sl@0: /* sl@0: ** 2004 April 6 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** $Id: btreeInt.h,v 1.34 2008/09/30 17:18:17 drh Exp $ sl@0: ** sl@0: ** This file implements a external (disk-based) database using BTrees. sl@0: ** For a detailed discussion of BTrees, refer to sl@0: ** sl@0: ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: sl@0: ** "Sorting And Searching", pages 473-480. Addison-Wesley sl@0: ** Publishing Company, Reading, Massachusetts. sl@0: ** sl@0: ** The basic idea is that each page of the file contains N database sl@0: ** entries and N+1 pointers to subpages. sl@0: ** sl@0: ** ---------------------------------------------------------------- sl@0: ** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) | sl@0: ** ---------------------------------------------------------------- sl@0: ** sl@0: ** All of the keys on the page that Ptr(0) points to have values less sl@0: ** than Key(0). All of the keys on page Ptr(1) and its subpages have sl@0: ** values greater than Key(0) and less than Key(1). All of the keys sl@0: ** on Ptr(N) and its subpages have values greater than Key(N-1). And sl@0: ** so forth. sl@0: ** sl@0: ** Finding a particular key requires reading O(log(M)) pages from the sl@0: ** disk where M is the number of entries in the tree. sl@0: ** sl@0: ** In this implementation, a single file can hold one or more separate sl@0: ** BTrees. Each BTree is identified by the index of its root page. The sl@0: ** key and data for any entry are combined to form the "payload". A sl@0: ** fixed amount of payload can be carried directly on the database sl@0: ** page. If the payload is larger than the preset amount then surplus sl@0: ** bytes are stored on overflow pages. The payload for an entry sl@0: ** and the preceding pointer are combined to form a "Cell". Each sl@0: ** page has a small header which contains the Ptr(N) pointer and other sl@0: ** information such as the size of key and data. sl@0: ** sl@0: ** FORMAT DETAILS sl@0: ** sl@0: ** The file is divided into pages. The first page is called page 1, sl@0: ** the second is page 2, and so forth. A page number of zero indicates sl@0: ** "no such page". The page size can be anything between 512 and 65536. sl@0: ** Each page can be either a btree page, a freelist page or an overflow sl@0: ** page. sl@0: ** sl@0: ** The first page is always a btree page. The first 100 bytes of the first sl@0: ** page contain a special header (the "file header") that describes the file. sl@0: ** The format of the file header is as follows: sl@0: ** sl@0: ** OFFSET SIZE DESCRIPTION sl@0: ** 0 16 Header string: "SQLite format 3\000" sl@0: ** 16 2 Page size in bytes. sl@0: ** 18 1 File format write version sl@0: ** 19 1 File format read version sl@0: ** 20 1 Bytes of unused space at the end of each page sl@0: ** 21 1 Max embedded payload fraction sl@0: ** 22 1 Min embedded payload fraction sl@0: ** 23 1 Min leaf payload fraction sl@0: ** 24 4 File change counter sl@0: ** 28 4 Reserved for future use sl@0: ** 32 4 First freelist page sl@0: ** 36 4 Number of freelist pages in the file sl@0: ** 40 60 15 4-byte meta values passed to higher layers sl@0: ** sl@0: ** All of the integer values are big-endian (most significant byte first). sl@0: ** sl@0: ** The file change counter is incremented when the database is changed sl@0: ** This counter allows other processes to know when the file has changed sl@0: ** and thus when they need to flush their cache. sl@0: ** sl@0: ** The max embedded payload fraction is the amount of the total usable sl@0: ** space in a page that can be consumed by a single cell for standard sl@0: ** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default sl@0: ** is to limit the maximum cell size so