sl@0: /* sl@0: ** The "printf" code that follows dates from the 1980's. It is in sl@0: ** the public domain. The original comments are included here for sl@0: ** completeness. They are very out-of-date but might be useful as sl@0: ** an historical reference. Most of the "enhancements" have been backed sl@0: ** out so that the functionality is now the same as standard printf(). sl@0: ** sl@0: ** $Id: printf.c,v 1.94 2008/08/22 14:08:36 drh Exp $ sl@0: ** sl@0: ************************************************************************** sl@0: ** sl@0: ** The following modules is an enhanced replacement for the "printf" subroutines sl@0: ** found in the standard C library. The following enhancements are sl@0: ** supported: sl@0: ** sl@0: ** + Additional functions. The standard set of "printf" functions sl@0: ** includes printf, fprintf, sprintf, vprintf, vfprintf, and sl@0: ** vsprintf. This module adds the following: sl@0: ** sl@0: ** * snprintf -- Works like sprintf, but has an extra argument sl@0: ** which is the size of the buffer written to. sl@0: ** sl@0: ** * mprintf -- Similar to sprintf. Writes output to memory sl@0: ** obtained from malloc. sl@0: ** sl@0: ** * xprintf -- Calls a function to dispose of output. sl@0: ** sl@0: ** * nprintf -- No output, but returns the number of characters sl@0: ** that would have been output by printf. sl@0: ** sl@0: ** * A v- version (ex: vsnprintf) of every function is also sl@0: ** supplied. sl@0: ** sl@0: ** + A few extensions to the formatting notation are supported: sl@0: ** sl@0: ** * The "=" flag (similar to "-") causes the output to be sl@0: ** be centered in the appropriately sized field. sl@0: ** sl@0: ** * The %b field outputs an integer in binary notation. sl@0: ** sl@0: ** * The %c field now accepts a precision. The character output sl@0: ** is repeated by the number of times the precision specifies. sl@0: ** sl@0: ** * The %' field works like %c, but takes as its character the sl@0: ** next character of the format string, instead of the next sl@0: ** argument. For example, printf("%.78'-") prints 78 minus sl@0: ** signs, the same as printf("%.78c",'-'). sl@0: ** sl@0: ** + When compiled using GCC on a SPARC, this version of printf is sl@0: ** faster than the library printf for SUN OS 4.1. sl@0: ** sl@0: ** + All functions are fully reentrant. sl@0: ** sl@0: */ sl@0: #include "sqliteInt.h" sl@0: sl@0: /* sl@0: ** Conversion types fall into various categories as defined by the sl@0: ** following enumeration. sl@0: */ sl@0: #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ sl@0: #define etFLOAT 2 /* Floating point. %f */ sl@0: #define etEXP 3 /* Exponentional notation. %e and %E */ sl@0: #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ sl@0: #define etSIZE 5 /* Return number of characters processed so far. %n */ sl@0: #define etSTRING 6 /* Strings. %s */ sl@0: #define etDYNSTRING 7 /* Dynamically allocated strings. %z */ sl@0: #define etPERCENT 8 /* Percent symbol. %% */ sl@0: #define etCHARX 9 /* Characters. %c */ sl@0: /* The rest are extensions, not normally found in printf() */ sl@0: #define etSQLESCAPE 10 /* Strings with '\'' doubled. %q */ sl@0: #define etSQLESCAPE2 11 /* Strings with '\'' doubled and enclosed in '', sl@0: NULL pointers replaced by SQL NULL. %Q */ sl@0: #define etTOKEN 12 /* a pointer to a Token structure */ sl@0: #define etSRCLIST 13 /* a pointer to a SrcList */ sl@0: #define etPOINTER 14 /* The %p conversion */ sl@0: #define etSQLESCAPE3 15 /* %w -> Strings with '\"' doubled */ sl@0: #define etORDINAL 16 /* %r -> 1st, 2nd, 3rd, 4th, etc. English only */ sl@0: sl@0: sl@0: /* sl@0: ** An "etByte" is an 8-bit unsigned value. sl@0: */ sl@0: typedef unsigned char etByte; sl@0: sl@0: /* sl@0: ** Each builtin conversion character (ex: the 'd' in "%d") is described sl@0: ** by an instance of the following structure sl@0: */ sl@0: typedef struct et_info { /* Information about each format field */ sl@0: char fmttype; /* The format field code letter */ sl@0: etByte base; /* The base for radix conversion */ sl@0: etByte flags; /* One or more of FLAG_ constants below */ sl@0: etByte type; /* Conversion paradigm */ sl@0: etByte charset; /* Offset into aDigits[] of the digits string */ sl@0: etByte prefix; /* Offset into aPrefix[] of the prefix string */ sl@0: } et_info; sl@0: sl@0: /* sl@0: ** Allowed values for et_info.flags sl@0: */ sl@0: #define FLAG_SIGNED 1 /* True if the value to convert is signed */ sl@0: #define FLAG_INTERN 2 /* True if for internal use only */ sl@0: #define FLAG_STRING 4 /* Allow infinity precision */ sl@0: sl@0: sl@0: /* sl@0: ** The following table is searched linearly, so it is good to put the sl@0: ** most frequently used conversion types first. sl@0: */ sl@0: static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; sl@0: static const char aPrefix[] = "-x0\000X0"; sl@0: static const et_info fmtinfo[] = { sl@0: { 'd', 10, 1, etRADIX, 0, 0 }, sl@0: { 's', 0, 4, etSTRING, 0, 0 }, sl@0: { 'g', 0, 1, etGENERIC, 30, 0 }, sl@0: { 'z', 0, 4, etDYNSTRING, 0, 0 }, sl@0: { 'q', 0, 4, etSQLESCAPE, 0, 0 }, sl@0: { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, sl@0: { 'w', 0, 4, etSQLESCAPE3, 0, 0 }, sl@0: { 'c', 0, 0, etCHARX, 0, 0 }, sl@0: { 'o', 8, 0, etRADIX, 0, 2 }, sl@0: { 'u', 10, 0, etRADIX, 0, 0 }, sl@0: { 'x', 16, 0, etRADIX, 16, 1 }, sl@0: { 'X', 16, 0, etRADIX, 0, 4 }, sl@0: #ifndef SQLITE_OMIT_FLOATING_POINT sl@0: { 'f', 0, 1, etFLOAT, 0, 0 }, sl@0: { 'e', 0, 1, etEXP, 30, 0 }, sl@0: { 'E', 0, 1, etEXP, 14, 0 }, sl@0: { 'G', 0, 1, etGENERIC, 14, 0 }, sl@0: #endif sl@0: { 'i', 10, 1, etRADIX, 0, 0 }, sl@0: { 'n', 0, 0, etSIZE, 0, 0 }, sl@0: { '%', 0, 0, etPERCENT, 0, 0 }, sl@0: { 'p', 16, 0, etPOINTER, 0, 1 }, sl@0: { 'T', 0, 2, etTOKEN, 0, 0 }, sl@0: { 'S', 0, 2, etSRCLIST, 0, 0 }, sl@0: { 'r', 10, 3, etORDINAL, 0, 0 }, sl@0: }; sl@0: #define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0])) sl@0: sl@0: /* sl@0: ** If SQLITE_OMIT_FLOATING_POINT is defined, then none of the floating point sl@0: ** conversions will work. sl@0: */ sl@0: #ifndef SQLITE_OMIT_FLOATING_POINT sl@0: /* sl@0: ** "*val" is a double such that 0.1 <= *val < 10.0 sl@0: ** Return the ascii code for the leading digit of *val, then sl@0: ** multiply "*val" by 10.0 to renormalize. sl@0: ** sl@0: ** Example: sl@0: ** input: *val = 3.14159 sl@0: ** output: *val = 1.4159 function return = '3' sl@0: ** sl@0: ** The counter *cnt is incremented each time. After counter exceeds sl@0: ** 16 (the number of significant digits in a 64-bit float) '0' is sl@0: ** always returned. sl@0: */ sl@0: static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ sl@0: int digit; sl@0: LONGDOUBLE_TYPE d; sl@0: if( (*cnt)++ >= 16 ) return '0'; sl@0: digit = (int)*val; sl@0: d = digit; sl@0: digit += '0'; sl@0: *val = (*val - d)*10.0; sl@0: return digit; sl@0: } sl@0: #endif /* SQLITE_OMIT_FLOATING_POINT */ sl@0: sl@0: /* sl@0: ** Append N space characters to the given string buffer. sl@0: */ sl@0: static void appendSpace(StrAccum *pAccum, int N){ sl@0: static const char zSpaces[] = " "; sl@0: while( N>=sizeof(zSpaces)-1 ){ sl@0: sqlite3StrAccumAppend(pAccum, zSpaces, sizeof(zSpaces)-1); sl@0: N -= sizeof(zSpaces)-1; sl@0: } sl@0: if( N>0 ){ sl@0: sqlite3StrAccumAppend(pAccum, zSpaces, N); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** On machines with a small stack size, you can redefine the sl@0: ** SQLITE_PRINT_BUF_SIZE to be less than 350. But beware - for sl@0: ** smaller values some %f conversions may go into an infinite loop. sl@0: */ sl@0: #ifndef SQLITE_PRINT_BUF_SIZE sl@0: # define SQLITE_PRINT_BUF_SIZE 350 sl@0: #endif sl@0: #define etBUFSIZE SQLITE_PRINT_BUF_SIZE /* Size of the output buffer */ sl@0: sl@0: /* sl@0: ** The root program. All variations call this core. sl@0: ** sl@0: ** INPUTS: sl@0: ** func This is a pointer to a function taking three arguments sl@0: ** 1. A pointer to anything. Same as the "arg" parameter. sl@0: ** 2. A pointer to the list of characters to be output sl@0: ** (Note, this list is NOT null terminated.) sl@0: ** 3. An integer number of characters to be output. sl@0: ** (Note: This number might be zero.) sl@0: ** sl@0: ** arg This is the pointer to anything which will be passed as the sl@0: ** first argument to "func". Use it for whatever you like. sl@0: ** sl@0: ** fmt This is the format string, as in the usual print. sl@0: ** sl@0: ** ap This is a pointer to a list of arguments. Same as in sl@0: ** vfprint. sl@0: ** sl@0: ** OUTPUTS: sl@0: ** The return value is the total number of characters sent to sl@0: ** the function "func". Returns -1 on a error. sl@0: ** sl@0: ** Note that the order in which automatic variables are declared below sl@0: ** seems to make a big difference in determining how fast this beast sl@0: ** will run. sl@0: */ sl@0: void sqlite3VXPrintf( sl@0: StrAccum *pAccum, /* Accumulate results here */ sl@0: int useExtended, /* Allow extended %-conversions */ sl@0: const char *fmt, /* Format string */ sl@0: va_list ap /* arguments */ sl@0: ){ sl@0: int c; /* Next character in the format string */ sl@0: char *bufpt; /* Pointer to the conversion buffer */ sl@0: int precision; /* Precision of the current field */ sl@0: int length; /* Length of the field */ sl@0: int idx; /* A general purpose loop counter */ sl@0: int width; /* Width of the current field */ sl@0: etByte flag_leftjustify; /* True if "-" flag is present */ sl@0: etByte flag_plussign; /* True if "+" flag is present */ sl@0: etByte flag_blanksign; /* True if " " flag is present */ sl@0: etByte flag_alternateform; /* True if "#" flag is present */ sl@0: etByte flag_altform2; /* True if "!" flag is present */ sl@0: etByte flag_zeropad; /* True if field width constant starts with zero */ sl@0: etByte flag_long; /* True if "l" flag is present */ sl@0: etByte flag_longlong; /* True if the "ll" flag is present */ sl@0: etByte done; /* Loop termination flag */ sl@0: sqlite_uint64 longvalue; /* Value for integer types */ sl@0: LONGDOUBLE_TYPE realvalue; /* Value for real types */ sl@0: const et_info *infop; /* Pointer to the appropriate info structure */ sl@0: char buf[etBUFSIZE]; /* Conversion buffer */ sl@0: char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ sl@0: etByte xtype; /* Conversion paradigm */ sl@0: char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ sl@0: #ifndef SQLITE_OMIT_FLOATING_POINT sl@0: int exp, e2; /* exponent of real numbers */ sl@0: double rounder; /* Used for rounding floating point values */ sl@0: etByte flag_dp; /* True if decimal point should be shown */ sl@0: etByte flag_rtz; /* True if trailing zeros should be removed */ sl@0: etByte flag_exp; /* True to force display of the exponent */ sl@0: int nsd; /* Number of significant digits returned */ sl@0: #endif sl@0: sl@0: length = 0; sl@0: bufpt = 0; sl@0: for(; (c=(*fmt))!