPrior ){ sl@0: sqlite3SelectDelete(db, p->pPrior); sl@0: } sl@0: p->pPrior = pPrior; sl@0: sl@0: /*** TBD: Insert subroutine calls to close cursors on incomplete sl@0: **** subqueries ****/ sl@0: return SQLITE_OK; sl@0: } sl@0: #endif sl@0: sl@0: #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) sl@0: /* Forward Declarations */ sl@0: static void substExprList(sqlite3*, ExprList*, int, ExprList*); sl@0: static void substSelect(sqlite3*, Select *, int, ExprList *); sl@0: sl@0: /* sl@0: ** Scan through the expression pExpr. Replace every reference to sl@0: ** a column in table number iTable with a copy of the iColumn-th sl@0: ** entry in pEList. (But leave references to the ROWID column sl@0: ** unchanged.) sl@0: ** sl@0: ** This routine is part of the flattening procedure. A subquery sl@0: ** whose result set is defined by pEList appears as entry in the sl@0: ** FROM clause of a SELECT such that the VDBE cursor assigned to that sl@0: ** FORM clause entry is iTable. This routine make the necessary sl@0: ** changes to pExpr so that it refers directly to the source table sl@0: ** of the subquery rather the result set of the subquery. sl@0: */ sl@0: static void substExpr( sl@0: sqlite3 *db, /* Report malloc errors to this connection */ sl@0: Expr *pExpr, /* Expr in which substitution occurs */ sl@0: int iTable, /* Table to be substituted */ sl@0: ExprList *pEList /* Substitute expressions */ sl@0: ){ sl@0: if( pExpr==0 ) return; sl@0: if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ sl@0: if( pExpr->iColumn<0 ){ sl@0: pExpr->op = TK_NULL; sl@0: }else{ sl@0: Expr *pNew; sl@0: assert( pEList!=0 && pExpr->iColumnnExpr ); sl@0: assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); sl@0: pNew = pEList->a[pExpr->iColumn].pExpr; sl@0: assert( pNew!=0 ); sl@0: pExpr->op = pNew->op; sl@0: assert( pExpr->pLeft==0 ); sl@0: pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); sl@0: assert( pExpr->pRight==0 ); sl@0: pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); sl@0: assert( pExpr->pList==0 ); sl@0: pExpr->pList = sqlite3ExprListDup(db, pNew->pList); sl@0: pExpr->iTable = pNew->iTable; sl@0: pExpr->pTab = pNew->pTab; sl@0: pExpr->iColumn = pNew->iColumn; sl@0: pExpr->iAgg = pNew->iAgg; sl@0: sqlite3TokenCopy(db, &pExpr->token, &pNew->token); sl@0: sqlite3TokenCopy(db, &pExpr->span, &pNew->span); sl@0: pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); sl@0: pExpr->flags = pNew->flags; sl@0: } sl@0: }else{ sl@0: substExpr(db, pExpr->pLeft, iTable, pEList); sl@0: substExpr(db, pExpr->pRight, iTable, pEList); sl@0: substSelect(db, pExpr->pSelect, iTable, pEList); sl@0: substExprList(db, pExpr->pList, iTable, pEList); sl@0: } sl@0: } sl@0: static void substExprList( sl@0: sqlite3 *db, /* Report malloc errors here */ sl@0: ExprList *pList, /* List to scan and in which to make substitutes */ sl@0: int iTable, /* Table to be substituted */ sl@0: ExprList *pEList /* Substitute values */ sl@0: ){ sl@0: int i; sl@0: if( pList==0 ) return; sl@0: for(i=0; inExpr; i++){ sl@0: substExpr(db, pList->a[i].pExpr, iTable, pEList); sl@0: } sl@0: } sl@0: static void substSelect( sl@0: sqlite3 *db, /* Report malloc errors here */ sl@0: Select *p, /* SELECT statement in which to make substitutions */ sl@0: int iTable, /* Table to be replaced */ sl@0: ExprList *pEList /* Substitute values */ sl@0: ){ sl@0: SrcList *pSrc; sl@0: struct SrcList_item *pItem; sl@0: int i; sl@0: if( !p ) return; sl@0: substExprList(db, p->pEList, iTable, pEList); sl@0: substExprList(db, p->pGroupBy, iTable, pEList); sl@0: substExprList(db, p->pOrderBy, iTable, pEList); sl@0: substExpr(db, p->pHaving, iTable, pEList); sl@0: substExpr(db, p->pWhere, iTable, pEList); sl@0: substSelect(db, p->pPrior, iTable, pEList); sl@0: pSrc = p->pSrc; sl@0: if( pSrc ){ sl@0: for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ sl@0: substSelect(db, pItem->pSelect, iTable, pEList); sl@0: } sl@0: } sl@0: } sl@0: #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ sl@0: sl@0: #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) sl@0: /* sl@0: ** This routine attempts to flatten subqueries in order to speed sl@0: ** execution. It returns 1 if it makes changes and 0 if no flattening sl@0: ** occurs. sl@0: ** sl@0: ** To understand the concept of flattening, consider the following sl@0: ** query: sl@0: ** sl@0: ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 sl@0: ** sl@0: ** The default way of implementing this query is to execute the sl@0: ** subquery first and store the results in a temporary table, then sl@0: ** run the outer query on that temporary table. This requires two sl@0: ** passes over the data. Furthermore, because the temporary table sl@0: ** has no indices, the WHERE clause on the outer query cannot be sl@0: ** optimized. sl@0: ** sl@0: ** This routine attempts to rewrite queries such as the above into sl@0: ** a single flat select, like this: sl@0: ** sl@0: ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 sl@0: ** sl@0: ** The code generated for this simpification gives the same result sl@0: ** but only has to scan the data once. And because indices might sl@0: ** exist on the table t1, a complete scan of the data might be sl@0: ** avoided. sl@0: ** sl@0: ** Flattening is only attempted if all of the following are true: sl@0: ** sl@0: ** (1) The subquery and the outer query do not both use aggregates. sl@0: ** sl@0: ** (2) The subquery is not an aggregate or the outer query is not a join. sl@0: ** sl@0: ** (3) The subquery is not the right operand of a left outer join sl@0: ** (Originally ticket #306. Strenghtened by ticket #3300) sl@0: ** sl@0: ** (4) The subquery is not DISTINCT or the outer query is not a join. sl@0: ** sl@0: ** (5) The subquery is not DISTINCT or the outer query does not use sl@0: ** aggregates. sl@0: ** sl@0: ** (6) The subquery does not use aggregates or the outer query is not sl@0: ** DISTINCT. sl@0: ** sl@0: ** (7) The subquery has a FROM clause. sl@0: ** sl@0: ** (8) The subquery does not use LIMIT or the outer query is not a join. sl@0: ** sl@0: ** (9) The subquery does not use LIMIT or the outer query does not use sl@0: ** aggregates. sl@0: ** sl@0: ** (10) The subquery does not use aggregates or the outer query does not sl@0: ** use LIMIT. sl@0: ** sl@0: ** (11) The subquery and the outer query do not both have ORDER BY clauses. sl@0: ** sl@0: ** (12) Not implemented. Subsumed into restriction (3). Was previously sl@0: ** a separate restriction deriving from ticket #350. sl@0: ** sl@0: ** (13) The subquery and outer query do not both use LIMIT sl@0: ** sl@0: ** (14) The subquery does not use OFFSET sl@0: ** sl@0: ** (15) The outer query is not part of a compound select or the sl@0: ** subquery does not have both an ORDER BY and a LIMIT clause. sl@0: ** (See ticket #2339) sl@0: ** sl@0: ** (16) The outer query is not an aggregate or the subquery does sl@0: ** not contain ORDER BY. (Ticket #2942) This used to not matter sl@0: ** until we introduced the group_concat() function. sl@0: ** sl@0: ** (17) The sub-query is not a compound select, or it is a UNION ALL sl@0: ** compound clause made up entirely of non-aggregate queries, and sl@0: ** the parent query: sl@0: ** sl@0: ** * is not itself part of a compound select, sl@0: ** * is not an aggregate or DISTINCT query, and sl@0: ** * has no other tables or sub-selects in the FROM clause. sl@0: ** sl@0: ** The parent and sub-query may contain WHERE clauses. Subject to sl@0: ** rules (11), (13) and (14), they may also contain ORDER BY, sl@0: ** LIMIT and OFFSET clauses. sl@0: ** sl@0: ** (18) If the sub-query is a compound select, then all terms of the sl@0: ** ORDER by clause of the parent must be simple references to sl@0: ** columns of the sub-query. sl@0: ** sl@0: ** (19) The subquery does not use LIMIT or the outer query does not sl@0: ** have a WHERE clause. sl@0: ** sl@0: ** In this routine, the "p" parameter is a pointer to the outer query. sl@0: ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query sl@0: ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. sl@0: ** sl@0: ** If flattening is not attempted, this routine is a no-op