that at least 4 cells will fit sl@0: ** on one page. Thus the default max embedded payload fraction is 64. sl@0: ** sl@0: ** If the payload for a cell is larger than the max payload, then extra sl@0: ** payload is spilled to overflow pages. Once an overflow page is allocated, sl@0: ** as many bytes as possible are moved into the overflow pages without letting sl@0: ** the cell size drop below the min embedded payload fraction. sl@0: ** sl@0: ** The min leaf payload fraction is like the min embedded payload fraction sl@0: ** except that it applies to leaf nodes in a LEAFDATA tree. The maximum sl@0: ** payload fraction for a LEAFDATA tree is always 100% (or 255) and it sl@0: ** not specified in the header. sl@0: ** sl@0: ** Each btree pages is divided into three sections: The header, the sl@0: ** cell pointer array, and the cell content area. Page 1 also has a 100-byte sl@0: ** file header that occurs before the page header. sl@0: ** sl@0: ** |----------------| sl@0: ** | file header | 100 bytes. Page 1 only. sl@0: ** |----------------| sl@0: ** | page header | 8 bytes for leaves. 12 bytes for interior nodes sl@0: ** |----------------| sl@0: ** | cell pointer | | 2 bytes per cell. Sorted order. sl@0: ** | array | | Grows downward sl@0: ** | | v sl@0: ** |----------------| sl@0: ** | unallocated | sl@0: ** | space | sl@0: ** |----------------| ^ Grows upwards sl@0: ** | cell content | | Arbitrary order interspersed with freeblocks. sl@0: ** | area | | and free space fragments. sl@0: ** |----------------| sl@0: ** sl@0: ** The page headers looks like this: sl@0: ** sl@0: ** OFFSET SIZE DESCRIPTION sl@0: ** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf sl@0: ** 1 2 byte offset to the first freeblock sl@0: ** 3 2 number of cells on this page sl@0: ** 5 2 first byte of the cell content area sl@0: ** 7 1 number of fragmented free bytes sl@0: ** 8 4 Right child (the Ptr(N) value). Omitted on leaves. sl@0: ** sl@0: ** The flags define the format of this btree page. The leaf flag means that sl@0: ** this page has no children. The zerodata flag means that this page carries sl@0: ** only keys and no data. The intkey flag means that the key is a integer sl@0: ** which is stored in the key size entry of the cell header rather than in sl@0: ** the payload area. sl@0: ** sl@0: ** The cell pointer array begins on the first byte after the page header. sl@0: ** The cell pointer array contains zero or more 2-byte numbers which are sl@0: ** offsets from the beginning of the page to the cell content in the cell sl@0: ** content area. The cell pointers occur in sorted order. The system strives sl@0: ** to keep free space after the last cell pointer so that new cells can sl@0: ** be easily added without having to defragment the page. sl@0: ** sl@0: ** Cell content is stored at the very end of the page and grows toward the sl@0: ** beginning of the page. sl@0: ** sl@0: ** Unused space within the cell content area is collected into a linked list of sl@0: ** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset sl@0: ** to the first freeblock is given in the header. Freeblocks occur in sl@0: ** increasing order. Because a freeblock must be at least 4 bytes in size, sl@0: ** any group of 3 or fewer unused bytes in the cell content area cannot sl@0: ** exist on the freeblock chain. A group of 3 or fewer free bytes is called sl@0: ** a fragment. The total number of bytes in all fragments is recorded. sl@0: ** in the page header at offset 7. sl@0: ** sl@0: ** SIZE DESCRIPTION sl@0: ** 2 Byte offset of the next freeblock sl@0: ** 2 Bytes in this freeblock sl@0: ** sl@0: ** Cells are of variable length. Cells are stored in the cell content area at sl@0: ** the end of the page. Pointers to the cells