=0; ++fmt){ sl@0: if( c!='%' ){ sl@0: int amt; sl@0: bufpt = (char *)fmt; sl@0: amt = 1; sl@0: while( (c=(*++fmt))!='%' && c!=0 ) amt++; sl@0: sqlite3StrAccumAppend(pAccum, bufpt, amt); sl@0: if( c==0 ) break; sl@0: } sl@0: if( (c=(*++fmt))==0 ){ sl@0: sqlite3StrAccumAppend(pAccum, "%", 1); sl@0: break; sl@0: } sl@0: /* Find out what flags are present */ sl@0: flag_leftjustify = flag_plussign = flag_blanksign = sl@0: flag_alternateform = flag_altform2 = flag_zeropad = 0; sl@0: done = 0; sl@0: do{ sl@0: switch( c ){ sl@0: case '-': flag_leftjustify = 1; break; sl@0: case '+': flag_plussign = 1; break; sl@0: case ' ': flag_blanksign = 1; break; sl@0: case '#': flag_alternateform = 1; break; sl@0: case '!': flag_altform2 = 1; break; sl@0: case '0': flag_zeropad = 1; break; sl@0: default: done = 1; break; sl@0: } sl@0: }while( !done && (c=(*++fmt))!=0 ); sl@0: /* Get the field width */ sl@0: width = 0; sl@0: if( c=='*' ){ sl@0: width = va_arg(ap,int); sl@0: if( width<0 ){ sl@0: flag_leftjustify = 1; sl@0: width = -width; sl@0: } sl@0: c = *++fmt; sl@0: }else{ sl@0: while( c>='0' && c<='9' ){ sl@0: width = width*10 + c - '0'; sl@0: c = *++fmt; sl@0: } sl@0: } sl@0: if( width > etBUFSIZE-10 ){ sl@0: width = etBUFSIZE-10; sl@0: } sl@0: /* Get the precision */ sl@0: if( c=='.' ){ sl@0: precision = 0; sl@0: c = *++fmt; sl@0: if( c=='*' ){ sl@0: precision = va_arg(ap,int); sl@0: if( precision<0 ) precision = -precision; sl@0: c = *++fmt; sl@0: }else{ sl@0: while( c>='0' && c<='9' ){ sl@0: precision = precision*10 + c - '0'; sl@0: c = *++fmt; sl@0: } sl@0: } sl@0: }else{ sl@0: precision = -1; sl@0: } sl@0: /* Get the conversion type modifier */ sl@0: if( c=='l' ){ sl@0: flag_long = 1; sl@0: c = *++fmt; sl@0: if( c=='l' ){ sl@0: flag_longlong = 1; sl@0: c = *++fmt; sl@0: }else{ sl@0: flag_longlong = 0; sl@0: } sl@0: }else{ sl@0: flag_long = flag_longlong = 0; sl@0: } sl@0: /* Fetch the info entry for the field */ sl@0: infop = 0; sl@0: for(idx=0; idxflags & FLAG_INTERN)==0 ){ sl@0: xtype = infop->type; sl@0: }else{ sl@0: return; sl@0: } sl@0: break; sl@0: } sl@0: } sl@0: zExtra = 0; sl@0: if( infop==0 ){ sl@0: return; sl@0: } sl@0: sl@0: sl@0: /* Limit the precision to prevent overflowing buf[] during conversion */ sl@0: if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){ sl@0: precision = etBUFSIZE-40; sl@0: } sl@0: sl@0: /* sl@0: ** At this point, variables are initialized as follows: sl@0: ** sl@0: ** flag_alternateform TRUE if a '#' is present. sl@0: ** flag_altform2 TRUE if a '!' is present. sl@0: ** flag_plussign TRUE if a '+' is present. sl@0: ** flag_leftjustify TRUE if a '-' is present or if the sl@0: ** field width was negative. sl@0: ** flag_zeropad TRUE if the width began with 0. sl@0: ** flag_long TRUE if the letter 'l' (ell) prefixed sl@0: ** the conversion character. sl@0: ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed sl@0: ** the conversion character. sl@0: ** flag_blanksign TRUE if a ' ' is present. sl@0: ** width The specified field width. This is sl@0: ** always non-negative. Zero is the default. sl@0: ** precision The specified precision. The default sl@0: ** is -1. sl@0: ** xtype The class of the conversion. sl@0: ** infop Pointer to the appropriate info struct. sl@0: */ sl@0: switch( xtype ){ sl@0: case etPOINTER: sl@0: flag_longlong = sizeof(char*)==sizeof(i64); sl@0: flag_long = sizeof(char*)==sizeof(long int); sl@0: /* Fall through into the next case */ sl@0: case etORDINAL: sl@0: case etRADIX: sl@0: if( infop->flags & FLAG_SIGNED ){ sl@0: i64 v; sl@0: if( flag_longlong ) v = va_arg(ap,i64); sl@0: else if( flag_long ) v = va_arg(ap,long int); sl@0: else v = va_arg(ap,int); sl@0: if( v<0 ){ sl@0: longvalue = -v; sl@0: prefix = '-'; sl@0: }else{ sl@0: longvalue = v; sl@0: if( flag_plussign ) prefix = '+'; sl@0: else if( flag_blanksign ) prefix = ' '; sl@0: else prefix = 0; sl@0: } sl@0: }else{ sl@0: if( flag_longlong ) longvalue = va_arg(ap,u64); sl@0: else if( flag_long ) longvalue = va_arg(ap,unsigned long int); sl@0: else longvalue = va_arg(ap,unsigned int); sl@0: prefix = 0; sl@0: } sl@0: if( longvalue==0 ) flag_alternateform = 0; sl@0: if( flag_zeropad && precision=4 || (longvalue/10)%10==1 ){ sl@0: x = 0; sl@0: } sl@0: buf[etBUFSIZE-3] = zOrd[x*2]; sl@0: buf[etBUFSIZE-2] = zOrd[x*2+1]; sl@0: bufpt -= 2; sl@0: } sl@0: { sl@0: register const char *cset; /* Use registers for speed */ sl@0: register int base; sl@0: cset = &aDigits[infop->charset]; sl@0: base = infop->base; sl@0: do{ /* Convert to ascii */ sl@0: *(--bufpt) = cset[longvalue%base]; sl@0: longvalue = longvalue/base; sl@0: }while( longvalue>0 ); sl@0: } sl@0: length = &buf[etBUFSIZE-1]-bufpt; sl@0: for(idx=precision-length; idx>0; idx--){ sl@0: *(--bufpt) = '0'; /* Zero pad */ sl@0: } sl@0: if( prefix ) *(--bufpt) = prefix; /* Add sign */ sl@0: if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ sl@0: const char *pre; sl@0: char x; sl@0: pre = &aPrefix[infop->prefix]; sl@0: for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; sl@0: } sl@0: length = &buf[etBUFSIZE-1]-bufpt; sl@0: break; sl@0: case etFLOAT: sl@0: case etEXP: sl@0: case etGENERIC: sl@0: realvalue = va_arg(ap,double); sl@0: #ifndef SQLITE_OMIT_FLOATING_POINT sl@0: if( precision<0 ) precision = 6; /* Set default precision */ sl@0: if( precision>etBUFSIZE/2-10 ) precision = etBUFSIZE/2-10; sl@0: if( realvalue<0.0 ){ sl@0: realvalue = -realvalue; sl@0: prefix = '-'; sl@0: }else{ sl@0: if( flag_plussign ) prefix = '+'; sl@0: else if( flag_blanksign ) prefix = ' '; sl@0: else prefix = 0; sl@0: } sl@0: if( xtype==etGENERIC && precision>0 ) precision--; sl@0: #if 0 sl@0: /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ sl@0: for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); sl@0: #else sl@0: /* It makes more sense to use 0.5 */ sl@0: for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} sl@0: #endif sl@0: if( xtype==etFLOAT ) realvalue += rounder; sl@0: /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ sl@0: exp = 0; sl@0: if( sqlite3IsNaN(realvalue) ){ sl@0: bufpt = "NaN"; sl@0: length = 3; sl@0: break; sl@0: } sl@0: if( realvalue>0.0 ){ sl@0: while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; } sl@0: while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } sl@0: while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } sl@0: while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; } sl@0: while( realvalue<1.0 ){ realvalue *= 10.0; exp--; } sl@0: if( exp>350 ){ sl@0: if( prefix=='-' ){ sl@0: bufpt = "-Inf"; sl@0: }else if( prefix=='+' ){ sl@0: bufpt = "+Inf"; sl@0: }else{ sl@0: bufpt = "Inf"; sl@0: } sl@0: length = strlen(bufpt); sl@0: break; sl@0: } sl@0: } sl@0: bufpt = buf; sl@0: /* sl@0: ** If the field type is etGENERIC, then convert to either etEXP sl@0: ** or etFLOAT, as appropriate. sl@0: */ sl@0: flag_exp = xtype==etEXP; sl@0: if( xtype!=etFLOAT ){ sl@0: realvalue += rounder; sl@0: if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } sl@0: } sl@0: if( xtype==etGENERIC ){ sl@0: flag_rtz = !flag_alternateform; sl@0: if( exp<-4 || exp>precision ){ sl@0: xtype = etEXP; sl@0: }else{ sl@0: precision = precision - exp; sl@0: xtype = etFLOAT; sl@0: } sl@0: }else{ sl@0: flag_rtz = 0; sl@0: } sl@0: if( xtype==etEXP ){ sl@0: e2 = 0; sl@0: }else{ sl@0: e2 = exp; sl@0: } sl@0: nsd = 0; sl@0: flag_dp = (precision>0) | flag_alternateform | flag_altform2; sl@0: /* The sign in front of the number */ sl@0: if( prefix ){ sl@0: *(bufpt++) = prefix; sl@0: } sl@0: /* Digits prior to the decimal point */ sl@0: if( e2<0 ){ sl@0: *(bufpt++) = '0'; sl@0: }else{ sl@0: for(; e2>=0; e2--){ sl@0: *(bufpt++) = et_getdigit(&realvalue,&nsd); sl@0: } sl@0: } sl@0: /* The decimal point */ sl@0: if( flag_dp ){ sl@0: *(bufpt++) = '.'; sl@0: } sl@0: /* "0" digits after the decimal point but before the first sl@0: ** significant digit of the number */ sl@0: for(e2++; e2<0; precision--, e2++){ sl@0: assert( precision>0 ); sl@0: *(bufpt++) = '0'; sl@0: } sl@0: /* Significant digits after the decimal point */ sl@0: while( (precision--)>0 ){ sl@0: *(bufpt++) = et_getdigit(&realvalue,&nsd); sl@0: } sl@0: /* Remove trailing zeros and the "." if no digits follow the "." */ sl@0: if( flag_rtz && flag_dp ){ sl@0: while( bufpt[-1]=='0' ) *(--bufpt) = 0; sl@0: assert( bufpt>buf ); sl@0: if( bufpt[-1]=='.' ){ sl@0: if( flag_altform2 ){ sl@0: *(bufpt++) = '0'; sl@0: }else{ sl@0: *(--bufpt) = 0; sl@0: } sl@0: } sl@0: } sl@0: /* Add the "eNNN" suffix */ sl@0: if( flag_exp || xtype==etEXP ){ sl@0: *(bufpt++) = aDigits[infop->charset]; sl@0: if( exp<0 ){ sl@0: *(bufpt++) = '-'; exp = -exp; sl@0: }else{ sl@0: *(bufpt++) = '+'; sl@0: } sl@0: if( exp>=100 ){ sl@0: *(bufpt++) = (exp/100)+'0'; /* 100's digit */ sl@0: exp %= 100; sl@0: } sl@0: *(bufpt++) = exp/10+'0'; /* 10's digit */ sl@0: *(bufpt++) = exp%10+'0'; /* 1's digit */ sl@0: } sl@0: *bufpt = 0; sl@0: sl@0: /* The converted number is in buf[] and zero terminated. Output it. sl@0: ** Note that the number is in the usual order, not reversed as with sl@0: ** integer conversions. */ sl@0: length = bufpt-buf; sl@0: bufpt = buf; sl@0: sl@0: /* Special case: Add leading zeros if the flag_zeropad flag is sl@0: ** set and we are not left justified */ sl@0: if( flag_zeropad && !flag_leftjustify && length < width){ sl@0: int i; sl@0: int nPad = width - length; sl@0: for(i=width; i>=nPad; i--){ sl@0: bufpt[i] = bufpt[i-nPad]; sl@0: } sl@0: i = prefix!=0; sl@0: while( nPad-- ) bufpt[i++] = '0'; sl@0: length = width; sl@0: } sl@0: #endif sl@0: break; sl@0: case etSIZE: sl@0: *(va_arg(ap,int*)) = pAccum->nChar; sl@0: length = width = 0; sl@0: break; sl@0: case etPERCENT: sl@0: buf[0] = '%'; sl@0: bufpt = buf; sl@0: length = 1; sl@0: break; sl@0: case etCHARX: sl@0: c = buf[0] = va_arg(ap,int); sl@0: if( precision>=0 ){ sl@0: for(idx=1; idx=0 ){ sl@0: for(length=0; lengthetBUFSIZE ){ sl@0: bufpt = zExtra = sqlite3Malloc( n ); sl@0: if( bufpt==0 ) return; sl@0: }else{ sl@0: bufpt = buf; sl@0: } sl@0: j = 0; sl@0: if( needQuote ) bufpt[j++] = q; sl@0: for(i=0; (ch=escarg[i])!=0; i++){ sl@0: bufpt[j++] = ch; sl@0: if( ch==q ) bufpt[j++] = ch; sl@0: } sl@0: if( needQuote ) bufpt[j++] = q; sl@0: bufpt[j] = 0; sl@0: length = j; sl@0: /* The precision is ignored on %q and %Q */ sl@0: /* if( precision>=0 && precisionz, pToken->n); sl@0: } sl@0: length = width = 0; sl@0: break; sl@0: } sl@0: case etSRCLIST: { sl@0: SrcList *pSrc = va_arg(ap, SrcList*); sl@0: int k = va_arg(ap, int); sl@0: struct SrcList_item *pItem = &pSrc->a[k]; sl@0: assert( k>=0 && knSrc ); sl@0: if( pItem->zDatabase ){ sl@0: sqlite3StrAccumAppend(pAccum, pItem->zDatabase, -1); sl@0: sqlite3StrAccumAppend(pAccum, ".", 1); sl@0: } sl@0: sqlite3StrAccumAppend(pAccum, pItem->zName, -1); sl@0: length = width = 0; sl@0: break; sl@0: } sl@0: }/* End switch over the format type */ sl@0: /* sl@0: ** The text of the conversion is pointed to by "bufpt" and is sl@0: ** "length" characters long. The field width is "width". Do sl@0: ** the output. sl@0: */ sl@0: if( !flag_leftjustify ){ sl@0: register int nspace; sl@0: nspace = width-length; sl@0: if( nspace>0 ){ sl@0: appendSpace(pAccum, nspace); sl@0: } sl@0: } sl@0: if( length>0 ){ sl@0: sqlite3StrAccumAppend(pAccum, bufpt, length); sl@0: } sl@0: if( flag_leftjustify ){ sl@0: register int nspace; sl@0: nspace = width-length; sl@0: if( nspace>0 ){ sl@0: appendSpace(pAccum, nspace); sl@0: } sl@0: } sl@0: if( zExtra ){ sl@0: sqlite3_free(zExtra); sl@0: } sl@0: }/* End for loop over the format string */ sl@0: } /* End of function */ sl@0: sl@0: /* sl@0: ** Append N bytes of text from z to the StrAccum object. sl@0: */ sl@0: void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){ sl@0: if( p->tooBig | p->mallocFailed ){ sl@0: return; sl@0: } sl@0: if( N<0 ){ sl@0: N = strlen(z); sl@0: } sl@0: if( N==0 ){ sl@0: return; sl@0: } sl@0: if( p->nChar+N >= p->nAlloc ){ sl@0: char *zNew; sl@0: if( !p->useMalloc ){ sl@0: p->tooBig = 1; sl@0: N = p->nAlloc - p->nChar - 1; sl@0: if( N<=0 ){ sl@0: return; sl@0: } sl@0: }else{ sl@0: i64 szNew = p->nChar; sl@0: szNew += N + 1; sl@0: if( szNew > p->mxAlloc ){ sl@0: sqlite3StrAccumReset(p); sl@0: p->tooBig = 1; sl@0: return; sl@0: }else{ sl@0: p->nAlloc = szNew; sl@0: } sl@0: zNew = sqlite3DbMallocRaw(p->db, p->nAlloc ); sl@0: if( zNew ){ sl@0: memcpy(zNew, p->zText, p->nChar); sl@0: sqlite3StrAccumReset(p); sl@0: p->zText = zNew; sl@0: }else{ sl@0: p->mallocFailed = 1; sl@0: sqlite3StrAccumReset(p); sl@0: return; sl@0: } sl@0: } sl@0: } sl@0: memcpy(&p->zText[p->nChar], z, N); sl@0: p->nChar += N; sl@0: } sl@0: sl@0: /* sl@0: ** Finish off a string by making sure it is zero-terminated. sl@0: ** Return a pointer to the resulting string. Return a NULL sl@0: ** pointer if any kind of error was encountered. sl@0: */ sl@0: char *sqlite3StrAccumFinish(StrAccum *p){ sl@0: if( p->zText ){ sl@0: p->zText[p->nChar] = 0; sl@0: if( p->useMalloc && p->zText==p->zBase ){ sl@0: p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 ); sl@0: if( p->zText ){ sl@0: memcpy(p->zText, p->zBase, p->nChar+1); sl@0: }else{ sl@0: p->mallocFailed = 1; sl@0: } sl@0: } sl@0: } sl@0: return p->zText; sl@0: } sl@0: sl@0: /* sl@0: ** Reset an StrAccum string. Reclaim all malloced memory. sl@0: */ sl@0: void sqlite3StrAccumReset(StrAccum *p){ sl@0: if( p->zText!=p->zBase ){ sl@0: sqlite3DbFree(p->db, p->zText); sl@0: } sl@0: p->zText = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Initialize a string accumulator sl@0: */ sl@0: void sqlite3StrAccumInit(StrAccum *p, char *zBase, int n, int mx){ sl@0: p->zText = p->zBase = zBase; sl@0: p->db = 0; sl@0: p->nChar = 0; sl@0: p->nAlloc = n; sl@0: p->mxAlloc = mx; sl@0: p->useMalloc = 1; sl@0: p->tooBig = 0; sl@0: p->mallocFailed = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Print into memory obtained from sqliteMalloc(). Use the internal sl@0: ** %-conversion extensions. sl@0: */ sl@0: char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){ sl@0: char *z; sl@0: char zBase[SQLITE_PRINT_BUF_SIZE]; sl@0: StrAccum acc; sl@0: sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), sl@0: db ? db->aLimit[SQLITE_LIMIT_LENGTH] : SQLITE_MAX_LENGTH); sl@0: acc.db = db; sl@0: sqlite3VXPrintf(&acc, 1, zFormat, ap); sl@0: z = sqlite3StrAccumFinish(&acc); sl@0: if( acc.mallocFailed && db ){ sl@0: db->mallocFailed = 1; sl@0: } sl@0: return z; sl@0: } sl@0: sl@0: /* sl@0: ** Print into memory obtained from sqliteMalloc(). Use the internal sl@0: ** %-conversion extensions. sl@0: */ sl@0: char *sqlite3MPrintf(sqlite3 *db, const char *zFormat, ...){ sl@0: va_list ap; sl@0: char *z; sl@0: va_start(ap, zFormat); sl@0: z = sqlite3VMPrintf(db, zFormat, ap); sl@0: va_end(ap); sl@0: return z; sl@0: } sl@0: sl@0: /* sl@0: ** Like sqlite3MPrintf(), but call sqlite3DbFree() on zStr after formatting sl@0: ** the string and before returnning. This routine is intended to be used sl@0: ** to modify an existing string. For example: sl@0: ** sl@0: ** x = sqlite3MPrintf(db, x, "prefix %s suffix", x); sl@0: ** sl@0: */ sl@0: char *sqlite3MAppendf(sqlite3 *db, char *zStr, const char *zFormat, ...){ sl@0: va_list ap; sl@0: char *z; sl@0: va_start(ap, zFormat); sl@0: z = sqlite3VMPrintf(db, zFormat, ap); sl@0: va_end(ap); sl@0: sqlite3DbFree(db, zStr); sl@0: return z; sl@0: } sl@0: sl@0: /* sl@0: ** Print into memory obtained from sqlite3_malloc(). Omit the internal sl@0: ** %-conversion extensions. sl@0: */ sl@0: char *sqlite3_vmprintf(const char *zFormat, va_list ap){ sl@0: char *z; sl@0: char zBase[SQLITE_PRINT_BUF_SIZE]; sl@0: StrAccum acc; sl@0: #ifndef SQLITE_OMIT_AUTOINIT sl@0: if( sqlite3_initialize() ) return 0; sl@0: #endif sl@0: sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH); sl@0: sqlite3VXPrintf(&acc, 0, zFormat, ap); sl@0: z = sqlite3StrAccumFinish(&acc); sl@0: return z; sl@0: } sl@0: sl@0: /* sl@0: ** Print into memory obtained from sqlite3_malloc()(). Omit the internal sl@0: ** %-conversion extensions. sl@0: */ sl@0: char *sqlite3_mprintf(const char *zFormat, ...){ sl@0: va_list ap; sl@0: char *z; sl@0: #ifndef SQLITE_OMIT_AUTOINIT sl@0: if( sqlite3_initialize() ) return 0; sl@0: #endif sl@0: va_start(ap, zFormat); sl@0: z = sqlite3_vmprintf(zFormat, ap); sl@0: va_end(ap); sl@0: return z; sl@0: } sl@0: sl@0: /* sl@0: ** sqlite3_snprintf() works like snprintf() except that it ignores the sl@0: ** current locale settings. This is important for SQLite because we sl@0: ** are not able to use a "," as the decimal point in place of "." as sl@0: ** specified by some locales. sl@0: */ sl@0: char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ sl@0: char *z; sl@0: va_list ap; sl@0: StrAccum acc; sl@0: sl@0: if( n<=0 ){ sl@0: return zBuf; sl@0: } sl@0: sqlite3StrAccumInit(&acc, zBuf, n, 0); sl@0: acc.useMalloc = 0; sl@0: va_start(ap,zFormat); sl@0: sqlite3VXPrintf(&acc, 0, zFormat, ap); sl@0: va_end(ap); sl@0: z = sqlite3StrAccumFinish(&acc); sl@0: return z; sl@0: } sl@0: sl@0: #if defined(SQLITE_DEBUG) sl@0: /* sl@0: ** A version of printf() that understands %lld. Used for debugging. sl@0: ** The printf() built into some versions of windows does not understand %lld sl@0: ** and segfaults if you give it a long long int. sl@0: */ sl@0: void sqlite3DebugPrintf(const char *zFormat, ...){ sl@0: va_list ap; sl@0: StrAccum acc; sl@0: char zBuf[500]; sl@0: sqlite3StrAccumInit(&acc, zBuf, sizeof(zBuf), 0); sl@0: acc.useMalloc = 0; sl@0: va_start(ap,zFormat); sl@0: sqlite3VXPrintf(&acc, 0, zFormat, ap); sl@0: va_end(ap); sl@0: sqlite3StrAccumFinish(&acc); sl@0: fprintf(stdout,"%s", zBuf); sl@0: fflush(stdout); sl@0: } sl@0: #endif