and returns 0. sl@0: ** If flattening is attempted this routine returns 1. sl@0: ** sl@0: ** All of the expression analysis must occur on both the outer query and sl@0: ** the subquery before this routine runs. sl@0: */ sl@0: static int flattenSubquery( sl@0: Parse *pParse, /* Parsing context */ sl@0: Select *p, /* The parent or outer SELECT statement */ sl@0: int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ sl@0: int isAgg, /* True if outer SELECT uses aggregate functions */ sl@0: int subqueryIsAgg /* True if the subquery uses aggregate functions */ sl@0: ){ sl@0: const char *zSavedAuthContext = pParse->zAuthContext; sl@0: Select *pParent; sl@0: Select *pSub; /* The inner query or "subquery" */ sl@0: Select *pSub1; /* Pointer to the rightmost select in sub-query */ sl@0: SrcList *pSrc; /* The FROM clause of the outer query */ sl@0: SrcList *pSubSrc; /* The FROM clause of the subquery */ sl@0: ExprList *pList; /* The result set of the outer query */ sl@0: int iParent; /* VDBE cursor number of the pSub result set temp table */ sl@0: int i; /* Loop counter */ sl@0: Expr *pWhere; /* The WHERE clause */ sl@0: struct SrcList_item *pSubitem; /* The subquery */ sl@0: sqlite3 *db = pParse->db; sl@0: sl@0: /* Check to see if flattening is permitted. Return 0 if not. sl@0: */ sl@0: if( p==0 ) return 0; sl@0: pSrc = p->pSrc; sl@0: assert( pSrc && iFrom>=0 && iFromnSrc ); sl@0: pSubitem = &pSrc->a[iFrom]; sl@0: iParent = pSubitem->iCursor; sl@0: pSub = pSubitem->pSelect; sl@0: assert( pSub!=0 ); sl@0: if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ sl@0: if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ sl@0: pSubSrc = pSub->pSrc; sl@0: assert( pSubSrc ); sl@0: /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, sl@0: ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET sl@0: ** because they could be computed at compile-time. But when LIMIT and OFFSET sl@0: ** became arbitrary expressions, we were forced to add restrictions (13) sl@0: ** and (14). */ sl@0: if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ sl@0: if( pSub->pOffset ) return 0; /* Restriction (14) */ sl@0: if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ sl@0: return 0; /* Restriction (15) */ sl@0: } sl@0: if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ sl@0: if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) sl@0: && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ sl@0: return 0; sl@0: } sl@0: if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ sl@0: return 0; /* Restriction (6) */ sl@0: } sl@0: if( p->pOrderBy && pSub->pOrderBy ){ sl@0: return 0; /* Restriction (11) */ sl@0: } sl@0: if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ sl@0: if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ sl@0: sl@0: /* OBSOLETE COMMENT 1: sl@0: ** Restriction 3: If the subquery is a join, make sure the subquery is sl@0: ** not used as the right operand of an outer join. Examples of why this sl@0: ** is not allowed: sl@0: ** sl@0: ** t1 LEFT OUTER JOIN (t2 JOIN t3) sl@0: ** sl@0: ** If we flatten the above, we would get sl@0: ** sl@0: ** (t1 LEFT OUTER JOIN t2) JOIN t3 sl@0: ** sl@0: ** which is not at all the same thing. sl@0: ** sl@0: ** OBSOLETE COMMENT 2: sl@0: ** Restriction 12: If the subquery is the right operand of a left outer sl@0: ** join, make sure the subquery has no WHERE clause. sl@0: ** An examples of why this is not allowed: sl@0: ** sl@0: ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) sl@0: ** sl@0: ** If we flatten the above, we would get sl@0: ** sl@0: ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 sl@0: ** sl@0: ** But the t2.x>0 test will always fail on a NULL row of t2, which sl@0: ** effectively converts the OUTER JOIN into an INNER JOIN. sl@0: ** sl@0: ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: sl@0: ** Ticket #3300 shows that flattening the right term of a LEFT JOIN sl@0: ** is fraught with danger. Best to avoid the whole thing. If the sl@0: ** subquery is the right term of a LEFT JOIN, then do not flatten. sl@0: */ sl@0: if( (pSubitem->jointype & JT_OUTER)!=0 ){ sl@0: return 0; sl@0: } sl@0: sl@0: /* Restriction 17: If the sub-query is a compound SELECT, then it must sl@0: ** use only the UNION ALL operator. And none of the simple select queries sl@0: ** that make up the compound SELECT are allowed to be aggregate or distinct sl@0: ** queries. sl@0: */ sl@0: if( pSub->pPrior ){ sl@0: if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ sl@0: return 0; sl@0: } sl@0: for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ sl@0: if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 sl@0: || (pSub1->pPrior && pSub1->op!=TK_ALL) sl@0: || !pSub1->pSrc || pSub1->pSrc->nSrc!=1 sl@0: ){ sl@0: return 0; sl@0: } sl@0: } sl@0: sl@0: /* Restriction 18. */ sl@0: if( p->pOrderBy ){ sl@0: int ii; sl@0: for(ii=0; iipOrderBy->nExpr; ii++){ sl@0: if( p->pOrderBy->a[ii].iCol==0 ) return 0; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /***** If we reach this point, flattening is permitted. *****/ sl@0: sl@0: /* Authorize the subquery */ sl@0: pParse->zAuthContext = pSubitem->zName; sl@0: sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); sl@0: pParse->zAuthContext = zSavedAuthContext; sl@0: sl@0: /* If the sub-query is a compound SELECT statement, then (by restrictions sl@0: ** 17 and 18 above) it must be a UNION ALL and the parent query must sl@0: ** be of the form: sl@0: ** sl@0: ** SELECT FROM () sl@0: ** sl@0: ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block sl@0: ** creates N copies of the parent query without any ORDER BY, LIMIT or sl@0: ** OFFSET clauses and joins them to the left-hand-side of the original sl@0: ** using UNION ALL operators. In this case N is the number of simple sl@0: ** select statements in the compound sub-query. sl@0: */ sl@0: for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ sl@0: Select *pNew; sl@0: ExprList *pOrderBy = p->pOrderBy; sl@0: Expr *pLimit = p->pLimit; sl@0: Expr *pOffset = p->pOffset; sl@0: Select *pPrior = p->pPrior; sl@0: p->pOrderBy = 0; sl@0: p->pSrc = 0; sl@0: p->pPrior = 0; sl@0: p->pLimit = 0; sl@0: pNew = sqlite3SelectDup(db, p); sl@0: pNew->pPrior = pPrior; sl@0: p->pPrior = pNew; sl@0: p->pOrderBy = pOrderBy; sl@0: p->op = TK_ALL; sl@0: p->pSrc = pSrc; sl@0: p->pLimit = pLimit; sl@0: p->pOffset = pOffset; sl@0: p->pRightmost = 0; sl@0: pNew->pRightmost = 0; sl@0: } sl@0: sl@0: /* Begin flattening the iFrom-th entry of the FROM clause sl@0: ** in the outer query. sl@0: */ sl@0: pSub = pSub1 = pSubitem->pSelect; sl@0: for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ sl@0: int nSubSrc = pSubSrc->nSrc; sl@0: int jointype = 0; sl@0: pSubSrc = pSub->pSrc; sl@0: pSrc = pParent->pSrc; sl@0: sl@0: /* Move all of the FROM elements of the subquery into the sl@0: ** the FROM clause of the outer query. Before doing this, remember sl@0: ** the cursor number for the original outer query FROM element in sl@0: ** iParent. The iParent cursor will never be used. Subsequent code sl@0: ** will scan expressions looking for iParent references and replace sl@0: ** those references with expressions that resolve to the subquery FROM sl@0: ** elements we are now copying in. sl@0: */ sl@0: if( pSrc ){ sl@0: Table *pTabToDel; sl@0: pSubitem = &pSrc->a[iFrom]; sl@0: nSubSrc = pSubSrc->nSrc; sl@0: jointype = pSubitem->jointype; sl@0: sqlite3DbFree(db, pSubitem->zDatabase); sl@0: sqlite3DbFree(db, pSubitem->zName); sl@0: sqlite3DbFree(db, pSubitem->zAlias); sl@0: pSubitem->zDatabase = 0; sl@0: pSubitem->zName = 0; sl@0: pSubitem->zAlias = 0; sl@0: sl@0: /* If the FROM element is a subquery, defer deleting the Table sl@0: ** object associated with that subquery until code generation is sl@0: ** complete, since there may still exist Expr.pTab entires that sl@0: ** refer to the subquery even after flattening. Ticket #3346. sl@0: */ sl@0: if( (pTabToDel = pSubitem->pTab)!=0 ){ sl@0: if( pTabToDel->nRef==1 ){ sl@0: pTabToDel->pNextZombie = pParse->pZombieTab; sl@0: pParse->pZombieTab = pTabToDel; sl@0: }else{ sl@0: pTabToDel->nRef--; sl@0: } sl@0: } sl@0: pSubitem->pTab = 0; sl@0: } sl@0: if( nSubSrc!