are in the cell pointer array sl@0: ** that immediately follows the page header. Cells is not necessarily sl@0: ** contiguous or in order, but cell pointers are contiguous and in order. sl@0: ** sl@0: ** Cell content makes use of variable length integers. A variable sl@0: ** length integer is 1 to 9 bytes where the lower 7 bits of each sl@0: ** byte are used. The integer consists of all bytes that have bit 8 set and sl@0: ** the first byte with bit 8 clear. The most significant byte of the integer sl@0: ** appears first. A variable-length integer may not be more than 9 bytes long. sl@0: ** As a special case, all 8 bytes of the 9th byte are used as data. This sl@0: ** allows a 64-bit integer to be encoded in 9 bytes. sl@0: ** sl@0: ** 0x00 becomes 0x00000000 sl@0: ** 0x7f becomes 0x0000007f sl@0: ** 0x81 0x00 becomes 0x00000080 sl@0: ** 0x82 0x00 becomes 0x00000100 sl@0: ** 0x80 0x7f becomes 0x0000007f sl@0: ** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678 sl@0: ** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081 sl@0: ** sl@0: ** Variable length integers are used for rowids and to hold the number of sl@0: ** bytes of key and data in a btree cell. sl@0: ** sl@0: ** The content of a cell looks like this: sl@0: ** sl@0: ** SIZE DESCRIPTION sl@0: ** 4 Page number of the left child. Omitted if leaf flag is set. sl@0: ** var Number of bytes of data. Omitted if the zerodata flag is set. sl@0: ** var Number of bytes of key. Or the key itself if intkey flag is set. sl@0: ** * Payload sl@0: ** 4 First page of the overflow chain. Omitted if no overflow sl@0: ** sl@0: ** Overflow pages form a linked list. Each page except the last is completely sl@0: ** filled with data (pagesize - 4 bytes). The last page can have as little sl@0: ** as 1 byte of data. sl@0: ** sl@0: ** SIZE DESCRIPTION sl@0: ** 4 Page number of next overflow page sl@0: ** * Data sl@0: ** sl@0: ** Freelist pages come in two subtypes: trunk pages and leaf pages. The sl@0: ** file header points to the first in a linked list of trunk page. Each trunk sl@0: ** page points to multiple leaf pages. The content of a leaf page is sl@0: ** unspecified. A trunk page looks like this: sl@0: ** sl@0: ** SIZE DESCRIPTION sl@0: ** 4 Page number of next trunk page sl@0: ** 4 Number of leaf pointers on this page sl@0: ** * zero or more pages numbers of leaves sl@0: */ sl@0: #include "sqliteInt.h" sl@0: #include "pager.h" sl@0: #include "btree.h" sl@0: #include "os.h" sl@0: #include sl@0: sl@0: /* Round up a number to the next larger multiple of 8. This is used sl@0: ** to force 8-byte alignment on 64-bit architectures. sl@0: */ sl@0: #define ROUND8(x) ((x+7)&~7) sl@0: sl@0: sl@0: /* The following value is the maximum cell size assuming a maximum page sl@0: ** size give above. sl@0: */ sl@0: #define MX_CELL_SIZE(pBt) (pBt->pageSize-8) sl@0: sl@0: /* The maximum number of cells on a single page of the database. This sl@0: ** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself sl@0: ** plus 2 bytes for the index to the cell in the page header). Such sl@0: ** small cells will be rare, but they are possible. sl@0: */ sl@0: #define MX_CELL(pBt) ((pBt->pageSize-8)/6) sl@0: sl@0: /* Forward declarations */ sl@0: typedef struct MemPage MemPage; sl@0: typedef struct BtLock BtLock; sl@0: sl@0: /* sl@0: ** This is a magic string that appears at the beginning of every sl@0: ** SQLite database in order to identify the file as a real database. sl@0: ** sl@0: ** You can change this value at compile-time by specifying a sl@0: ** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The sl@0: ** header must be exactly 16 bytes including the zero-terminator so sl@0: ** the string itself should be 15 characters long. If you change sl@0: ** the header, then your custom library will not be able to read sl@0: ** databases generated by the standard tools and the standard tools sl@0: ** will not be able to read databases created by your custom library. sl@0: */ sl@0: #ifndef SQLITE_FILE_HEADER /* 123456789 123456 */ sl@0: # define SQLITE_FILE_HEADER "SQLite format 3" sl@0: #endif sl@0: sl@0: /* sl@0: ** Page type flags. An ORed combination of these flags appear as the sl@0: ** first byte of on-disk image of every BTree page. sl@0: */ sl@0: #define PTF_INTKEY 0x01 sl@0: #define PTF_ZERODATA 0x02 sl@0: #define PTF_LEAFDATA 0x04 sl@0: #define PTF_LEAF 0x08 sl@0: sl@0: /* sl@0: ** As each page of the file is loaded into memory, an instance of the following sl@0: ** structure is appended and initialized to zero. This structure stores sl@0: ** information about the page that is decoded from the raw file page. sl@0: ** sl@0: ** The pParent field points back to the parent page. This allows us to sl@0: ** walk up the BTree from any leaf to the root. Care must be taken to sl@0: ** unref() the parent page pointer when this page is no longer referenced. sl@0: ** The pageDestructor() routine handles that chore. sl@0: ** sl@0: ** Access to all fields of this structure is controlled by the mutex sl@0: ** stored in MemPage.pBt->mutex. sl@0: */ sl@0: struct MemPage { sl@0: u8 isInit; /* True if previously initialized. MUST BE FIRST! */ sl@0: u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ sl@0: u8 intKey; /* True if intkey flag is set */ sl@0: u8 leaf; /* True if leaf flag is set */ sl@0: u8 hasData; /* True if this page stores data */ sl@0: u8 hdrOffset; /* 100 for page 1. 0 otherwise */ sl@0: u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */ sl@0: u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */ sl@0: u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */ sl@0: u16 cellOffset; /* Index in aData of first cell pointer */ sl@0: u16 nFree; /* Number of free bytes on the page */ sl@0: u16 nCell; /* Number of cells on this page, local and ovfl */ sl@0: u16 maskPage; /* Mask for page offset */ sl@0: struct _OvflCell { /* Cells that will not fit on aData[] */ sl@0: u8 *pCell; /* Pointers to the body of the overflow cell */ sl@0: u16 idx; /* Insert this cell before idx-th non-overflow cell */ sl@0: } aOvfl[5]; sl@0: BtShared *pBt; /* Pointer to BtShared that this page is part of */ sl@0: u8 *aData; /* Pointer to disk image of the page data */ sl@0: DbPage *pDbPage; /* Pager page handle */ sl@0: Pgno pgno; /* Page number for this page */ sl@0: }; sl@0: sl@0: /* sl@0: ** The in-memory image of a disk page has the auxiliary information appended sl@0: ** to the end. EXTRA_SIZE is the number of bytes of space needed to hold sl@0: ** that extra information. sl@0: */ sl@0: #define EXTRA_SIZE sizeof(MemPage) sl@0: sl@0: /* A Btree handle sl@0: ** sl@0: ** A database connection contains a pointer to an instance of sl@0: ** this object for every database file that it has open. This structure sl@0: ** is opaque to the database connection. The database connection cannot sl@0: ** see the internals of this structure and only deals with pointers to sl@0: ** this structure. sl@0: ** sl@0: ** For some database files, the same underlying database cache might be sl@0: ** shared between multiple connections. In that case, each contection sl@0: ** has it own pointer to this object. But each instance of this object sl@0: ** points to the same BtShared object. The database cache and the sl@0: ** schema associated with the database file are all contained within sl@0: ** the BtShared object. sl@0: ** sl@0: ** All fields in this structure are accessed under sqlite3.mutex. sl@0: ** The pBt pointer itself may not be changed while there