=1 || !pSrc ){ sl@0: int extra = nSubSrc - 1; sl@0: for(i=(pSrc?1:0); ipSrc = 0; sl@0: return 1; sl@0: } sl@0: } sl@0: pParent->pSrc = pSrc; sl@0: for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ sl@0: pSrc->a[i] = pSrc->a[i-extra]; sl@0: } sl@0: } sl@0: for(i=0; ia[i+iFrom] = pSubSrc->a[i]; sl@0: memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); sl@0: } sl@0: pSrc->a[iFrom].jointype = jointype; sl@0: sl@0: /* Now begin substituting subquery result set expressions for sl@0: ** references to the iParent in the outer query. sl@0: ** sl@0: ** Example: sl@0: ** sl@0: ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; sl@0: ** \ \_____________ subquery __________/ / sl@0: ** \_____________________ outer query ______________________________/ sl@0: ** sl@0: ** We look at every expression in the outer query and every place we see sl@0: ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". sl@0: */ sl@0: pList = pParent->pEList; sl@0: for(i=0; inExpr; i++){ sl@0: Expr *pExpr; sl@0: if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ sl@0: pList->a[i].zName = sl@0: sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); sl@0: } sl@0: } sl@0: substExprList(db, pParent->pEList, iParent, pSub->pEList); sl@0: if( isAgg ){ sl@0: substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); sl@0: substExpr(db, pParent->pHaving, iParent, pSub->pEList); sl@0: } sl@0: if( pSub->pOrderBy ){ sl@0: assert( pParent->pOrderBy==0 ); sl@0: pParent->pOrderBy = pSub->pOrderBy; sl@0: pSub->pOrderBy = 0; sl@0: }else if( pParent->pOrderBy ){ sl@0: substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); sl@0: } sl@0: if( pSub->pWhere ){ sl@0: pWhere = sqlite3ExprDup(db, pSub->pWhere); sl@0: }else{ sl@0: pWhere = 0; sl@0: } sl@0: if( subqueryIsAgg ){ sl@0: assert( pParent->pHaving==0 ); sl@0: pParent->pHaving = pParent->pWhere; sl@0: pParent->pWhere = pWhere; sl@0: substExpr(db, pParent->pHaving, iParent, pSub->pEList); sl@0: pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, sl@0: sqlite3ExprDup(db, pSub->pHaving)); sl@0: assert( pParent->pGroupBy==0 ); sl@0: pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); sl@0: }else{ sl@0: substExpr(db, pParent->pWhere, iParent, pSub->pEList); sl@0: pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); sl@0: } sl@0: sl@0: /* The flattened query is distinct if either the inner or the sl@0: ** outer query is distinct. sl@0: */ sl@0: pParent->selFlags |= pSub->selFlags & SF_Distinct; sl@0: sl@0: /* sl@0: ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; sl@0: ** sl@0: ** One is tempted to try to add a and b to combine the limits. But this sl@0: ** does not work if either limit is negative. sl@0: */ sl@0: if( pSub->pLimit ){ sl@0: pParent->pLimit = pSub->pLimit; sl@0: pSub->pLimit = 0; sl@0: } sl@0: } sl@0: sl@0: /* Finially, delete what is left of the subquery and return sl@0: ** success. sl@0: */ sl@0: sqlite3SelectDelete(db, pSub1); sl@0: sl@0: return 1; sl@0: } sl@0: #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ sl@0: sl@0: /* sl@0: ** Analyze the SELECT statement passed as an argument to see if it sl@0: ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if sl@0: ** it is, or 0 otherwise. At present, a query is considered to be sl@0: ** a min()/max() query if: sl@0: ** sl@0: ** 1. There is a single object in the FROM clause. sl@0: ** sl@0: ** 2. There is a single expression in the result set, and it is sl@0: ** either min(x) or max(x), where x is a column reference. sl@0: */ sl@0: static int minMaxQuery(Parse *pParse, Select *p){ sl@0: Expr *pExpr; sl@0: ExprList *pEList = p->pEList; sl@0: sl@0: if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; sl@0: pExpr = pEList->a[0].pExpr; sl@0: pEList = pExpr->pList; sl@0: if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; sl@0: if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; sl@0: if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; sl@0: if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ sl@0: return WHERE_ORDERBY_MIN; sl@0: }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ sl@0: return WHERE_ORDERBY_MAX; sl@0: } sl@0: return WHERE_ORDERBY_NORMAL; sl@0: } sl@0: sl@0: /* sl@0: ** If the source-list item passed as an argument was augmented with an sl@0: ** INDEXED BY clause, then try to locate the specified index. If there sl@0: ** was such a clause and the named index cannot be found, return sl@0: ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate sl@0: ** pFrom->pIndex and return SQLITE_OK. sl@0: */ sl@0: int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ sl@0: if( pFrom->pTab && pFrom->zIndex ){ sl@0: Table *pTab = pFrom->pTab; sl@0: char *zIndex = pFrom->zIndex; sl@0: Index *pIdx; sl@0: for(pIdx=pTab->pIndex; sl@0: pIdx && sqlite3StrICmp(pIdx->zName, zIndex); sl@0: pIdx=pIdx->pNext sl@0: ); sl@0: if( !pIdx ){ sl@0: sqlite3ErrorMsg(pParse, "no such index: %s", zIndex, 0); sl@0: return SQLITE_ERROR; sl@0: } sl@0: pFrom->pIndex = pIdx; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** This routine is a Walker callback for "expanding" a SELECT statement. sl@0: ** "Expanding" means to do the following: sl@0: ** sl@0: ** (1) Make sure VDBE cursor numbers have been assigned to every sl@0: ** element of the FROM clause. sl@0: ** sl@0: ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that sl@0: ** defines FROM clause. When views appear in the FROM clause, sl@0: ** fill pTabList->a[].pSelect with a copy of the SELECT statement sl@0: ** that implements the view. A copy is made of the view's SELECT sl@0: ** statement so that we can freely modify or delete that statement sl@0: ** without worrying about messing up the presistent representation sl@0: ** of the view. sl@0: ** sl@0: ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword sl@0: ** on joins and the ON and USING clause of joins. sl@0: ** sl@0: ** (4) Scan the list of columns in the result set (pEList) looking sl@0: ** for instances of the "*" operator or the TABLE.* operator. sl@0: ** If found, expand each "*" to be every column in every table sl@0: ** and TABLE.* to be every column in TABLE. sl@0: ** sl@0: */ sl@0: static int selectExpander(Walker *pWalker, Select *p){ sl@0: Parse *pParse = pWalker->pParse; sl@0: int i, j, k; sl@0: SrcList *pTabList; sl@0: ExprList *pEList; sl@0: struct SrcList_item *pFrom; sl@0: sqlite3 *db = pParse->db; sl@0: sl@0: if( db->mallocFailed ){ sl@0: return WRC_Abort; sl@0: } sl@0: if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){ sl@0: return WRC_Prune; sl@0: } sl@0: p->selFlags |= SF_Expanded; sl@0: pTabList = p->pSrc; sl@0: pEList = p->pEList; sl@0: sl@0: /* Make sure cursor numbers have been assigned to all entries in sl@0: ** the FROM clause of the SELECT statement. sl@0: */ sl@0: sqlite3SrcListAssignCursors(pParse, pTabList); sl@0: sl@0: /* Look up every table named in the FROM clause of the select. If sl@0: ** an entry of the FROM clause is a subquery instead of a table or view, sl@0: ** then create a transient table structure to describe the subquery. sl@0: */ sl@0: for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ sl@0: Table *pTab; sl@0: if( pFrom->pTab!=0 ){ sl@0: /* This statement has already been prepared. There is no need sl@0: ** to go further. */ sl@0: assert( i==0 ); sl@0: return WRC_Prune; sl@0: } sl@0: if( pFrom->zName==0 ){ sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: Select *pSel = pFrom->pSelect; sl@0: /* A sub-query in the FROM clause of a SELECT */ sl@0: assert( pSel!=0 ); sl@0: assert( pFrom->pTab==0 ); sl@0: sqlite3WalkSelect(pWalker, pSel); sl@0: pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); sl@0: if( pTab==0 ) return WRC_Abort; sl@0: pTab->db = db; sl@0: pTab->nRef = 1; sl@0: pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab); sl@0: while( pSel->pPrior ){ pSel = pSel->pPrior; } sl@0: selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol); sl@0: pTab->iPKey = -1; sl@0: pTab->tabFlags |= TF_Ephemeral; sl@0: #endif sl@0: }else{ sl@0: /* An ordinary table or view name in the FROM clause */ sl@0: assert( pFrom->pTab==0 ); sl@0: pFrom->pTab = pTab = sl@0: sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); sl@0: if( pTab==0 ) return WRC_Abort; sl@0: pTab->nRef++; sl@0: #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) sl@0: if( pTab->pSelect || IsVirtual(pTab) ){ sl@0: /* We reach here if the named table is a really a view */ sl@0: if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; sl@0: sl@0: /* If pFrom->pSelect!