exists cursors sl@0: ** in the referenced BtShared that point back to this Btree since those sl@0: ** cursors have to do go through this Btree to find their BtShared and sl@0: ** they often do so without holding sqlite3.mutex. sl@0: */ sl@0: struct Btree { sl@0: sqlite3 *db; /* The database connection holding this btree */ sl@0: BtShared *pBt; /* Sharable content of this btree */ sl@0: u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */ sl@0: u8 sharable; /* True if we can share pBt with another db */ sl@0: u8 locked; /* True if db currently has pBt locked */ sl@0: int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */ sl@0: Btree *pNext; /* List of other sharable Btrees from the same db */ sl@0: Btree *pPrev; /* Back pointer of the same list */ sl@0: }; sl@0: sl@0: /* sl@0: ** Btree.inTrans may take one of the following values. sl@0: ** sl@0: ** If the shared-data extension is enabled, there may be multiple users sl@0: ** of the Btree structure. At most one of these may open a write transaction, sl@0: ** but any number may have active read transactions. sl@0: */ sl@0: #define TRANS_NONE 0 sl@0: #define TRANS_READ 1 sl@0: #define TRANS_WRITE 2 sl@0: sl@0: /* sl@0: ** An instance of this object represents a single database file. sl@0: ** sl@0: ** A single database file can be in use as the same time by two sl@0: ** or more database connections. When two or more connections are sl@0: ** sharing the same database file, each connection has it own sl@0: ** private Btree object for the file and each of those Btrees points sl@0: ** to this one BtShared object. BtShared.nRef is the number of sl@0: ** connections currently sharing this database file. sl@0: ** sl@0: ** Fields in this structure are accessed under the BtShared.mutex sl@0: ** mutex, except for nRef and pNext which are accessed under the sl@0: ** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field sl@0: ** may not be modified once it is initially set as long as nRef>0. sl@0: ** The pSchema field may be set once under BtShared.mutex and sl@0: ** thereafter is unchanged as long as nRef>0. sl@0: */ sl@0: struct BtShared { sl@0: Pager *pPager; /* The page cache */ sl@0: sqlite3 *db; /* Database connection currently using this Btree */ sl@0: BtCursor *pCursor; /* A list of all open cursors */ sl@0: MemPage *pPage1; /* First page of the database */ sl@0: u8 inStmt; /* True if we are in a statement subtransaction */ sl@0: u8 readOnly; /* True if the underlying file is readonly */ sl@0: u8 pageSizeFixed; /* True if the page size can no longer be changed */ sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: u8 autoVacuum; /* True if auto-vacuum is enabled */ sl@0: u8 incrVacuum; /* True if incr-vacuum is enabled */ sl@0: Pgno nTrunc; /* Non-zero if the db will be truncated (incr vacuum) */ sl@0: #endif sl@0: u16 pageSize; /* Total number of bytes on a page */ sl@0: u16 usableSize; /* Number of usable bytes on each page */ sl@0: int maxLocal; /* Maximum local payload in non-LEAFDATA tables */ sl@0: int minLocal; /* Minimum local payload in non-LEAFDATA tables */ sl@0: int maxLeaf; /* Maximum local payload in a LEAFDATA table */ sl@0: int minLeaf; /* Minimum local payload in a LEAFDATA table */ sl@0: u8 inTransaction; /* Transaction state */ sl@0: int nTransaction; /* Number of open transactions (read + write) */ sl@0: void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */ sl@0: void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */ sl@0: sqlite3_mutex *mutex; /* Non-recursive mutex required to access this struct */ sl@0: BusyHandler busyHdr; /* The busy handler for this btree */ sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: int nRef; /* Number of references to this structure */ sl@0: BtShared *pNext; /* Next on a list of sharable BtShared structs */ sl@0: BtLock *pLock; /* List of locks held on this shared-btree struct */ sl@0: Btree *pExclusive; /* Btree with an EXCLUSIVE lock on the whole db */ sl@0: #endif sl@0: u8 *pTmpSpace; /* BtShared.pageSize bytes of space for tmp use */ sl@0: }; sl@0: sl@0: /* sl@0: ** An instance of the following structure is used to hold information sl@0: ** about a cell. The parseCellPtr() function fills in this structure sl@0: ** based on information extract from the raw disk page. sl@0: */ sl@0: typedef struct CellInfo CellInfo; sl@0: struct CellInfo { sl@0: u8 *pCell; /* Pointer to the start of cell content */ sl@0: i64 nKey; /* The key for INTKEY tables, or number of bytes in key */ sl@0: u32 nData; /* Number of bytes of data */ sl@0: u32 nPayload; /* Total amount of payload */ sl@0: u16 nHeader; /* Size of the cell content header in bytes */ sl@0: u16 nLocal; /* Amount of payload held locally */ sl@0: u16 iOverflow; /* Offset to overflow page number. Zero if no overflow */ sl@0: u16 nSize; /* Size of the cell content on the main b-tree page */ sl@0: }; sl@0: sl@0: /* sl@0: ** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than sl@0: ** this will be declared corrupt. This value is calculated based on a sl@0: ** maximum database size of 2^31 pages a minimum fanout of 2 for a sl@0: ** root-node and 3 for all other internal nodes. sl@0: ** sl@0: ** If a tree that appears to be taller than this is encountered, it is sl@0: ** assumed that the database is corrupt. sl@0: */ sl@0: #define BTCURSOR_MAX_DEPTH 20 sl@0: sl@0: /* sl@0: ** A cursor is a pointer to a particular entry within a particular sl@0: ** b-tree within a database file. sl@0: ** sl@0: ** The entry is identified by its MemPage and the index in sl@0: ** MemPage.aCell[] of the entry. sl@0: ** sl@0: ** When a single database file can shared by two more database connections, sl@0: ** but cursors cannot be shared. Each cursor is associated with a sl@0: ** particular database connection identified BtCursor.pBtree.db. sl@0: ** sl@0: ** Fields in this structure are accessed under the BtShared.mutex sl@0: ** found at self->pBt->mutex. sl@0: */ sl@0: struct BtCursor { sl@0: Btree *pBtree; /* The Btree to which this cursor belongs */ sl@0: BtShared *pBt; /* The BtShared this cursor points to */ sl@0: BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */ sl@0: struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */ sl@0: Pgno pgnoRoot; /* The root page of this tree */ sl@0: CellInfo info; /* A parse of the cell we are pointing at */ sl@0: u8 wrFlag; /* True if writable */ sl@0: u8 atLast; /* Cursor pointing to the last entry */ sl@0: u8 validNKey; /* True if info.nKey is valid */ sl@0: u8 eState; /* One of the CURSOR_XXX constants (see below) */ sl@0: void *pKey; /* Saved key that was cursor's last known position */ sl@0: i64 nKey; /* Size of pKey, or last integer key */ sl@0: int skip; /* (skip<0) -> Prev() is a no-op. (skip>0) -> Next() is */ sl@0: #ifndef SQLITE_OMIT_INCRBLOB sl@0: u8 isIncrblobHandle; /* True if this cursor is an incr. io handle */ sl@0: Pgno *aOverflow; /* Cache of overflow page locations */ sl@0: #endif sl@0: #ifndef NDEBUG sl@0: u8 pagesShuffled; /* True if Btree pages are rearranged by balance()*/ sl@0: #endif sl@0: i16 iPage; /* Index of current page in apPage */ sl@0: MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ sl@0: u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ sl@0: }; sl@0: sl@0: /* sl@0: ** Potential values for BtCursor.eState. sl@0: ** sl@0: ** CURSOR_VALID: sl@0: ** Cursor points to a valid entry. getPayload() etc. may be called. sl@0: ** sl@0: ** CURSOR_INVALID: sl@0: ** Cursor does not point to a valid entry. This can happen (for example) sl@0: ** because the table is empty or because BtreeCursorFirst() has not been sl@0: ** called. sl@0: ** sl@0: ** CURSOR_REQUIRESEEK: sl@0: ** The table that this cursor was opened on still exists, but has been sl@0: ** modified since the cursor was last used. The cursor position is saved sl@0: ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in sl@0: ** this state, restoreCursorPosition() can be called to attempt to sl@0: ** seek the cursor to the saved position. sl@0: ** sl@0: ** CURSOR_FAULT: sl@0: ** A unrecoverable error (an I/O error or a malloc failure) has occurred sl@0: ** on a different connection that shares the BtShared cache with this sl@0: ** cursor. The error has left the cache in an inconsistent state. sl@0: ** Do nothing else with this cursor. Any attempt to use the cursor sl@0: ** should return the error code stored in BtCursor.skip sl@0: */ sl@0: #define CURSOR_INVALID 0 sl@0: #define CURSOR_VALID 1 sl@0: #define CURSOR_REQUIRESEEK 2 sl@0: #define CURSOR_FAULT 3 sl@0: sl@0: /* The database page the PENDING_BYTE occupies. This page is never used. sl@0: ** TODO: This macro is very similary to PAGER_MJ_PGNO() in pager.c. They sl@0: ** should possibly be consolidated (presumably in pager.h). sl@0: ** sl@0: ** If disk I/O is omitted (meaning that the database is stored purely sl@0: ** in memory) then there is no pending byte. sl@0: */ sl@0: #ifdef SQLITE_OMIT_DISKIO sl@0: # define PENDING_BYTE_PAGE(pBt) 0x7fffffff sl@0: #else sl@0: # define PENDING_BYTE_PAGE(pBt) ((PENDING_BYTE/(pBt)->pageSize)+1) sl@0: #endif sl@0: sl@0: /* sl@0: ** A linked list of the following structures is stored at BtShared.pLock. sl@0: ** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor sl@0: ** is opened on the table with root page BtShared.iTable. Locks are removed sl@0: ** from this list when a transaction is committed or rolled back, or when sl@0: ** a btree handle is closed. sl@0: */ sl@0: struct BtLock { sl@0: Btree *pBtree; /* Btree handle holding this lock */ sl@0: Pgno iTable; /* Root page of table */ sl@0: u8 eLock; /* READ_LOCK or WRITE_LOCK */ sl@0: BtLock *pNext; /* Next in BtShared.pLock list */ sl@0: }; sl@0: sl@0: /* Candidate values for BtLock.eLock */ sl@0: #define READ_LOCK 1 sl@0: #define WRITE_LOCK 2 sl@0: sl@0: /* sl@0: ** These macros define the location of the pointer-map entry for a sl@0: ** database page. The first argument to each is the number of usable sl@0: ** bytes on each page of the database (often 1024). The second is the sl@0: ** page number to look up in the pointer map. sl@0: ** sl@0: ** PTRMAP_PAGENO returns the database page number of the pointer-map sl@0: ** page that stores the required pointer. PTRMAP_PTROFFSET returns sl@0: ** the offset of the requested map entry. sl@0: ** sl@0: ** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page, sl@0: ** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be sl@0: ** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements sl@0: ** this test. sl@0: */ sl@0: #define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno) sl@0: #define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1)) sl@0: #define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno)) sl@0: sl@0: /* sl@0: ** The pointer map is a lookup table that identifies the parent page for sl@0: ** each child page in the database file. The parent page is the page that sl@0: ** contains a pointer to the child. Every page in the database contains sl@0: ** 0 or 1 parent pages. (In this context 'database page' refers sl@0: ** to any page that is not part of the pointer map itself.) Each pointer map sl@0: ** entry consists of a single byte 'type' and a 4 byte parent page number. sl@0: ** The PTRMAP_XXX identifiers below are the valid types. sl@0: ** sl@0: ** The purpose of the pointer map is to facility moving pages from one sl@0: ** position in the file to another as part of autovacuum. When a page sl@0: ** is moved, the pointer in its parent must be updated to point to the sl@0: ** new location. The pointer map is used to locate the parent page quickly. sl@0: ** sl@0: ** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not sl@0: ** used in this case. sl@0: ** sl@0: ** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number sl@0: ** is not used in this case. sl@0: ** sl@0: ** PTRMAP_OVERFLOW1: The database page is the first page in a list of sl@0: ** overflow pages. The page number identifies the page that sl@0: ** contains the cell with a pointer to this overflow page. sl@0: ** sl@0: ** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of sl@0: ** overflow pages. The page-number identifies the previous sl@0: ** page in the overflow page list. sl@0: ** sl@0: ** PTRMAP_BTREE: The database page is a non-root btree page. The page number sl@0: ** identifies the parent page in the btree. sl@0: */ sl@0: #define PTRMAP_ROOTPAGE 1 sl@0: #define PTRMAP_FREEPAGE 2 sl@0: #define PTRMAP_OVERFLOW1 3 sl@0: #define PTRMAP_OVERFLOW2 4 sl@0: #define PTRMAP_BTREE 5 sl@0: sl@0: /* A bunch of assert() statements to check the transaction state variables sl@0: ** of handle p (type Btree*) are internally consistent. sl@0: */ sl@0: #define btreeIntegrity(p) \ sl@0: assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \ sl@0: assert( p->pBt->inTransaction>=p->inTrans ); sl@0: sl@0: sl@0: /* sl@0: ** The ISAUTOVACUUM macro is used within balance_nonroot() to determine sl@0: ** if the database supports auto-vacuum or not. Because it is used sl@0: ** within an expression that is an argument to another macro sl@0: ** (sqliteMallocRaw), it is not possible to use conditional compilation. sl@0: ** So, this macro is defined instead. sl@0: */ sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: #define ISAUTOVACUUM (pBt->autoVacuum) sl@0: #else sl@0: #define ISAUTOVACUUM 0 sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** This structure is passed around through all the sanity checking routines sl@0: ** in order to keep track of some global state information. sl@0: */ sl@0: typedef struct IntegrityCk IntegrityCk; sl@0: struct IntegrityCk { sl@0: BtShared *pBt; /* The tree being checked out */ sl@0: Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */ sl@0: int nPage; /* Number of pages in the database */ sl@0: int *anRef; /* Number of times each page is referenced */ sl@0: int mxErr; /* Stop accumulating errors when this reaches zero */ sl@0: int nErr; /* Number of messages written to zErrMsg so far */ sl@0: int mallocFailed; /* A memory allocation error has occurred */ sl@0: StrAccum errMsg; /* Accumulate the error message text here */ sl@0: }; sl@0: sl@0: /* sl@0: ** Read or write a two- and four-byte big-endian integer values. sl@0: */ sl@0: #define get2byte(x) ((x)[0]<<8 | (x)[1]) sl@0: #define put2byte(p,v) ((p)[0] = (v)>>8, (p)[1] = (v)) sl@0: #define get4byte sqlite3Get4byte sl@0: #define put4byte sqlite3Put4byte sl@0: sl@0: /* sl@0: ** Internal routines that should be accessed by the btree layer only. sl@0: */ sl@0: int sqlite3BtreeGetPage(BtShared*, Pgno, MemPage**, int); sl@0: int sqlite3BtreeInitPage(MemPage *pPage); sl@0: void sqlite3BtreeParseCellPtr(MemPage*, u8*, CellInfo*); sl@0: void sqlite3BtreeParseCell(MemPage*, int, CellInfo*); sl@0: int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur); sl@0: void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur); sl@0: void sqlite3BtreeReleaseTempCursor(BtCursor *pCur); sl@0: void sqlite3BtreeMoveToParent(BtCursor *pCur);