=0 it means we are dealing with a sl@0: ** view within a view. The SELECT structure has already been sl@0: ** copied by the outer view so we can skip the copy step here sl@0: ** in the inner view. sl@0: */ sl@0: if( pFrom->pSelect==0 ){ sl@0: pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); sl@0: sqlite3WalkSelect(pWalker, pFrom->pSelect); sl@0: } sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: /* Locate the index named by the INDEXED BY clause, if any. */ sl@0: if( sqlite3IndexedByLookup(pParse, pFrom) ){ sl@0: return WRC_Abort; sl@0: } sl@0: } sl@0: sl@0: /* Process NATURAL keywords, and ON and USING clauses of joins. sl@0: */ sl@0: if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ sl@0: return WRC_Abort; sl@0: } sl@0: sl@0: /* For every "*" that occurs in the column list, insert the names of sl@0: ** all columns in all tables. And for every TABLE.* insert the names sl@0: ** of all columns in TABLE. The parser inserted a special expression sl@0: ** with the TK_ALL operator for each "*" that it found in the column list. sl@0: ** The following code just has to locate the TK_ALL expressions and expand sl@0: ** each one to the list of all columns in all tables. sl@0: ** sl@0: ** The first loop just checks to see if there are any "*" operators sl@0: ** that need expanding. sl@0: */ sl@0: for(k=0; knExpr; k++){ sl@0: Expr *pE = pEList->a[k].pExpr; sl@0: if( pE->op==TK_ALL ) break; sl@0: if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL sl@0: && pE->pLeft && pE->pLeft->op==TK_ID ) break; sl@0: } sl@0: if( knExpr ){ sl@0: /* sl@0: ** If we get here it means the result set contains one or more "*" sl@0: ** operators that need to be expanded. Loop through each expression sl@0: ** in the result set and expand them one by one. sl@0: */ sl@0: struct ExprList_item *a = pEList->a; sl@0: ExprList *pNew = 0; sl@0: int flags = pParse->db->flags; sl@0: int longNames = (flags & SQLITE_FullColNames)!=0 sl@0: && (flags & SQLITE_ShortColNames)==0; sl@0: sl@0: for(k=0; knExpr; k++){ sl@0: Expr *pE = a[k].pExpr; sl@0: if( pE->op!=TK_ALL && sl@0: (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ sl@0: /* This particular expression does not need to be expanded. sl@0: */ sl@0: pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); sl@0: if( pNew ){ sl@0: pNew->a[pNew->nExpr-1].zName = a[k].zName; sl@0: } sl@0: a[k].pExpr = 0; sl@0: a[k].zName = 0; sl@0: }else{ sl@0: /* This expression is a "*" or a "TABLE.*" and needs to be sl@0: ** expanded. */ sl@0: int tableSeen = 0; /* Set to 1 when TABLE matches */ sl@0: char *zTName; /* text of name of TABLE */ sl@0: if( pE->op==TK_DOT && pE->pLeft ){ sl@0: zTName = sqlite3NameFromToken(db, &pE->pLeft->token); sl@0: }else{ sl@0: zTName = 0; sl@0: } sl@0: for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ sl@0: Table *pTab = pFrom->pTab; sl@0: char *zTabName = pFrom->zAlias; sl@0: if( zTabName==0 || zTabName[0]==0 ){ sl@0: zTabName = pTab->zName; sl@0: } sl@0: if( db->mallocFailed ) break; sl@0: if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ sl@0: continue; sl@0: } sl@0: tableSeen = 1; sl@0: for(j=0; jnCol; j++){ sl@0: Expr *pExpr, *pRight; sl@0: char *zName = pTab->aCol[j].zName; sl@0: sl@0: /* If a column is marked as 'hidden' (currently only possible sl@0: ** for virtual tables), do not include it in the expanded sl@0: ** result-set list. sl@0: */ sl@0: if( IsHiddenColumn(&pTab->aCol[j]) ){ sl@0: assert(IsVirtual(pTab)); sl@0: continue; sl@0: } sl@0: sl@0: if( i>0 ){ sl@0: struct SrcList_item *pLeft = &pTabList->a[i-1]; sl@0: if( (pLeft[1].jointype & JT_NATURAL)!=0 && sl@0: columnIndex(pLeft->pTab, zName)>=0 ){ sl@0: /* In a NATURAL join, omit the join columns from the sl@0: ** table on the right */ sl@0: continue; sl@0: } sl@0: if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ sl@0: /* In a join with a USING clause, omit columns in the sl@0: ** using clause from the table on the right. */ sl@0: continue; sl@0: } sl@0: } sl@0: pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); sl@0: if( pRight==0 ) break; sl@0: setQuotedToken(pParse, &pRight->token, zName); sl@0: if( longNames || pTabList->nSrc>1 ){ sl@0: Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); sl@0: pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); sl@0: if( pExpr==0 ) break; sl@0: setQuotedToken(pParse, &pLeft->token, zTabName); sl@0: setToken(&pExpr->span, sl@0: sqlite3MPrintf(db, "%s.%s", zTabName, zName)); sl@0: pExpr->span.dyn = 1; sl@0: pExpr->token.z = 0; sl@0: pExpr->token.n = 0; sl@0: pExpr->token.dyn = 0; sl@0: }else{ sl@0: pExpr = pRight; sl@0: pExpr->span = pExpr->token; sl@0: pExpr->span.dyn = 0; sl@0: } sl@0: if( longNames ){ sl@0: pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); sl@0: }else{ sl@0: pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); sl@0: } sl@0: } sl@0: } sl@0: if( !tableSeen ){ sl@0: if( zTName ){ sl@0: sqlite3ErrorMsg(pParse, "no such table: %s", zTName); sl@0: }else{ sl@0: sqlite3ErrorMsg(pParse, "no tables specified"); sl@0: } sl@0: } sl@0: sqlite3DbFree(db, zTName); sl@0: } sl@0: } sl@0: sqlite3ExprListDelete(db, pEList); sl@0: p->pEList = pNew; sl@0: } sl@0: #if SQLITE_MAX_COLUMN sl@0: if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sl@0: sqlite3ErrorMsg(pParse, "too many columns in result set"); sl@0: } sl@0: #endif sl@0: return WRC_Continue; sl@0: } sl@0: sl@0: /* sl@0: ** No-op routine for the parse-tree walker. sl@0: ** sl@0: ** When this routine is the Walker.xExprCallback then expression trees sl@0: ** are walked without any actions being taken at each node. Presumably, sl@0: ** when this routine is used for Walker.xExprCallback then sl@0: ** Walker.xSelectCallback is set to do something useful for every sl@0: ** subquery in the parser tree. sl@0: */ sl@0: static int exprWalkNoop(Walker *pWalker, Expr *pExpr){ sl@0: return WRC_Continue; sl@0: } sl@0: sl@0: /* sl@0: ** This routine "expands" a SELECT statement and all of its subqueries. sl@0: ** For additional information on what it means to "expand" a SELECT sl@0: ** statement, see the comment on the selectExpand worker callback above. sl@0: ** sl@0: ** Expanding a SELECT statement is the first step in processing a sl@0: ** SELECT statement. The SELECT statement must be expanded before sl@0: ** name resolution is performed. sl@0: ** sl@0: ** If anything goes wrong, an error message is written into pParse. sl@0: ** The calling function can detect the problem by looking at pParse->nErr sl@0: ** and/or pParse->db->mallocFailed. sl@0: */ sl@0: static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ sl@0: Walker w; sl@0: w.xSelectCallback = selectExpander; sl@0: w.xExprCallback = exprWalkNoop; sl@0: w.pParse = pParse; sl@0: sqlite3WalkSelect(&w, pSelect); sl@0: } sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: /* sl@0: ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() sl@0: ** interface. sl@0: ** sl@0: ** For each FROM-clause subquery, add Column.zType and Column.zColl sl@0: ** information to the Table structure that represents the result set sl@0: ** of that subquery. sl@0: ** sl@0: ** The Table structure that represents the result set was constructed sl@0: ** by selectExpander() but the type and collation information was omitted sl@0: ** at that point because identifiers had not yet been resolved. This sl@0: ** routine is called after identifier resolution. sl@0: */ sl@0: static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ sl@0: Parse *pParse; sl@0: int i; sl@0: SrcList *pTabList; sl@0: struct SrcList_item *pFrom; sl@0: sl@0: assert( p->selFlags & SF_Resolved ); sl@0: if( (p->selFlags & SF_HasTypeInfo)==0 ){ sl@0: p->selFlags |= SF_HasTypeInfo; sl@0: pParse = pWalker->pParse; sl@0: pTabList = p->pSrc; sl@0: for(i=0, pFrom=pTabList->a; inSrc; i++, pFrom++){ sl@0: Table *pTab = pFrom->pTab; sl@0: if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){ sl@0: /* A sub-query in the FROM clause of a SELECT */ sl@0: Select *pSel = pFrom->pSelect; sl@0: assert( pSel ); sl@0: while( pSel->pPrior ) pSel = pSel->pPrior; sl@0: selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel); sl@0: } sl@0: } sl@0: } sl@0: return WRC_Continue; sl@0: } sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** This routine adds datatype and collating sequence information to sl@0: ** the Table structures of all FROM-clause subqueries in a sl@0: ** SELECT statement. sl@0: ** sl@0: ** Use this routine after name resolution. sl@0: */ sl@0: static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: Walker w; sl@0: w.xSelectCallback = selectAddSubqueryTypeInfo; sl@0: w.xExprCallback = exprWalkNoop; sl@0: w.pParse = pParse; sl@0: sqlite3WalkSelect(&w, pSelect); sl@0: #endif sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** This routine sets of a SELECT statement for processing. The sl@0: ** following is accomplished: sl@0: ** sl@0: ** * VDBE Cursor numbers are assigned to all FROM-clause terms. sl@0: ** * Ephemeral Table objects are created for all FROM-clause subqueries. sl@0: ** * ON and USING clauses are shifted into WHERE statements sl@0: ** * Wildcards "*" and "TABLE.*" in result sets are expanded. sl@0: ** * Identifiers in expression are matched to tables. sl@0: ** sl@0: ** This routine acts recursively on all subqueries within the SELECT. sl@0: */ sl@0: void sqlite3SelectPrep( sl@0: Parse *pParse, /* The parser context */ sl@0: Select *p, /* The SELECT statement being coded. */ sl@0: NameContext *pOuterNC /* Name context for container */ sl@0: ){ sl@0: sqlite3 *db; sl@0: if( p==0 ) return; sl@0: db = pParse->db; sl@0: if( p->selFlags & SF_HasTypeInfo ) return; sl@0: if( pParse->nErr || db->mallocFailed ) return; sl@0: sqlite3SelectExpand(pParse, p); sl@0: if( pParse->nErr || db->mallocFailed ) return; sl@0: sqlite3ResolveSelectNames(pParse, p, pOuterNC); sl@0: if( pParse->nErr || db->mallocFailed ) return; sl@0: sqlite3SelectAddTypeInfo(pParse, p); sl@0: } sl@0: sl@0: /* sl@0: ** Reset the aggregate accumulator. sl@0: ** sl@0: ** The aggregate accumulator is a set of memory cells that hold sl@0: ** intermediate results while calculating an aggregate. This sl@0: ** routine simply stores NULLs in all of those memory cells. sl@0: */ sl@0: static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int i; sl@0: struct AggInfo_func *pFunc; sl@0: if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ sl@0: return; sl@0: } sl@0: for(i=0; inColumn; i++){ sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); sl@0: } sl@0: for(pFunc=pAggInfo->aFunc, i=0; inFunc; i++, pFunc++){ sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); sl@0: if( pFunc->iDistinct>=0 ){ sl@0: Expr *pE = pFunc->pExpr; sl@0: if( pE->pList==0 || pE->pList->nExpr!=1 ){ sl@0: sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " sl@0: "by an expression"); sl@0: pFunc->iDistinct = -1; sl@0: }else{ sl@0: KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); sl@0: sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, sl@0: (char*)pKeyInfo, P4_KEYINFO_HANDOFF); sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Invoke the OP_AggFinalize opcode for every aggregate function sl@0: ** in the AggInfo structure. sl@0: */ sl@0: static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int i; sl@0: struct AggInfo_func *pF; sl@0: for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ sl@0: ExprList *pList = pF->pExpr->pList; sl@0: sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, sl@0: (void*)pF->pFunc, P4_FUNCDEF); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Update the accumulator memory cells for an aggregate based on sl@0: ** the current cursor position. sl@0: */ sl@0: static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ sl@0: Vdbe *v = pParse->pVdbe; sl@0: int i; sl@0: struct AggInfo_func *pF; sl@0: struct AggInfo_col *pC; sl@0: sl@0: pAggInfo->directMode = 1; sl@0: for(i=0, pF=pAggInfo->aFunc; inFunc; i++, pF++){ sl@0: int nArg; sl@0: int addrNext = 0; sl@0: int regAgg; sl@0: ExprList *pList = pF->pExpr->pList; sl@0: if( pList ){ sl@0: nArg = pList->nExpr; sl@0: regAgg = sqlite3GetTempRange(pParse, nArg); sl@0: sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); sl@0: }else{ sl@0: nArg = 0; sl@0: regAgg = 0; sl@0: } sl@0: if( pF->iDistinct>=0 ){ sl@0: addrNext = sqlite3VdbeMakeLabel(v); sl@0: assert( nArg==1 ); sl@0: codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); sl@0: } sl@0: if( pF->pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ sl@0: CollSeq *pColl = 0; sl@0: struct ExprList_item *pItem; sl@0: int j; sl@0: assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ sl@0: for(j=0, pItem=pList->a; !pColl && jpExpr); sl@0: } sl@0: if( !pColl ){ sl@0: pColl = pParse->db->pDfltColl; sl@0: } sl@0: sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); sl@0: } sl@0: sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, sl@0: (void*)pF->pFunc, P4_FUNCDEF); sl@0: sqlite3VdbeChangeP5(v, nArg); sl@0: sqlite3ReleaseTempRange(pParse, regAgg, nArg); sl@0: sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); sl@0: if( addrNext ){ sl@0: sqlite3VdbeResolveLabel(v, addrNext); sl@0: } sl@0: } sl@0: for(i=0, pC=pAggInfo->aCol; inAccumulator; i++, pC++){ sl@0: sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); sl@0: } sl@0: pAggInfo->directMode = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Generate code for the SELECT statement given in the p argument. sl@0: ** sl@0: ** The results are distributed in various ways depending on the sl@0: ** contents of the SelectDest structure pointed to by argument pDest sl@0: ** as follows: sl@0: ** sl@0: ** pDest->eDest Result sl@0: ** ------------ ------------------------------------------- sl@0: ** SRT_Output Generate a row of output (using the OP_ResultRow sl@0: ** opcode) for each row in the result set. sl@0: ** sl@0: ** SRT_Mem Only valid if the result is a single column. sl@0: ** Store the first column of the first result row sl@0: ** in register pDest->iParm then abandon the rest sl@0: ** of the query. This destination implies "LIMIT 1". sl@0: ** sl@0: ** SRT_Set The result must be a single column. Store each sl@0: ** row of result as the key in table pDest->iParm. sl@0: ** Apply the affinity pDest->affinity before storing sl@0: ** results. Used to implement "IN (SELECT ...)". sl@0: ** sl@0: ** SRT_Union Store results as a key in a temporary table pDest->iParm. sl@0: ** sl@0: ** SRT_Except Remove results from the temporary table pDest->iParm. sl@0: ** sl@0: ** SRT_Table Store results in temporary table pDest->iParm. sl@0: ** This is like SRT_EphemTab except that the table sl@0: ** is assumed to already be open. sl@0: ** sl@0: ** SRT_EphemTab Create an temporary table pDest->iParm and store sl@0: ** the result there. The cursor is left open after sl@0: ** returning. This is like SRT_Table except that sl@0: ** this destination uses OP_OpenEphemeral to create sl@0: ** the table first. sl@0: ** sl@0: ** SRT_Coroutine Generate a co-routine that returns a new row of sl@0: ** results each time it is invoked. The entry point sl@0: ** of the co-routine is stored in register pDest->iParm. sl@0: ** sl@0: ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result sl@0: ** set is not empty. sl@0: ** sl@0: ** SRT_Discard Throw the results away. This is used by SELECT sl@0: ** statements within triggers whose only purpose is sl@0: ** the side-effects of functions. sl@0: ** sl@0: ** This routine returns the number of errors. If any errors are sl@0: ** encountered, then an appropriate error message is left in sl@0: ** pParse->zErrMsg. sl@0: ** sl@0: ** This routine does NOT free the Select structure passed in. The sl@0: ** calling function needs to do that. sl@0: */ sl@0: int sqlite3Select( sl@0: Parse *pParse, /* The parser context */ sl@0: Select *p, /* The SELECT statement being coded. */ sl@0: SelectDest *pDest /* What to do with the query results */ sl@0: ){ sl@0: int i, j; /* Loop counters */ sl@0: WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ sl@0: Vdbe *v; /* The virtual machine under construction */ sl@0: int isAgg; /* True for select lists like "count(*)" */ sl@0: ExprList *pEList; /* List of columns to extract. */ sl@0: SrcList *pTabList; /* List of tables to select from */ sl@0: Expr *pWhere; /* The WHERE clause. May be NULL */ sl@0: ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ sl@0: ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ sl@0: Expr *pHaving; /* The HAVING clause. May be NULL */ sl@0: int isDistinct; /* True if the DISTINCT keyword is present */ sl@0: int distinct; /* Table to use for the distinct set */ sl@0: int rc = 1; /* Value to return from this function */ sl@0: int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ sl@0: AggInfo sAggInfo; /* Information used by aggregate queries */ sl@0: int iEnd; /* Address of the end of the query */ sl@0: sqlite3 *db; /* The database connection */ sl@0: sl@0: db = pParse->db; sl@0: if( p==0 || db->mallocFailed || pParse->nErr ){ sl@0: return 1; sl@0: } sl@0: if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; sl@0: memset(&sAggInfo, 0, sizeof(sAggInfo)); sl@0: sl@0: pOrderBy = p->pOrderBy; sl@0: if( IgnorableOrderby(pDest) ){ sl@0: p->pOrderBy = 0; sl@0: sl@0: /* In these cases the DISTINCT operator makes no difference to the sl@0: ** results, so remove it if it were specified. sl@0: */ sl@0: assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || sl@0: pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); sl@0: p->selFlags &= ~SF_Distinct; sl@0: } sl@0: sqlite3SelectPrep(pParse, p, 0); sl@0: if( pParse->nErr ){ sl@0: goto select_end; sl@0: } sl@0: p->pOrderBy = pOrderBy; sl@0: sl@0: sl@0: /* Make local copies of the parameters for this query. sl@0: */ sl@0: pTabList = p->pSrc; sl@0: isAgg = (p->selFlags & SF_Aggregate)!=0; sl@0: pEList = p->pEList; sl@0: if( pEList==0 ) goto select_end; sl@0: sl@0: /* sl@0: ** Do not even attempt to generate any code if we have already seen sl@0: ** errors before this routine starts. sl@0: */ sl@0: if( pParse->nErr>0 ) goto select_end; sl@0: sl@0: /* ORDER BY is ignored for some destinations. sl@0: */ sl@0: if( IgnorableOrderby(pDest) ){ sl@0: pOrderBy = 0; sl@0: } sl@0: sl@0: /* Begin generating code. sl@0: */ sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) goto select_end; sl@0: sl@0: /* Generate code for all sub-queries in the FROM clause sl@0: */ sl@0: #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) sl@0: for(i=0; !p->pPrior && inSrc; i++){ sl@0: struct SrcList_item *pItem = &pTabList->a[i]; sl@0: SelectDest dest; sl@0: Select *pSub = pItem->pSelect; sl@0: int isAggSub; sl@0: sl@0: if( pSub==0 || pItem->isPopulated ) continue; sl@0: sl@0: /* Increment Parse.nHeight by the height of the largest expression sl@0: ** tree refered to by this, the parent select. The child select sl@0: ** may contain expression trees of at most sl@0: ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit sl@0: ** more conservative than necessary, but much easier than enforcing sl@0: ** an exact limit. sl@0: */ sl@0: pParse->nHeight += sqlite3SelectExprHeight(p); sl@0: sl@0: /* Check to see if the subquery can be absorbed into the parent. */ sl@0: isAggSub = (pSub->selFlags & SF_Aggregate)!=0; sl@0: if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ sl@0: if( isAggSub ){ sl@0: isAgg = 1; sl@0: p->selFlags |= SF_Aggregate; sl@0: } sl@0: i = -1; sl@0: }else{ sl@0: sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); sl@0: assert( pItem->isPopulated==0 ); sl@0: sqlite3Select(pParse, pSub, &dest); sl@0: pItem->isPopulated = 1; sl@0: } sl@0: if( pParse->nErr || db->mallocFailed ){ sl@0: goto select_end; sl@0: } sl@0: pParse->nHeight -= sqlite3SelectExprHeight(p); sl@0: pTabList = p->pSrc; sl@0: if( !IgnorableOrderby(pDest) ){ sl@0: pOrderBy = p->pOrderBy; sl@0: } sl@0: } sl@0: pEList = p->pEList; sl@0: #endif sl@0: pWhere = p->pWhere; sl@0: pGroupBy = p->pGroupBy; sl@0: pHaving = p->pHaving; sl@0: isDistinct = (p->selFlags & SF_Distinct)!=0; sl@0: sl@0: #ifndef SQLITE_OMIT_COMPOUND_SELECT sl@0: /* If there is are a sequence of queries, do the earlier ones first. sl@0: */ sl@0: if( p->pPrior ){ sl@0: if( p->pRightmost==0 ){ sl@0: Select *pLoop, *pRight = 0; sl@0: int cnt = 0; sl@0: int mxSelect; sl@0: for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ sl@0: pLoop->pRightmost = p; sl@0: pLoop->pNext = pRight; sl@0: pRight = pLoop; sl@0: } sl@0: mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; sl@0: if( mxSelect && cnt>mxSelect ){ sl@0: sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); sl@0: return 1; sl@0: } sl@0: } sl@0: return multiSelect(pParse, p, pDest); sl@0: } sl@0: #endif sl@0: sl@0: /* If writing to memory or generating a set sl@0: ** only a single column may be output. sl@0: */ sl@0: #ifndef SQLITE_OMIT_SUBQUERY sl@0: if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ sl@0: goto select_end; sl@0: } sl@0: #endif sl@0: sl@0: /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. sl@0: ** GROUP BY might use an index, DISTINCT never does. sl@0: */ sl@0: if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){ sl@0: p->pGroupBy = sqlite3ExprListDup(db, p->pEList); sl@0: pGroupBy = p->pGroupBy; sl@0: p->selFlags &= ~SF_Distinct; sl@0: isDistinct = 0; sl@0: } sl@0: sl@0: /* If there is an ORDER BY clause, then this sorting sl@0: ** index might end up being unused if the data can be sl@0: ** extracted in pre-sorted order. If that is the case, then the sl@0: ** OP_OpenEphemeral instruction will be changed to an OP_Noop once sl@0: ** we figure out that the sorting index is not needed. The addrSortIndex sl@0: ** variable is used to facilitate that change. sl@0: */ sl@0: if( pOrderBy ){ sl@0: KeyInfo *pKeyInfo; sl@0: pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); sl@0: pOrderBy->iECursor = pParse->nTab++; sl@0: p->addrOpenEphm[2] = addrSortIndex = sl@0: sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sl@0: pOrderBy->iECursor, pOrderBy->nExpr+2, 0, sl@0: (char*)pKeyInfo, P4_KEYINFO_HANDOFF); sl@0: }else{ sl@0: addrSortIndex = -1; sl@0: } sl@0: sl@0: /* If the output is destined for a temporary table, open that table. sl@0: */ sl@0: if( pDest->eDest==SRT_EphemTab ){ sl@0: sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); sl@0: } sl@0: sl@0: /* Set the limiter. sl@0: */ sl@0: iEnd = sqlite3VdbeMakeLabel(v); sl@0: computeLimitRegisters(pParse, p, iEnd); sl@0: sl@0: /* Open a virtual index to use for the distinct set. sl@0: */ sl@0: if( isDistinct ){ sl@0: KeyInfo *pKeyInfo; sl@0: assert( isAgg || pGroupBy ); sl@0: distinct = pParse->nTab++; sl@0: pKeyInfo = keyInfoFromExprList(pParse, p->pEList); sl@0: sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, sl@0: (char*)pKeyInfo, P4_KEYINFO_HANDOFF); sl@0: }else{ sl@0: distinct = -1; sl@0: } sl@0: sl@0: /* Aggregate and non-aggregate queries are handled differently */ sl@0: if( !isAgg && pGroupBy==0 ){ sl@0: /* This case is for non-aggregate queries sl@0: ** Begin the database scan sl@0: */ sl@0: pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); sl@0: if( pWInfo==0 ) goto select_end; sl@0: sl@0: /* If sorting index that was created by a prior OP_OpenEphemeral sl@0: ** instruction ended up not being needed, then change the OP_OpenEphemeral sl@0: ** into an OP_Noop. sl@0: */ sl@0: if( addrSortIndex>=0 && pOrderBy==0 ){ sl@0: sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); sl@0: p->addrOpenEphm[2] = -1; sl@0: } sl@0: sl@0: /* Use the standard inner loop sl@0: */ sl@0: assert(!isDistinct); sl@0: selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, sl@0: pWInfo->iContinue, pWInfo->iBreak); sl@0: sl@0: /* End the database scan loop. sl@0: */ sl@0: sqlite3WhereEnd(pWInfo); sl@0: }else{ sl@0: /* This is the processing for aggregate queries */ sl@0: NameContext sNC; /* Name context for processing aggregate information */ sl@0: int iAMem; /* First Mem address for storing current GROUP BY */ sl@0: int iBMem; /* First Mem address for previous GROUP BY */ sl@0: int iUseFlag; /* Mem address holding flag indicating that at least sl@0: ** one row of the input to the aggregator has been sl@0: ** processed */ sl@0: int iAbortFlag; /* Mem address which causes query abort if positive */ sl@0: int groupBySort; /* Rows come from source in GROUP BY order */ sl@0: int addrEnd; /* End of processing for this SELECT */ sl@0: sl@0: /* Remove any and all aliases between the result set and the sl@0: ** GROUP BY clause. sl@0: */ sl@0: if( pGroupBy ){ sl@0: int i; /* Loop counter */ sl@0: struct ExprList_item *pItem; /* For looping over expression in a list */ sl@0: sl@0: for(i=p->pEList->nExpr, pItem=p->pEList->a; i>0; i--, pItem++){ sl@0: pItem->iAlias = 0; sl@0: } sl@0: for(i=pGroupBy->nExpr, pItem=pGroupBy->a; i>0; i--, pItem++){ sl@0: pItem->iAlias = 0; sl@0: } sl@0: } sl@0: sl@0: sl@0: /* Create a label to jump to when we want to abort the query */ sl@0: addrEnd = sqlite3VdbeMakeLabel(v); sl@0: sl@0: /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in sl@0: ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the sl@0: ** SELECT statement. sl@0: */ sl@0: memset(&sNC, 0, sizeof(sNC)); sl@0: sNC.pParse = pParse; sl@0: sNC.pSrcList = pTabList; sl@0: sNC.pAggInfo = &sAggInfo; sl@0: sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; sl@0: sAggInfo.pGroupBy = pGroupBy; sl@0: sqlite3ExprAnalyzeAggList(&sNC, pEList); sl@0: sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); sl@0: if( pHaving ){ sl@0: sqlite3ExprAnalyzeAggregates(&sNC, pHaving); sl@0: } sl@0: sAggInfo.nAccumulator = sAggInfo.nColumn; sl@0: for(i=0; ipList); sl@0: } sl@0: if( db->mallocFailed ) goto select_end; sl@0: sl@0: /* Processing for aggregates with GROUP BY is very different and sl@0: ** much more complex than aggregates without a GROUP BY. sl@0: */ sl@0: if( pGroupBy ){ sl@0: KeyInfo *pKeyInfo; /* Keying information for the group by clause */ sl@0: int j1; /* A-vs-B comparision jump */ sl@0: int addrOutputRow; /* Start of subroutine that outputs a result row */ sl@0: int regOutputRow; /* Return address register for output subroutine */ sl@0: int addrSetAbort; /* Set the abort flag and return */ sl@0: int addrTopOfLoop; /* Top of the input loop */ sl@0: int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ sl@0: int addrReset; /* Subroutine for resetting the accumulator */ sl@0: int regReset; /* Return address register for reset subroutine */ sl@0: sl@0: /* If there is a GROUP BY clause we might need a sorting index to sl@0: ** implement it. Allocate that sorting index now. If it turns out sl@0: ** that we do not need it after all, the OpenEphemeral instruction sl@0: ** will be converted into a Noop. sl@0: */ sl@0: sAggInfo.sortingIdx = pParse->nTab++; sl@0: pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); sl@0: addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, sl@0: sAggInfo.sortingIdx, sAggInfo.nSortingColumn, sl@0: 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); sl@0: sl@0: /* Initialize memory locations used by GROUP BY aggregate processing sl@0: */ sl@0: iUseFlag = ++pParse->nMem; sl@0: iAbortFlag = ++pParse->nMem; sl@0: regOutputRow = ++pParse->nMem; sl@0: addrOutputRow = sqlite3VdbeMakeLabel(v); sl@0: regReset = ++pParse->nMem; sl@0: addrReset = sqlite3VdbeMakeLabel(v); sl@0: iAMem = pParse->nMem + 1; sl@0: pParse->nMem += pGroupBy->nExpr; sl@0: iBMem = pParse->nMem + 1; sl@0: pParse->nMem += pGroupBy->nExpr; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); sl@0: VdbeComment((v, "clear abort flag")); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); sl@0: VdbeComment((v, "indicate accumulator empty")); sl@0: sl@0: /* Begin a loop that will extract all source rows in GROUP BY order. sl@0: ** This might involve two separate loops with an OP_Sort in between, or sl@0: ** it might be a single loop that uses an index to extract information sl@0: ** in the right order to begin with. sl@0: */ sl@0: sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); sl@0: pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); sl@0: if( pWInfo==0 ) goto select_end; sl@0: if( pGroupBy==0 ){ sl@0: /* The optimizer is able to deliver rows in group by order so sl@0: ** we do not have to sort. The OP_OpenEphemeral table will be sl@0: ** cancelled later because we still need to use the pKeyInfo sl@0: */ sl@0: pGroupBy = p->pGroupBy; sl@0: groupBySort = 0; sl@0: }else{ sl@0: /* Rows are coming out in undetermined order. We have to push sl@0: ** each row into a sorting index, terminate the first loop, sl@0: ** then loop over the sorting index in order to get the output sl@0: ** in sorted order sl@0: */ sl@0: int regBase; sl@0: int regRecord; sl@0: int nCol; sl@0: int nGroupBy; sl@0: sl@0: groupBySort = 1; sl@0: nGroupBy = pGroupBy->nExpr; sl@0: nCol = nGroupBy + 1; sl@0: j = nGroupBy+1; sl@0: for(i=0; i=j ){ sl@0: nCol++; sl@0: j++; sl@0: } sl@0: } sl@0: regBase = sqlite3GetTempRange(pParse, nCol); sl@0: sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); sl@0: sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); sl@0: j = nGroupBy+1; sl@0: for(i=0; iiSorterColumn>=j ){ sl@0: int r1 = j + regBase; sl@0: int r2; sl@0: sl@0: r2 = sqlite3ExprCodeGetColumn(pParse, sl@0: pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); sl@0: if( r1!=r2 ){ sl@0: sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1); sl@0: } sl@0: j++; sl@0: } sl@0: } sl@0: regRecord = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); sl@0: sqlite3ReleaseTempReg(pParse, regRecord); sl@0: sqlite3ReleaseTempRange(pParse, regBase, nCol); sl@0: sqlite3WhereEnd(pWInfo); sl@0: sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); sl@0: VdbeComment((v, "GROUP BY sort")); sl@0: sAggInfo.useSortingIdx = 1; sl@0: } sl@0: sl@0: /* Evaluate the current GROUP BY terms and store in b0, b1, b2... sl@0: ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) sl@0: ** Then compare the current GROUP BY terms against the GROUP BY terms sl@0: ** from the previous row currently stored in a0, a1, a2... sl@0: */ sl@0: addrTopOfLoop = sqlite3VdbeCurrentAddr(v); sl@0: for(j=0; jnExpr; j++){ sl@0: if( groupBySort ){ sl@0: sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); sl@0: }else{ sl@0: sAggInfo.directMode = 1; sl@0: sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); sl@0: } sl@0: } sl@0: sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, sl@0: (char*)pKeyInfo, P4_KEYINFO); sl@0: j1 = sqlite3VdbeCurrentAddr(v); sl@0: sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); sl@0: sl@0: /* Generate code that runs whenever the GROUP BY changes. sl@0: ** Changes in the GROUP BY are detected by the previous code sl@0: ** block. If there were no changes, this block is skipped. sl@0: ** sl@0: ** This code copies current group by terms in b0,b1,b2,... sl@0: ** over to a0,a1,a2. It then calls the output subroutine sl@0: ** and resets the aggregate accumulator registers in preparation sl@0: ** for the next GROUP BY batch. sl@0: */ sl@0: sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); sl@0: sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); sl@0: VdbeComment((v, "output one row")); sl@0: sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); sl@0: VdbeComment((v, "check abort flag")); sl@0: sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); sl@0: VdbeComment((v, "reset accumulator")); sl@0: sl@0: /* Update the aggregate accumulators based on the content of sl@0: ** the current row sl@0: */ sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: updateAccumulator(pParse, &sAggInfo); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); sl@0: VdbeComment((v, "indicate data in accumulator")); sl@0: sl@0: /* End of the loop sl@0: */ sl@0: if( groupBySort ){ sl@0: sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); sl@0: }else{ sl@0: sqlite3WhereEnd(pWInfo); sl@0: sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); sl@0: } sl@0: sl@0: /* Output the final row of result sl@0: */ sl@0: sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); sl@0: VdbeComment((v, "output final row")); sl@0: sl@0: /* Jump over the subroutines sl@0: */ sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd); sl@0: sl@0: /* Generate a subroutine that outputs a single row of the result sl@0: ** set. This subroutine first looks at the iUseFlag. If iUseFlag sl@0: ** is less than or equal to zero, the subroutine is a no-op. If sl@0: ** the processing calls for the query to abort, this subroutine sl@0: ** increments the iAbortFlag memory location before returning in sl@0: ** order to signal the caller to abort. sl@0: */ sl@0: addrSetAbort = sqlite3VdbeCurrentAddr(v); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); sl@0: VdbeComment((v, "set abort flag")); sl@0: sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sl@0: sqlite3VdbeResolveLabel(v, addrOutputRow); sl@0: addrOutputRow = sqlite3VdbeCurrentAddr(v); sl@0: sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); sl@0: VdbeComment((v, "Groupby result generator entry point")); sl@0: sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sl@0: finalizeAggFunctions(pParse, &sAggInfo); sl@0: if( pHaving ){ sl@0: sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); sl@0: } sl@0: selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, sl@0: distinct, pDest, sl@0: addrOutputRow+1, addrSetAbort); sl@0: sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); sl@0: VdbeComment((v, "end groupby result generator")); sl@0: sl@0: /* Generate a subroutine that will reset the group-by accumulator sl@0: */ sl@0: sqlite3VdbeResolveLabel(v, addrReset); sl@0: resetAccumulator(pParse, &sAggInfo); sl@0: sqlite3VdbeAddOp1(v, OP_Return, regReset); sl@0: sl@0: } /* endif pGroupBy */ sl@0: else { sl@0: ExprList *pMinMax = 0; sl@0: ExprList *pDel = 0; sl@0: u8 flag; sl@0: sl@0: /* Check if the query is of one of the following forms: sl@0: ** sl@0: ** SELECT min(x) FROM ... sl@0: ** SELECT max(x) FROM ... sl@0: ** sl@0: ** If it is, then ask the code in where.c to attempt to sort results sl@0: ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. sl@0: ** If where.c is able to produce results sorted in this order, then sl@0: ** add vdbe code to break out of the processing loop after the sl@0: ** first iteration (since the first iteration of the loop is sl@0: ** guaranteed to operate on the row with the minimum or maximum sl@0: ** value of x, the only row required). sl@0: ** sl@0: ** A special flag must be passed to sqlite3WhereBegin() to slightly sl@0: ** modify behaviour as follows: sl@0: ** sl@0: ** + If the query is a "SELECT min(x)", then the loop coded by sl@0: ** where.c should not iterate over any values with a NULL value sl@0: ** for x. sl@0: ** sl@0: ** + The optimizer code in where.c (the thing that decides which sl@0: ** index or indices to use) should place a different priority on sl@0: ** satisfying the 'ORDER BY' clause than it does in other cases. sl@0: ** Refer to code and comments in where.c for details. sl@0: */ sl@0: flag = minMaxQuery(pParse, p); sl@0: if( flag ){ sl@0: pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList); sl@0: if( pMinMax && !db->mallocFailed ){ sl@0: pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN; sl@0: pMinMax->a[0].pExpr->op = TK_COLUMN; sl@0: } sl@0: } sl@0: sl@0: /* This case runs if the aggregate has no GROUP BY clause. The sl@0: ** processing is much simpler since there is only a single row sl@0: ** of output. sl@0: */ sl@0: resetAccumulator(pParse, &sAggInfo); sl@0: pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); sl@0: if( pWInfo==0 ){ sl@0: sqlite3ExprListDelete(db, pDel); sl@0: goto select_end; sl@0: } sl@0: updateAccumulator(pParse, &sAggInfo); sl@0: if( !pMinMax && flag ){ sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); sl@0: VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max"))); sl@0: } sl@0: sqlite3WhereEnd(pWInfo); sl@0: finalizeAggFunctions(pParse, &sAggInfo); sl@0: pOrderBy = 0; sl@0: if( pHaving ){ sl@0: sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); sl@0: } sl@0: selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, sl@0: pDest, addrEnd, addrEnd); sl@0: sl@0: sqlite3ExprListDelete(db, pDel); sl@0: } sl@0: sqlite3VdbeResolveLabel(v, addrEnd); sl@0: sl@0: } /* endif aggregate query */ sl@0: sl@0: /* If there is an ORDER BY clause, then we need to sort the results sl@0: ** and send them to the callback one by one. sl@0: */ sl@0: if( pOrderBy ){ sl@0: generateSortTail(pParse, p, v, pEList->nExpr, pDest); sl@0: } sl@0: sl@0: /* Jump here to skip this query sl@0: */ sl@0: sqlite3VdbeResolveLabel(v, iEnd); sl@0: sl@0: /* The SELECT was successfully coded. Set the return code to 0 sl@0: ** to indicate no errors. sl@0: */ sl@0: rc = 0; sl@0: sl@0: /* Control jumps to here if an error is encountered above, or upon sl@0: ** successful coding of the SELECT. sl@0: */ sl@0: select_end: sl@0: sl@0: /* Identify column names if results of the SELECT are to be output. sl@0: */ sl@0: if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ sl@0: generateColumnNames(pParse, pTabList, pEList); sl@0: } sl@0: sl@0: sqlite3DbFree(db, sAggInfo.aCol); sl@0: sqlite3DbFree(db, sAggInfo.aFunc); sl@0: return rc; sl@0: } sl@0: sl@0: #if defined(SQLITE_DEBUG) sl@0: /* sl@0: ******************************************************************************* sl@0: ** The following code is used for testing and debugging only. The code sl@0: ** that follows does not appear in normal builds. sl@0: ** sl@0: ** These routines are used to print out the content of all or part of a sl@0: ** parse structures such as Select or Expr. Such printouts are useful sl@0: ** for helping to understand what is happening inside the code generator sl@0: ** during the execution of complex SELECT statements. sl@0: ** sl@0: ** These routine are not called anywhere from within the normal sl@0: ** code base. Then are intended to be called from within the debugger sl@0: ** or from temporary "printf" statements inserted for debugging. sl@0: */ sl@0: void sqlite3PrintExpr(Expr *p){ sl@0: if( p->token.z && p->token.n>0 ){ sl@0: sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); sl@0: }else{ sl@0: sqlite3DebugPrintf("(%d", p->op); sl@0: } sl@0: if( p->pLeft ){ sl@0: sqlite3DebugPrintf(" "); sl@0: sqlite3PrintExpr(p->pLeft); sl@0: } sl@0: if( p->pRight ){ sl@0: sqlite3DebugPrintf(" "); sl@0: sqlite3PrintExpr(p->pRight); sl@0: } sl@0: sqlite3DebugPrintf(")"); sl@0: } sl@0: void sqlite3PrintExprList(ExprList *pList){ sl@0: int i; sl@0: for(i=0; inExpr; i++){ sl@0: sqlite3PrintExpr(pList->a[i].pExpr); sl@0: if( inExpr-1 ){ sl@0: sqlite3DebugPrintf(", "); sl@0: } sl@0: } sl@0: } sl@0: void sqlite3PrintSelect(Select *p, int indent){ sl@0: sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); sl@0: sqlite3PrintExprList(p->pEList); sl@0: sqlite3DebugPrintf("\n"); sl@0: if( p->pSrc ){ sl@0: char *zPrefix; sl@0: int i; sl@0: zPrefix = "FROM"; sl@0: for(i=0; ipSrc->nSrc; i++){ sl@0: struct SrcList_item *pItem = &p->pSrc->a[i]; sl@0: sqlite3DebugPrintf("%*s ", indent+6, zPrefix); sl@0: zPrefix = ""; sl@0: if( pItem->pSelect ){ sl@0: sqlite3DebugPrintf("(\n"); sl@0: sqlite3PrintSelect(pItem->pSelect, indent+10); sl@0: sqlite3DebugPrintf("%*s)", indent+8, ""); sl@0: }else if( pItem->zName ){ sl@0: sqlite3DebugPrintf("%s", pItem->zName); sl@0: } sl@0: if( pItem->pTab ){ sl@0: sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); sl@0: } sl@0: if( pItem->zAlias ){ sl@0: sqlite3DebugPrintf(" AS %s", pItem->zAlias); sl@0: } sl@0: if( ipSrc->nSrc-1 ){ sl@0: sqlite3DebugPrintf(","); sl@0: } sl@0: sqlite3DebugPrintf("\n"); sl@0: } sl@0: } sl@0: if( p->pWhere ){ sl@0: sqlite3DebugPrintf("%*s WHERE ", indent, ""); sl@0: sqlite3PrintExpr(p->pWhere); sl@0: sqlite3DebugPrintf("\n"); sl@0: } sl@0: if( p->pGroupBy ){ sl@0: sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); sl@0: sqlite3PrintExprList(p->pGroupBy); sl@0: sqlite3DebugPrintf("\n"); sl@0: } sl@0: if( p->pHaving ){ sl@0: sqlite3DebugPrintf("%*s HAVING ", indent, ""); sl@0: sqlite3PrintExpr(p->pHaving); sl@0: sqlite3DebugPrintf("\n"); sl@0: } sl@0: if( p->pOrderBy ){ sl@0: sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); sl@0: sqlite3PrintExprList(p->pOrderBy); sl@0: sqlite3DebugPrintf("\n"); sl@0: } sl@0: } sl@0: /* End of the structure debug printing code sl@0: *****************************************************************************/ sl@0: #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */