sl@0: /* sl@0: ** 2004 April 6 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** $Id: btree.c,v 1.525 2008/10/08 17:58:49 danielk1977 Exp $ sl@0: ** sl@0: ** This file implements a external (disk-based) database using BTrees. sl@0: ** See the header comment on "btreeInt.h" for additional information. sl@0: ** Including a description of file format and an overview of operation. sl@0: */ sl@0: #include "btreeInt.h" sl@0: sl@0: /* sl@0: ** The header string that appears at the beginning of every sl@0: ** SQLite database. sl@0: */ sl@0: static const char zMagicHeader[] = SQLITE_FILE_HEADER; sl@0: sl@0: /* sl@0: ** Set this global variable to 1 to enable tracing using the TRACE sl@0: ** macro. sl@0: */ sl@0: #if 0 sl@0: int sqlite3BtreeTrace=0; /* True to enable tracing */ sl@0: # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} sl@0: #else sl@0: # define TRACE(X) sl@0: #endif sl@0: sl@0: /* sl@0: ** Sometimes we need a small amount of code such as a variable initialization sl@0: ** to setup for a later assert() statement. We do not want this code to sl@0: ** appear when assert() is disabled. The following macro is therefore sl@0: ** used to contain that setup code. The "VVA" acronym stands for sl@0: ** "Verification, Validation, and Accreditation". In other words, the sl@0: ** code within VVA_ONLY() will only run during verification processes. sl@0: */ sl@0: #ifndef NDEBUG sl@0: # define VVA_ONLY(X) X sl@0: #else sl@0: # define VVA_ONLY(X) sl@0: #endif sl@0: sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: /* sl@0: ** A list of BtShared objects that are eligible for participation sl@0: ** in shared cache. This variable has file scope during normal builds, sl@0: ** but the test harness needs to access it so we make it global for sl@0: ** test builds. sl@0: */ sl@0: #ifdef SQLITE_TEST sl@0: BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; sl@0: #else sl@0: static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; sl@0: #endif sl@0: #endif /* SQLITE_OMIT_SHARED_CACHE */ sl@0: sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: /* sl@0: ** Enable or disable the shared pager and schema features. sl@0: ** sl@0: ** This routine has no effect on existing database connections. sl@0: ** The shared cache setting effects only future calls to sl@0: ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). sl@0: */ sl@0: int sqlite3_enable_shared_cache(int enable){ sl@0: sqlite3GlobalConfig.sharedCacheEnabled = enable; sl@0: return SQLITE_OK; sl@0: } sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** Forward declaration sl@0: */ sl@0: static int checkReadLocks(Btree*, Pgno, BtCursor*, i64); sl@0: sl@0: sl@0: #ifdef SQLITE_OMIT_SHARED_CACHE sl@0: /* sl@0: ** The functions queryTableLock(), lockTable() and unlockAllTables() sl@0: ** manipulate entries in the BtShared.pLock linked list used to store sl@0: ** shared-cache table level locks. If the library is compiled with the sl@0: ** shared-cache feature disabled, then there is only ever one user sl@0: ** of each BtShared structure and so this locking is not necessary. sl@0: ** So define the lock related functions as no-ops. sl@0: */ sl@0: #define queryTableLock(a,b,c) SQLITE_OK sl@0: #define lockTable(a,b,c) SQLITE_OK sl@0: #define unlockAllTables(a) sl@0: #endif sl@0: sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: /* sl@0: ** Query to see if btree handle p may obtain a lock of type eLock sl@0: ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return sl@0: ** SQLITE_OK if the lock may be obtained (by calling lockTable()), or sl@0: ** SQLITE_LOCKED if not. sl@0: */ sl@0: static int queryTableLock(Btree *p, Pgno iTab, u8 eLock){ sl@0: BtShared *pBt = p->pBt; sl@0: BtLock *pIter; sl@0: sl@0: assert( sqlite3BtreeHoldsMutex(p) ); sl@0: assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); sl@0: assert( p->db!=0 ); sl@0: sl@0: /* This is a no-op if the shared-cache is not enabled */ sl@0: if( !p->sharable ){ sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* If some other connection is holding an exclusive lock, the sl@0: ** requested lock may not be obtained. sl@0: */ sl@0: if( pBt->pExclusive && pBt->pExclusive!=p ){ sl@0: return SQLITE_LOCKED; sl@0: } sl@0: sl@0: /* This (along with lockTable()) is where the ReadUncommitted flag is sl@0: ** dealt with. If the caller is querying for a read-lock and the flag is sl@0: ** set, it is unconditionally granted - even if there are write-locks sl@0: ** on the table. If a write-lock is requested, the ReadUncommitted flag sl@0: ** is not considered. sl@0: ** sl@0: ** In function lockTable(), if a read-lock is demanded and the sl@0: ** ReadUncommitted flag is set, no entry is added to the locks list sl@0: ** (BtShared.pLock). sl@0: ** sl@0: ** To summarize: If the ReadUncommitted flag is set, then read cursors do sl@0: ** not create or respect table locks. The locking procedure for a sl@0: ** write-cursor does not change. sl@0: */ sl@0: if( sl@0: 0==(p->db->flags&SQLITE_ReadUncommitted) || sl@0: eLock==WRITE_LOCK || sl@0: iTab==MASTER_ROOT sl@0: ){ sl@0: for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ sl@0: if( pIter->pBtree!=p && pIter->iTable==iTab && sl@0: (pIter->eLock!=eLock || eLock!=READ_LOCK) ){ sl@0: return SQLITE_LOCKED; sl@0: } sl@0: } sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: #endif /* !SQLITE_OMIT_SHARED_CACHE */ sl@0: sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: /* sl@0: ** Add a lock on the table with root-page iTable to the shared-btree used sl@0: ** by Btree handle p. Parameter eLock must be either READ_LOCK or sl@0: ** WRITE_LOCK. sl@0: ** sl@0: ** SQLITE_OK is returned if the lock is added successfully. SQLITE_BUSY and sl@0: ** SQLITE_NOMEM may also be returned. sl@0: */ sl@0: static int lockTable(Btree *p, Pgno iTable, u8 eLock){ sl@0: BtShared *pBt = p->pBt; sl@0: BtLock *pLock = 0; sl@0: BtLock *pIter; sl@0: sl@0: assert( sqlite3BtreeHoldsMutex(p) ); sl@0: assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); sl@0: assert( p->db!=0 ); sl@0: sl@0: /* This is a no-op if the shared-cache is not enabled */ sl@0: if( !p->sharable ){ sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: assert( SQLITE_OK==queryTableLock(p, iTable, eLock) ); sl@0: sl@0: /* If the read-uncommitted flag is set and a read-lock is requested, sl@0: ** return early without adding an entry to the BtShared.pLock list. See sl@0: ** comment in function queryTableLock() for more info on handling sl@0: ** the ReadUncommitted flag. sl@0: */ sl@0: if( sl@0: (p->db->flags&SQLITE_ReadUncommitted) && sl@0: (eLock==READ_LOCK) && sl@0: iTable!=MASTER_ROOT sl@0: ){ sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* First search the list for an existing lock on this table. */ sl@0: for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ sl@0: if( pIter->iTable==iTable && pIter->pBtree==p ){ sl@0: pLock = pIter; sl@0: break; sl@0: } sl@0: } sl@0: sl@0: /* If the above search did not find a BtLock struct associating Btree p sl@0: ** with table iTable, allocate one and link it into the list. sl@0: */ sl@0: if( !pLock ){ sl@0: pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); sl@0: if( !pLock ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: pLock->iTable = iTable; sl@0: pLock->pBtree = p; sl@0: pLock->pNext = pBt->pLock; sl@0: pBt->pLock = pLock; sl@0: } sl@0: sl@0: /* Set the BtLock.eLock variable to the maximum of the current lock sl@0: ** and the requested lock. This means if a write-lock was already held sl@0: ** and a read-lock requested, we don't incorrectly downgrade the lock. sl@0: */ sl@0: assert( WRITE_LOCK>READ_LOCK ); sl@0: if( eLock>pLock->eLock ){ sl@0: pLock->eLock = eLock; sl@0: } sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: #endif /* !SQLITE_OMIT_SHARED_CACHE */ sl@0: sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: /* sl@0: ** Release all the table locks (locks obtained via calls to the lockTable() sl@0: ** procedure) held by Btree handle p. sl@0: */ sl@0: static void unlockAllTables(Btree *p){ sl@0: BtShared *pBt = p->pBt; sl@0: BtLock **ppIter = &pBt->pLock; sl@0: sl@0: assert( sqlite3BtreeHoldsMutex(p) ); sl@0: assert( p->sharable || 0==*ppIter ); sl@0: sl@0: while( *ppIter ){ sl@0: BtLock *pLock = *ppIter; sl@0: assert( pBt->pExclusive==0 || pBt->pExclusive==pLock->pBtree ); sl@0: if( pLock->pBtree==p ){ sl@0: *ppIter = pLock->pNext; sl@0: sqlite3_free(pLock); sl@0: }else{ sl@0: ppIter = &pLock->pNext; sl@0: } sl@0: } sl@0: sl@0: if( pBt->pExclusive==p ){ sl@0: pBt->pExclusive = 0; sl@0: } sl@0: } sl@0: #endif /* SQLITE_OMIT_SHARED_CACHE */ sl@0: sl@0: static void releasePage(MemPage *pPage); /* Forward reference */ sl@0: sl@0: /* sl@0: ** Verify that the cursor holds a mutex on the BtShared sl@0: */ sl@0: #ifndef NDEBUG sl@0: static int cursorHoldsMutex(BtCursor *p){ sl@0: return sqlite3_mutex_held(p->pBt->mutex); sl@0: } sl@0: #endif sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_INCRBLOB sl@0: /* sl@0: ** Invalidate the overflow page-list cache for cursor pCur, if any. sl@0: */ sl@0: static void invalidateOverflowCache(BtCursor *pCur){ sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: sqlite3_free(pCur->aOverflow); sl@0: pCur->aOverflow = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Invalidate the overflow page-list cache for all cursors opened sl@0: ** on the shared btree structure pBt. sl@0: */ sl@0: static void invalidateAllOverflowCache(BtShared *pBt){ sl@0: BtCursor *p; sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: for(p=pBt->pCursor; p; p=p->pNext){ sl@0: invalidateOverflowCache(p); sl@0: } sl@0: } sl@0: #else sl@0: #define invalidateOverflowCache(x) sl@0: #define invalidateAllOverflowCache(x) sl@0: #endif sl@0: sl@0: /* sl@0: ** Save the current cursor position in the variables BtCursor.nKey sl@0: ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. sl@0: */ sl@0: static int saveCursorPosition(BtCursor *pCur){ sl@0: int rc; sl@0: sl@0: assert( CURSOR_VALID==pCur->eState ); sl@0: assert( 0==pCur->pKey ); sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: sl@0: rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); sl@0: sl@0: /* If this is an intKey table, then the above call to BtreeKeySize() sl@0: ** stores the integer key in pCur->nKey. In this case this value is sl@0: ** all that is required. Otherwise, if pCur is not open on an intKey sl@0: ** table, then malloc space for and store the pCur->nKey bytes of key sl@0: ** data. sl@0: */ sl@0: if( rc==SQLITE_OK && 0==pCur->apPage[0]->intKey){ sl@0: void *pKey = sqlite3Malloc(pCur->nKey); sl@0: if( pKey ){ sl@0: rc = sqlite3BtreeKey(pCur, 0, pCur->nKey, pKey); sl@0: if( rc==SQLITE_OK ){ sl@0: pCur->pKey = pKey; sl@0: }else{ sl@0: sqlite3_free(pKey); sl@0: } sl@0: }else{ sl@0: rc = SQLITE_NOMEM; sl@0: } sl@0: } sl@0: assert( !pCur->apPage[0]->intKey || !pCur->pKey ); sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: int i; sl@0: for(i=0; i<=pCur->iPage; i++){ sl@0: releasePage(pCur->apPage[i]); sl@0: pCur->apPage[i] = 0; sl@0: } sl@0: pCur->iPage = -1; sl@0: pCur->eState = CURSOR_REQUIRESEEK; sl@0: } sl@0: sl@0: invalidateOverflowCache(pCur); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Save the positions of all cursors except pExcept open on the table sl@0: ** with root-page iRoot. Usually, this is called just before cursor sl@0: ** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()). sl@0: */ sl@0: static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ sl@0: BtCursor *p; sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: assert( pExcept==0 || pExcept->pBt==pBt ); sl@0: for(p=pBt->pCursor; p; p=p->pNext){ sl@0: if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) && sl@0: p->eState==CURSOR_VALID ){ sl@0: int rc = saveCursorPosition(p); sl@0: if( SQLITE_OK!=rc ){ sl@0: return rc; sl@0: } sl@0: } sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Clear the current cursor position. sl@0: */ sl@0: void sqlite3BtreeClearCursor(BtCursor *pCur){ sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: sqlite3_free(pCur->pKey); sl@0: pCur->pKey = 0; sl@0: pCur->eState = CURSOR_INVALID; sl@0: } sl@0: sl@0: /* sl@0: ** Restore the cursor to the position it was in (or as close to as possible) sl@0: ** when saveCursorPosition() was called. Note that this call deletes the sl@0: ** saved position info stored by saveCursorPosition(), so there can be sl@0: ** at most one effective restoreCursorPosition() call after each sl@0: ** saveCursorPosition(). sl@0: */ sl@0: int sqlite3BtreeRestoreCursorPosition(BtCursor *pCur){ sl@0: int rc; sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( pCur->eState>=CURSOR_REQUIRESEEK ); sl@0: if( pCur->eState==CURSOR_FAULT ){ sl@0: return pCur->skip; sl@0: } sl@0: pCur->eState = CURSOR_INVALID; sl@0: rc = sqlite3BtreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skip); sl@0: if( rc==SQLITE_OK ){ sl@0: sqlite3_free(pCur->pKey); sl@0: pCur->pKey = 0; sl@0: assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: #define restoreCursorPosition(p) \ sl@0: (p->eState>=CURSOR_REQUIRESEEK ? \ sl@0: sqlite3BtreeRestoreCursorPosition(p) : \ sl@0: SQLITE_OK) sl@0: sl@0: /* sl@0: ** Determine whether or not a cursor has moved from the position it sl@0: ** was last placed at. Cursor can move when the row they are pointing sl@0: ** at is deleted out from under them. sl@0: ** sl@0: ** This routine returns an error code if something goes wrong. The sl@0: ** integer *pHasMoved is set to one if the cursor has moved and 0 if not. sl@0: */ sl@0: int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){ sl@0: int rc; sl@0: sl@0: rc = restoreCursorPosition(pCur); sl@0: if( rc ){ sl@0: *pHasMoved = 1; sl@0: return rc; sl@0: } sl@0: if( pCur->eState!=CURSOR_VALID || pCur->skip!=0 ){ sl@0: *pHasMoved = 1; sl@0: }else{ sl@0: *pHasMoved = 0; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: /* sl@0: ** Given a page number of a regular database page, return the page sl@0: ** number for the pointer-map page that contains the entry for the sl@0: ** input page number. sl@0: */ sl@0: static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ sl@0: int nPagesPerMapPage, iPtrMap, ret; sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: nPagesPerMapPage = (pBt->usableSize/5)+1; sl@0: iPtrMap = (pgno-2)/nPagesPerMapPage; sl@0: ret = (iPtrMap*nPagesPerMapPage) + 2; sl@0: if( ret==PENDING_BYTE_PAGE(pBt) ){ sl@0: ret++; sl@0: } sl@0: return ret; sl@0: } sl@0: sl@0: /* sl@0: ** Write an entry into the pointer map. sl@0: ** sl@0: ** This routine updates the pointer map entry for page number 'key' sl@0: ** so that it maps to type 'eType' and parent page number 'pgno'. sl@0: ** An error code is returned if something goes wrong, otherwise SQLITE_OK. sl@0: */ sl@0: static int ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent){ sl@0: DbPage *pDbPage; /* The pointer map page */ sl@0: u8 *pPtrmap; /* The pointer map data */ sl@0: Pgno iPtrmap; /* The pointer map page number */ sl@0: int offset; /* Offset in pointer map page */ sl@0: int rc; sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: /* The master-journal page number must never be used as a pointer map page */ sl@0: assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); sl@0: sl@0: assert( pBt->autoVacuum ); sl@0: if( key==0 ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: iPtrmap = PTRMAP_PAGENO(pBt, key); sl@0: rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: offset = PTRMAP_PTROFFSET(iPtrmap, key); sl@0: pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); sl@0: sl@0: if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ sl@0: TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); sl@0: rc = sqlite3PagerWrite(pDbPage); sl@0: if( rc==SQLITE_OK ){ sl@0: pPtrmap[offset] = eType; sl@0: put4byte(&pPtrmap[offset+1], parent); sl@0: } sl@0: } sl@0: sl@0: sqlite3PagerUnref(pDbPage); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Read an entry from the pointer map. sl@0: ** sl@0: ** This routine retrieves the pointer map entry for page 'key', writing sl@0: ** the type and parent page number to *pEType and *pPgno respectively. sl@0: ** An error code is returned if something goes wrong, otherwise SQLITE_OK. sl@0: */ sl@0: static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ sl@0: DbPage *pDbPage; /* The pointer map page */ sl@0: int iPtrmap; /* Pointer map page index */ sl@0: u8 *pPtrmap; /* Pointer map page data */ sl@0: int offset; /* Offset of entry in pointer map */ sl@0: int rc; sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: sl@0: iPtrmap = PTRMAP_PAGENO(pBt, key); sl@0: rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); sl@0: if( rc!=0 ){ sl@0: return rc; sl@0: } sl@0: pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); sl@0: sl@0: offset = PTRMAP_PTROFFSET(iPtrmap, key); sl@0: assert( pEType!=0 ); sl@0: *pEType = pPtrmap[offset]; sl@0: if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); sl@0: sl@0: sqlite3PagerUnref(pDbPage); sl@0: if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: #else /* if defined SQLITE_OMIT_AUTOVACUUM */ sl@0: #define ptrmapPut(w,x,y,z) SQLITE_OK sl@0: #define ptrmapGet(w,x,y,z) SQLITE_OK sl@0: #define ptrmapPutOvfl(y,z) SQLITE_OK sl@0: #endif sl@0: sl@0: /* sl@0: ** Given a btree page and a cell index (0 means the first cell on sl@0: ** the page, 1 means the second cell, and so forth) return a pointer sl@0: ** to the cell content. sl@0: ** sl@0: ** This routine works only for pages that do not contain overflow cells. sl@0: */ sl@0: #define findCell(P,I) \ sl@0: ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)]))) sl@0: sl@0: /* sl@0: ** This a more complex version of findCell() that works for sl@0: ** pages that do contain overflow cells. See insert sl@0: */ sl@0: static u8 *findOverflowCell(MemPage *pPage, int iCell){ sl@0: int i; sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: for(i=pPage->nOverflow-1; i>=0; i--){ sl@0: int k; sl@0: struct _OvflCell *pOvfl; sl@0: pOvfl = &pPage->aOvfl[i]; sl@0: k = pOvfl->idx; sl@0: if( k<=iCell ){ sl@0: if( k==iCell ){ sl@0: return pOvfl->pCell; sl@0: } sl@0: iCell--; sl@0: } sl@0: } sl@0: return findCell(pPage, iCell); sl@0: } sl@0: sl@0: /* sl@0: ** Parse a cell content block and fill in the CellInfo structure. There sl@0: ** are two versions of this function. sqlite3BtreeParseCell() takes a sl@0: ** cell index as the second argument and sqlite3BtreeParseCellPtr() sl@0: ** takes a pointer to the body of the cell as its second argument. sl@0: ** sl@0: ** Within this file, the parseCell() macro can be called instead of sl@0: ** sqlite3BtreeParseCellPtr(). Using some compilers, this will be faster. sl@0: */ sl@0: void sqlite3BtreeParseCellPtr( sl@0: MemPage *pPage, /* Page containing the cell */ sl@0: u8 *pCell, /* Pointer to the cell text. */ sl@0: CellInfo *pInfo /* Fill in this structure */ sl@0: ){ sl@0: int n; /* Number bytes in cell content header */ sl@0: u32 nPayload; /* Number of bytes of cell payload */ sl@0: sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: sl@0: pInfo->pCell = pCell; sl@0: assert( pPage->leaf==0 || pPage->leaf==1 ); sl@0: n = pPage->childPtrSize; sl@0: assert( n==4-4*pPage->leaf ); sl@0: if( pPage->intKey ){ sl@0: if( pPage->hasData ){ sl@0: n += getVarint32(&pCell[n], nPayload); sl@0: }else{ sl@0: nPayload = 0; sl@0: } sl@0: n += getVarint(&pCell[n], (u64*)&pInfo->nKey); sl@0: pInfo->nData = nPayload; sl@0: }else{ sl@0: pInfo->nData = 0; sl@0: n += getVarint32(&pCell[n], nPayload); sl@0: pInfo->nKey = nPayload; sl@0: } sl@0: pInfo->nPayload = nPayload; sl@0: pInfo->nHeader = n; sl@0: if( likely(nPayload<=pPage->maxLocal) ){ sl@0: /* This is the (easy) common case where the entire payload fits sl@0: ** on the local page. No overflow is required. sl@0: */ sl@0: int nSize; /* Total size of cell content in bytes */ sl@0: nSize = nPayload + n; sl@0: pInfo->nLocal = nPayload; sl@0: pInfo->iOverflow = 0; sl@0: if( (nSize & ~3)==0 ){ sl@0: nSize = 4; /* Minimum cell size is 4 */ sl@0: } sl@0: pInfo->nSize = nSize; sl@0: }else{ sl@0: /* If the payload will not fit completely on the local page, we have sl@0: ** to decide how much to store locally and how much to spill onto sl@0: ** overflow pages. The strategy is to minimize the amount of unused sl@0: ** space on overflow pages while keeping the amount of local storage sl@0: ** in between minLocal and maxLocal. sl@0: ** sl@0: ** Warning: changing the way overflow payload is distributed in any sl@0: ** way will result in an incompatible file format. sl@0: */ sl@0: int minLocal; /* Minimum amount of payload held locally */ sl@0: int maxLocal; /* Maximum amount of payload held locally */ sl@0: int surplus; /* Overflow payload available for local storage */ sl@0: sl@0: minLocal = pPage->minLocal; sl@0: maxLocal = pPage->maxLocal; sl@0: surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); sl@0: if( surplus <= maxLocal ){ sl@0: pInfo->nLocal = surplus; sl@0: }else{ sl@0: pInfo->nLocal = minLocal; sl@0: } sl@0: pInfo->iOverflow = pInfo->nLocal + n; sl@0: pInfo->nSize = pInfo->iOverflow + 4; sl@0: } sl@0: } sl@0: #define parseCell(pPage, iCell, pInfo) \ sl@0: sqlite3BtreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo)) sl@0: void sqlite3BtreeParseCell( sl@0: MemPage *pPage, /* Page containing the cell */ sl@0: int iCell, /* The cell index. First cell is 0 */ sl@0: CellInfo *pInfo /* Fill in this structure */ sl@0: ){ sl@0: parseCell(pPage, iCell, pInfo); sl@0: } sl@0: sl@0: /* sl@0: ** Compute the total number of bytes that a Cell needs in the cell sl@0: ** data area of the btree-page. The return number includes the cell sl@0: ** data header and the local payload, but not any overflow page or sl@0: ** the space used by the cell pointer. sl@0: */ sl@0: #ifndef NDEBUG sl@0: static u16 cellSize(MemPage *pPage, int iCell){ sl@0: CellInfo info; sl@0: sqlite3BtreeParseCell(pPage, iCell, &info); sl@0: return info.nSize; sl@0: } sl@0: #endif sl@0: static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ sl@0: CellInfo info; sl@0: sqlite3BtreeParseCellPtr(pPage, pCell, &info); sl@0: return info.nSize; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: /* sl@0: ** If the cell pCell, part of page pPage contains a pointer sl@0: ** to an overflow page, insert an entry into the pointer-map sl@0: ** for the overflow page. sl@0: */ sl@0: static int ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell){ sl@0: CellInfo info; sl@0: assert( pCell!=0 ); sl@0: sqlite3BtreeParseCellPtr(pPage, pCell, &info); sl@0: assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload ); sl@0: if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ sl@0: Pgno ovfl = get4byte(&pCell[info.iOverflow]); sl@0: return ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: /* sl@0: ** If the cell with index iCell on page pPage contains a pointer sl@0: ** to an overflow page, insert an entry into the pointer-map sl@0: ** for the overflow page. sl@0: */ sl@0: static int ptrmapPutOvfl(MemPage *pPage, int iCell){ sl@0: u8 *pCell; sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: pCell = findOverflowCell(pPage, iCell); sl@0: return ptrmapPutOvflPtr(pPage, pCell); sl@0: } sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** Defragment the page given. All Cells are moved to the sl@0: ** end of the page and all free space is collected into one sl@0: ** big FreeBlk that occurs in between the header and cell sl@0: ** pointer array and the cell content area. sl@0: */ sl@0: static int defragmentPage(MemPage *pPage){ sl@0: int i; /* Loop counter */ sl@0: int pc; /* Address of a i-th cell */ sl@0: int addr; /* Offset of first byte after cell pointer array */ sl@0: int hdr; /* Offset to the page header */ sl@0: int size; /* Size of a cell */ sl@0: int usableSize; /* Number of usable bytes on a page */ sl@0: int cellOffset; /* Offset to the cell pointer array */ sl@0: int cbrk; /* Offset to the cell content area */ sl@0: int nCell; /* Number of cells on the page */ sl@0: unsigned char *data; /* The page data */ sl@0: unsigned char *temp; /* Temp area for cell content */ sl@0: sl@0: assert( sqlite3PagerIswriteable(pPage->pDbPage) ); sl@0: assert( pPage->pBt!=0 ); sl@0: assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); sl@0: assert( pPage->nOverflow==0 ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: temp = sqlite3PagerTempSpace(pPage->pBt->pPager); sl@0: data = pPage->aData; sl@0: hdr = pPage->hdrOffset; sl@0: cellOffset = pPage->cellOffset; sl@0: nCell = pPage->nCell; sl@0: assert( nCell==get2byte(&data[hdr+3]) ); sl@0: usableSize = pPage->pBt->usableSize; sl@0: cbrk = get2byte(&data[hdr+5]); sl@0: memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk); sl@0: cbrk = usableSize; sl@0: for(i=0; i=usableSize ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: size = cellSizePtr(pPage, &temp[pc]); sl@0: cbrk -= size; sl@0: if( cbrkusableSize ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: assert( cbrk+size<=usableSize && cbrk>=0 ); sl@0: memcpy(&data[cbrk], &temp[pc], size); sl@0: put2byte(pAddr, cbrk); sl@0: } sl@0: assert( cbrk>=cellOffset+2*nCell ); sl@0: put2byte(&data[hdr+5], cbrk); sl@0: data[hdr+1] = 0; sl@0: data[hdr+2] = 0; sl@0: data[hdr+7] = 0; sl@0: addr = cellOffset+2*nCell; sl@0: memset(&data[addr], 0, cbrk-addr); sl@0: if( cbrk-addr!=pPage->nFree ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Allocate nByte bytes of space on a page. sl@0: ** sl@0: ** Return the index into pPage->aData[] of the first byte of sl@0: ** the new allocation. The caller guarantees that there is enough sl@0: ** space. This routine will never fail. sl@0: ** sl@0: ** If the page contains nBytes of free space but does not contain sl@0: ** nBytes of contiguous free space, then this routine automatically sl@0: ** calls defragementPage() to consolidate all free space before sl@0: ** allocating the new chunk. sl@0: */ sl@0: static int allocateSpace(MemPage *pPage, int nByte){ sl@0: int addr, pc, hdr; sl@0: int size; sl@0: int nFrag; sl@0: int top; sl@0: int nCell; sl@0: int cellOffset; sl@0: unsigned char *data; sl@0: sl@0: data = pPage->aData; sl@0: assert( sqlite3PagerIswriteable(pPage->pDbPage) ); sl@0: assert( pPage->pBt ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: assert( nByte>=0 ); /* Minimum cell size is 4 */ sl@0: assert( pPage->nFree>=nByte ); sl@0: assert( pPage->nOverflow==0 ); sl@0: pPage->nFree -= nByte; sl@0: hdr = pPage->hdrOffset; sl@0: sl@0: nFrag = data[hdr+7]; sl@0: if( nFrag<60 ){ sl@0: /* Search the freelist looking for a slot big enough to satisfy the sl@0: ** space request. */ sl@0: addr = hdr+1; sl@0: while( (pc = get2byte(&data[addr]))>0 ){ sl@0: size = get2byte(&data[pc+2]); sl@0: if( size>=nByte ){ sl@0: if( sizecellOffset; sl@0: if( nFrag>=60 || cellOffset + 2*nCell > top - nByte ){ sl@0: defragmentPage(pPage); sl@0: top = get2byte(&data[hdr+5]); sl@0: } sl@0: top -= nByte; sl@0: assert( cellOffset + 2*nCell <= top ); sl@0: put2byte(&data[hdr+5], top); sl@0: return top; sl@0: } sl@0: sl@0: /* sl@0: ** Return a section of the pPage->aData to the freelist. sl@0: ** The first byte of the new free block is pPage->aDisk[start] sl@0: ** and the size of the block is "size" bytes. sl@0: ** sl@0: ** Most of the effort here is involved in coalesing adjacent sl@0: ** free blocks into a single big free block. sl@0: */ sl@0: static int freeSpace(MemPage *pPage, int start, int size){ sl@0: int addr, pbegin, hdr; sl@0: unsigned char *data = pPage->aData; sl@0: sl@0: assert( pPage->pBt!=0 ); sl@0: assert( sqlite3PagerIswriteable(pPage->pDbPage) ); sl@0: assert( start>=pPage->hdrOffset+6+(pPage->leaf?0:4) ); sl@0: assert( (start + size)<=pPage->pBt->usableSize ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: assert( size>=0 ); /* Minimum cell size is 4 */ sl@0: sl@0: #ifdef SQLITE_SECURE_DELETE sl@0: /* Overwrite deleted information with zeros when the SECURE_DELETE sl@0: ** option is enabled at compile-time */ sl@0: memset(&data[start], 0, size); sl@0: #endif sl@0: sl@0: /* Add the space back into the linked list of freeblocks */ sl@0: hdr = pPage->hdrOffset; sl@0: addr = hdr + 1; sl@0: while( (pbegin = get2byte(&data[addr]))0 ){ sl@0: assert( pbegin<=pPage->pBt->usableSize-4 ); sl@0: if( pbegin<=addr ) return SQLITE_CORRUPT_BKPT; sl@0: addr = pbegin; sl@0: } sl@0: if( pbegin>pPage->pBt->usableSize-4 ) return SQLITE_CORRUPT_BKPT; sl@0: assert( pbegin>addr || pbegin==0 ); sl@0: put2byte(&data[addr], start); sl@0: put2byte(&data[start], pbegin); sl@0: put2byte(&data[start+2], size); sl@0: pPage->nFree += size; sl@0: sl@0: /* Coalesce adjacent free blocks */ sl@0: addr = pPage->hdrOffset + 1; sl@0: while( (pbegin = get2byte(&data[addr]))>0 ){ sl@0: int pnext, psize; sl@0: assert( pbegin>addr ); sl@0: assert( pbegin<=pPage->pBt->usableSize-4 ); sl@0: pnext = get2byte(&data[pbegin]); sl@0: psize = get2byte(&data[pbegin+2]); sl@0: if( pbegin + psize + 3 >= pnext && pnext>0 ){ sl@0: int frag = pnext - (pbegin+psize); sl@0: if( frag<0 || frag>data[pPage->hdrOffset+7] ) return SQLITE_CORRUPT_BKPT; sl@0: data[pPage->hdrOffset+7] -= frag; sl@0: put2byte(&data[pbegin], get2byte(&data[pnext])); sl@0: put2byte(&data[pbegin+2], pnext+get2byte(&data[pnext+2])-pbegin); sl@0: }else{ sl@0: addr = pbegin; sl@0: } sl@0: } sl@0: sl@0: /* If the cell content area begins with a freeblock, remove it. */ sl@0: if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){ sl@0: int top; sl@0: pbegin = get2byte(&data[hdr+1]); sl@0: memcpy(&data[hdr+1], &data[pbegin], 2); sl@0: top = get2byte(&data[hdr+5]); sl@0: put2byte(&data[hdr+5], top + get2byte(&data[pbegin+2])); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Decode the flags byte (the first byte of the header) for a page sl@0: ** and initialize fields of the MemPage structure accordingly. sl@0: ** sl@0: ** Only the following combinations are supported. Anything different sl@0: ** indicates a corrupt database files: sl@0: ** sl@0: ** PTF_ZERODATA sl@0: ** PTF_ZERODATA | PTF_LEAF sl@0: ** PTF_LEAFDATA | PTF_INTKEY sl@0: ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF sl@0: */ sl@0: static int decodeFlags(MemPage *pPage, int flagByte){ sl@0: BtShared *pBt; /* A copy of pPage->pBt */ sl@0: sl@0: assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: pPage->leaf = flagByte>>3; assert( PTF_LEAF == 1<<3 ); sl@0: flagByte &= ~PTF_LEAF; sl@0: pPage->childPtrSize = 4-4*pPage->leaf; sl@0: pBt = pPage->pBt; sl@0: if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ sl@0: pPage->intKey = 1; sl@0: pPage->hasData = pPage->leaf; sl@0: pPage->maxLocal = pBt->maxLeaf; sl@0: pPage->minLocal = pBt->minLeaf; sl@0: }else if( flagByte==PTF_ZERODATA ){ sl@0: pPage->intKey = 0; sl@0: pPage->hasData = 0; sl@0: pPage->maxLocal = pBt->maxLocal; sl@0: pPage->minLocal = pBt->minLocal; sl@0: }else{ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Initialize the auxiliary information for a disk block. sl@0: ** sl@0: ** Return SQLITE_OK on success. If we see that the page does sl@0: ** not contain a well-formed database page, then return sl@0: ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not sl@0: ** guarantee that the page is well-formed. It only shows that sl@0: ** we failed to detect any corruption. sl@0: */ sl@0: int sqlite3BtreeInitPage(MemPage *pPage){ sl@0: sl@0: assert( pPage->pBt!=0 ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); sl@0: assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); sl@0: assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); sl@0: sl@0: if( !pPage->isInit ){ sl@0: int pc; /* Address of a freeblock within pPage->aData[] */ sl@0: int hdr; /* Offset to beginning of page header */ sl@0: u8 *data; /* Equal to pPage->aData */ sl@0: BtShared *pBt; /* The main btree structure */ sl@0: int usableSize; /* Amount of usable space on each page */ sl@0: int cellOffset; /* Offset from start of page to first cell pointer */ sl@0: int nFree; /* Number of unused bytes on the page */ sl@0: int top; /* First byte of the cell content area */ sl@0: sl@0: pBt = pPage->pBt; sl@0: sl@0: hdr = pPage->hdrOffset; sl@0: data = pPage->aData; sl@0: if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; sl@0: assert( pBt->pageSize>=512 && pBt->pageSize<=32768 ); sl@0: pPage->maskPage = pBt->pageSize - 1; sl@0: pPage->nOverflow = 0; sl@0: usableSize = pBt->usableSize; sl@0: pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; sl@0: top = get2byte(&data[hdr+5]); sl@0: pPage->nCell = get2byte(&data[hdr+3]); sl@0: if( pPage->nCell>MX_CELL(pBt) ){ sl@0: /* To many cells for a single page. The page must be corrupt */ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: sl@0: /* Compute the total free space on the page */ sl@0: pc = get2byte(&data[hdr+1]); sl@0: nFree = data[hdr+7] + top - (cellOffset + 2*pPage->nCell); sl@0: while( pc>0 ){ sl@0: int next, size; sl@0: if( pc>usableSize-4 ){ sl@0: /* Free block is off the page */ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: next = get2byte(&data[pc]); sl@0: size = get2byte(&data[pc+2]); sl@0: if( next>0 && next<=pc+size+3 ){ sl@0: /* Free blocks must be in accending order */ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: nFree += size; sl@0: pc = next; sl@0: } sl@0: pPage->nFree = nFree; sl@0: if( nFree>=usableSize ){ sl@0: /* Free space cannot exceed total page size */ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: sl@0: #if 0 sl@0: /* Check that all the offsets in the cell offset array are within range. sl@0: ** sl@0: ** Omitting this consistency check and using the pPage->maskPage mask sl@0: ** to prevent overrunning the page buffer in findCell() results in a sl@0: ** 2.5% performance gain. sl@0: */ sl@0: { sl@0: u8 *pOff; /* Iterator used to check all cell offsets are in range */ sl@0: u8 *pEnd; /* Pointer to end of cell offset array */ sl@0: u8 mask; /* Mask of bits that must be zero in MSB of cell offsets */ sl@0: mask = ~(((u8)(pBt->pageSize>>8))-1); sl@0: pEnd = &data[cellOffset + pPage->nCell*2]; sl@0: for(pOff=&data[cellOffset]; pOff!=pEnd && !((*pOff)&mask); pOff+=2); sl@0: if( pOff!=pEnd ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: pPage->isInit = 1; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Set up a raw page so that it looks like a database page holding sl@0: ** no entries. sl@0: */ sl@0: static void zeroPage(MemPage *pPage, int flags){ sl@0: unsigned char *data = pPage->aData; sl@0: BtShared *pBt = pPage->pBt; sl@0: int hdr = pPage->hdrOffset; sl@0: int first; sl@0: sl@0: assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); sl@0: assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); sl@0: assert( sqlite3PagerGetData(pPage->pDbPage) == data ); sl@0: assert( sqlite3PagerIswriteable(pPage->pDbPage) ); sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: /*memset(&data[hdr], 0, pBt->usableSize - hdr);*/ sl@0: data[hdr] = flags; sl@0: first = hdr + 8 + 4*((flags&PTF_LEAF)==0); sl@0: memset(&data[hdr+1], 0, 4); sl@0: data[hdr+7] = 0; sl@0: put2byte(&data[hdr+5], pBt->usableSize); sl@0: pPage->nFree = pBt->usableSize - first; sl@0: decodeFlags(pPage, flags); sl@0: pPage->hdrOffset = hdr; sl@0: pPage->cellOffset = first; sl@0: pPage->nOverflow = 0; sl@0: assert( pBt->pageSize>=512 && pBt->pageSize<=32768 ); sl@0: pPage->maskPage = pBt->pageSize - 1; sl@0: pPage->nCell = 0; sl@0: pPage->isInit = 1; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Convert a DbPage obtained from the pager into a MemPage used by sl@0: ** the btree layer. sl@0: */ sl@0: static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ sl@0: MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); sl@0: pPage->aData = sqlite3PagerGetData(pDbPage); sl@0: pPage->pDbPage = pDbPage; sl@0: pPage->pBt = pBt; sl@0: pPage->pgno = pgno; sl@0: pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; sl@0: return pPage; sl@0: } sl@0: sl@0: /* sl@0: ** Get a page from the pager. Initialize the MemPage.pBt and sl@0: ** MemPage.aData elements if needed. sl@0: ** sl@0: ** If the noContent flag is set, it means that we do not care about sl@0: ** the content of the page at this time. So do not go to the disk sl@0: ** to fetch the content. Just fill in the content with zeros for now. sl@0: ** If in the future we call sqlite3PagerWrite() on this page, that sl@0: ** means we have started to be concerned about content and the disk sl@0: ** read should occur at that point. sl@0: */ sl@0: int sqlite3BtreeGetPage( sl@0: BtShared *pBt, /* The btree */ sl@0: Pgno pgno, /* Number of the page to fetch */ sl@0: MemPage **ppPage, /* Return the page in this parameter */ sl@0: int noContent /* Do not load page content if true */ sl@0: ){ sl@0: int rc; sl@0: DbPage *pDbPage; sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent); sl@0: if( rc ) return rc; sl@0: *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Return the size of the database file in pages. Or return -1 if sl@0: ** there is any kind of error. sl@0: */ sl@0: static int pagerPagecount(Pager *pPager){ sl@0: int rc; sl@0: int nPage; sl@0: rc = sqlite3PagerPagecount(pPager, &nPage); sl@0: return (rc==SQLITE_OK?nPage:-1); sl@0: } sl@0: sl@0: /* sl@0: ** Get a page from the pager and initialize it. This routine sl@0: ** is just a convenience wrapper around separate calls to sl@0: ** sqlite3BtreeGetPage() and sqlite3BtreeInitPage(). sl@0: */ sl@0: static int getAndInitPage( sl@0: BtShared *pBt, /* The database file */ sl@0: Pgno pgno, /* Number of the page to get */ sl@0: MemPage **ppPage /* Write the page pointer here */ sl@0: ){ sl@0: int rc; sl@0: DbPage *pDbPage; sl@0: MemPage *pPage; sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: if( pgno==0 ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: sl@0: /* It is often the case that the page we want is already in cache. sl@0: ** If so, get it directly. This saves us from having to call sl@0: ** pagerPagecount() to make sure pgno is within limits, which results sl@0: ** in a measureable performance improvements. sl@0: */ sl@0: pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); sl@0: if( pDbPage ){ sl@0: /* Page is already in cache */ sl@0: *ppPage = pPage = btreePageFromDbPage(pDbPage, pgno, pBt); sl@0: rc = SQLITE_OK; sl@0: }else{ sl@0: /* Page not in cache. Acquire it. */ sl@0: if( pgno>pagerPagecount(pBt->pPager) ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: rc = sqlite3BtreeGetPage(pBt, pgno, ppPage, 0); sl@0: if( rc ) return rc; sl@0: pPage = *ppPage; sl@0: } sl@0: if( !pPage->isInit ){ sl@0: rc = sqlite3BtreeInitPage(pPage); sl@0: } sl@0: if( rc!=SQLITE_OK ){ sl@0: releasePage(pPage); sl@0: *ppPage = 0; sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Release a MemPage. This should be called once for each prior sl@0: ** call to sqlite3BtreeGetPage. sl@0: */ sl@0: static void releasePage(MemPage *pPage){ sl@0: if( pPage ){ sl@0: assert( pPage->aData ); sl@0: assert( pPage->pBt ); sl@0: assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); sl@0: assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: sqlite3PagerUnref(pPage->pDbPage); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** During a rollback, when the pager reloads information into the cache sl@0: ** so that the cache is restored to its original state at the start of sl@0: ** the transaction, for each page restored this routine is called. sl@0: ** sl@0: ** This routine needs to reset the extra data section at the end of the sl@0: ** page to agree with the restored data. sl@0: */ sl@0: static void pageReinit(DbPage *pData){ sl@0: MemPage *pPage; sl@0: pPage = (MemPage *)sqlite3PagerGetExtra(pData); sl@0: if( pPage->isInit ){ sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: pPage->isInit = 0; sl@0: if( sqlite3PagerPageRefcount(pData)>0 ){ sl@0: sqlite3BtreeInitPage(pPage); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Invoke the busy handler for a btree. sl@0: */ sl@0: static int sqlite3BtreeInvokeBusyHandler(void *pArg, int n){ sl@0: BtShared *pBt = (BtShared*)pArg; sl@0: assert( pBt->db ); sl@0: assert( sqlite3_mutex_held(pBt->db->mutex) ); sl@0: return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); sl@0: } sl@0: sl@0: /* sl@0: ** Open a database file. sl@0: ** sl@0: ** zFilename is the name of the database file. If zFilename is NULL sl@0: ** a new database with a random name is created. This randomly named sl@0: ** database file will be deleted when sqlite3BtreeClose() is called. sl@0: ** If zFilename is ":memory:" then an in-memory database is created sl@0: ** that is automatically destroyed when it is closed. sl@0: */ sl@0: int sqlite3BtreeOpen( sl@0: const char *zFilename, /* Name of the file containing the BTree database */ sl@0: sqlite3 *db, /* Associated database handle */ sl@0: Btree **ppBtree, /* Pointer to new Btree object written here */ sl@0: int flags, /* Options */ sl@0: int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ sl@0: ){ sl@0: sqlite3_vfs *pVfs; /* The VFS to use for this btree */ sl@0: BtShared *pBt = 0; /* Shared part of btree structure */ sl@0: Btree *p; /* Handle to return */ sl@0: int rc = SQLITE_OK; sl@0: int nReserve; sl@0: unsigned char zDbHeader[100]; sl@0: sl@0: /* Set the variable isMemdb to true for an in-memory database, or sl@0: ** false for a file-based database. This symbol is only required if sl@0: ** either of the shared-data or autovacuum features are compiled sl@0: ** into the library. sl@0: */ sl@0: #if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM) sl@0: #ifdef SQLITE_OMIT_MEMORYDB sl@0: const int isMemdb = 0; sl@0: #else sl@0: const int isMemdb = zFilename && !strcmp(zFilename, ":memory:"); sl@0: #endif sl@0: #endif sl@0: sl@0: assert( db!=0 ); sl@0: assert( sqlite3_mutex_held(db->mutex) ); sl@0: sl@0: pVfs = db->pVfs; sl@0: p = sqlite3MallocZero(sizeof(Btree)); sl@0: if( !p ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: p->inTrans = TRANS_NONE; sl@0: p->db = db; sl@0: sl@0: #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) sl@0: /* sl@0: ** If this Btree is a candidate for shared cache, try to find an sl@0: ** existing BtShared object that we can share with sl@0: */ sl@0: if( isMemdb==0 sl@0: && (db->flags & SQLITE_Vtab)==0 sl@0: && zFilename && zFilename[0] sl@0: ){ sl@0: if( sqlite3GlobalConfig.sharedCacheEnabled ){ sl@0: int nFullPathname = pVfs->mxPathname+1; sl@0: char *zFullPathname = sqlite3Malloc(nFullPathname); sl@0: sqlite3_mutex *mutexShared; sl@0: p->sharable = 1; sl@0: db->flags |= SQLITE_SharedCache; sl@0: if( !zFullPathname ){ sl@0: sqlite3_free(p); sl@0: return SQLITE_NOMEM; sl@0: } sl@0: sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname); sl@0: mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); sl@0: sqlite3_mutex_enter(mutexShared); sl@0: for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ sl@0: assert( pBt->nRef>0 ); sl@0: if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager)) sl@0: && sqlite3PagerVfs(pBt->pPager)==pVfs ){ sl@0: p->pBt = pBt; sl@0: pBt->nRef++; sl@0: break; sl@0: } sl@0: } sl@0: sqlite3_mutex_leave(mutexShared); sl@0: sqlite3_free(zFullPathname); sl@0: } sl@0: #ifdef SQLITE_DEBUG sl@0: else{ sl@0: /* In debug mode, we mark all persistent databases as sharable sl@0: ** even when they are not. This exercises the locking code and sl@0: ** gives more opportunity for asserts(sqlite3_mutex_held()) sl@0: ** statements to find locking problems. sl@0: */ sl@0: p->sharable = 1; sl@0: } sl@0: #endif sl@0: } sl@0: #endif sl@0: if( pBt==0 ){ sl@0: /* sl@0: ** The following asserts make sure that structures used by the btree are sl@0: ** the right size. This is to guard against size changes that result sl@0: ** when compiling on a different architecture. sl@0: */ sl@0: assert( sizeof(i64)==8 || sizeof(i64)==4 ); sl@0: assert( sizeof(u64)==8 || sizeof(u64)==4 ); sl@0: assert( sizeof(u32)==4 ); sl@0: assert( sizeof(u16)==2 ); sl@0: assert( sizeof(Pgno)==4 ); sl@0: sl@0: pBt = sqlite3MallocZero( sizeof(*pBt) ); sl@0: if( pBt==0 ){ sl@0: rc = SQLITE_NOMEM; sl@0: goto btree_open_out; sl@0: } sl@0: pBt->busyHdr.xFunc = sqlite3BtreeInvokeBusyHandler; sl@0: pBt->busyHdr.pArg = pBt; sl@0: rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, sl@0: EXTRA_SIZE, flags, vfsFlags); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); sl@0: } sl@0: if( rc!=SQLITE_OK ){ sl@0: goto btree_open_out; sl@0: } sl@0: sqlite3PagerSetBusyhandler(pBt->pPager, &pBt->busyHdr); sl@0: p->pBt = pBt; sl@0: sl@0: sqlite3PagerSetReiniter(pBt->pPager, pageReinit); sl@0: pBt->pCursor = 0; sl@0: pBt->pPage1 = 0; sl@0: pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager); sl@0: pBt->pageSize = get2byte(&zDbHeader[16]); sl@0: if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE sl@0: || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ sl@0: pBt->pageSize = 0; sl@0: sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: /* If the magic name ":memory:" will create an in-memory database, then sl@0: ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if sl@0: ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if sl@0: ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a sl@0: ** regular file-name. In this case the auto-vacuum applies as per normal. sl@0: */ sl@0: if( zFilename && !isMemdb ){ sl@0: pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); sl@0: pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); sl@0: } sl@0: #endif sl@0: nReserve = 0; sl@0: }else{ sl@0: nReserve = zDbHeader[20]; sl@0: pBt->pageSizeFixed = 1; sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); sl@0: pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); sl@0: #endif sl@0: } sl@0: pBt->usableSize = pBt->pageSize - nReserve; sl@0: assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ sl@0: sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); sl@0: sl@0: #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) sl@0: /* Add the new BtShared object to the linked list sharable BtShareds. sl@0: */ sl@0: if( p->sharable ){ sl@0: sqlite3_mutex *mutexShared; sl@0: pBt->nRef = 1; sl@0: mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); sl@0: if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ sl@0: pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); sl@0: if( pBt->mutex==0 ){ sl@0: rc = SQLITE_NOMEM; sl@0: db->mallocFailed = 0; sl@0: goto btree_open_out; sl@0: } sl@0: } sl@0: sqlite3_mutex_enter(mutexShared); sl@0: pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); sl@0: GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; sl@0: sqlite3_mutex_leave(mutexShared); sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) sl@0: /* If the new Btree uses a sharable pBtShared, then link the new sl@0: ** Btree into the list of all sharable Btrees for the same connection. sl@0: ** The list is kept in ascending order by pBt address. sl@0: */ sl@0: if( p->sharable ){ sl@0: int i; sl@0: Btree *pSib; sl@0: for(i=0; inDb; i++){ sl@0: if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ sl@0: while( pSib->pPrev ){ pSib = pSib->pPrev; } sl@0: if( p->pBtpBt ){ sl@0: p->pNext = pSib; sl@0: p->pPrev = 0; sl@0: pSib->pPrev = p; sl@0: }else{ sl@0: while( pSib->pNext && pSib->pNext->pBtpBt ){ sl@0: pSib = pSib->pNext; sl@0: } sl@0: p->pNext = pSib->pNext; sl@0: p->pPrev = pSib; sl@0: if( p->pNext ){ sl@0: p->pNext->pPrev = p; sl@0: } sl@0: pSib->pNext = p; sl@0: } sl@0: break; sl@0: } sl@0: } sl@0: } sl@0: #endif sl@0: *ppBtree = p; sl@0: sl@0: btree_open_out: sl@0: if( rc!=SQLITE_OK ){ sl@0: if( pBt && pBt->pPager ){ sl@0: sqlite3PagerClose(pBt->pPager); sl@0: } sl@0: sqlite3_free(pBt); sl@0: sqlite3_free(p); sl@0: *ppBtree = 0; sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Decrement the BtShared.nRef counter. When it reaches zero, sl@0: ** remove the BtShared structure from the sharing list. Return sl@0: ** true if the BtShared.nRef counter reaches zero and return sl@0: ** false if it is still positive. sl@0: */ sl@0: static int removeFromSharingList(BtShared *pBt){ sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: sqlite3_mutex *pMaster; sl@0: BtShared *pList; sl@0: int removed = 0; sl@0: sl@0: assert( sqlite3_mutex_notheld(pBt->mutex) ); sl@0: pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); sl@0: sqlite3_mutex_enter(pMaster); sl@0: pBt->nRef--; sl@0: if( pBt->nRef<=0 ){ sl@0: if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ sl@0: GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; sl@0: }else{ sl@0: pList = GLOBAL(BtShared*,sqlite3SharedCacheList); sl@0: while( ALWAYS(pList) && pList->pNext!=pBt ){ sl@0: pList=pList->pNext; sl@0: } sl@0: if( ALWAYS(pList) ){ sl@0: pList->pNext = pBt->pNext; sl@0: } sl@0: } sl@0: if( SQLITE_THREADSAFE ){ sl@0: sqlite3_mutex_free(pBt->mutex); sl@0: } sl@0: removed = 1; sl@0: } sl@0: sqlite3_mutex_leave(pMaster); sl@0: return removed; sl@0: #else sl@0: return 1; sl@0: #endif sl@0: } sl@0: sl@0: /* sl@0: ** Make sure pBt->pTmpSpace points to an allocation of sl@0: ** MX_CELL_SIZE(pBt) bytes. sl@0: */ sl@0: static void allocateTempSpace(BtShared *pBt){ sl@0: if( !pBt->pTmpSpace ){ sl@0: pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Free the pBt->pTmpSpace allocation sl@0: */ sl@0: static void freeTempSpace(BtShared *pBt){ sl@0: sqlite3PageFree( pBt->pTmpSpace); sl@0: pBt->pTmpSpace = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Close an open database and invalidate all cursors. sl@0: */ sl@0: int sqlite3BtreeClose(Btree *p){ sl@0: BtShared *pBt = p->pBt; sl@0: BtCursor *pCur; sl@0: sl@0: /* Close all cursors opened via this handle. */ sl@0: assert( sqlite3_mutex_held(p->db->mutex) ); sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: pCur = pBt->pCursor; sl@0: while( pCur ){ sl@0: BtCursor *pTmp = pCur; sl@0: pCur = pCur->pNext; sl@0: if( pTmp->pBtree==p ){ sl@0: sqlite3BtreeCloseCursor(pTmp); sl@0: } sl@0: } sl@0: sl@0: /* Rollback any active transaction and free the handle structure. sl@0: ** The call to sqlite3BtreeRollback() drops any table-locks held by sl@0: ** this handle. sl@0: */ sl@0: sqlite3BtreeRollback(p); sl@0: sqlite3BtreeLeave(p); sl@0: sl@0: /* If there are still other outstanding references to the shared-btree sl@0: ** structure, return now. The remainder of this procedure cleans sl@0: ** up the shared-btree. sl@0: */ sl@0: assert( p->wantToLock==0 && p->locked==0 ); sl@0: if( !p->sharable || removeFromSharingList(pBt) ){ sl@0: /* The pBt is no longer on the sharing list, so we can access sl@0: ** it without having to hold the mutex. sl@0: ** sl@0: ** Clean out and delete the BtShared object. sl@0: */ sl@0: assert( !pBt->pCursor ); sl@0: sqlite3PagerClose(pBt->pPager); sl@0: if( pBt->xFreeSchema && pBt->pSchema ){ sl@0: pBt->xFreeSchema(pBt->pSchema); sl@0: } sl@0: sqlite3_free(pBt->pSchema); sl@0: freeTempSpace(pBt); sl@0: sqlite3_free(pBt); sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: assert( p->wantToLock==0 ); sl@0: assert( p->locked==0 ); sl@0: if( p->pPrev ) p->pPrev->pNext = p->pNext; sl@0: if( p->pNext ) p->pNext->pPrev = p->pPrev; sl@0: #endif sl@0: sl@0: sqlite3_free(p); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Change the limit on the number of pages allowed in the cache. sl@0: ** sl@0: ** The maximum number of cache pages is set to the absolute sl@0: ** value of mxPage. If mxPage is negative, the pager will sl@0: ** operate asynchronously - it will not stop to do fsync()s sl@0: ** to insure data is written to the disk surface before sl@0: ** continuing. Transactions still work if synchronous is off, sl@0: ** and the database cannot be corrupted if this program sl@0: ** crashes. But if the operating system crashes or there is sl@0: ** an abrupt power failure when synchronous is off, the database sl@0: ** could be left in an inconsistent and unrecoverable state. sl@0: ** Synchronous is on by default so database corruption is not sl@0: ** normally a worry. sl@0: */ sl@0: int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ sl@0: BtShared *pBt = p->pBt; sl@0: assert( sqlite3_mutex_held(p->db->mutex) ); sl@0: sqlite3BtreeEnter(p); sl@0: sqlite3PagerSetCachesize(pBt->pPager, mxPage); sl@0: sqlite3BtreeLeave(p); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Change the way data is synced to disk in order to increase or decrease sl@0: ** how well the database resists damage due to OS crashes and power sl@0: ** failures. Level 1 is the same as asynchronous (no syncs() occur and sl@0: ** there is a high probability of damage) Level 2 is the default. There sl@0: ** is a very low but non-zero probability of damage. Level 3 reduces the sl@0: ** probability of damage to near zero but with a write performance reduction. sl@0: */ sl@0: #ifndef SQLITE_OMIT_PAGER_PRAGMAS sl@0: int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){ sl@0: BtShared *pBt = p->pBt; sl@0: assert( sqlite3_mutex_held(p->db->mutex) ); sl@0: sqlite3BtreeEnter(p); sl@0: sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync); sl@0: sqlite3BtreeLeave(p); sl@0: return SQLITE_OK; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Return TRUE if the given btree is set to safety level 1. In other sl@0: ** words, return TRUE if no sync() occurs on the disk files. sl@0: */ sl@0: int sqlite3BtreeSyncDisabled(Btree *p){ sl@0: BtShared *pBt = p->pBt; sl@0: int rc; sl@0: assert( sqlite3_mutex_held(p->db->mutex) ); sl@0: sqlite3BtreeEnter(p); sl@0: assert( pBt && pBt->pPager ); sl@0: rc = sqlite3PagerNosync(pBt->pPager); sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) sl@0: /* sl@0: ** Change the default pages size and the number of reserved bytes per page. sl@0: ** sl@0: ** The page size must be a power of 2 between 512 and 65536. If the page sl@0: ** size supplied does not meet this constraint then the page size is not sl@0: ** changed. sl@0: ** sl@0: ** Page sizes are constrained to be a power of two so that the region sl@0: ** of the database file used for locking (beginning at PENDING_BYTE, sl@0: ** the first byte past the 1GB boundary, 0x40000000) needs to occur sl@0: ** at the beginning of a page. sl@0: ** sl@0: ** If parameter nReserve is less than zero, then the number of reserved sl@0: ** bytes per page is left unchanged. sl@0: */ sl@0: int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve){ sl@0: int rc = SQLITE_OK; sl@0: BtShared *pBt = p->pBt; sl@0: sqlite3BtreeEnter(p); sl@0: if( pBt->pageSizeFixed ){ sl@0: sqlite3BtreeLeave(p); sl@0: return SQLITE_READONLY; sl@0: } sl@0: if( nReserve<0 ){ sl@0: nReserve = pBt->pageSize - pBt->usableSize; sl@0: } sl@0: if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && sl@0: ((pageSize-1)&pageSize)==0 ){ sl@0: assert( (pageSize & 7)==0 ); sl@0: assert( !pBt->pPage1 && !pBt->pCursor ); sl@0: pBt->pageSize = pageSize; sl@0: freeTempSpace(pBt); sl@0: rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); sl@0: } sl@0: pBt->usableSize = pBt->pageSize - nReserve; sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Return the currently defined page size sl@0: */ sl@0: int sqlite3BtreeGetPageSize(Btree *p){ sl@0: return p->pBt->pageSize; sl@0: } sl@0: int sqlite3BtreeGetReserve(Btree *p){ sl@0: int n; sl@0: sqlite3BtreeEnter(p); sl@0: n = p->pBt->pageSize - p->pBt->usableSize; sl@0: sqlite3BtreeLeave(p); sl@0: return n; sl@0: } sl@0: sl@0: /* sl@0: ** Set the maximum page count for a database if mxPage is positive. sl@0: ** No changes are made if mxPage is 0 or negative. sl@0: ** Regardless of the value of mxPage, return the maximum page count. sl@0: */ sl@0: int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ sl@0: int n; sl@0: sqlite3BtreeEnter(p); sl@0: n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); sl@0: sqlite3BtreeLeave(p); sl@0: return n; sl@0: } sl@0: #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ sl@0: sl@0: /* sl@0: ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' sl@0: ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it sl@0: ** is disabled. The default value for the auto-vacuum property is sl@0: ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. sl@0: */ sl@0: int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ sl@0: #ifdef SQLITE_OMIT_AUTOVACUUM sl@0: return SQLITE_READONLY; sl@0: #else sl@0: BtShared *pBt = p->pBt; sl@0: int rc = SQLITE_OK; sl@0: int av = (autoVacuum?1:0); sl@0: sl@0: sqlite3BtreeEnter(p); sl@0: if( pBt->pageSizeFixed && av!=pBt->autoVacuum ){ sl@0: rc = SQLITE_READONLY; sl@0: }else{ sl@0: pBt->autoVacuum = av; sl@0: } sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: #endif sl@0: } sl@0: sl@0: /* sl@0: ** Return the value of the 'auto-vacuum' property. If auto-vacuum is sl@0: ** enabled 1 is returned. Otherwise 0. sl@0: */ sl@0: int sqlite3BtreeGetAutoVacuum(Btree *p){ sl@0: #ifdef SQLITE_OMIT_AUTOVACUUM sl@0: return BTREE_AUTOVACUUM_NONE; sl@0: #else sl@0: int rc; sl@0: sqlite3BtreeEnter(p); sl@0: rc = ( sl@0: (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: sl@0: (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: sl@0: BTREE_AUTOVACUUM_INCR sl@0: ); sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: #endif sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Get a reference to pPage1 of the database file. This will sl@0: ** also acquire a readlock on that file. sl@0: ** sl@0: ** SQLITE_OK is returned on success. If the file is not a sl@0: ** well-formed database file, then SQLITE_CORRUPT is returned. sl@0: ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM sl@0: ** is returned if we run out of memory. sl@0: */ sl@0: static int lockBtree(BtShared *pBt){ sl@0: int rc; sl@0: MemPage *pPage1; sl@0: int nPage; sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: if( pBt->pPage1 ) return SQLITE_OK; sl@0: rc = sqlite3BtreeGetPage(pBt, 1, &pPage1, 0); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: sl@0: /* Do some checking to help insure the file we opened really is sl@0: ** a valid database file. sl@0: */ sl@0: rc = sqlite3PagerPagecount(pBt->pPager, &nPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: goto page1_init_failed; sl@0: }else if( nPage>0 ){ sl@0: int pageSize; sl@0: int usableSize; sl@0: u8 *page1 = pPage1->aData; sl@0: rc = SQLITE_NOTADB; sl@0: if( memcmp(page1, zMagicHeader, 16)!=0 ){ sl@0: goto page1_init_failed; sl@0: } sl@0: if( page1[18]>1 ){ sl@0: pBt->readOnly = 1; sl@0: } sl@0: if( page1[19]>1 ){ sl@0: goto page1_init_failed; sl@0: } sl@0: sl@0: /* The maximum embedded fraction must be exactly 25%. And the minimum sl@0: ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data. sl@0: ** The original design allowed these amounts to vary, but as of sl@0: ** version 3.6.0, we require them to be fixed. sl@0: */ sl@0: if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ sl@0: goto page1_init_failed; sl@0: } sl@0: pageSize = get2byte(&page1[16]); sl@0: if( ((pageSize-1)&pageSize)!=0 || pageSize<512 || sl@0: (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE) sl@0: ){ sl@0: goto page1_init_failed; sl@0: } sl@0: assert( (pageSize & 7)==0 ); sl@0: usableSize = pageSize - page1[20]; sl@0: if( pageSize!=pBt->pageSize ){ sl@0: /* After reading the first page of the database assuming a page size sl@0: ** of BtShared.pageSize, we have discovered that the page-size is sl@0: ** actually pageSize. Unlock the database, leave pBt->pPage1 at sl@0: ** zero and return SQLITE_OK. The caller will call this function sl@0: ** again with the correct page-size. sl@0: */ sl@0: releasePage(pPage1); sl@0: pBt->usableSize = usableSize; sl@0: pBt->pageSize = pageSize; sl@0: freeTempSpace(pBt); sl@0: sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize); sl@0: return SQLITE_OK; sl@0: } sl@0: if( usableSize<500 ){ sl@0: goto page1_init_failed; sl@0: } sl@0: pBt->pageSize = pageSize; sl@0: pBt->usableSize = usableSize; sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); sl@0: pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); sl@0: #endif sl@0: } sl@0: sl@0: /* maxLocal is the maximum amount of payload to store locally for sl@0: ** a cell. Make sure it is small enough so that at least minFanout sl@0: ** cells can will fit on one page. We assume a 10-byte page header. sl@0: ** Besides the payload, the cell must store: sl@0: ** 2-byte pointer to the cell sl@0: ** 4-byte child pointer sl@0: ** 9-byte nKey value sl@0: ** 4-byte nData value sl@0: ** 4-byte overflow page pointer sl@0: ** So a cell consists of a 2-byte poiner, a header which is as much as sl@0: ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow sl@0: ** page pointer. sl@0: */ sl@0: pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23; sl@0: pBt->minLocal = (pBt->usableSize-12)*32/255 - 23; sl@0: pBt->maxLeaf = pBt->usableSize - 35; sl@0: pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23; sl@0: assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); sl@0: pBt->pPage1 = pPage1; sl@0: return SQLITE_OK; sl@0: sl@0: page1_init_failed: sl@0: releasePage(pPage1); sl@0: pBt->pPage1 = 0; sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** This routine works like lockBtree() except that it also invokes the sl@0: ** busy callback if there is lock contention. sl@0: */ sl@0: static int lockBtreeWithRetry(Btree *pRef){ sl@0: int rc = SQLITE_OK; sl@0: sl@0: assert( sqlite3BtreeHoldsMutex(pRef) ); sl@0: if( pRef->inTrans==TRANS_NONE ){ sl@0: u8 inTransaction = pRef->pBt->inTransaction; sl@0: btreeIntegrity(pRef); sl@0: rc = sqlite3BtreeBeginTrans(pRef, 0); sl@0: pRef->pBt->inTransaction = inTransaction; sl@0: pRef->inTrans = TRANS_NONE; sl@0: if( rc==SQLITE_OK ){ sl@0: pRef->pBt->nTransaction--; sl@0: } sl@0: btreeIntegrity(pRef); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** If there are no outstanding cursors and we are not in the middle sl@0: ** of a transaction but there is a read lock on the database, then sl@0: ** this routine unrefs the first page of the database file which sl@0: ** has the effect of releasing the read lock. sl@0: ** sl@0: ** If there are any outstanding cursors, this routine is a no-op. sl@0: ** sl@0: ** If there is a transaction in progress, this routine is a no-op. sl@0: */ sl@0: static void unlockBtreeIfUnused(BtShared *pBt){ sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: if( pBt->inTransaction==TRANS_NONE && pBt->pCursor==0 && pBt->pPage1!=0 ){ sl@0: if( sqlite3PagerRefcount(pBt->pPager)>=1 ){ sl@0: assert( pBt->pPage1->aData ); sl@0: #if 0 sl@0: if( pBt->pPage1->aData==0 ){ sl@0: MemPage *pPage = pBt->pPage1; sl@0: pPage->aData = sqlite3PagerGetData(pPage->pDbPage); sl@0: pPage->pBt = pBt; sl@0: pPage->pgno = 1; sl@0: } sl@0: #endif sl@0: releasePage(pBt->pPage1); sl@0: } sl@0: pBt->pPage1 = 0; sl@0: pBt->inStmt = 0; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Create a new database by initializing the first page of the sl@0: ** file. sl@0: */ sl@0: static int newDatabase(BtShared *pBt){ sl@0: MemPage *pP1; sl@0: unsigned char *data; sl@0: int rc; sl@0: int nPage; sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: rc = sqlite3PagerPagecount(pBt->pPager, &nPage); sl@0: if( rc!=SQLITE_OK || nPage>0 ){ sl@0: return rc; sl@0: } sl@0: pP1 = pBt->pPage1; sl@0: assert( pP1!=0 ); sl@0: data = pP1->aData; sl@0: rc = sqlite3PagerWrite(pP1->pDbPage); sl@0: if( rc ) return rc; sl@0: memcpy(data, zMagicHeader, sizeof(zMagicHeader)); sl@0: assert( sizeof(zMagicHeader)==16 ); sl@0: put2byte(&data[16], pBt->pageSize); sl@0: data[18] = 1; sl@0: data[19] = 1; sl@0: data[20] = pBt->pageSize - pBt->usableSize; sl@0: data[21] = 64; sl@0: data[22] = 32; sl@0: data[23] = 32; sl@0: memset(&data[24], 0, 100-24); sl@0: zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); sl@0: pBt->pageSizeFixed = 1; sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); sl@0: assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); sl@0: put4byte(&data[36 + 4*4], pBt->autoVacuum); sl@0: put4byte(&data[36 + 7*4], pBt->incrVacuum); sl@0: #endif sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Attempt to start a new transaction. A write-transaction sl@0: ** is started if the second argument is nonzero, otherwise a read- sl@0: ** transaction. If the second argument is 2 or more and exclusive sl@0: ** transaction is started, meaning that no other process is allowed sl@0: ** to access the database. A preexisting transaction may not be sl@0: ** upgraded to exclusive by calling this routine a second time - the sl@0: ** exclusivity flag only works for a new transaction. sl@0: ** sl@0: ** A write-transaction must be started before attempting any sl@0: ** changes to the database. None of the following routines sl@0: ** will work unless a transaction is started first: sl@0: ** sl@0: ** sqlite3BtreeCreateTable() sl@0: ** sqlite3BtreeCreateIndex() sl@0: ** sqlite3BtreeClearTable() sl@0: ** sqlite3BtreeDropTable() sl@0: ** sqlite3BtreeInsert() sl@0: ** sqlite3BtreeDelete() sl@0: ** sqlite3BtreeUpdateMeta() sl@0: ** sl@0: ** If an initial attempt to acquire the lock fails because of lock contention sl@0: ** and the database was previously unlocked, then invoke the busy handler sl@0: ** if there is one. But if there was previously a read-lock, do not sl@0: ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is sl@0: ** returned when there is already a read-lock in order to avoid a deadlock. sl@0: ** sl@0: ** Suppose there are two processes A and B. A has a read lock and B has sl@0: ** a reserved lock. B tries to promote to exclusive but is blocked because sl@0: ** of A's read lock. A tries to promote to reserved but is blocked by B. sl@0: ** One or the other of the two processes must give way or there can be sl@0: ** no progress. By returning SQLITE_BUSY and not invoking the busy callback sl@0: ** when A already has a read lock, we encourage A to give up and let B sl@0: ** proceed. sl@0: */ sl@0: int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ sl@0: BtShared *pBt = p->pBt; sl@0: int rc = SQLITE_OK; sl@0: sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: btreeIntegrity(p); sl@0: sl@0: /* If the btree is already in a write-transaction, or it sl@0: ** is already in a read-transaction and a read-transaction sl@0: ** is requested, this is a no-op. sl@0: */ sl@0: if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ sl@0: goto trans_begun; sl@0: } sl@0: sl@0: /* Write transactions are not possible on a read-only database */ sl@0: if( pBt->readOnly && wrflag ){ sl@0: rc = SQLITE_READONLY; sl@0: goto trans_begun; sl@0: } sl@0: sl@0: /* If another database handle has already opened a write transaction sl@0: ** on this shared-btree structure and a second write transaction is sl@0: ** requested, return SQLITE_BUSY. sl@0: */ sl@0: if( pBt->inTransaction==TRANS_WRITE && wrflag ){ sl@0: rc = SQLITE_BUSY; sl@0: goto trans_begun; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: if( wrflag>1 ){ sl@0: BtLock *pIter; sl@0: for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ sl@0: if( pIter->pBtree!=p ){ sl@0: rc = SQLITE_BUSY; sl@0: goto trans_begun; sl@0: } sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: do { sl@0: if( pBt->pPage1==0 ){ sl@0: do{ sl@0: rc = lockBtree(pBt); sl@0: }while( pBt->pPage1==0 && rc==SQLITE_OK ); sl@0: } sl@0: sl@0: if( rc==SQLITE_OK && wrflag ){ sl@0: if( pBt->readOnly ){ sl@0: rc = SQLITE_READONLY; sl@0: }else{ sl@0: rc = sqlite3PagerBegin(pBt->pPage1->pDbPage, wrflag>1); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = newDatabase(pBt); sl@0: } sl@0: } sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: if( wrflag ) pBt->inStmt = 0; sl@0: }else{ sl@0: unlockBtreeIfUnused(pBt); sl@0: } sl@0: }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && sl@0: sqlite3BtreeInvokeBusyHandler(pBt, 0) ); sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: if( p->inTrans==TRANS_NONE ){ sl@0: pBt->nTransaction++; sl@0: } sl@0: p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); sl@0: if( p->inTrans>pBt->inTransaction ){ sl@0: pBt->inTransaction = p->inTrans; sl@0: } sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: if( wrflag>1 ){ sl@0: assert( !pBt->pExclusive ); sl@0: pBt->pExclusive = p; sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: sl@0: trans_begun: sl@0: btreeIntegrity(p); sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: sl@0: /* sl@0: ** Set the pointer-map entries for all children of page pPage. Also, if sl@0: ** pPage contains cells that point to overflow pages, set the pointer sl@0: ** map entries for the overflow pages as well. sl@0: */ sl@0: static int setChildPtrmaps(MemPage *pPage){ sl@0: int i; /* Counter variable */ sl@0: int nCell; /* Number of cells in page pPage */ sl@0: int rc; /* Return code */ sl@0: BtShared *pBt = pPage->pBt; sl@0: int isInitOrig = pPage->isInit; sl@0: Pgno pgno = pPage->pgno; sl@0: sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: rc = sqlite3BtreeInitPage(pPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: goto set_child_ptrmaps_out; sl@0: } sl@0: nCell = pPage->nCell; sl@0: sl@0: for(i=0; ileaf ){ sl@0: Pgno childPgno = get4byte(pCell); sl@0: rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); sl@0: if( rc!=SQLITE_OK ) goto set_child_ptrmaps_out; sl@0: } sl@0: } sl@0: sl@0: if( !pPage->leaf ){ sl@0: Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); sl@0: rc = ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno); sl@0: } sl@0: sl@0: set_child_ptrmaps_out: sl@0: pPage->isInit = isInitOrig; sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Somewhere on pPage, which is guarenteed to be a btree page, not an overflow sl@0: ** page, is a pointer to page iFrom. Modify this pointer so that it points to sl@0: ** iTo. Parameter eType describes the type of pointer to be modified, as sl@0: ** follows: sl@0: ** sl@0: ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child sl@0: ** page of pPage. sl@0: ** sl@0: ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow sl@0: ** page pointed to by one of the cells on pPage. sl@0: ** sl@0: ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next sl@0: ** overflow page in the list. sl@0: */ sl@0: static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: if( eType==PTRMAP_OVERFLOW2 ){ sl@0: /* The pointer is always the first 4 bytes of the page in this case. */ sl@0: if( get4byte(pPage->aData)!=iFrom ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: put4byte(pPage->aData, iTo); sl@0: }else{ sl@0: int isInitOrig = pPage->isInit; sl@0: int i; sl@0: int nCell; sl@0: sl@0: sqlite3BtreeInitPage(pPage); sl@0: nCell = pPage->nCell; sl@0: sl@0: for(i=0; iaData[pPage->hdrOffset+8])!=iFrom ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); sl@0: } sl@0: sl@0: pPage->isInit = isInitOrig; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Move the open database page pDbPage to location iFreePage in the sl@0: ** database. The pDbPage reference remains valid. sl@0: */ sl@0: static int relocatePage( sl@0: BtShared *pBt, /* Btree */ sl@0: MemPage *pDbPage, /* Open page to move */ sl@0: u8 eType, /* Pointer map 'type' entry for pDbPage */ sl@0: Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ sl@0: Pgno iFreePage, /* The location to move pDbPage to */ sl@0: int isCommit sl@0: ){ sl@0: MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ sl@0: Pgno iDbPage = pDbPage->pgno; sl@0: Pager *pPager = pBt->pPager; sl@0: int rc; sl@0: sl@0: assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || sl@0: eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: assert( pDbPage->pBt==pBt ); sl@0: sl@0: /* Move page iDbPage from its current location to page number iFreePage */ sl@0: TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", sl@0: iDbPage, iFreePage, iPtrPage, eType)); sl@0: rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: pDbPage->pgno = iFreePage; sl@0: sl@0: /* If pDbPage was a btree-page, then it may have child pages and/or cells sl@0: ** that point to overflow pages. The pointer map entries for all these sl@0: ** pages need to be changed. sl@0: ** sl@0: ** If pDbPage is an overflow page, then the first 4 bytes may store a sl@0: ** pointer to a subsequent overflow page. If this is the case, then sl@0: ** the pointer map needs to be updated for the subsequent overflow page. sl@0: */ sl@0: if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ sl@0: rc = setChildPtrmaps(pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: }else{ sl@0: Pgno nextOvfl = get4byte(pDbPage->aData); sl@0: if( nextOvfl!=0 ){ sl@0: rc = ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Fix the database pointer on page iPtrPage that pointed at iDbPage so sl@0: ** that it points at iFreePage. Also fix the pointer map entry for sl@0: ** iPtrPage. sl@0: */ sl@0: if( eType!=PTRMAP_ROOTPAGE ){ sl@0: rc = sqlite3BtreeGetPage(pBt, iPtrPage, &pPtrPage, 0); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: rc = sqlite3PagerWrite(pPtrPage->pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: releasePage(pPtrPage); sl@0: return rc; sl@0: } sl@0: rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); sl@0: releasePage(pPtrPage); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = ptrmapPut(pBt, iFreePage, eType, iPtrPage); sl@0: } sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* Forward declaration required by incrVacuumStep(). */ sl@0: static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); sl@0: sl@0: /* sl@0: ** Perform a single step of an incremental-vacuum. If successful, sl@0: ** return SQLITE_OK. If there is no work to do (and therefore no sl@0: ** point in calling this function again), return SQLITE_DONE. sl@0: ** sl@0: ** More specificly, this function attempts to re-organize the sl@0: ** database so that the last page of the file currently in use sl@0: ** is no longer in use. sl@0: ** sl@0: ** If the nFin parameter is non-zero, the implementation assumes sl@0: ** that the caller will keep calling incrVacuumStep() until sl@0: ** it returns SQLITE_DONE or an error, and that nFin is the sl@0: ** number of pages the database file will contain after this sl@0: ** process is complete. sl@0: */ sl@0: static int incrVacuumStep(BtShared *pBt, Pgno nFin){ sl@0: Pgno iLastPg; /* Last page in the database */ sl@0: Pgno nFreeList; /* Number of pages still on the free-list */ sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: iLastPg = pBt->nTrunc; sl@0: if( iLastPg==0 ){ sl@0: iLastPg = pagerPagecount(pBt->pPager); sl@0: } sl@0: sl@0: if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ sl@0: int rc; sl@0: u8 eType; sl@0: Pgno iPtrPage; sl@0: sl@0: nFreeList = get4byte(&pBt->pPage1->aData[36]); sl@0: if( nFreeList==0 || nFin==iLastPg ){ sl@0: return SQLITE_DONE; sl@0: } sl@0: sl@0: rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: if( eType==PTRMAP_ROOTPAGE ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: sl@0: if( eType==PTRMAP_FREEPAGE ){ sl@0: if( nFin==0 ){ sl@0: /* Remove the page from the files free-list. This is not required sl@0: ** if nFin is non-zero. In that case, the free-list will be sl@0: ** truncated to zero after this function returns, so it doesn't sl@0: ** matter if it still contains some garbage entries. sl@0: */ sl@0: Pgno iFreePg; sl@0: MemPage *pFreePg; sl@0: rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: assert( iFreePg==iLastPg ); sl@0: releasePage(pFreePg); sl@0: } sl@0: } else { sl@0: Pgno iFreePg; /* Index of free page to move pLastPg to */ sl@0: MemPage *pLastPg; sl@0: sl@0: rc = sqlite3BtreeGetPage(pBt, iLastPg, &pLastPg, 0); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: sl@0: /* If nFin is zero, this loop runs exactly once and page pLastPg sl@0: ** is swapped with the first free page pulled off the free list. sl@0: ** sl@0: ** On the other hand, if nFin is greater than zero, then keep sl@0: ** looping until a free-page located within the first nFin pages sl@0: ** of the file is found. sl@0: */ sl@0: do { sl@0: MemPage *pFreePg; sl@0: rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0); sl@0: if( rc!=SQLITE_OK ){ sl@0: releasePage(pLastPg); sl@0: return rc; sl@0: } sl@0: releasePage(pFreePg); sl@0: }while( nFin!=0 && iFreePg>nFin ); sl@0: assert( iFreePgpDbPage); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0); sl@0: } sl@0: releasePage(pLastPg); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: } sl@0: } sl@0: sl@0: pBt->nTrunc = iLastPg - 1; sl@0: while( pBt->nTrunc==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, pBt->nTrunc) ){ sl@0: pBt->nTrunc--; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** A write-transaction must be opened before calling this function. sl@0: ** It performs a single unit of work towards an incremental vacuum. sl@0: ** sl@0: ** If the incremental vacuum is finished after this function has run, sl@0: ** SQLITE_DONE is returned. If it is not finished, but no error occured, sl@0: ** SQLITE_OK is returned. Otherwise an SQLite error code. sl@0: */ sl@0: int sqlite3BtreeIncrVacuum(Btree *p){ sl@0: int rc; sl@0: BtShared *pBt = p->pBt; sl@0: sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); sl@0: if( !pBt->autoVacuum ){ sl@0: rc = SQLITE_DONE; sl@0: }else{ sl@0: invalidateAllOverflowCache(pBt); sl@0: rc = incrVacuumStep(pBt, 0); sl@0: } sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called prior to sqlite3PagerCommit when a transaction sl@0: ** is commited for an auto-vacuum database. sl@0: ** sl@0: ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages sl@0: ** the database file should be truncated to during the commit process. sl@0: ** i.e. the database has been reorganized so that only the first *pnTrunc sl@0: ** pages are in use. sl@0: */ sl@0: static int autoVacuumCommit(BtShared *pBt, Pgno *pnTrunc){ sl@0: int rc = SQLITE_OK; sl@0: Pager *pPager = pBt->pPager; sl@0: VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) ); sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: invalidateAllOverflowCache(pBt); sl@0: assert(pBt->autoVacuum); sl@0: if( !pBt->incrVacuum ){ sl@0: Pgno nFin = 0; sl@0: sl@0: if( pBt->nTrunc==0 ){ sl@0: Pgno nFree; sl@0: Pgno nPtrmap; sl@0: const int pgsz = pBt->pageSize; sl@0: int nOrig = pagerPagecount(pBt->pPager); sl@0: sl@0: if( PTRMAP_ISPAGE(pBt, nOrig) ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: if( nOrig==PENDING_BYTE_PAGE(pBt) ){ sl@0: nOrig--; sl@0: } sl@0: nFree = get4byte(&pBt->pPage1->aData[36]); sl@0: nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+pgsz/5)/(pgsz/5); sl@0: nFin = nOrig - nFree - nPtrmap; sl@0: if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<=PENDING_BYTE_PAGE(pBt) ){ sl@0: nFin--; sl@0: } sl@0: while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ sl@0: nFin--; sl@0: } sl@0: } sl@0: sl@0: while( rc==SQLITE_OK ){ sl@0: rc = incrVacuumStep(pBt, nFin); sl@0: } sl@0: if( rc==SQLITE_DONE ){ sl@0: assert(nFin==0 || pBt->nTrunc==0 || nFin<=pBt->nTrunc); sl@0: rc = SQLITE_OK; sl@0: if( pBt->nTrunc && nFin ){ sl@0: rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); sl@0: put4byte(&pBt->pPage1->aData[32], 0); sl@0: put4byte(&pBt->pPage1->aData[36], 0); sl@0: pBt->nTrunc = nFin; sl@0: } sl@0: } sl@0: if( rc!=SQLITE_OK ){ sl@0: sqlite3PagerRollback(pPager); sl@0: } sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: *pnTrunc = pBt->nTrunc; sl@0: pBt->nTrunc = 0; sl@0: } sl@0: assert( nRef==sqlite3PagerRefcount(pPager) ); sl@0: return rc; sl@0: } sl@0: sl@0: #endif sl@0: sl@0: /* sl@0: ** This routine does the first phase of a two-phase commit. This routine sl@0: ** causes a rollback journal to be created (if it does not already exist) sl@0: ** and populated with enough information so that if a power loss occurs sl@0: ** the database can be restored to its original state by playing back sl@0: ** the journal. Then the contents of the journal are flushed out to sl@0: ** the disk. After the journal is safely on oxide, the changes to the sl@0: ** database are written into the database file and flushed to oxide. sl@0: ** At the end of this call, the rollback journal still exists on the sl@0: ** disk and we are still holding all locks, so the transaction has not sl@0: ** committed. See sqlite3BtreeCommit() for the second phase of the sl@0: ** commit process. sl@0: ** sl@0: ** This call is a no-op if no write-transaction is currently active on pBt. sl@0: ** sl@0: ** Otherwise, sync the database file for the btree pBt. zMaster points to sl@0: ** the name of a master journal file that should be written into the sl@0: ** individual journal file, or is NULL, indicating no master journal file sl@0: ** (single database transaction). sl@0: ** sl@0: ** When this is called, the master journal should already have been sl@0: ** created, populated with this journal pointer and synced to disk. sl@0: ** sl@0: ** Once this is routine has returned, the only thing required to commit sl@0: ** the write-transaction for this database file is to delete the journal. sl@0: */ sl@0: int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ sl@0: int rc = SQLITE_OK; sl@0: if( p->inTrans==TRANS_WRITE ){ sl@0: BtShared *pBt = p->pBt; sl@0: Pgno nTrunc = 0; sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( pBt->autoVacuum ){ sl@0: rc = autoVacuumCommit(pBt, &nTrunc); sl@0: if( rc!=SQLITE_OK ){ sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: } sl@0: #endif sl@0: rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, nTrunc, 0); sl@0: sqlite3BtreeLeave(p); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Commit the transaction currently in progress. sl@0: ** sl@0: ** This routine implements the second phase of a 2-phase commit. The sl@0: ** sqlite3BtreeSync() routine does the first phase and should be invoked sl@0: ** prior to calling this routine. The sqlite3BtreeSync() routine did sl@0: ** all the work of writing information out to disk and flushing the sl@0: ** contents so that they are written onto the disk platter. All this sl@0: ** routine has to do is delete or truncate the rollback journal sl@0: ** (which causes the transaction to commit) and drop locks. sl@0: ** sl@0: ** This will release the write lock on the database file. If there sl@0: ** are no active cursors, it also releases the read lock. sl@0: */ sl@0: int sqlite3BtreeCommitPhaseTwo(Btree *p){ sl@0: BtShared *pBt = p->pBt; sl@0: sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: btreeIntegrity(p); sl@0: sl@0: /* If the handle has a write-transaction open, commit the shared-btrees sl@0: ** transaction and set the shared state to TRANS_READ. sl@0: */ sl@0: if( p->inTrans==TRANS_WRITE ){ sl@0: int rc; sl@0: assert( pBt->inTransaction==TRANS_WRITE ); sl@0: assert( pBt->nTransaction>0 ); sl@0: rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); sl@0: if( rc!=SQLITE_OK ){ sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: pBt->inTransaction = TRANS_READ; sl@0: pBt->inStmt = 0; sl@0: } sl@0: unlockAllTables(p); sl@0: sl@0: /* If the handle has any kind of transaction open, decrement the transaction sl@0: ** count of the shared btree. If the transaction count reaches 0, set sl@0: ** the shared state to TRANS_NONE. The unlockBtreeIfUnused() call below sl@0: ** will unlock the pager. sl@0: */ sl@0: if( p->inTrans!=TRANS_NONE ){ sl@0: pBt->nTransaction--; sl@0: if( 0==pBt->nTransaction ){ sl@0: pBt->inTransaction = TRANS_NONE; sl@0: } sl@0: } sl@0: sl@0: /* Set the handles current transaction state to TRANS_NONE and unlock sl@0: ** the pager if this call closed the only read or write transaction. sl@0: */ sl@0: p->inTrans = TRANS_NONE; sl@0: unlockBtreeIfUnused(pBt); sl@0: sl@0: btreeIntegrity(p); sl@0: sqlite3BtreeLeave(p); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Do both phases of a commit. sl@0: */ sl@0: int sqlite3BtreeCommit(Btree *p){ sl@0: int rc; sl@0: sqlite3BtreeEnter(p); sl@0: rc = sqlite3BtreeCommitPhaseOne(p, 0); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3BtreeCommitPhaseTwo(p); sl@0: } sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: #ifndef NDEBUG sl@0: /* sl@0: ** Return the number of write-cursors open on this handle. This is for use sl@0: ** in assert() expressions, so it is only compiled if NDEBUG is not sl@0: ** defined. sl@0: ** sl@0: ** For the purposes of this routine, a write-cursor is any cursor that sl@0: ** is capable of writing to the databse. That means the cursor was sl@0: ** originally opened for writing and the cursor has not be disabled sl@0: ** by having its state changed to CURSOR_FAULT. sl@0: */ sl@0: static int countWriteCursors(BtShared *pBt){ sl@0: BtCursor *pCur; sl@0: int r = 0; sl@0: for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ sl@0: if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++; sl@0: } sl@0: return r; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** This routine sets the state to CURSOR_FAULT and the error sl@0: ** code to errCode for every cursor on BtShared that pBtree sl@0: ** references. sl@0: ** sl@0: ** Every cursor is tripped, including cursors that belong sl@0: ** to other database connections that happen to be sharing sl@0: ** the cache with pBtree. sl@0: ** sl@0: ** This routine gets called when a rollback occurs. sl@0: ** All cursors using the same cache must be tripped sl@0: ** to prevent them from trying to use the btree after sl@0: ** the rollback. The rollback may have deleted tables sl@0: ** or moved root pages, so it is not sufficient to sl@0: ** save the state of the cursor. The cursor must be sl@0: ** invalidated. sl@0: */ sl@0: void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){ sl@0: BtCursor *p; sl@0: sqlite3BtreeEnter(pBtree); sl@0: for(p=pBtree->pBt->pCursor; p; p=p->pNext){ sl@0: sqlite3BtreeClearCursor(p); sl@0: p->eState = CURSOR_FAULT; sl@0: p->skip = errCode; sl@0: } sl@0: sqlite3BtreeLeave(pBtree); sl@0: } sl@0: sl@0: /* sl@0: ** Rollback the transaction in progress. All cursors will be sl@0: ** invalided by this operation. Any attempt to use a cursor sl@0: ** that was open at the beginning of this operation will result sl@0: ** in an error. sl@0: ** sl@0: ** This will release the write lock on the database file. If there sl@0: ** are no active cursors, it also releases the read lock. sl@0: */ sl@0: int sqlite3BtreeRollback(Btree *p){ sl@0: int rc; sl@0: BtShared *pBt = p->pBt; sl@0: MemPage *pPage1; sl@0: sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: rc = saveAllCursors(pBt, 0, 0); sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: if( rc!=SQLITE_OK ){ sl@0: /* This is a horrible situation. An IO or malloc() error occured whilst sl@0: ** trying to save cursor positions. If this is an automatic rollback (as sl@0: ** the result of a constraint, malloc() failure or IO error) then sl@0: ** the cache may be internally inconsistent (not contain valid trees) so sl@0: ** we cannot simply return the error to the caller. Instead, abort sl@0: ** all queries that may be using any of the cursors that failed to save. sl@0: */ sl@0: sqlite3BtreeTripAllCursors(p, rc); sl@0: } sl@0: #endif sl@0: btreeIntegrity(p); sl@0: unlockAllTables(p); sl@0: sl@0: if( p->inTrans==TRANS_WRITE ){ sl@0: int rc2; sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: pBt->nTrunc = 0; sl@0: #endif sl@0: sl@0: assert( TRANS_WRITE==pBt->inTransaction ); sl@0: rc2 = sqlite3PagerRollback(pBt->pPager); sl@0: if( rc2!=SQLITE_OK ){ sl@0: rc = rc2; sl@0: } sl@0: sl@0: /* The rollback may have destroyed the pPage1->aData value. So sl@0: ** call sqlite3BtreeGetPage() on page 1 again to make sl@0: ** sure pPage1->aData is set correctly. */ sl@0: if( sqlite3BtreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ sl@0: releasePage(pPage1); sl@0: } sl@0: assert( countWriteCursors(pBt)==0 ); sl@0: pBt->inTransaction = TRANS_READ; sl@0: } sl@0: sl@0: if( p->inTrans!=TRANS_NONE ){ sl@0: assert( pBt->nTransaction>0 ); sl@0: pBt->nTransaction--; sl@0: if( 0==pBt->nTransaction ){ sl@0: pBt->inTransaction = TRANS_NONE; sl@0: } sl@0: } sl@0: sl@0: p->inTrans = TRANS_NONE; sl@0: pBt->inStmt = 0; sl@0: unlockBtreeIfUnused(pBt); sl@0: sl@0: btreeIntegrity(p); sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Start a statement subtransaction. The subtransaction can sl@0: ** can be rolled back independently of the main transaction. sl@0: ** You must start a transaction before starting a subtransaction. sl@0: ** The subtransaction is ended automatically if the main transaction sl@0: ** commits or rolls back. sl@0: ** sl@0: ** Only one subtransaction may be active at a time. It is an error to try sl@0: ** to start a new subtransaction if another subtransaction is already active. sl@0: ** sl@0: ** Statement subtransactions are used around individual SQL statements sl@0: ** that are contained within a BEGIN...COMMIT block. If a constraint sl@0: ** error occurs within the statement, the effect of that one statement sl@0: ** can be rolled back without having to rollback the entire transaction. sl@0: */ sl@0: int sqlite3BtreeBeginStmt(Btree *p){ sl@0: int rc; sl@0: BtShared *pBt = p->pBt; sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: if( (p->inTrans!=TRANS_WRITE) || pBt->inStmt ){ sl@0: rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; sl@0: }else{ sl@0: assert( pBt->inTransaction==TRANS_WRITE ); sl@0: rc = pBt->readOnly ? SQLITE_OK : sqlite3PagerStmtBegin(pBt->pPager); sl@0: pBt->inStmt = 1; sl@0: } sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Commit the statment subtransaction currently in progress. If no sl@0: ** subtransaction is active, this is a no-op. sl@0: */ sl@0: int sqlite3BtreeCommitStmt(Btree *p){ sl@0: int rc; sl@0: BtShared *pBt = p->pBt; sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: if( pBt->inStmt && !pBt->readOnly ){ sl@0: rc = sqlite3PagerStmtCommit(pBt->pPager); sl@0: }else{ sl@0: rc = SQLITE_OK; sl@0: } sl@0: pBt->inStmt = 0; sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Rollback the active statement subtransaction. If no subtransaction sl@0: ** is active this routine is a no-op. sl@0: ** sl@0: ** All cursors will be invalidated by this operation. Any attempt sl@0: ** to use a cursor that was open at the beginning of this operation sl@0: ** will result in an error. sl@0: */ sl@0: int sqlite3BtreeRollbackStmt(Btree *p){ sl@0: int rc = SQLITE_OK; sl@0: BtShared *pBt = p->pBt; sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: if( pBt->inStmt && !pBt->readOnly ){ sl@0: rc = sqlite3PagerStmtRollback(pBt->pPager); sl@0: pBt->inStmt = 0; sl@0: } sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Create a new cursor for the BTree whose root is on the page sl@0: ** iTable. The act of acquiring a cursor gets a read lock on sl@0: ** the database file. sl@0: ** sl@0: ** If wrFlag==0, then the cursor can only be used for reading. sl@0: ** If wrFlag==1, then the cursor can be used for reading or for sl@0: ** writing if other conditions for writing are also met. These sl@0: ** are the conditions that must be met in order for writing to sl@0: ** be allowed: sl@0: ** sl@0: ** 1: The cursor must have been opened with wrFlag==1 sl@0: ** sl@0: ** 2: Other database connections that share the same pager cache sl@0: ** but which are not in the READ_UNCOMMITTED state may not have sl@0: ** cursors open with wrFlag==0 on the same table. Otherwise sl@0: ** the changes made by this write cursor would be visible to sl@0: ** the read cursors in the other database connection. sl@0: ** sl@0: ** 3: The database must be writable (not on read-only media) sl@0: ** sl@0: ** 4: There must be an active transaction. sl@0: ** sl@0: ** No checking is done to make sure that page iTable really is the sl@0: ** root page of a b-tree. If it is not, then the cursor acquired sl@0: ** will not work correctly. sl@0: ** sl@0: ** It is assumed that the sqlite3BtreeCursorSize() bytes of memory sl@0: ** pointed to by pCur have been zeroed by the caller. sl@0: */ sl@0: static int btreeCursor( sl@0: Btree *p, /* The btree */ sl@0: int iTable, /* Root page of table to open */ sl@0: int wrFlag, /* 1 to write. 0 read-only */ sl@0: struct KeyInfo *pKeyInfo, /* First arg to comparison function */ sl@0: BtCursor *pCur /* Space for new cursor */ sl@0: ){ sl@0: int rc; sl@0: BtShared *pBt = p->pBt; sl@0: sl@0: assert( sqlite3BtreeHoldsMutex(p) ); sl@0: if( wrFlag ){ sl@0: if( pBt->readOnly ){ sl@0: return SQLITE_READONLY; sl@0: } sl@0: if( checkReadLocks(p, iTable, 0, 0) ){ sl@0: return SQLITE_LOCKED; sl@0: } sl@0: } sl@0: sl@0: if( pBt->pPage1==0 ){ sl@0: rc = lockBtreeWithRetry(p); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: if( pBt->readOnly && wrFlag ){ sl@0: return SQLITE_READONLY; sl@0: } sl@0: } sl@0: pCur->pgnoRoot = (Pgno)iTable; sl@0: if( iTable==1 && pagerPagecount(pBt->pPager)==0 ){ sl@0: rc = SQLITE_EMPTY; sl@0: goto create_cursor_exception; sl@0: } sl@0: rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]); sl@0: if( rc!=SQLITE_OK ){ sl@0: goto create_cursor_exception; sl@0: } sl@0: sl@0: /* Now that no other errors can occur, finish filling in the BtCursor sl@0: ** variables, link the cursor into the BtShared list and set *ppCur (the sl@0: ** output argument to this function). sl@0: */ sl@0: pCur->pKeyInfo = pKeyInfo; sl@0: pCur->pBtree = p; sl@0: pCur->pBt = pBt; sl@0: pCur->wrFlag = wrFlag; sl@0: pCur->pNext = pBt->pCursor; sl@0: if( pCur->pNext ){ sl@0: pCur->pNext->pPrev = pCur; sl@0: } sl@0: pBt->pCursor = pCur; sl@0: pCur->eState = CURSOR_INVALID; sl@0: sl@0: return SQLITE_OK; sl@0: sl@0: create_cursor_exception: sl@0: releasePage(pCur->apPage[0]); sl@0: unlockBtreeIfUnused(pBt); sl@0: return rc; sl@0: } sl@0: int sqlite3BtreeCursor( sl@0: Btree *p, /* The btree */ sl@0: int iTable, /* Root page of table to open */ sl@0: int wrFlag, /* 1 to write. 0 read-only */ sl@0: struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ sl@0: BtCursor *pCur /* Write new cursor here */ sl@0: ){ sl@0: int rc; sl@0: sqlite3BtreeEnter(p); sl@0: p->pBt->db = p->db; sl@0: rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: int sqlite3BtreeCursorSize(){ sl@0: return sizeof(BtCursor); sl@0: } sl@0: sl@0: sl@0: sl@0: /* sl@0: ** Close a cursor. The read lock on the database file is released sl@0: ** when the last cursor is closed. sl@0: */ sl@0: int sqlite3BtreeCloseCursor(BtCursor *pCur){ sl@0: Btree *pBtree = pCur->pBtree; sl@0: if( pBtree ){ sl@0: int i; sl@0: BtShared *pBt = pCur->pBt; sl@0: sqlite3BtreeEnter(pBtree); sl@0: pBt->db = pBtree->db; sl@0: sqlite3BtreeClearCursor(pCur); sl@0: if( pCur->pPrev ){ sl@0: pCur->pPrev->pNext = pCur->pNext; sl@0: }else{ sl@0: pBt->pCursor = pCur->pNext; sl@0: } sl@0: if( pCur->pNext ){ sl@0: pCur->pNext->pPrev = pCur->pPrev; sl@0: } sl@0: for(i=0; i<=pCur->iPage; i++){ sl@0: releasePage(pCur->apPage[i]); sl@0: } sl@0: unlockBtreeIfUnused(pBt); sl@0: invalidateOverflowCache(pCur); sl@0: /* sqlite3_free(pCur); */ sl@0: sqlite3BtreeLeave(pBtree); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Make a temporary cursor by filling in the fields of pTempCur. sl@0: ** The temporary cursor is not on the cursor list for the Btree. sl@0: */ sl@0: void sqlite3BtreeGetTempCursor(BtCursor *pCur, BtCursor *pTempCur){ sl@0: int i; sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: memcpy(pTempCur, pCur, sizeof(BtCursor)); sl@0: pTempCur->pNext = 0; sl@0: pTempCur->pPrev = 0; sl@0: for(i=0; i<=pTempCur->iPage; i++){ sl@0: sqlite3PagerRef(pTempCur->apPage[i]->pDbPage); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Delete a temporary cursor such as was made by the CreateTemporaryCursor() sl@0: ** function above. sl@0: */ sl@0: void sqlite3BtreeReleaseTempCursor(BtCursor *pCur){ sl@0: int i; sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: for(i=0; i<=pCur->iPage; i++){ sl@0: sqlite3PagerUnref(pCur->apPage[i]->pDbPage); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Make sure the BtCursor* given in the argument has a valid sl@0: ** BtCursor.info structure. If it is not already valid, call sl@0: ** sqlite3BtreeParseCell() to fill it in. sl@0: ** sl@0: ** BtCursor.info is a cache of the information in the current cell. sl@0: ** Using this cache reduces the number of calls to sqlite3BtreeParseCell(). sl@0: ** sl@0: ** 2007-06-25: There is a bug in some versions of MSVC that cause the sl@0: ** compiler to crash when getCellInfo() is implemented as a macro. sl@0: ** But there is a measureable speed advantage to using the macro on gcc sl@0: ** (when less compiler optimizations like -Os or -O0 are used and the sl@0: ** compiler is not doing agressive inlining.) So we use a real function sl@0: ** for MSVC and a macro for everything else. Ticket #2457. sl@0: */ sl@0: #ifndef NDEBUG sl@0: static void assertCellInfo(BtCursor *pCur){ sl@0: CellInfo info; sl@0: int iPage = pCur->iPage; sl@0: memset(&info, 0, sizeof(info)); sl@0: sqlite3BtreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); sl@0: assert( memcmp(&info, &pCur->info, sizeof(info))==0 ); sl@0: } sl@0: #else sl@0: #define assertCellInfo(x) sl@0: #endif sl@0: #ifdef _MSC_VER sl@0: /* Use a real function in MSVC to work around bugs in that compiler. */ sl@0: static void getCellInfo(BtCursor *pCur){ sl@0: if( pCur->info.nSize==0 ){ sl@0: int iPage = pCur->iPage; sl@0: sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); sl@0: pCur->validNKey = 1; sl@0: }else{ sl@0: assertCellInfo(pCur); sl@0: } sl@0: } sl@0: #else /* if not _MSC_VER */ sl@0: /* Use a macro in all other compilers so that the function is inlined */ sl@0: #define getCellInfo(pCur) \ sl@0: if( pCur->info.nSize==0 ){ \ sl@0: int iPage = pCur->iPage; \ sl@0: sqlite3BtreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \ sl@0: pCur->validNKey = 1; \ sl@0: }else{ \ sl@0: assertCellInfo(pCur); \ sl@0: } sl@0: #endif /* _MSC_VER */ sl@0: sl@0: /* sl@0: ** Set *pSize to the size of the buffer needed to hold the value of sl@0: ** the key for the current entry. If the cursor is not pointing sl@0: ** to a valid entry, *pSize is set to 0. sl@0: ** sl@0: ** For a table with the INTKEY flag set, this routine returns the key sl@0: ** itself, not the number of bytes in the key. sl@0: */ sl@0: int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ sl@0: int rc; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: rc = restoreCursorPosition(pCur); sl@0: if( rc==SQLITE_OK ){ sl@0: assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); sl@0: if( pCur->eState==CURSOR_INVALID ){ sl@0: *pSize = 0; sl@0: }else{ sl@0: getCellInfo(pCur); sl@0: *pSize = pCur->info.nKey; sl@0: } sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Set *pSize to the number of bytes of data in the entry the sl@0: ** cursor currently points to. Always return SQLITE_OK. sl@0: ** Failure is not possible. If the cursor is not currently sl@0: ** pointing to an entry (which can happen, for example, if sl@0: ** the database is empty) then *pSize is set to 0. sl@0: */ sl@0: int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ sl@0: int rc; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: rc = restoreCursorPosition(pCur); sl@0: if( rc==SQLITE_OK ){ sl@0: assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID ); sl@0: if( pCur->eState==CURSOR_INVALID ){ sl@0: /* Not pointing at a valid entry - set *pSize to 0. */ sl@0: *pSize = 0; sl@0: }else{ sl@0: getCellInfo(pCur); sl@0: *pSize = pCur->info.nData; sl@0: } sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Given the page number of an overflow page in the database (parameter sl@0: ** ovfl), this function finds the page number of the next page in the sl@0: ** linked list of overflow pages. If possible, it uses the auto-vacuum sl@0: ** pointer-map data instead of reading the content of page ovfl to do so. sl@0: ** sl@0: ** If an error occurs an SQLite error code is returned. Otherwise: sl@0: ** sl@0: ** Unless pPgnoNext is NULL, the page number of the next overflow sl@0: ** page in the linked list is written to *pPgnoNext. If page ovfl sl@0: ** is the last page in its linked list, *pPgnoNext is set to zero. sl@0: ** sl@0: ** If ppPage is not NULL, *ppPage is set to the MemPage* handle sl@0: ** for page ovfl. The underlying pager page may have been requested sl@0: ** with the noContent flag set, so the page data accessable via sl@0: ** this handle may not be trusted. sl@0: */ sl@0: static int getOverflowPage( sl@0: BtShared *pBt, sl@0: Pgno ovfl, /* Overflow page */ sl@0: MemPage **ppPage, /* OUT: MemPage handle */ sl@0: Pgno *pPgnoNext /* OUT: Next overflow page number */ sl@0: ){ sl@0: Pgno next = 0; sl@0: int rc; sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: /* One of these must not be NULL. Otherwise, why call this function? */ sl@0: assert(ppPage || pPgnoNext); sl@0: sl@0: /* If pPgnoNext is NULL, then this function is being called to obtain sl@0: ** a MemPage* reference only. No page-data is required in this case. sl@0: */ sl@0: if( !pPgnoNext ){ sl@0: return sqlite3BtreeGetPage(pBt, ovfl, ppPage, 1); sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: /* Try to find the next page in the overflow list using the sl@0: ** autovacuum pointer-map pages. Guess that the next page in sl@0: ** the overflow list is page number (ovfl+1). If that guess turns sl@0: ** out to be wrong, fall back to loading the data of page sl@0: ** number ovfl to determine the next page number. sl@0: */ sl@0: if( pBt->autoVacuum ){ sl@0: Pgno pgno; sl@0: Pgno iGuess = ovfl+1; sl@0: u8 eType; sl@0: sl@0: while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ sl@0: iGuess++; sl@0: } sl@0: sl@0: if( iGuess<=pagerPagecount(pBt->pPager) ){ sl@0: rc = ptrmapGet(pBt, iGuess, &eType, &pgno); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: if( eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ sl@0: next = iGuess; sl@0: } sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: if( next==0 || ppPage ){ sl@0: MemPage *pPage = 0; sl@0: sl@0: rc = sqlite3BtreeGetPage(pBt, ovfl, &pPage, next!=0); sl@0: assert(rc==SQLITE_OK || pPage==0); sl@0: if( next==0 && rc==SQLITE_OK ){ sl@0: next = get4byte(pPage->aData); sl@0: } sl@0: sl@0: if( ppPage ){ sl@0: *ppPage = pPage; sl@0: }else{ sl@0: releasePage(pPage); sl@0: } sl@0: } sl@0: *pPgnoNext = next; sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Copy data from a buffer to a page, or from a page to a buffer. sl@0: ** sl@0: ** pPayload is a pointer to data stored on database page pDbPage. sl@0: ** If argument eOp is false, then nByte bytes of data are copied sl@0: ** from pPayload to the buffer pointed at by pBuf. If eOp is true, sl@0: ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes sl@0: ** of data are copied from the buffer pBuf to pPayload. sl@0: ** sl@0: ** SQLITE_OK is returned on success, otherwise an error code. sl@0: */ sl@0: static int copyPayload( sl@0: void *pPayload, /* Pointer to page data */ sl@0: void *pBuf, /* Pointer to buffer */ sl@0: int nByte, /* Number of bytes to copy */ sl@0: int eOp, /* 0 -> copy from page, 1 -> copy to page */ sl@0: DbPage *pDbPage /* Page containing pPayload */ sl@0: ){ sl@0: if( eOp ){ sl@0: /* Copy data from buffer to page (a write operation) */ sl@0: int rc = sqlite3PagerWrite(pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: memcpy(pPayload, pBuf, nByte); sl@0: }else{ sl@0: /* Copy data from page to buffer (a read operation) */ sl@0: memcpy(pBuf, pPayload, nByte); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** This function is used to read or overwrite payload information sl@0: ** for the entry that the pCur cursor is pointing to. If the eOp sl@0: ** parameter is 0, this is a read operation (data copied into sl@0: ** buffer pBuf). If it is non-zero, a write (data copied from sl@0: ** buffer pBuf). sl@0: ** sl@0: ** A total of "amt" bytes are read or written beginning at "offset". sl@0: ** Data is read to or from the buffer pBuf. sl@0: ** sl@0: ** This routine does not make a distinction between key and data. sl@0: ** It just reads or writes bytes from the payload area. Data might sl@0: ** appear on the main page or be scattered out on multiple overflow sl@0: ** pages. sl@0: ** sl@0: ** If the BtCursor.isIncrblobHandle flag is set, and the current sl@0: ** cursor entry uses one or more overflow pages, this function sl@0: ** allocates space for and lazily popluates the overflow page-list sl@0: ** cache array (BtCursor.aOverflow). Subsequent calls use this sl@0: ** cache to make seeking to the supplied offset more efficient. sl@0: ** sl@0: ** Once an overflow page-list cache has been allocated, it may be sl@0: ** invalidated if some other cursor writes to the same table, or if sl@0: ** the cursor is moved to a different row. Additionally, in auto-vacuum sl@0: ** mode, the following events may invalidate an overflow page-list cache. sl@0: ** sl@0: ** * An incremental vacuum, sl@0: ** * A commit in auto_vacuum="full" mode, sl@0: ** * Creating a table (may require moving an overflow page). sl@0: */ sl@0: static int accessPayload( sl@0: BtCursor *pCur, /* Cursor pointing to entry to read from */ sl@0: int offset, /* Begin reading this far into payload */ sl@0: int amt, /* Read this many bytes */ sl@0: unsigned char *pBuf, /* Write the bytes into this buffer */ sl@0: int skipKey, /* offset begins at data if this is true */ sl@0: int eOp /* zero to read. non-zero to write. */ sl@0: ){ sl@0: unsigned char *aPayload; sl@0: int rc = SQLITE_OK; sl@0: u32 nKey; sl@0: int iIdx = 0; sl@0: MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ sl@0: BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ sl@0: sl@0: assert( pPage ); sl@0: assert( pCur->eState==CURSOR_VALID ); sl@0: assert( pCur->aiIdx[pCur->iPage]nCell ); sl@0: assert( offset>=0 ); sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: sl@0: getCellInfo(pCur); sl@0: aPayload = pCur->info.pCell + pCur->info.nHeader; sl@0: nKey = (pPage->intKey ? 0 : pCur->info.nKey); sl@0: sl@0: if( skipKey ){ sl@0: offset += nKey; sl@0: } sl@0: if( offset+amt > nKey+pCur->info.nData sl@0: || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] sl@0: ){ sl@0: /* Trying to read or write past the end of the data is an error */ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: sl@0: /* Check if data must be read/written to/from the btree page itself. */ sl@0: if( offsetinfo.nLocal ){ sl@0: int a = amt; sl@0: if( a+offset>pCur->info.nLocal ){ sl@0: a = pCur->info.nLocal - offset; sl@0: } sl@0: rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage); sl@0: offset = 0; sl@0: pBuf += a; sl@0: amt -= a; sl@0: }else{ sl@0: offset -= pCur->info.nLocal; sl@0: } sl@0: sl@0: pBt = pCur->pBt; sl@0: if( rc==SQLITE_OK && amt>0 ){ sl@0: const int ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ sl@0: Pgno nextPage; sl@0: sl@0: nextPage = get4byte(&aPayload[pCur->info.nLocal]); sl@0: sl@0: #ifndef SQLITE_OMIT_INCRBLOB sl@0: /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[] sl@0: ** has not been allocated, allocate it now. The array is sized at sl@0: ** one entry for each overflow page in the overflow chain. The sl@0: ** page number of the first overflow page is stored in aOverflow[0], sl@0: ** etc. A value of 0 in the aOverflow[] array means "not yet known" sl@0: ** (the cache is lazily populated). sl@0: */ sl@0: if( pCur->isIncrblobHandle && !pCur->aOverflow ){ sl@0: int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; sl@0: pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl); sl@0: if( nOvfl && !pCur->aOverflow ){ sl@0: rc = SQLITE_NOMEM; sl@0: } sl@0: } sl@0: sl@0: /* If the overflow page-list cache has been allocated and the sl@0: ** entry for the first required overflow page is valid, skip sl@0: ** directly to it. sl@0: */ sl@0: if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){ sl@0: iIdx = (offset/ovflSize); sl@0: nextPage = pCur->aOverflow[iIdx]; sl@0: offset = (offset%ovflSize); sl@0: } sl@0: #endif sl@0: sl@0: for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ sl@0: sl@0: #ifndef SQLITE_OMIT_INCRBLOB sl@0: /* If required, populate the overflow page-list cache. */ sl@0: if( pCur->aOverflow ){ sl@0: assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); sl@0: pCur->aOverflow[iIdx] = nextPage; sl@0: } sl@0: #endif sl@0: sl@0: if( offset>=ovflSize ){ sl@0: /* The only reason to read this page is to obtain the page sl@0: ** number for the next page in the overflow chain. The page sl@0: ** data is not required. So first try to lookup the overflow sl@0: ** page-list cache, if any, then fall back to the getOverflowPage() sl@0: ** function. sl@0: */ sl@0: #ifndef SQLITE_OMIT_INCRBLOB sl@0: if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){ sl@0: nextPage = pCur->aOverflow[iIdx+1]; sl@0: } else sl@0: #endif sl@0: rc = getOverflowPage(pBt, nextPage, 0, &nextPage); sl@0: offset -= ovflSize; sl@0: }else{ sl@0: /* Need to read this page properly. It contains some of the sl@0: ** range of data that is being read (eOp==0) or written (eOp!=0). sl@0: */ sl@0: DbPage *pDbPage; sl@0: int a = amt; sl@0: rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage); sl@0: if( rc==SQLITE_OK ){ sl@0: aPayload = sqlite3PagerGetData(pDbPage); sl@0: nextPage = get4byte(aPayload); sl@0: if( a + offset > ovflSize ){ sl@0: a = ovflSize - offset; sl@0: } sl@0: rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage); sl@0: sqlite3PagerUnref(pDbPage); sl@0: offset = 0; sl@0: amt -= a; sl@0: pBuf += a; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: if( rc==SQLITE_OK && amt>0 ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Read part of the key associated with cursor pCur. Exactly sl@0: ** "amt" bytes will be transfered into pBuf[]. The transfer sl@0: ** begins at "offset". sl@0: ** sl@0: ** Return SQLITE_OK on success or an error code if anything goes sl@0: ** wrong. An error is returned if "offset+amt" is larger than sl@0: ** the available payload. sl@0: */ sl@0: int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ sl@0: int rc; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: rc = restoreCursorPosition(pCur); sl@0: if( rc==SQLITE_OK ){ sl@0: assert( pCur->eState==CURSOR_VALID ); sl@0: assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); sl@0: if( pCur->apPage[0]->intKey ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: assert( pCur->aiIdx[pCur->iPage]apPage[pCur->iPage]->nCell ); sl@0: rc = accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0, 0); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Read part of the data associated with cursor pCur. Exactly sl@0: ** "amt" bytes will be transfered into pBuf[]. The transfer sl@0: ** begins at "offset". sl@0: ** sl@0: ** Return SQLITE_OK on success or an error code if anything goes sl@0: ** wrong. An error is returned if "offset+amt" is larger than sl@0: ** the available payload. sl@0: */ sl@0: int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ sl@0: int rc; sl@0: sl@0: #ifndef SQLITE_OMIT_INCRBLOB sl@0: if ( pCur->eState==CURSOR_INVALID ){ sl@0: return SQLITE_ABORT; sl@0: } sl@0: #endif sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: rc = restoreCursorPosition(pCur); sl@0: if( rc==SQLITE_OK ){ sl@0: assert( pCur->eState==CURSOR_VALID ); sl@0: assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); sl@0: assert( pCur->aiIdx[pCur->iPage]apPage[pCur->iPage]->nCell ); sl@0: rc = accessPayload(pCur, offset, amt, pBuf, 1, 0); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Return a pointer to payload information from the entry that the sl@0: ** pCur cursor is pointing to. The pointer is to the beginning of sl@0: ** the key if skipKey==0 and it points to the beginning of data if sl@0: ** skipKey==1. The number of bytes of available key/data is written sl@0: ** into *pAmt. If *pAmt==0, then the value returned will not be sl@0: ** a valid pointer. sl@0: ** sl@0: ** This routine is an optimization. It is common for the entire key sl@0: ** and data to fit on the local page and for there to be no overflow sl@0: ** pages. When that is so, this routine can be used to access the sl@0: ** key and data without making a copy. If the key and/or data spills sl@0: ** onto overflow pages, then accessPayload() must be used to reassembly sl@0: ** the key/data and copy it into a preallocated buffer. sl@0: ** sl@0: ** The pointer returned by this routine looks directly into the cached sl@0: ** page of the database. The data might change or move the next time sl@0: ** any btree routine is called. sl@0: */ sl@0: static const unsigned char *fetchPayload( sl@0: BtCursor *pCur, /* Cursor pointing to entry to read from */ sl@0: int *pAmt, /* Write the number of available bytes here */ sl@0: int skipKey /* read beginning at data if this is true */ sl@0: ){ sl@0: unsigned char *aPayload; sl@0: MemPage *pPage; sl@0: u32 nKey; sl@0: int nLocal; sl@0: sl@0: assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); sl@0: assert( pCur->eState==CURSOR_VALID ); sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: pPage = pCur->apPage[pCur->iPage]; sl@0: assert( pCur->aiIdx[pCur->iPage]nCell ); sl@0: getCellInfo(pCur); sl@0: aPayload = pCur->info.pCell; sl@0: aPayload += pCur->info.nHeader; sl@0: if( pPage->intKey ){ sl@0: nKey = 0; sl@0: }else{ sl@0: nKey = pCur->info.nKey; sl@0: } sl@0: if( skipKey ){ sl@0: aPayload += nKey; sl@0: nLocal = pCur->info.nLocal - nKey; sl@0: }else{ sl@0: nLocal = pCur->info.nLocal; sl@0: if( nLocal>nKey ){ sl@0: nLocal = nKey; sl@0: } sl@0: } sl@0: *pAmt = nLocal; sl@0: return aPayload; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** For the entry that cursor pCur is point to, return as sl@0: ** many bytes of the key or data as are available on the local sl@0: ** b-tree page. Write the number of available bytes into *pAmt. sl@0: ** sl@0: ** The pointer returned is ephemeral. The key/data may move sl@0: ** or be destroyed on the next call to any Btree routine, sl@0: ** including calls from other threads against the same cache. sl@0: ** Hence, a mutex on the BtShared should be held prior to calling sl@0: ** this routine. sl@0: ** sl@0: ** These routines is used to get quick access to key and data sl@0: ** in the common case where no overflow pages are used. sl@0: */ sl@0: const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){ sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: if( pCur->eState==CURSOR_VALID ){ sl@0: return (const void*)fetchPayload(pCur, pAmt, 0); sl@0: } sl@0: return 0; sl@0: } sl@0: const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){ sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: if( pCur->eState==CURSOR_VALID ){ sl@0: return (const void*)fetchPayload(pCur, pAmt, 1); sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Move the cursor down to a new child page. The newPgno argument is the sl@0: ** page number of the child page to move to. sl@0: */ sl@0: static int moveToChild(BtCursor *pCur, u32 newPgno){ sl@0: int rc; sl@0: int i = pCur->iPage; sl@0: MemPage *pNewPage; sl@0: BtShared *pBt = pCur->pBt; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( pCur->eState==CURSOR_VALID ); sl@0: assert( pCur->iPageiPage>=(BTCURSOR_MAX_DEPTH-1) ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: rc = getAndInitPage(pBt, newPgno, &pNewPage); sl@0: if( rc ) return rc; sl@0: pCur->apPage[i+1] = pNewPage; sl@0: pCur->aiIdx[i+1] = 0; sl@0: pCur->iPage++; sl@0: sl@0: pCur->info.nSize = 0; sl@0: pCur->validNKey = 0; sl@0: if( pNewPage->nCell<1 ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: #ifndef NDEBUG sl@0: /* sl@0: ** Page pParent is an internal (non-leaf) tree page. This function sl@0: ** asserts that page number iChild is the left-child if the iIdx'th sl@0: ** cell in page pParent. Or, if iIdx is equal to the total number of sl@0: ** cells in pParent, that page number iChild is the right-child of sl@0: ** the page. sl@0: */ sl@0: static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ sl@0: assert( iIdx<=pParent->nCell ); sl@0: if( iIdx==pParent->nCell ){ sl@0: assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); sl@0: }else{ sl@0: assert( get4byte(findCell(pParent, iIdx))==iChild ); sl@0: } sl@0: } sl@0: #else sl@0: # define assertParentIndex(x,y,z) sl@0: #endif sl@0: sl@0: /* sl@0: ** Move the cursor up to the parent page. sl@0: ** sl@0: ** pCur->idx is set to the cell index that contains the pointer sl@0: ** to the page we are coming from. If we are coming from the sl@0: ** right-most child page then pCur->idx is set to one more than sl@0: ** the largest cell index. sl@0: */ sl@0: void sqlite3BtreeMoveToParent(BtCursor *pCur){ sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( pCur->eState==CURSOR_VALID ); sl@0: assert( pCur->iPage>0 ); sl@0: assert( pCur->apPage[pCur->iPage] ); sl@0: assertParentIndex( sl@0: pCur->apPage[pCur->iPage-1], sl@0: pCur->aiIdx[pCur->iPage-1], sl@0: pCur->apPage[pCur->iPage]->pgno sl@0: ); sl@0: releasePage(pCur->apPage[pCur->iPage]); sl@0: pCur->iPage--; sl@0: pCur->info.nSize = 0; sl@0: pCur->validNKey = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Move the cursor to the root page sl@0: */ sl@0: static int moveToRoot(BtCursor *pCur){ sl@0: MemPage *pRoot; sl@0: int rc = SQLITE_OK; sl@0: Btree *p = pCur->pBtree; sl@0: BtShared *pBt = p->pBt; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); sl@0: assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); sl@0: assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); sl@0: if( pCur->eState>=CURSOR_REQUIRESEEK ){ sl@0: if( pCur->eState==CURSOR_FAULT ){ sl@0: return pCur->skip; sl@0: } sl@0: sqlite3BtreeClearCursor(pCur); sl@0: } sl@0: sl@0: if( pCur->iPage>=0 ){ sl@0: int i; sl@0: for(i=1; i<=pCur->iPage; i++){ sl@0: releasePage(pCur->apPage[i]); sl@0: } sl@0: }else{ sl@0: if( sl@0: SQLITE_OK!=(rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0])) sl@0: ){ sl@0: pCur->eState = CURSOR_INVALID; sl@0: return rc; sl@0: } sl@0: } sl@0: sl@0: pRoot = pCur->apPage[0]; sl@0: assert( pRoot->pgno==pCur->pgnoRoot ); sl@0: pCur->iPage = 0; sl@0: pCur->aiIdx[0] = 0; sl@0: pCur->info.nSize = 0; sl@0: pCur->atLast = 0; sl@0: pCur->validNKey = 0; sl@0: sl@0: if( pRoot->nCell==0 && !pRoot->leaf ){ sl@0: Pgno subpage; sl@0: assert( pRoot->pgno==1 ); sl@0: subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); sl@0: assert( subpage>0 ); sl@0: pCur->eState = CURSOR_VALID; sl@0: rc = moveToChild(pCur, subpage); sl@0: }else{ sl@0: pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Move the cursor down to the left-most leaf entry beneath the sl@0: ** entry to which it is currently pointing. sl@0: ** sl@0: ** The left-most leaf is the one with the smallest key - the first sl@0: ** in ascending order. sl@0: */ sl@0: static int moveToLeftmost(BtCursor *pCur){ sl@0: Pgno pgno; sl@0: int rc = SQLITE_OK; sl@0: MemPage *pPage; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( pCur->eState==CURSOR_VALID ); sl@0: while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ sl@0: assert( pCur->aiIdx[pCur->iPage]nCell ); sl@0: pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage])); sl@0: rc = moveToChild(pCur, pgno); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Move the cursor down to the right-most leaf entry beneath the sl@0: ** page to which it is currently pointing. Notice the difference sl@0: ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() sl@0: ** finds the left-most entry beneath the *entry* whereas moveToRightmost() sl@0: ** finds the right-most entry beneath the *page*. sl@0: ** sl@0: ** The right-most entry is the one with the largest key - the last sl@0: ** key in ascending order. sl@0: */ sl@0: static int moveToRightmost(BtCursor *pCur){ sl@0: Pgno pgno; sl@0: int rc = SQLITE_OK; sl@0: MemPage *pPage; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( pCur->eState==CURSOR_VALID ); sl@0: while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ sl@0: pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); sl@0: pCur->aiIdx[pCur->iPage] = pPage->nCell; sl@0: rc = moveToChild(pCur, pgno); sl@0: } sl@0: if( rc==SQLITE_OK ){ sl@0: pCur->aiIdx[pCur->iPage] = pPage->nCell-1; sl@0: pCur->info.nSize = 0; sl@0: pCur->validNKey = 0; sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* Move the cursor to the first entry in the table. Return SQLITE_OK sl@0: ** on success. Set *pRes to 0 if the cursor actually points to something sl@0: ** or set *pRes to 1 if the table is empty. sl@0: */ sl@0: int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ sl@0: int rc; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); sl@0: rc = moveToRoot(pCur); sl@0: if( rc==SQLITE_OK ){ sl@0: if( pCur->eState==CURSOR_INVALID ){ sl@0: assert( pCur->apPage[pCur->iPage]->nCell==0 ); sl@0: *pRes = 1; sl@0: rc = SQLITE_OK; sl@0: }else{ sl@0: assert( pCur->apPage[pCur->iPage]->nCell>0 ); sl@0: *pRes = 0; sl@0: rc = moveToLeftmost(pCur); sl@0: } sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* Move the cursor to the last entry in the table. Return SQLITE_OK sl@0: ** on success. Set *pRes to 0 if the cursor actually points to something sl@0: ** or set *pRes to 1 if the table is empty. sl@0: */ sl@0: int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ sl@0: int rc; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); sl@0: rc = moveToRoot(pCur); sl@0: if( rc==SQLITE_OK ){ sl@0: if( CURSOR_INVALID==pCur->eState ){ sl@0: assert( pCur->apPage[pCur->iPage]->nCell==0 ); sl@0: *pRes = 1; sl@0: }else{ sl@0: assert( pCur->eState==CURSOR_VALID ); sl@0: *pRes = 0; sl@0: rc = moveToRightmost(pCur); sl@0: getCellInfo(pCur); sl@0: pCur->atLast = rc==SQLITE_OK; sl@0: } sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* Move the cursor so that it points to an entry near the key sl@0: ** specified by pIdxKey or intKey. Return a success code. sl@0: ** sl@0: ** For INTKEY tables, the intKey parameter is used. pIdxKey sl@0: ** must be NULL. For index tables, pIdxKey is used and intKey sl@0: ** is ignored. sl@0: ** sl@0: ** If an exact match is not found, then the cursor is always sl@0: ** left pointing at a leaf page which would hold the entry if it sl@0: ** were present. The cursor might point to an entry that comes sl@0: ** before or after the key. sl@0: ** sl@0: ** The result of comparing the key with the entry to which the sl@0: ** cursor is written to *pRes if pRes!=NULL. The meaning of sl@0: ** this value is as follows: sl@0: ** sl@0: ** *pRes<0 The cursor is left pointing at an entry that sl@0: ** is smaller than pKey or if the table is empty sl@0: ** and the cursor is therefore left point to nothing. sl@0: ** sl@0: ** *pRes==0 The cursor is left pointing at an entry that sl@0: ** exactly matches pKey. sl@0: ** sl@0: ** *pRes>0 The cursor is left pointing at an entry that sl@0: ** is larger than pKey. sl@0: ** sl@0: */ sl@0: int sqlite3BtreeMovetoUnpacked( sl@0: BtCursor *pCur, /* The cursor to be moved */ sl@0: UnpackedRecord *pIdxKey, /* Unpacked index key */ sl@0: i64 intKey, /* The table key */ sl@0: int biasRight, /* If true, bias the search to the high end */ sl@0: int *pRes /* Write search results here */ sl@0: ){ sl@0: int rc; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); sl@0: sl@0: /* If the cursor is already positioned at the point we are trying sl@0: ** to move to, then just return without doing any work */ sl@0: if( pCur->eState==CURSOR_VALID && pCur->validNKey sl@0: && pCur->apPage[0]->intKey sl@0: ){ sl@0: if( pCur->info.nKey==intKey ){ sl@0: *pRes = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: if( pCur->atLast && pCur->info.nKeyapPage[pCur->iPage] ); sl@0: assert( pCur->apPage[pCur->iPage]->isInit ); sl@0: if( pCur->eState==CURSOR_INVALID ){ sl@0: *pRes = -1; sl@0: assert( pCur->apPage[pCur->iPage]->nCell==0 ); sl@0: return SQLITE_OK; sl@0: } sl@0: assert( pCur->apPage[0]->intKey || pIdxKey ); sl@0: for(;;){ sl@0: int lwr, upr; sl@0: Pgno chldPg; sl@0: MemPage *pPage = pCur->apPage[pCur->iPage]; sl@0: int c = -1; /* pRes return if table is empty must be -1 */ sl@0: lwr = 0; sl@0: upr = pPage->nCell-1; sl@0: if( !pPage->intKey && pIdxKey==0 ){ sl@0: rc = SQLITE_CORRUPT_BKPT; sl@0: goto moveto_finish; sl@0: } sl@0: if( biasRight ){ sl@0: pCur->aiIdx[pCur->iPage] = upr; sl@0: }else{ sl@0: pCur->aiIdx[pCur->iPage] = (upr+lwr)/2; sl@0: } sl@0: if( lwr<=upr ) for(;;){ sl@0: void *pCellKey; sl@0: i64 nCellKey; sl@0: int idx = pCur->aiIdx[pCur->iPage]; sl@0: pCur->info.nSize = 0; sl@0: pCur->validNKey = 1; sl@0: if( pPage->intKey ){ sl@0: u8 *pCell; sl@0: pCell = findCell(pPage, idx) + pPage->childPtrSize; sl@0: if( pPage->hasData ){ sl@0: u32 dummy; sl@0: pCell += getVarint32(pCell, dummy); sl@0: } sl@0: getVarint(pCell, (u64*)&nCellKey); sl@0: if( nCellKey==intKey ){ sl@0: c = 0; sl@0: }else if( nCellKeyintKey ); sl@0: c = +1; sl@0: } sl@0: }else{ sl@0: int available; sl@0: pCellKey = (void *)fetchPayload(pCur, &available, 0); sl@0: nCellKey = pCur->info.nKey; sl@0: if( available>=nCellKey ){ sl@0: c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pIdxKey); sl@0: }else{ sl@0: pCellKey = sqlite3Malloc( nCellKey ); sl@0: if( pCellKey==0 ){ sl@0: rc = SQLITE_NOMEM; sl@0: goto moveto_finish; sl@0: } sl@0: rc = sqlite3BtreeKey(pCur, 0, nCellKey, (void *)pCellKey); sl@0: c = sqlite3VdbeRecordCompare(nCellKey, pCellKey, pIdxKey); sl@0: sqlite3_free(pCellKey); sl@0: if( rc ) goto moveto_finish; sl@0: } sl@0: } sl@0: if( c==0 ){ sl@0: pCur->info.nKey = nCellKey; sl@0: if( pPage->intKey && !pPage->leaf ){ sl@0: lwr = idx; sl@0: upr = lwr - 1; sl@0: break; sl@0: }else{ sl@0: if( pRes ) *pRes = 0; sl@0: rc = SQLITE_OK; sl@0: goto moveto_finish; sl@0: } sl@0: } sl@0: if( c<0 ){ sl@0: lwr = idx+1; sl@0: }else{ sl@0: upr = idx-1; sl@0: } sl@0: if( lwr>upr ){ sl@0: pCur->info.nKey = nCellKey; sl@0: break; sl@0: } sl@0: pCur->aiIdx[pCur->iPage] = (lwr+upr)/2; sl@0: } sl@0: assert( lwr==upr+1 ); sl@0: assert( pPage->isInit ); sl@0: if( pPage->leaf ){ sl@0: chldPg = 0; sl@0: }else if( lwr>=pPage->nCell ){ sl@0: chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); sl@0: }else{ sl@0: chldPg = get4byte(findCell(pPage, lwr)); sl@0: } sl@0: if( chldPg==0 ){ sl@0: assert( pCur->aiIdx[pCur->iPage]apPage[pCur->iPage]->nCell ); sl@0: if( pRes ) *pRes = c; sl@0: rc = SQLITE_OK; sl@0: goto moveto_finish; sl@0: } sl@0: pCur->aiIdx[pCur->iPage] = lwr; sl@0: pCur->info.nSize = 0; sl@0: pCur->validNKey = 0; sl@0: rc = moveToChild(pCur, chldPg); sl@0: if( rc ) goto moveto_finish; sl@0: } sl@0: moveto_finish: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** In this version of BtreeMoveto, pKey is a packed index record sl@0: ** such as is generated by the OP_MakeRecord opcode. Unpack the sl@0: ** record and then call BtreeMovetoUnpacked() to do the work. sl@0: */ sl@0: int sqlite3BtreeMoveto( sl@0: BtCursor *pCur, /* Cursor open on the btree to be searched */ sl@0: const void *pKey, /* Packed key if the btree is an index */ sl@0: i64 nKey, /* Integer key for tables. Size of pKey for indices */ sl@0: int bias, /* Bias search to the high end */ sl@0: int *pRes /* Write search results here */ sl@0: ){ sl@0: int rc; /* Status code */ sl@0: UnpackedRecord *pIdxKey; /* Unpacked index key */ sl@0: UnpackedRecord aSpace[16]; /* Temp space for pIdxKey - to avoid a malloc */ sl@0: sl@0: if( pKey ){ sl@0: pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, nKey, pKey, sl@0: aSpace, sizeof(aSpace)); sl@0: if( pIdxKey==0 ) return SQLITE_NOMEM; sl@0: }else{ sl@0: pIdxKey = 0; sl@0: } sl@0: rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); sl@0: if( pKey ){ sl@0: sqlite3VdbeDeleteUnpackedRecord(pIdxKey); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Return TRUE if the cursor is not pointing at an entry of the table. sl@0: ** sl@0: ** TRUE will be returned after a call to sqlite3BtreeNext() moves sl@0: ** past the last entry in the table or sqlite3BtreePrev() moves past sl@0: ** the first entry. TRUE is also returned if the table is empty. sl@0: */ sl@0: int sqlite3BtreeEof(BtCursor *pCur){ sl@0: /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries sl@0: ** have been deleted? This API will need to change to return an error code sl@0: ** as well as the boolean result value. sl@0: */ sl@0: return (CURSOR_VALID!=pCur->eState); sl@0: } sl@0: sl@0: /* sl@0: ** Return the database connection handle for a cursor. sl@0: */ sl@0: sqlite3 *sqlite3BtreeCursorDb(const BtCursor *pCur){ sl@0: assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); sl@0: return pCur->pBtree->db; sl@0: } sl@0: sl@0: /* sl@0: ** Advance the cursor to the next entry in the database. If sl@0: ** successful then set *pRes=0. If the cursor sl@0: ** was already pointing to the last entry in the database before sl@0: ** this routine was called, then set *pRes=1. sl@0: */ sl@0: int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ sl@0: int rc; sl@0: int idx; sl@0: MemPage *pPage; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: rc = restoreCursorPosition(pCur); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: assert( pRes!=0 ); sl@0: if( CURSOR_INVALID==pCur->eState ){ sl@0: *pRes = 1; sl@0: return SQLITE_OK; sl@0: } sl@0: if( pCur->skip>0 ){ sl@0: pCur->skip = 0; sl@0: *pRes = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: pCur->skip = 0; sl@0: sl@0: pPage = pCur->apPage[pCur->iPage]; sl@0: idx = ++pCur->aiIdx[pCur->iPage]; sl@0: assert( pPage->isInit ); sl@0: assert( idx<=pPage->nCell ); sl@0: sl@0: pCur->info.nSize = 0; sl@0: pCur->validNKey = 0; sl@0: if( idx>=pPage->nCell ){ sl@0: if( !pPage->leaf ){ sl@0: rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); sl@0: if( rc ) return rc; sl@0: rc = moveToLeftmost(pCur); sl@0: *pRes = 0; sl@0: return rc; sl@0: } sl@0: do{ sl@0: if( pCur->iPage==0 ){ sl@0: *pRes = 1; sl@0: pCur->eState = CURSOR_INVALID; sl@0: return SQLITE_OK; sl@0: } sl@0: sqlite3BtreeMoveToParent(pCur); sl@0: pPage = pCur->apPage[pCur->iPage]; sl@0: }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); sl@0: *pRes = 0; sl@0: if( pPage->intKey ){ sl@0: rc = sqlite3BtreeNext(pCur, pRes); sl@0: }else{ sl@0: rc = SQLITE_OK; sl@0: } sl@0: return rc; sl@0: } sl@0: *pRes = 0; sl@0: if( pPage->leaf ){ sl@0: return SQLITE_OK; sl@0: } sl@0: rc = moveToLeftmost(pCur); sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Step the cursor to the back to the previous entry in the database. If sl@0: ** successful then set *pRes=0. If the cursor sl@0: ** was already pointing to the first entry in the database before sl@0: ** this routine was called, then set *pRes=1. sl@0: */ sl@0: int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ sl@0: int rc; sl@0: MemPage *pPage; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: rc = restoreCursorPosition(pCur); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: pCur->atLast = 0; sl@0: if( CURSOR_INVALID==pCur->eState ){ sl@0: *pRes = 1; sl@0: return SQLITE_OK; sl@0: } sl@0: if( pCur->skip<0 ){ sl@0: pCur->skip = 0; sl@0: *pRes = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: pCur->skip = 0; sl@0: sl@0: pPage = pCur->apPage[pCur->iPage]; sl@0: assert( pPage->isInit ); sl@0: if( !pPage->leaf ){ sl@0: int idx = pCur->aiIdx[pCur->iPage]; sl@0: rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); sl@0: if( rc ){ sl@0: return rc; sl@0: } sl@0: rc = moveToRightmost(pCur); sl@0: }else{ sl@0: while( pCur->aiIdx[pCur->iPage]==0 ){ sl@0: if( pCur->iPage==0 ){ sl@0: pCur->eState = CURSOR_INVALID; sl@0: *pRes = 1; sl@0: return SQLITE_OK; sl@0: } sl@0: sqlite3BtreeMoveToParent(pCur); sl@0: } sl@0: pCur->info.nSize = 0; sl@0: pCur->validNKey = 0; sl@0: sl@0: pCur->aiIdx[pCur->iPage]--; sl@0: pPage = pCur->apPage[pCur->iPage]; sl@0: if( pPage->intKey && !pPage->leaf ){ sl@0: rc = sqlite3BtreePrevious(pCur, pRes); sl@0: }else{ sl@0: rc = SQLITE_OK; sl@0: } sl@0: } sl@0: *pRes = 0; sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Allocate a new page from the database file. sl@0: ** sl@0: ** The new page is marked as dirty. (In other words, sqlite3PagerWrite() sl@0: ** has already been called on the new page.) The new page has also sl@0: ** been referenced and the calling routine is responsible for calling sl@0: ** sqlite3PagerUnref() on the new page when it is done. sl@0: ** sl@0: ** SQLITE_OK is returned on success. Any other return value indicates sl@0: ** an error. *ppPage and *pPgno are undefined in the event of an error. sl@0: ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned. sl@0: ** sl@0: ** If the "nearby" parameter is not 0, then a (feeble) effort is made to sl@0: ** locate a page close to the page number "nearby". This can be used in an sl@0: ** attempt to keep related pages close to each other in the database file, sl@0: ** which in turn can make database access faster. sl@0: ** sl@0: ** If the "exact" parameter is not 0, and the page-number nearby exists sl@0: ** anywhere on the free-list, then it is guarenteed to be returned. This sl@0: ** is only used by auto-vacuum databases when allocating a new table. sl@0: */ sl@0: static int allocateBtreePage( sl@0: BtShared *pBt, sl@0: MemPage **ppPage, sl@0: Pgno *pPgno, sl@0: Pgno nearby, sl@0: u8 exact sl@0: ){ sl@0: MemPage *pPage1; sl@0: int rc; sl@0: int n; /* Number of pages on the freelist */ sl@0: int k; /* Number of leaves on the trunk of the freelist */ sl@0: MemPage *pTrunk = 0; sl@0: MemPage *pPrevTrunk = 0; sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: pPage1 = pBt->pPage1; sl@0: n = get4byte(&pPage1->aData[36]); sl@0: if( n>0 ){ sl@0: /* There are pages on the freelist. Reuse one of those pages. */ sl@0: Pgno iTrunk; sl@0: u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ sl@0: sl@0: /* If the 'exact' parameter was true and a query of the pointer-map sl@0: ** shows that the page 'nearby' is somewhere on the free-list, then sl@0: ** the entire-list will be searched for that page. sl@0: */ sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( exact && nearby<=pagerPagecount(pBt->pPager) ){ sl@0: u8 eType; sl@0: assert( nearby>0 ); sl@0: assert( pBt->autoVacuum ); sl@0: rc = ptrmapGet(pBt, nearby, &eType, 0); sl@0: if( rc ) return rc; sl@0: if( eType==PTRMAP_FREEPAGE ){ sl@0: searchList = 1; sl@0: } sl@0: *pPgno = nearby; sl@0: } sl@0: #endif sl@0: sl@0: /* Decrement the free-list count by 1. Set iTrunk to the index of the sl@0: ** first free-list trunk page. iPrevTrunk is initially 1. sl@0: */ sl@0: rc = sqlite3PagerWrite(pPage1->pDbPage); sl@0: if( rc ) return rc; sl@0: put4byte(&pPage1->aData[36], n-1); sl@0: sl@0: /* The code within this loop is run only once if the 'searchList' variable sl@0: ** is not true. Otherwise, it runs once for each trunk-page on the sl@0: ** free-list until the page 'nearby' is located. sl@0: */ sl@0: do { sl@0: pPrevTrunk = pTrunk; sl@0: if( pPrevTrunk ){ sl@0: iTrunk = get4byte(&pPrevTrunk->aData[0]); sl@0: }else{ sl@0: iTrunk = get4byte(&pPage1->aData[32]); sl@0: } sl@0: rc = sqlite3BtreeGetPage(pBt, iTrunk, &pTrunk, 0); sl@0: if( rc ){ sl@0: pTrunk = 0; sl@0: goto end_allocate_page; sl@0: } sl@0: sl@0: k = get4byte(&pTrunk->aData[4]); sl@0: if( k==0 && !searchList ){ sl@0: /* The trunk has no leaves and the list is not being searched. sl@0: ** So extract the trunk page itself and use it as the newly sl@0: ** allocated page */ sl@0: assert( pPrevTrunk==0 ); sl@0: rc = sqlite3PagerWrite(pTrunk->pDbPage); sl@0: if( rc ){ sl@0: goto end_allocate_page; sl@0: } sl@0: *pPgno = iTrunk; sl@0: memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); sl@0: *ppPage = pTrunk; sl@0: pTrunk = 0; sl@0: TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); sl@0: }else if( k>pBt->usableSize/4 - 2 ){ sl@0: /* Value of k is out of range. Database corruption */ sl@0: rc = SQLITE_CORRUPT_BKPT; sl@0: goto end_allocate_page; sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: }else if( searchList && nearby==iTrunk ){ sl@0: /* The list is being searched and this trunk page is the page sl@0: ** to allocate, regardless of whether it has leaves. sl@0: */ sl@0: assert( *pPgno==iTrunk ); sl@0: *ppPage = pTrunk; sl@0: searchList = 0; sl@0: rc = sqlite3PagerWrite(pTrunk->pDbPage); sl@0: if( rc ){ sl@0: goto end_allocate_page; sl@0: } sl@0: if( k==0 ){ sl@0: if( !pPrevTrunk ){ sl@0: memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); sl@0: }else{ sl@0: memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); sl@0: } sl@0: }else{ sl@0: /* The trunk page is required by the caller but it contains sl@0: ** pointers to free-list leaves. The first leaf becomes a trunk sl@0: ** page in this case. sl@0: */ sl@0: MemPage *pNewTrunk; sl@0: Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); sl@0: rc = sqlite3BtreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0); sl@0: if( rc!=SQLITE_OK ){ sl@0: goto end_allocate_page; sl@0: } sl@0: rc = sqlite3PagerWrite(pNewTrunk->pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: releasePage(pNewTrunk); sl@0: goto end_allocate_page; sl@0: } sl@0: memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); sl@0: put4byte(&pNewTrunk->aData[4], k-1); sl@0: memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); sl@0: releasePage(pNewTrunk); sl@0: if( !pPrevTrunk ){ sl@0: put4byte(&pPage1->aData[32], iNewTrunk); sl@0: }else{ sl@0: rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); sl@0: if( rc ){ sl@0: goto end_allocate_page; sl@0: } sl@0: put4byte(&pPrevTrunk->aData[0], iNewTrunk); sl@0: } sl@0: } sl@0: pTrunk = 0; sl@0: TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); sl@0: #endif sl@0: }else{ sl@0: /* Extract a leaf from the trunk */ sl@0: int closest; sl@0: Pgno iPage; sl@0: unsigned char *aData = pTrunk->aData; sl@0: rc = sqlite3PagerWrite(pTrunk->pDbPage); sl@0: if( rc ){ sl@0: goto end_allocate_page; sl@0: } sl@0: if( nearby>0 ){ sl@0: int i, dist; sl@0: closest = 0; sl@0: dist = get4byte(&aData[8]) - nearby; sl@0: if( dist<0 ) dist = -dist; sl@0: for(i=1; ipPager); sl@0: if( *pPgno>nPage ){ sl@0: /* Free page off the end of the file */ sl@0: rc = SQLITE_CORRUPT_BKPT; sl@0: goto end_allocate_page; sl@0: } sl@0: TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" sl@0: ": %d more free pages\n", sl@0: *pPgno, closest+1, k, pTrunk->pgno, n-1)); sl@0: if( closestpDbPage); sl@0: rc = sqlite3PagerWrite((*ppPage)->pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: releasePage(*ppPage); sl@0: } sl@0: } sl@0: searchList = 0; sl@0: } sl@0: } sl@0: releasePage(pPrevTrunk); sl@0: pPrevTrunk = 0; sl@0: }while( searchList ); sl@0: }else{ sl@0: /* There are no pages on the freelist, so create a new page at the sl@0: ** end of the file */ sl@0: int nPage = pagerPagecount(pBt->pPager); sl@0: *pPgno = nPage + 1; sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( pBt->nTrunc ){ sl@0: /* An incr-vacuum has already run within this transaction. So the sl@0: ** page to allocate is not from the physical end of the file, but sl@0: ** at pBt->nTrunc. sl@0: */ sl@0: *pPgno = pBt->nTrunc+1; sl@0: if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ sl@0: (*pPgno)++; sl@0: } sl@0: } sl@0: if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, *pPgno) ){ sl@0: /* If *pPgno refers to a pointer-map page, allocate two new pages sl@0: ** at the end of the file instead of one. The first allocated page sl@0: ** becomes a new pointer-map page, the second is used by the caller. sl@0: */ sl@0: TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", *pPgno)); sl@0: assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); sl@0: (*pPgno)++; sl@0: if( *pPgno==PENDING_BYTE_PAGE(pBt) ){ (*pPgno)++; } sl@0: } sl@0: if( pBt->nTrunc ){ sl@0: pBt->nTrunc = *pPgno; sl@0: } sl@0: #endif sl@0: sl@0: assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); sl@0: rc = sqlite3BtreeGetPage(pBt, *pPgno, ppPage, 0); sl@0: if( rc ) return rc; sl@0: rc = sqlite3PagerWrite((*ppPage)->pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: releasePage(*ppPage); sl@0: } sl@0: TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); sl@0: } sl@0: sl@0: assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); sl@0: sl@0: end_allocate_page: sl@0: releasePage(pTrunk); sl@0: releasePage(pPrevTrunk); sl@0: if( rc==SQLITE_OK ){ sl@0: if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ sl@0: releasePage(*ppPage); sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: (*ppPage)->isInit = 0; sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Add a page of the database file to the freelist. sl@0: ** sl@0: ** sqlite3PagerUnref() is NOT called for pPage. sl@0: */ sl@0: static int freePage(MemPage *pPage){ sl@0: BtShared *pBt = pPage->pBt; sl@0: MemPage *pPage1 = pBt->pPage1; sl@0: int rc, n, k; sl@0: sl@0: /* Prepare the page for freeing */ sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: assert( pPage->pgno>1 ); sl@0: pPage->isInit = 0; sl@0: sl@0: /* Increment the free page count on pPage1 */ sl@0: rc = sqlite3PagerWrite(pPage1->pDbPage); sl@0: if( rc ) return rc; sl@0: n = get4byte(&pPage1->aData[36]); sl@0: put4byte(&pPage1->aData[36], n+1); sl@0: sl@0: #ifdef SQLITE_SECURE_DELETE sl@0: /* If the SQLITE_SECURE_DELETE compile-time option is enabled, then sl@0: ** always fully overwrite deleted information with zeros. sl@0: */ sl@0: rc = sqlite3PagerWrite(pPage->pDbPage); sl@0: if( rc ) return rc; sl@0: memset(pPage->aData, 0, pPage->pBt->pageSize); sl@0: #endif sl@0: sl@0: /* If the database supports auto-vacuum, write an entry in the pointer-map sl@0: ** to indicate that the page is free. sl@0: */ sl@0: if( ISAUTOVACUUM ){ sl@0: rc = ptrmapPut(pBt, pPage->pgno, PTRMAP_FREEPAGE, 0); sl@0: if( rc ) return rc; sl@0: } sl@0: sl@0: if( n==0 ){ sl@0: /* This is the first free page */ sl@0: rc = sqlite3PagerWrite(pPage->pDbPage); sl@0: if( rc ) return rc; sl@0: memset(pPage->aData, 0, 8); sl@0: put4byte(&pPage1->aData[32], pPage->pgno); sl@0: TRACE(("FREE-PAGE: %d first\n", pPage->pgno)); sl@0: }else{ sl@0: /* Other free pages already exist. Retrive the first trunk page sl@0: ** of the freelist and find out how many leaves it has. */ sl@0: MemPage *pTrunk; sl@0: rc = sqlite3BtreeGetPage(pBt, get4byte(&pPage1->aData[32]), &pTrunk, 0); sl@0: if( rc ) return rc; sl@0: k = get4byte(&pTrunk->aData[4]); sl@0: if( k>=pBt->usableSize/4 - 8 ){ sl@0: /* The trunk is full. Turn the page being freed into a new sl@0: ** trunk page with no leaves. sl@0: ** sl@0: ** Note that the trunk page is not really full until it contains sl@0: ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have sl@0: ** coded. But due to a coding error in versions of SQLite prior to sl@0: ** 3.6.0, databases with freelist trunk pages holding more than sl@0: ** usableSize/4 - 8 entries will be reported as corrupt. In order sl@0: ** to maintain backwards compatibility with older versions of SQLite, sl@0: ** we will contain to restrict the number of entries to usableSize/4 - 8 sl@0: ** for now. At some point in the future (once everyone has upgraded sl@0: ** to 3.6.0 or later) we should consider fixing the conditional above sl@0: ** to read "usableSize/4-2" instead of "usableSize/4-8". sl@0: */ sl@0: rc = sqlite3PagerWrite(pPage->pDbPage); sl@0: if( rc==SQLITE_OK ){ sl@0: put4byte(pPage->aData, pTrunk->pgno); sl@0: put4byte(&pPage->aData[4], 0); sl@0: put4byte(&pPage1->aData[32], pPage->pgno); sl@0: TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", sl@0: pPage->pgno, pTrunk->pgno)); sl@0: } sl@0: }else if( k<0 ){ sl@0: rc = SQLITE_CORRUPT; sl@0: }else{ sl@0: /* Add the newly freed page as a leaf on the current trunk */ sl@0: rc = sqlite3PagerWrite(pTrunk->pDbPage); sl@0: if( rc==SQLITE_OK ){ sl@0: put4byte(&pTrunk->aData[4], k+1); sl@0: put4byte(&pTrunk->aData[8+k*4], pPage->pgno); sl@0: #ifndef SQLITE_SECURE_DELETE sl@0: rc = sqlite3PagerDontWrite(pPage->pDbPage); sl@0: #endif sl@0: } sl@0: TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); sl@0: } sl@0: releasePage(pTrunk); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Free any overflow pages associated with the given Cell. sl@0: */ sl@0: static int clearCell(MemPage *pPage, unsigned char *pCell){ sl@0: BtShared *pBt = pPage->pBt; sl@0: CellInfo info; sl@0: Pgno ovflPgno; sl@0: int rc; sl@0: int nOvfl; sl@0: int ovflPageSize; sl@0: sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: sqlite3BtreeParseCellPtr(pPage, pCell, &info); sl@0: if( info.iOverflow==0 ){ sl@0: return SQLITE_OK; /* No overflow pages. Return without doing anything */ sl@0: } sl@0: ovflPgno = get4byte(&pCell[info.iOverflow]); sl@0: ovflPageSize = pBt->usableSize - 4; sl@0: nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; sl@0: assert( ovflPgno==0 || nOvfl>0 ); sl@0: while( nOvfl-- ){ sl@0: MemPage *pOvfl; sl@0: if( ovflPgno==0 || ovflPgno>pagerPagecount(pBt->pPager) ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: sl@0: rc = getOverflowPage(pBt, ovflPgno, &pOvfl, (nOvfl==0)?0:&ovflPgno); sl@0: if( rc ) return rc; sl@0: rc = freePage(pOvfl); sl@0: sqlite3PagerUnref(pOvfl->pDbPage); sl@0: if( rc ) return rc; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Create the byte sequence used to represent a cell on page pPage sl@0: ** and write that byte sequence into pCell[]. Overflow pages are sl@0: ** allocated and filled in as necessary. The calling procedure sl@0: ** is responsible for making sure sufficient space has been allocated sl@0: ** for pCell[]. sl@0: ** sl@0: ** Note that pCell does not necessary need to point to the pPage->aData sl@0: ** area. pCell might point to some temporary storage. The cell will sl@0: ** be constructed in this temporary area then copied into pPage->aData sl@0: ** later. sl@0: */ sl@0: static int fillInCell( sl@0: MemPage *pPage, /* The page that contains the cell */ sl@0: unsigned char *pCell, /* Complete text of the cell */ sl@0: const void *pKey, i64 nKey, /* The key */ sl@0: const void *pData,int nData, /* The data */ sl@0: int nZero, /* Extra zero bytes to append to pData */ sl@0: int *pnSize /* Write cell size here */ sl@0: ){ sl@0: int nPayload; sl@0: const u8 *pSrc; sl@0: int nSrc, n, rc; sl@0: int spaceLeft; sl@0: MemPage *pOvfl = 0; sl@0: MemPage *pToRelease = 0; sl@0: unsigned char *pPrior; sl@0: unsigned char *pPayload; sl@0: BtShared *pBt = pPage->pBt; sl@0: Pgno pgnoOvfl = 0; sl@0: int nHeader; sl@0: CellInfo info; sl@0: sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: sl@0: /* Fill in the header. */ sl@0: nHeader = 0; sl@0: if( !pPage->leaf ){ sl@0: nHeader += 4; sl@0: } sl@0: if( pPage->hasData ){ sl@0: nHeader += putVarint(&pCell[nHeader], nData+nZero); sl@0: }else{ sl@0: nData = nZero = 0; sl@0: } sl@0: nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); sl@0: sqlite3BtreeParseCellPtr(pPage, pCell, &info); sl@0: assert( info.nHeader==nHeader ); sl@0: assert( info.nKey==nKey ); sl@0: assert( info.nData==nData+nZero ); sl@0: sl@0: /* Fill in the payload */ sl@0: nPayload = nData + nZero; sl@0: if( pPage->intKey ){ sl@0: pSrc = pData; sl@0: nSrc = nData; sl@0: nData = 0; sl@0: }else{ sl@0: nPayload += nKey; sl@0: pSrc = pKey; sl@0: nSrc = nKey; sl@0: } sl@0: *pnSize = info.nSize; sl@0: spaceLeft = info.nLocal; sl@0: pPayload = &pCell[nHeader]; sl@0: pPrior = &pCell[info.iOverflow]; sl@0: sl@0: while( nPayload>0 ){ sl@0: if( spaceLeft==0 ){ sl@0: int isExact = 0; sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ sl@0: if( pBt->autoVacuum ){ sl@0: do{ sl@0: pgnoOvfl++; sl@0: } while( sl@0: PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) sl@0: ); sl@0: if( pgnoOvfl>1 ){ sl@0: /* isExact = 1; */ sl@0: } sl@0: } sl@0: #endif sl@0: rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, isExact); sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: /* If the database supports auto-vacuum, and the second or subsequent sl@0: ** overflow page is being allocated, add an entry to the pointer-map sl@0: ** for that page now. sl@0: ** sl@0: ** If this is the first overflow page, then write a partial entry sl@0: ** to the pointer-map. If we write nothing to this pointer-map slot, sl@0: ** then the optimistic overflow chain processing in clearCell() sl@0: ** may misinterpret the uninitialised values and delete the sl@0: ** wrong pages from the database. sl@0: */ sl@0: if( pBt->autoVacuum && rc==SQLITE_OK ){ sl@0: u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); sl@0: rc = ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap); sl@0: if( rc ){ sl@0: releasePage(pOvfl); sl@0: } sl@0: } sl@0: #endif sl@0: if( rc ){ sl@0: releasePage(pToRelease); sl@0: return rc; sl@0: } sl@0: put4byte(pPrior, pgnoOvfl); sl@0: releasePage(pToRelease); sl@0: pToRelease = pOvfl; sl@0: pPrior = pOvfl->aData; sl@0: put4byte(pPrior, 0); sl@0: pPayload = &pOvfl->aData[4]; sl@0: spaceLeft = pBt->usableSize - 4; sl@0: } sl@0: n = nPayload; sl@0: if( n>spaceLeft ) n = spaceLeft; sl@0: if( nSrc>0 ){ sl@0: if( n>nSrc ) n = nSrc; sl@0: assert( pSrc ); sl@0: memcpy(pPayload, pSrc, n); sl@0: }else{ sl@0: memset(pPayload, 0, n); sl@0: } sl@0: nPayload -= n; sl@0: pPayload += n; sl@0: pSrc += n; sl@0: nSrc -= n; sl@0: spaceLeft -= n; sl@0: if( nSrc==0 ){ sl@0: nSrc = nData; sl@0: pSrc = pData; sl@0: } sl@0: } sl@0: releasePage(pToRelease); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Remove the i-th cell from pPage. This routine effects pPage only. sl@0: ** The cell content is not freed or deallocated. It is assumed that sl@0: ** the cell content has been copied someplace else. This routine just sl@0: ** removes the reference to the cell from pPage. sl@0: ** sl@0: ** "sz" must be the number of bytes in the cell. sl@0: */ sl@0: static int dropCell(MemPage *pPage, int idx, int sz){ sl@0: int i; /* Loop counter */ sl@0: int pc; /* Offset to cell content of cell being deleted */ sl@0: u8 *data; /* pPage->aData */ sl@0: u8 *ptr; /* Used to move bytes around within data[] */ sl@0: int rc; /* Return code */ sl@0: sl@0: assert( idx>=0 && idxnCell ); sl@0: assert( sz==cellSize(pPage, idx) ); sl@0: assert( sqlite3PagerIswriteable(pPage->pDbPage) ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: data = pPage->aData; sl@0: ptr = &data[pPage->cellOffset + 2*idx]; sl@0: pc = get2byte(ptr); sl@0: if( pchdrOffset+6+(pPage->leaf?0:4) sl@0: || pc+sz>pPage->pBt->usableSize sl@0: ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: rc = freeSpace(pPage, pc, sz); sl@0: if( rc ) return rc; sl@0: for(i=idx+1; inCell; i++, ptr+=2){ sl@0: ptr[0] = ptr[2]; sl@0: ptr[1] = ptr[3]; sl@0: } sl@0: pPage->nCell--; sl@0: put2byte(&data[pPage->hdrOffset+3], pPage->nCell); sl@0: pPage->nFree += 2; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Insert a new cell on pPage at cell index "i". pCell points to the sl@0: ** content of the cell. sl@0: ** sl@0: ** If the cell content will fit on the page, then put it there. If it sl@0: ** will not fit, then make a copy of the cell content into pTemp if sl@0: ** pTemp is not null. Regardless of pTemp, allocate a new entry sl@0: ** in pPage->aOvfl[] and make it point to the cell content (either sl@0: ** in pTemp or the original pCell) and also record its index. sl@0: ** Allocating a new entry in pPage->aCell[] implies that sl@0: ** pPage->nOverflow is incremented. sl@0: ** sl@0: ** If nSkip is non-zero, then do not copy the first nSkip bytes of the sl@0: ** cell. The caller will overwrite them after this function returns. If sl@0: ** nSkip is non-zero, then pCell may not point to an invalid memory location sl@0: ** (but pCell+nSkip is always valid). sl@0: */ sl@0: static int insertCell( sl@0: MemPage *pPage, /* Page into which we are copying */ sl@0: int i, /* New cell becomes the i-th cell of the page */ sl@0: u8 *pCell, /* Content of the new cell */ sl@0: int sz, /* Bytes of content in pCell */ sl@0: u8 *pTemp, /* Temp storage space for pCell, if needed */ sl@0: u8 nSkip /* Do not write the first nSkip bytes of the cell */ sl@0: ){ sl@0: int idx; /* Where to write new cell content in data[] */ sl@0: int j; /* Loop counter */ sl@0: int top; /* First byte of content for any cell in data[] */ sl@0: int end; /* First byte past the last cell pointer in data[] */ sl@0: int ins; /* Index in data[] where new cell pointer is inserted */ sl@0: int hdr; /* Offset into data[] of the page header */ sl@0: int cellOffset; /* Address of first cell pointer in data[] */ sl@0: u8 *data; /* The content of the whole page */ sl@0: u8 *ptr; /* Used for moving information around in data[] */ sl@0: sl@0: assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); sl@0: assert( sz==cellSizePtr(pPage, pCell) ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: if( pPage->nOverflow || sz+2>pPage->nFree ){ sl@0: if( pTemp ){ sl@0: memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip); sl@0: pCell = pTemp; sl@0: } sl@0: j = pPage->nOverflow++; sl@0: assert( jaOvfl)/sizeof(pPage->aOvfl[0]) ); sl@0: pPage->aOvfl[j].pCell = pCell; sl@0: pPage->aOvfl[j].idx = i; sl@0: pPage->nFree = 0; sl@0: }else{ sl@0: int rc = sqlite3PagerWrite(pPage->pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: assert( sqlite3PagerIswriteable(pPage->pDbPage) ); sl@0: data = pPage->aData; sl@0: hdr = pPage->hdrOffset; sl@0: top = get2byte(&data[hdr+5]); sl@0: cellOffset = pPage->cellOffset; sl@0: end = cellOffset + 2*pPage->nCell + 2; sl@0: ins = cellOffset + 2*i; sl@0: if( end > top - sz ){ sl@0: rc = defragmentPage(pPage); sl@0: if( rc ) return rc; sl@0: top = get2byte(&data[hdr+5]); sl@0: assert( end + sz <= top ); sl@0: } sl@0: idx = allocateSpace(pPage, sz); sl@0: assert( idx>0 ); sl@0: assert( end <= get2byte(&data[hdr+5]) ); sl@0: if( idx+sz > pPage->pBt->usableSize ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: pPage->nCell++; sl@0: pPage->nFree -= 2; sl@0: memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip); sl@0: for(j=end-2, ptr=&data[j]; j>ins; j-=2, ptr-=2){ sl@0: ptr[0] = ptr[-2]; sl@0: ptr[1] = ptr[-1]; sl@0: } sl@0: put2byte(&data[ins], idx); sl@0: put2byte(&data[hdr+3], pPage->nCell); sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( pPage->pBt->autoVacuum ){ sl@0: /* The cell may contain a pointer to an overflow page. If so, write sl@0: ** the entry for the overflow page into the pointer map. sl@0: */ sl@0: CellInfo info; sl@0: sqlite3BtreeParseCellPtr(pPage, pCell, &info); sl@0: assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload ); sl@0: if( (info.nData+(pPage->intKey?0:info.nKey))>info.nLocal ){ sl@0: Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); sl@0: rc = ptrmapPut(pPage->pBt, pgnoOvfl, PTRMAP_OVERFLOW1, pPage->pgno); sl@0: if( rc!=SQLITE_OK ) return rc; sl@0: } sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Add a list of cells to a page. The page should be initially empty. sl@0: ** The cells are guaranteed to fit on the page. sl@0: */ sl@0: static void assemblePage( sl@0: MemPage *pPage, /* The page to be assemblied */ sl@0: int nCell, /* The number of cells to add to this page */ sl@0: u8 **apCell, /* Pointers to cell bodies */ sl@0: u16 *aSize /* Sizes of the cells */ sl@0: ){ sl@0: int i; /* Loop counter */ sl@0: int totalSize; /* Total size of all cells */ sl@0: int hdr; /* Index of page header */ sl@0: int cellptr; /* Address of next cell pointer */ sl@0: int cellbody; /* Address of next cell body */ sl@0: u8 *data; /* Data for the page */ sl@0: sl@0: assert( pPage->nOverflow==0 ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: totalSize = 0; sl@0: for(i=0; inFree ); sl@0: assert( pPage->nCell==0 ); sl@0: cellptr = pPage->cellOffset; sl@0: data = pPage->aData; sl@0: hdr = pPage->hdrOffset; sl@0: put2byte(&data[hdr+3], nCell); sl@0: if( nCell ){ sl@0: cellbody = allocateSpace(pPage, totalSize); sl@0: assert( cellbody>0 ); sl@0: assert( pPage->nFree >= 2*nCell ); sl@0: pPage->nFree -= 2*nCell; sl@0: for(i=0; ipBt->usableSize ); sl@0: } sl@0: pPage->nCell = nCell; sl@0: } sl@0: sl@0: /* sl@0: ** The following parameters determine how many adjacent pages get involved sl@0: ** in a balancing operation. NN is the number of neighbors on either side sl@0: ** of the page that participate in the balancing operation. NB is the sl@0: ** total number of pages that participate, including the target page and sl@0: ** NN neighbors on either side. sl@0: ** sl@0: ** The minimum value of NN is 1 (of course). Increasing NN above 1 sl@0: ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance sl@0: ** in exchange for a larger degradation in INSERT and UPDATE performance. sl@0: ** The value of NN appears to give the best results overall. sl@0: */ sl@0: #define NN 1 /* Number of neighbors on either side of pPage */ sl@0: #define NB (NN*2+1) /* Total pages involved in the balance */ sl@0: sl@0: /* Forward reference */ sl@0: static int balance(BtCursor*, int); sl@0: sl@0: #ifndef SQLITE_OMIT_QUICKBALANCE sl@0: /* sl@0: ** This version of balance() handles the common special case where sl@0: ** a new entry is being inserted on the extreme right-end of the sl@0: ** tree, in other words, when the new entry will become the largest sl@0: ** entry in the tree. sl@0: ** sl@0: ** Instead of trying balance the 3 right-most leaf pages, just add sl@0: ** a new page to the right-hand side and put the one new entry in sl@0: ** that page. This leaves the right side of the tree somewhat sl@0: ** unbalanced. But odds are that we will be inserting new entries sl@0: ** at the end soon afterwards so the nearly empty page will quickly sl@0: ** fill up. On average. sl@0: ** sl@0: ** pPage is the leaf page which is the right-most page in the tree. sl@0: ** pParent is its parent. pPage must have a single overflow entry sl@0: ** which is also the right-most entry on the page. sl@0: */ sl@0: static int balance_quick(BtCursor *pCur){ sl@0: int rc; sl@0: MemPage *pNew = 0; sl@0: Pgno pgnoNew; sl@0: u8 *pCell; sl@0: u16 szCell; sl@0: CellInfo info; sl@0: MemPage *pPage = pCur->apPage[pCur->iPage]; sl@0: MemPage *pParent = pCur->apPage[pCur->iPage-1]; sl@0: BtShared *pBt = pPage->pBt; sl@0: int parentIdx = pParent->nCell; /* pParent new divider cell index */ sl@0: int parentSize; /* Size of new divider cell */ sl@0: u8 parentCell[64]; /* Space for the new divider cell */ sl@0: sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: sl@0: /* Allocate a new page. Insert the overflow cell from pPage sl@0: ** into it. Then remove the overflow cell from pPage. sl@0: */ sl@0: rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); sl@0: if( rc==SQLITE_OK ){ sl@0: pCell = pPage->aOvfl[0].pCell; sl@0: szCell = cellSizePtr(pPage, pCell); sl@0: zeroPage(pNew, pPage->aData[0]); sl@0: assemblePage(pNew, 1, &pCell, &szCell); sl@0: pPage->nOverflow = 0; sl@0: sl@0: /* pPage is currently the right-child of pParent. Change this sl@0: ** so that the right-child is the new page allocated above and sl@0: ** pPage is the next-to-right child. sl@0: ** sl@0: ** Ignore the return value of the call to fillInCell(). fillInCell() sl@0: ** may only return other than SQLITE_OK if it is required to allocate sl@0: ** one or more overflow pages. Since an internal table B-Tree cell sl@0: ** may never spill over onto an overflow page (it is a maximum of sl@0: ** 13 bytes in size), it is not neccessary to check the return code. sl@0: ** sl@0: ** Similarly, the insertCell() function cannot fail if the page sl@0: ** being inserted into is already writable and the cell does not sl@0: ** contain an overflow pointer. So ignore this return code too. sl@0: */ sl@0: assert( pPage->nCell>0 ); sl@0: pCell = findCell(pPage, pPage->nCell-1); sl@0: sqlite3BtreeParseCellPtr(pPage, pCell, &info); sl@0: fillInCell(pParent, parentCell, 0, info.nKey, 0, 0, 0, &parentSize); sl@0: assert( parentSize<64 ); sl@0: assert( sqlite3PagerIswriteable(pParent->pDbPage) ); sl@0: insertCell(pParent, parentIdx, parentCell, parentSize, 0, 4); sl@0: put4byte(findOverflowCell(pParent,parentIdx), pPage->pgno); sl@0: put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); sl@0: sl@0: /* If this is an auto-vacuum database, update the pointer map sl@0: ** with entries for the new page, and any pointer from the sl@0: ** cell on the page to an overflow page. sl@0: */ sl@0: if( ISAUTOVACUUM ){ sl@0: rc = ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = ptrmapPutOvfl(pNew, 0); sl@0: } sl@0: } sl@0: sl@0: /* Release the reference to the new page. */ sl@0: releasePage(pNew); sl@0: } sl@0: sl@0: /* At this point the pPage->nFree variable is not set correctly with sl@0: ** respect to the content of the page (because it was set to 0 by sl@0: ** insertCell). So call sqlite3BtreeInitPage() to make sure it is sl@0: ** correct. sl@0: ** sl@0: ** This has to be done even if an error will be returned. Normally, if sl@0: ** an error occurs during tree balancing, the contents of MemPage are sl@0: ** not important, as they will be recalculated when the page is rolled sl@0: ** back. But here, in balance_quick(), it is possible that pPage has sl@0: ** not yet been marked dirty or written into the journal file. Therefore sl@0: ** it will not be rolled back and so it is important to make sure that sl@0: ** the page data and contents of MemPage are consistent. sl@0: */ sl@0: pPage->isInit = 0; sl@0: sqlite3BtreeInitPage(pPage); sl@0: sl@0: /* If everything else succeeded, balance the parent page, in sl@0: ** case the divider cell inserted caused it to become overfull. sl@0: */ sl@0: if( rc==SQLITE_OK ){ sl@0: releasePage(pPage); sl@0: pCur->iPage--; sl@0: rc = balance(pCur, 0); sl@0: } sl@0: return rc; sl@0: } sl@0: #endif /* SQLITE_OMIT_QUICKBALANCE */ sl@0: sl@0: /* sl@0: ** This routine redistributes Cells on pPage and up to NN*2 siblings sl@0: ** of pPage so that all pages have about the same amount of free space. sl@0: ** Usually NN siblings on either side of pPage is used in the balancing, sl@0: ** though more siblings might come from one side if pPage is the first sl@0: ** or last child of its parent. If pPage has fewer than 2*NN siblings sl@0: ** (something which can only happen if pPage is the root page or a sl@0: ** child of root) then all available siblings participate in the balancing. sl@0: ** sl@0: ** The number of siblings of pPage might be increased or decreased by one or sl@0: ** two in an effort to keep pages nearly full but not over full. The root page sl@0: ** is special and is allowed to be nearly empty. If pPage is sl@0: ** the root page, then the depth of the tree might be increased sl@0: ** or decreased by one, as necessary, to keep the root page from being sl@0: ** overfull or completely empty. sl@0: ** sl@0: ** Note that when this routine is called, some of the Cells on pPage sl@0: ** might not actually be stored in pPage->aData[]. This can happen sl@0: ** if the page is overfull. Part of the job of this routine is to sl@0: ** make sure all Cells for pPage once again fit in pPage->aData[]. sl@0: ** sl@0: ** In the course of balancing the siblings of pPage, the parent of pPage sl@0: ** might become overfull or underfull. If that happens, then this routine sl@0: ** is called recursively on the parent. sl@0: ** sl@0: ** If this routine fails for any reason, it might leave the database sl@0: ** in a corrupted state. So if this routine fails, the database should sl@0: ** be rolled back. sl@0: */ sl@0: static int balance_nonroot(BtCursor *pCur){ sl@0: MemPage *pPage; /* The over or underfull page to balance */ sl@0: MemPage *pParent; /* The parent of pPage */ sl@0: BtShared *pBt; /* The whole database */ sl@0: int nCell = 0; /* Number of cells in apCell[] */ sl@0: int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ sl@0: int nOld; /* Number of pages in apOld[] */ sl@0: int nNew; /* Number of pages in apNew[] */ sl@0: int nDiv; /* Number of cells in apDiv[] */ sl@0: int i, j, k; /* Loop counters */ sl@0: int idx; /* Index of pPage in pParent->aCell[] */ sl@0: int nxDiv; /* Next divider slot in pParent->aCell[] */ sl@0: int rc; /* The return code */ sl@0: int leafCorrection; /* 4 if pPage is a leaf. 0 if not */ sl@0: int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ sl@0: int usableSpace; /* Bytes in pPage beyond the header */ sl@0: int pageFlags; /* Value of pPage->aData[0] */ sl@0: int subtotal; /* Subtotal of bytes in cells on one page */ sl@0: int iSpace1 = 0; /* First unused byte of aSpace1[] */ sl@0: int iSpace2 = 0; /* First unused byte of aSpace2[] */ sl@0: int szScratch; /* Size of scratch memory requested */ sl@0: MemPage *apOld[NB]; /* pPage and up to two siblings */ sl@0: Pgno pgnoOld[NB]; /* Page numbers for each page in apOld[] */ sl@0: MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ sl@0: MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ sl@0: Pgno pgnoNew[NB+2]; /* Page numbers for each page in apNew[] */ sl@0: u8 *apDiv[NB]; /* Divider cells in pParent */ sl@0: int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ sl@0: int szNew[NB+2]; /* Combined size of cells place on i-th page */ sl@0: u8 **apCell = 0; /* All cells begin balanced */ sl@0: u16 *szCell; /* Local size of all cells in apCell[] */ sl@0: u8 *aCopy[NB]; /* Space for holding data of apCopy[] */ sl@0: u8 *aSpace1; /* Space for copies of dividers cells before balance */ sl@0: u8 *aSpace2 = 0; /* Space for overflow dividers cells after balance */ sl@0: u8 *aFrom = 0; sl@0: sl@0: pPage = pCur->apPage[pCur->iPage]; sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: VVA_ONLY( pCur->pagesShuffled = 1 ); sl@0: sl@0: /* sl@0: ** Find the parent page. sl@0: */ sl@0: assert( pCur->iPage>0 ); sl@0: assert( pPage->isInit ); sl@0: assert( sqlite3PagerIswriteable(pPage->pDbPage) || pPage->nOverflow==1 ); sl@0: pBt = pPage->pBt; sl@0: pParent = pCur->apPage[pCur->iPage-1]; sl@0: assert( pParent ); sl@0: if( SQLITE_OK!=(rc = sqlite3PagerWrite(pParent->pDbPage)) ){ sl@0: return rc; sl@0: } sl@0: sl@0: TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); sl@0: sl@0: #ifndef SQLITE_OMIT_QUICKBALANCE sl@0: /* sl@0: ** A special case: If a new entry has just been inserted into a sl@0: ** table (that is, a btree with integer keys and all data at the leaves) sl@0: ** and the new entry is the right-most entry in the tree (it has the sl@0: ** largest key) then use the special balance_quick() routine for sl@0: ** balancing. balance_quick() is much faster and results in a tighter sl@0: ** packing of data in the common case. sl@0: */ sl@0: if( pPage->leaf && sl@0: pPage->intKey && sl@0: pPage->nOverflow==1 && sl@0: pPage->aOvfl[0].idx==pPage->nCell && sl@0: pParent->pgno!=1 && sl@0: get4byte(&pParent->aData[pParent->hdrOffset+8])==pPage->pgno sl@0: ){ sl@0: assert( pPage->intKey ); sl@0: /* sl@0: ** TODO: Check the siblings to the left of pPage. It may be that sl@0: ** they are not full and no new page is required. sl@0: */ sl@0: return balance_quick(pCur); sl@0: } sl@0: #endif sl@0: sl@0: if( SQLITE_OK!=(rc = sqlite3PagerWrite(pPage->pDbPage)) ){ sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Find the cell in the parent page whose left child points back sl@0: ** to pPage. The "idx" variable is the index of that cell. If pPage sl@0: ** is the rightmost child of pParent then set idx to pParent->nCell sl@0: */ sl@0: idx = pCur->aiIdx[pCur->iPage-1]; sl@0: assertParentIndex(pParent, idx, pPage->pgno); sl@0: sl@0: /* sl@0: ** Initialize variables so that it will be safe to jump sl@0: ** directly to balance_cleanup at any moment. sl@0: */ sl@0: nOld = nNew = 0; sl@0: sl@0: /* sl@0: ** Find sibling pages to pPage and the cells in pParent that divide sl@0: ** the siblings. An attempt is made to find NN siblings on either sl@0: ** side of pPage. More siblings are taken from one side, however, if sl@0: ** pPage there are fewer than NN siblings on the other side. If pParent sl@0: ** has NB or fewer children then all children of pParent are taken. sl@0: */ sl@0: nxDiv = idx - NN; sl@0: if( nxDiv + NB > pParent->nCell ){ sl@0: nxDiv = pParent->nCell - NB + 1; sl@0: } sl@0: if( nxDiv<0 ){ sl@0: nxDiv = 0; sl@0: } sl@0: nDiv = 0; sl@0: for(i=0, k=nxDiv; inCell ){ sl@0: apDiv[i] = findCell(pParent, k); sl@0: nDiv++; sl@0: assert( !pParent->leaf ); sl@0: pgnoOld[i] = get4byte(apDiv[i]); sl@0: }else if( k==pParent->nCell ){ sl@0: pgnoOld[i] = get4byte(&pParent->aData[pParent->hdrOffset+8]); sl@0: }else{ sl@0: break; sl@0: } sl@0: rc = getAndInitPage(pBt, pgnoOld[i], &apOld[i]); sl@0: if( rc ) goto balance_cleanup; sl@0: /* apOld[i]->idxParent = k; */ sl@0: apCopy[i] = 0; sl@0: assert( i==nOld ); sl@0: nOld++; sl@0: nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; sl@0: } sl@0: sl@0: /* Make nMaxCells a multiple of 4 in order to preserve 8-byte sl@0: ** alignment */ sl@0: nMaxCells = (nMaxCells + 3)&~3; sl@0: sl@0: /* sl@0: ** Allocate space for memory structures sl@0: */ sl@0: szScratch = sl@0: nMaxCells*sizeof(u8*) /* apCell */ sl@0: + nMaxCells*sizeof(u16) /* szCell */ sl@0: + (ROUND8(sizeof(MemPage))+pBt->pageSize)*NB /* aCopy */ sl@0: + pBt->pageSize /* aSpace1 */ sl@0: + (ISAUTOVACUUM ? nMaxCells : 0); /* aFrom */ sl@0: apCell = sqlite3ScratchMalloc( szScratch ); sl@0: if( apCell==0 ){ sl@0: rc = SQLITE_NOMEM; sl@0: goto balance_cleanup; sl@0: } sl@0: szCell = (u16*)&apCell[nMaxCells]; sl@0: aCopy[0] = (u8*)&szCell[nMaxCells]; sl@0: assert( ((aCopy[0] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ sl@0: for(i=1; ipageSize+ROUND8(sizeof(MemPage))]; sl@0: assert( ((aCopy[i] - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ sl@0: } sl@0: aSpace1 = &aCopy[NB-1][pBt->pageSize+ROUND8(sizeof(MemPage))]; sl@0: assert( ((aSpace1 - (u8*)apCell) & 7)==0 ); /* 8-byte alignment required */ sl@0: if( ISAUTOVACUUM ){ sl@0: aFrom = &aSpace1[pBt->pageSize]; sl@0: } sl@0: aSpace2 = sqlite3PageMalloc(pBt->pageSize); sl@0: if( aSpace2==0 ){ sl@0: rc = SQLITE_NOMEM; sl@0: goto balance_cleanup; sl@0: } sl@0: sl@0: /* sl@0: ** Make copies of the content of pPage and its siblings into aOld[]. sl@0: ** The rest of this function will use data from the copies rather sl@0: ** that the original pages since the original pages will be in the sl@0: ** process of being overwritten. sl@0: */ sl@0: for(i=0; iaData = (void*)&p[1]; sl@0: memcpy(p->aData, apOld[i]->aData, pBt->pageSize); sl@0: } sl@0: sl@0: /* sl@0: ** Load pointers to all cells on sibling pages and the divider cells sl@0: ** into the local apCell[] array. Make copies of the divider cells sl@0: ** into space obtained form aSpace1[] and remove the the divider Cells sl@0: ** from pParent. sl@0: ** sl@0: ** If the siblings are on leaf pages, then the child pointers of the sl@0: ** divider cells are stripped from the cells before they are copied sl@0: ** into aSpace1[]. In this way, all cells in apCell[] are without sl@0: ** child pointers. If siblings are not leaves, then all cell in sl@0: ** apCell[] include child pointers. Either way, all cells in apCell[] sl@0: ** are alike. sl@0: ** sl@0: ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. sl@0: ** leafData: 1 if pPage holds key+data and pParent holds only keys. sl@0: */ sl@0: nCell = 0; sl@0: leafCorrection = pPage->leaf*4; sl@0: leafData = pPage->hasData; sl@0: for(i=0; inCell+pOld->nOverflow; sl@0: for(j=0; jnOverflow; a++){ sl@0: if( pOld->aOvfl[a].pCell==apCell[nCell] ){ sl@0: aFrom[nCell] = 0xFF; sl@0: break; sl@0: } sl@0: } sl@0: } sl@0: nCell++; sl@0: } sl@0: if( ipageSize/4 ); sl@0: assert( iSpace1<=pBt->pageSize ); sl@0: memcpy(pTemp, apDiv[i], sz); sl@0: apCell[nCell] = pTemp+leafCorrection; sl@0: if( ISAUTOVACUUM ){ sl@0: aFrom[nCell] = 0xFF; sl@0: } sl@0: dropCell(pParent, nxDiv, sz); sl@0: szCell[nCell] -= leafCorrection; sl@0: assert( get4byte(pTemp)==pgnoOld[i] ); sl@0: if( !pOld->leaf ){ sl@0: assert( leafCorrection==0 ); sl@0: /* The right pointer of the child page pOld becomes the left sl@0: ** pointer of the divider cell */ sl@0: memcpy(apCell[nCell], &pOld->aData[pOld->hdrOffset+8], 4); sl@0: }else{ sl@0: assert( leafCorrection==4 ); sl@0: if( szCell[nCell]<4 ){ sl@0: /* Do not allow any cells smaller than 4 bytes. */ sl@0: szCell[nCell] = 4; sl@0: } sl@0: } sl@0: nCell++; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Figure out the number of pages needed to hold all nCell cells. sl@0: ** Store this number in "k". Also compute szNew[] which is the total sl@0: ** size of all cells on the i-th page and cntNew[] which is the index sl@0: ** in apCell[] of the cell that divides page i from page i+1. sl@0: ** cntNew[k] should equal nCell. sl@0: ** sl@0: ** Values computed by this block: sl@0: ** sl@0: ** k: The total number of sibling pages sl@0: ** szNew[i]: Spaced used on the i-th sibling page. sl@0: ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to sl@0: ** the right of the i-th sibling page. sl@0: ** usableSpace: Number of bytes of space available on each sibling. sl@0: ** sl@0: */ sl@0: usableSpace = pBt->usableSize - 12 + leafCorrection; sl@0: for(subtotal=k=i=0; i usableSpace ){ sl@0: szNew[k] = subtotal - szCell[i]; sl@0: cntNew[k] = i; sl@0: if( leafData ){ i--; } sl@0: subtotal = 0; sl@0: k++; sl@0: } sl@0: } sl@0: szNew[k] = subtotal; sl@0: cntNew[k] = nCell; sl@0: k++; sl@0: sl@0: /* sl@0: ** The packing computed by the previous block is biased toward the siblings sl@0: ** on the left side. The left siblings are always nearly full, while the sl@0: ** right-most sibling might be nearly empty. This block of code attempts sl@0: ** to adjust the packing of siblings to get a better balance. sl@0: ** sl@0: ** This adjustment is more than an optimization. The packing above might sl@0: ** be so out of balance as to be illegal. For example, the right-most sl@0: ** sibling might be completely empty. This adjustment is not optional. sl@0: */ sl@0: for(i=k-1; i>0; i--){ sl@0: int szRight = szNew[i]; /* Size of sibling on the right */ sl@0: int szLeft = szNew[i-1]; /* Size of sibling on the left */ sl@0: int r; /* Index of right-most cell in left sibling */ sl@0: int d; /* Index of first cell to the left of right sibling */ sl@0: sl@0: r = cntNew[i-1] - 1; sl@0: d = r + 1 - leafData; sl@0: assert( d0) or we are the sl@0: ** a virtual root page. A virtual root page is when the real root sl@0: ** page is page 1 and we are the only child of that page. sl@0: */ sl@0: assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); sl@0: sl@0: /* sl@0: ** Allocate k new pages. Reuse old pages where possible. sl@0: */ sl@0: assert( pPage->pgno>1 ); sl@0: pageFlags = pPage->aData[0]; sl@0: for(i=0; ipDbPage); sl@0: nNew++; sl@0: if( rc ) goto balance_cleanup; sl@0: }else{ sl@0: assert( i>0 ); sl@0: rc = allocateBtreePage(pBt, &pNew, &pgnoNew[i], pgnoNew[i-1], 0); sl@0: if( rc ) goto balance_cleanup; sl@0: apNew[i] = pNew; sl@0: nNew++; sl@0: } sl@0: } sl@0: sl@0: /* Free any old pages that were not reused as new pages. sl@0: */ sl@0: while( ii ){ sl@0: int t; sl@0: MemPage *pT; sl@0: t = pgnoNew[i]; sl@0: pT = apNew[i]; sl@0: pgnoNew[i] = pgnoNew[minI]; sl@0: apNew[i] = apNew[minI]; sl@0: pgnoNew[minI] = t; sl@0: apNew[minI] = pT; sl@0: } sl@0: } sl@0: TRACE(("BALANCE: old: %d %d %d new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", sl@0: pgnoOld[0], sl@0: nOld>=2 ? pgnoOld[1] : 0, sl@0: nOld>=3 ? pgnoOld[2] : 0, sl@0: pgnoNew[0], szNew[0], sl@0: nNew>=2 ? pgnoNew[1] : 0, nNew>=2 ? szNew[1] : 0, sl@0: nNew>=3 ? pgnoNew[2] : 0, nNew>=3 ? szNew[2] : 0, sl@0: nNew>=4 ? pgnoNew[3] : 0, nNew>=4 ? szNew[3] : 0, sl@0: nNew>=5 ? pgnoNew[4] : 0, nNew>=5 ? szNew[4] : 0)); sl@0: sl@0: /* sl@0: ** Evenly distribute the data in apCell[] across the new pages. sl@0: ** Insert divider cells into pParent as necessary. sl@0: */ sl@0: j = 0; sl@0: for(i=0; ipgno==pgnoNew[i] ); sl@0: zeroPage(pNew, pageFlags); sl@0: assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); sl@0: assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) ); sl@0: assert( pNew->nOverflow==0 ); sl@0: sl@0: /* If this is an auto-vacuum database, update the pointer map entries sl@0: ** that point to the siblings that were rearranged. These can be: left sl@0: ** children of cells, the right-child of the page, or overflow pages sl@0: ** pointed to by cells. sl@0: */ sl@0: if( ISAUTOVACUUM ){ sl@0: for(k=j; kpgno!=pNew->pgno ){ sl@0: rc = ptrmapPutOvfl(pNew, k-j); sl@0: if( rc==SQLITE_OK && leafCorrection==0 ){ sl@0: rc = ptrmapPut(pBt, get4byte(apCell[k]), PTRMAP_BTREE, pNew->pgno); sl@0: } sl@0: if( rc!=SQLITE_OK ){ sl@0: goto balance_cleanup; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: j = cntNew[i]; sl@0: sl@0: /* If the sibling page assembled above was not the right-most sibling, sl@0: ** insert a divider cell into the parent page. sl@0: */ sl@0: if( ileaf ){ sl@0: memcpy(&pNew->aData[8], pCell, 4); sl@0: if( ISAUTOVACUUM sl@0: && (aFrom[j]==0xFF || apCopy[aFrom[j]]->pgno!=pNew->pgno) sl@0: ){ sl@0: rc = ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno); sl@0: if( rc!=SQLITE_OK ){ sl@0: goto balance_cleanup; sl@0: } sl@0: } sl@0: }else if( leafData ){ sl@0: /* If the tree is a leaf-data tree, and the siblings are leaves, sl@0: ** then there is no divider cell in apCell[]. Instead, the divider sl@0: ** cell consists of the integer key for the right-most cell of sl@0: ** the sibling-page assembled above only. sl@0: */ sl@0: CellInfo info; sl@0: j--; sl@0: sqlite3BtreeParseCellPtr(pNew, apCell[j], &info); sl@0: pCell = pTemp; sl@0: fillInCell(pParent, pCell, 0, info.nKey, 0, 0, 0, &sz); sl@0: pTemp = 0; sl@0: }else{ sl@0: pCell -= 4; sl@0: /* Obscure case for non-leaf-data trees: If the cell at pCell was sl@0: ** previously stored on a leaf node, and its reported size was 4 sl@0: ** bytes, then it may actually be smaller than this sl@0: ** (see sqlite3BtreeParseCellPtr(), 4 bytes is the minimum size of sl@0: ** any cell). But it is important to pass the correct size to sl@0: ** insertCell(), so reparse the cell now. sl@0: ** sl@0: ** Note that this can never happen in an SQLite data file, as all sl@0: ** cells are at least 4 bytes. It only happens in b-trees used sl@0: ** to evaluate "IN (SELECT ...)" and similar clauses. sl@0: */ sl@0: if( szCell[j]==4 ){ sl@0: assert(leafCorrection==4); sl@0: sz = cellSizePtr(pParent, pCell); sl@0: } sl@0: } sl@0: iSpace2 += sz; sl@0: assert( sz<=pBt->pageSize/4 ); sl@0: assert( iSpace2<=pBt->pageSize ); sl@0: rc = insertCell(pParent, nxDiv, pCell, sz, pTemp, 4); sl@0: if( rc!=SQLITE_OK ) goto balance_cleanup; sl@0: put4byte(findOverflowCell(pParent,nxDiv), pNew->pgno); sl@0: sl@0: /* If this is an auto-vacuum database, and not a leaf-data tree, sl@0: ** then update the pointer map with an entry for the overflow page sl@0: ** that the cell just inserted points to (if any). sl@0: */ sl@0: if( ISAUTOVACUUM && !leafData ){ sl@0: rc = ptrmapPutOvfl(pParent, nxDiv); sl@0: if( rc!=SQLITE_OK ){ sl@0: goto balance_cleanup; sl@0: } sl@0: } sl@0: j++; sl@0: nxDiv++; sl@0: } sl@0: sl@0: /* Set the pointer-map entry for the new sibling page. */ sl@0: if( ISAUTOVACUUM ){ sl@0: rc = ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno); sl@0: if( rc!=SQLITE_OK ){ sl@0: goto balance_cleanup; sl@0: } sl@0: } sl@0: } sl@0: assert( j==nCell ); sl@0: assert( nOld>0 ); sl@0: assert( nNew>0 ); sl@0: if( (pageFlags & PTF_LEAF)==0 ){ sl@0: u8 *zChild = &apCopy[nOld-1]->aData[8]; sl@0: memcpy(&apNew[nNew-1]->aData[8], zChild, 4); sl@0: if( ISAUTOVACUUM ){ sl@0: rc = ptrmapPut(pBt, get4byte(zChild), PTRMAP_BTREE, apNew[nNew-1]->pgno); sl@0: if( rc!=SQLITE_OK ){ sl@0: goto balance_cleanup; sl@0: } sl@0: } sl@0: } sl@0: if( nxDiv==pParent->nCell+pParent->nOverflow ){ sl@0: /* Right-most sibling is the right-most child of pParent */ sl@0: put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew[nNew-1]); sl@0: }else{ sl@0: /* Right-most sibling is the left child of the first entry in pParent sl@0: ** past the right-most divider entry */ sl@0: put4byte(findOverflowCell(pParent, nxDiv), pgnoNew[nNew-1]); sl@0: } sl@0: sl@0: /* sl@0: ** Balance the parent page. Note that the current page (pPage) might sl@0: ** have been added to the freelist so it might no longer be initialized. sl@0: ** But the parent page will always be initialized. sl@0: */ sl@0: assert( pParent->isInit ); sl@0: sqlite3ScratchFree(apCell); sl@0: apCell = 0; sl@0: releasePage(pPage); sl@0: pCur->iPage--; sl@0: rc = balance(pCur, 0); sl@0: sl@0: /* sl@0: ** Cleanup before returning. sl@0: */ sl@0: balance_cleanup: sl@0: sqlite3PageFree(aSpace2); sl@0: sqlite3ScratchFree(apCell); sl@0: for(i=0; ipgno, nOld, nNew, nCell)); sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called for the root page of a btree when the root sl@0: ** page contains no cells. This is an opportunity to make the tree sl@0: ** shallower by one level. sl@0: */ sl@0: static int balance_shallower(BtCursor *pCur){ sl@0: MemPage *pPage; /* Root page of B-Tree */ sl@0: MemPage *pChild; /* The only child page of pPage */ sl@0: Pgno pgnoChild; /* Page number for pChild */ sl@0: int rc = SQLITE_OK; /* Return code from subprocedures */ sl@0: BtShared *pBt; /* The main BTree structure */ sl@0: int mxCellPerPage; /* Maximum number of cells per page */ sl@0: u8 **apCell; /* All cells from pages being balanced */ sl@0: u16 *szCell; /* Local size of all cells */ sl@0: sl@0: assert( pCur->iPage==0 ); sl@0: pPage = pCur->apPage[0]; sl@0: sl@0: assert( pPage->nCell==0 ); sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: pBt = pPage->pBt; sl@0: mxCellPerPage = MX_CELL(pBt); sl@0: apCell = sqlite3Malloc( mxCellPerPage*(sizeof(u8*)+sizeof(u16)) ); sl@0: if( apCell==0 ) return SQLITE_NOMEM; sl@0: szCell = (u16*)&apCell[mxCellPerPage]; sl@0: if( pPage->leaf ){ sl@0: /* The table is completely empty */ sl@0: TRACE(("BALANCE: empty table %d\n", pPage->pgno)); sl@0: }else{ sl@0: /* The root page is empty but has one child. Transfer the sl@0: ** information from that one child into the root page if it sl@0: ** will fit. This reduces the depth of the tree by one. sl@0: ** sl@0: ** If the root page is page 1, it has less space available than sl@0: ** its child (due to the 100 byte header that occurs at the beginning sl@0: ** of the database fle), so it might not be able to hold all of the sl@0: ** information currently contained in the child. If this is the sl@0: ** case, then do not do the transfer. Leave page 1 empty except sl@0: ** for the right-pointer to the child page. The child page becomes sl@0: ** the virtual root of the tree. sl@0: */ sl@0: VVA_ONLY( pCur->pagesShuffled = 1 ); sl@0: pgnoChild = get4byte(&pPage->aData[pPage->hdrOffset+8]); sl@0: assert( pgnoChild>0 ); sl@0: assert( pgnoChild<=pagerPagecount(pPage->pBt->pPager) ); sl@0: rc = sqlite3BtreeGetPage(pPage->pBt, pgnoChild, &pChild, 0); sl@0: if( rc ) goto end_shallow_balance; sl@0: if( pPage->pgno==1 ){ sl@0: rc = sqlite3BtreeInitPage(pChild); sl@0: if( rc ) goto end_shallow_balance; sl@0: assert( pChild->nOverflow==0 ); sl@0: if( pChild->nFree>=100 ){ sl@0: /* The child information will fit on the root page, so do the sl@0: ** copy */ sl@0: int i; sl@0: zeroPage(pPage, pChild->aData[0]); sl@0: for(i=0; inCell; i++){ sl@0: apCell[i] = findCell(pChild,i); sl@0: szCell[i] = cellSizePtr(pChild, apCell[i]); sl@0: } sl@0: assemblePage(pPage, pChild->nCell, apCell, szCell); sl@0: /* Copy the right-pointer of the child to the parent. */ sl@0: put4byte(&pPage->aData[pPage->hdrOffset+8], sl@0: get4byte(&pChild->aData[pChild->hdrOffset+8])); sl@0: freePage(pChild); sl@0: TRACE(("BALANCE: child %d transfer to page 1\n", pChild->pgno)); sl@0: }else{ sl@0: /* The child has more information that will fit on the root. sl@0: ** The tree is already balanced. Do nothing. */ sl@0: TRACE(("BALANCE: child %d will not fit on page 1\n", pChild->pgno)); sl@0: } sl@0: }else{ sl@0: memcpy(pPage->aData, pChild->aData, pPage->pBt->usableSize); sl@0: pPage->isInit = 0; sl@0: rc = sqlite3BtreeInitPage(pPage); sl@0: assert( rc==SQLITE_OK ); sl@0: freePage(pChild); sl@0: TRACE(("BALANCE: transfer child %d into root %d\n", sl@0: pChild->pgno, pPage->pgno)); sl@0: } sl@0: assert( pPage->nOverflow==0 ); sl@0: if( ISAUTOVACUUM ){ sl@0: rc = setChildPtrmaps(pPage); sl@0: } sl@0: releasePage(pChild); sl@0: } sl@0: end_shallow_balance: sl@0: sqlite3_free(apCell); sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** The root page is overfull sl@0: ** sl@0: ** When this happens, Create a new child page and copy the sl@0: ** contents of the root into the child. Then make the root sl@0: ** page an empty page with rightChild pointing to the new sl@0: ** child. Finally, call balance_internal() on the new child sl@0: ** to cause it to split. sl@0: */ sl@0: static int balance_deeper(BtCursor *pCur){ sl@0: int rc; /* Return value from subprocedures */ sl@0: MemPage *pPage; /* Pointer to the root page */ sl@0: MemPage *pChild; /* Pointer to a new child page */ sl@0: Pgno pgnoChild; /* Page number of the new child page */ sl@0: BtShared *pBt; /* The BTree */ sl@0: int usableSize; /* Total usable size of a page */ sl@0: u8 *data; /* Content of the parent page */ sl@0: u8 *cdata; /* Content of the child page */ sl@0: int hdr; /* Offset to page header in parent */ sl@0: int cbrk; /* Offset to content of first cell in parent */ sl@0: sl@0: assert( pCur->iPage==0 ); sl@0: assert( pCur->apPage[0]->nOverflow>0 ); sl@0: sl@0: VVA_ONLY( pCur->pagesShuffled = 1 ); sl@0: pPage = pCur->apPage[0]; sl@0: pBt = pPage->pBt; sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: rc = allocateBtreePage(pBt, &pChild, &pgnoChild, pPage->pgno, 0); sl@0: if( rc ) return rc; sl@0: assert( sqlite3PagerIswriteable(pChild->pDbPage) ); sl@0: usableSize = pBt->usableSize; sl@0: data = pPage->aData; sl@0: hdr = pPage->hdrOffset; sl@0: cbrk = get2byte(&data[hdr+5]); sl@0: cdata = pChild->aData; sl@0: memcpy(cdata, &data[hdr], pPage->cellOffset+2*pPage->nCell-hdr); sl@0: memcpy(&cdata[cbrk], &data[cbrk], usableSize-cbrk); sl@0: sl@0: rc = sqlite3BtreeInitPage(pChild); sl@0: if( rc==SQLITE_OK ){ sl@0: int nCopy = pPage->nOverflow*sizeof(pPage->aOvfl[0]); sl@0: memcpy(pChild->aOvfl, pPage->aOvfl, nCopy); sl@0: pChild->nOverflow = pPage->nOverflow; sl@0: if( pChild->nOverflow ){ sl@0: pChild->nFree = 0; sl@0: } sl@0: assert( pChild->nCell==pPage->nCell ); sl@0: zeroPage(pPage, pChild->aData[0] & ~PTF_LEAF); sl@0: put4byte(&pPage->aData[pPage->hdrOffset+8], pgnoChild); sl@0: TRACE(("BALANCE: copy root %d into %d\n", pPage->pgno, pChild->pgno)); sl@0: if( ISAUTOVACUUM ){ sl@0: rc = ptrmapPut(pBt, pChild->pgno, PTRMAP_BTREE, pPage->pgno); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = setChildPtrmaps(pChild); sl@0: } sl@0: } sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: pCur->iPage++; sl@0: pCur->apPage[1] = pChild; sl@0: pCur->aiIdx[0] = 0; sl@0: rc = balance_nonroot(pCur); sl@0: }else{ sl@0: releasePage(pChild); sl@0: } sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** The page that pCur currently points to has just been modified in sl@0: ** some way. This function figures out if this modification means the sl@0: ** tree needs to be balanced, and if so calls the appropriate balancing sl@0: ** routine. sl@0: ** sl@0: ** Parameter isInsert is true if a new cell was just inserted into the sl@0: ** page, or false otherwise. sl@0: */ sl@0: static int balance(BtCursor *pCur, int isInsert){ sl@0: int rc = SQLITE_OK; sl@0: MemPage *pPage = pCur->apPage[pCur->iPage]; sl@0: sl@0: assert( sqlite3_mutex_held(pPage->pBt->mutex) ); sl@0: if( pCur->iPage==0 ){ sl@0: rc = sqlite3PagerWrite(pPage->pDbPage); sl@0: if( rc==SQLITE_OK && pPage->nOverflow>0 ){ sl@0: rc = balance_deeper(pCur); sl@0: } sl@0: if( rc==SQLITE_OK && pPage->nCell==0 ){ sl@0: rc = balance_shallower(pCur); sl@0: } sl@0: }else{ sl@0: if( pPage->nOverflow>0 || sl@0: (!isInsert && pPage->nFree>pPage->pBt->usableSize*2/3) ){ sl@0: rc = balance_nonroot(pCur); sl@0: } sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** This routine checks all cursors that point to table pgnoRoot. sl@0: ** If any of those cursors were opened with wrFlag==0 in a different sl@0: ** database connection (a database connection that shares the pager sl@0: ** cache with the current connection) and that other connection sl@0: ** is not in the ReadUncommmitted state, then this routine returns sl@0: ** SQLITE_LOCKED. sl@0: ** sl@0: ** As well as cursors with wrFlag==0, cursors with wrFlag==1 and sl@0: ** isIncrblobHandle==1 are also considered 'read' cursors. Incremental sl@0: ** blob cursors are used for both reading and writing. sl@0: ** sl@0: ** When pgnoRoot is the root page of an intkey table, this function is also sl@0: ** responsible for invalidating incremental blob cursors when the table row sl@0: ** on which they are opened is deleted or modified. Cursors are invalidated sl@0: ** according to the following rules: sl@0: ** sl@0: ** 1) When BtreeClearTable() is called to completely delete the contents sl@0: ** of a B-Tree table, pExclude is set to zero and parameter iRow is sl@0: ** set to non-zero. In this case all incremental blob cursors open sl@0: ** on the table rooted at pgnoRoot are invalidated. sl@0: ** sl@0: ** 2) When BtreeInsert(), BtreeDelete() or BtreePutData() is called to sl@0: ** modify a table row via an SQL statement, pExclude is set to the sl@0: ** write cursor used to do the modification and parameter iRow is set sl@0: ** to the integer row id of the B-Tree entry being modified. Unless sl@0: ** pExclude is itself an incremental blob cursor, then all incremental sl@0: ** blob cursors open on row iRow of the B-Tree are invalidated. sl@0: ** sl@0: ** 3) If both pExclude and iRow are set to zero, no incremental blob sl@0: ** cursors are invalidated. sl@0: */ sl@0: static int checkReadLocks( sl@0: Btree *pBtree, sl@0: Pgno pgnoRoot, sl@0: BtCursor *pExclude, sl@0: i64 iRow sl@0: ){ sl@0: BtCursor *p; sl@0: BtShared *pBt = pBtree->pBt; sl@0: sqlite3 *db = pBtree->db; sl@0: assert( sqlite3BtreeHoldsMutex(pBtree) ); sl@0: for(p=pBt->pCursor; p; p=p->pNext){ sl@0: if( p==pExclude ) continue; sl@0: if( p->pgnoRoot!=pgnoRoot ) continue; sl@0: #ifndef SQLITE_OMIT_INCRBLOB sl@0: if( p->isIncrblobHandle && ( sl@0: (!pExclude && iRow) sl@0: || (pExclude && !pExclude->isIncrblobHandle && p->info.nKey==iRow) sl@0: )){ sl@0: p->eState = CURSOR_INVALID; sl@0: } sl@0: #endif sl@0: if( p->eState!=CURSOR_VALID ) continue; sl@0: if( p->wrFlag==0 sl@0: #ifndef SQLITE_OMIT_INCRBLOB sl@0: || p->isIncrblobHandle sl@0: #endif sl@0: ){ sl@0: sqlite3 *dbOther = p->pBtree->db; sl@0: if( dbOther==0 || sl@0: (dbOther!=db && (dbOther->flags & SQLITE_ReadUncommitted)==0) ){ sl@0: return SQLITE_LOCKED; sl@0: } sl@0: } sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Insert a new record into the BTree. The key is given by (pKey,nKey) sl@0: ** and the data is given by (pData,nData). The cursor is used only to sl@0: ** define what table the record should be inserted into. The cursor sl@0: ** is left pointing at a random location. sl@0: ** sl@0: ** For an INTKEY table, only the nKey value of the key is used. pKey is sl@0: ** ignored. For a ZERODATA table, the pData and nData are both ignored. sl@0: */ sl@0: int sqlite3BtreeInsert( sl@0: BtCursor *pCur, /* Insert data into the table of this cursor */ sl@0: const void *pKey, i64 nKey, /* The key of the new record */ sl@0: const void *pData, int nData, /* The data of the new record */ sl@0: int nZero, /* Number of extra 0 bytes to append to data */ sl@0: int appendBias /* True if this is likely an append */ sl@0: ){ sl@0: int rc; sl@0: int loc; sl@0: int szNew; sl@0: int idx; sl@0: MemPage *pPage; sl@0: Btree *p = pCur->pBtree; sl@0: BtShared *pBt = p->pBt; sl@0: unsigned char *oldCell; sl@0: unsigned char *newCell = 0; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: if( pBt->inTransaction!=TRANS_WRITE ){ sl@0: /* Must start a transaction before doing an insert */ sl@0: rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; sl@0: return rc; sl@0: } sl@0: assert( !pBt->readOnly ); sl@0: if( !pCur->wrFlag ){ sl@0: return SQLITE_PERM; /* Cursor not open for writing */ sl@0: } sl@0: if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, nKey) ){ sl@0: return SQLITE_LOCKED; /* The table pCur points to has a read lock */ sl@0: } sl@0: if( pCur->eState==CURSOR_FAULT ){ sl@0: return pCur->skip; sl@0: } sl@0: sl@0: /* Save the positions of any other cursors open on this table */ sl@0: sqlite3BtreeClearCursor(pCur); sl@0: if( sl@0: SQLITE_OK!=(rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur)) || sl@0: SQLITE_OK!=(rc = sqlite3BtreeMoveto(pCur, pKey, nKey, appendBias, &loc)) sl@0: ){ sl@0: return rc; sl@0: } sl@0: sl@0: pPage = pCur->apPage[pCur->iPage]; sl@0: assert( pPage->intKey || nKey>=0 ); sl@0: assert( pPage->leaf || !pPage->intKey ); sl@0: TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", sl@0: pCur->pgnoRoot, nKey, nData, pPage->pgno, sl@0: loc==0 ? "overwrite" : "new entry")); sl@0: assert( pPage->isInit ); sl@0: allocateTempSpace(pBt); sl@0: newCell = pBt->pTmpSpace; sl@0: if( newCell==0 ) return SQLITE_NOMEM; sl@0: rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); sl@0: if( rc ) goto end_insert; sl@0: assert( szNew==cellSizePtr(pPage, newCell) ); sl@0: assert( szNew<=MX_CELL_SIZE(pBt) ); sl@0: idx = pCur->aiIdx[pCur->iPage]; sl@0: if( loc==0 && CURSOR_VALID==pCur->eState ){ sl@0: u16 szOld; sl@0: assert( idxnCell ); sl@0: rc = sqlite3PagerWrite(pPage->pDbPage); sl@0: if( rc ){ sl@0: goto end_insert; sl@0: } sl@0: oldCell = findCell(pPage, idx); sl@0: if( !pPage->leaf ){ sl@0: memcpy(newCell, oldCell, 4); sl@0: } sl@0: szOld = cellSizePtr(pPage, oldCell); sl@0: rc = clearCell(pPage, oldCell); sl@0: if( rc ) goto end_insert; sl@0: rc = dropCell(pPage, idx, szOld); sl@0: if( rc ) goto end_insert; sl@0: }else if( loc<0 && pPage->nCell>0 ){ sl@0: assert( pPage->leaf ); sl@0: idx = ++pCur->aiIdx[pCur->iPage]; sl@0: pCur->info.nSize = 0; sl@0: pCur->validNKey = 0; sl@0: }else{ sl@0: assert( pPage->leaf ); sl@0: } sl@0: rc = insertCell(pPage, idx, newCell, szNew, 0, 0); sl@0: if( rc!=SQLITE_OK ) goto end_insert; sl@0: rc = balance(pCur, 1); sl@0: if( rc==SQLITE_OK ){ sl@0: moveToRoot(pCur); sl@0: } sl@0: end_insert: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Delete the entry that the cursor is pointing to. The cursor sl@0: ** is left pointing at a arbitrary location. sl@0: */ sl@0: int sqlite3BtreeDelete(BtCursor *pCur){ sl@0: MemPage *pPage = pCur->apPage[pCur->iPage]; sl@0: int idx; sl@0: unsigned char *pCell; sl@0: int rc; sl@0: Pgno pgnoChild = 0; sl@0: Btree *p = pCur->pBtree; sl@0: BtShared *pBt = p->pBt; sl@0: sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( pPage->isInit ); sl@0: if( pBt->inTransaction!=TRANS_WRITE ){ sl@0: /* Must start a transaction before doing a delete */ sl@0: rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; sl@0: return rc; sl@0: } sl@0: assert( !pBt->readOnly ); sl@0: if( pCur->eState==CURSOR_FAULT ){ sl@0: return pCur->skip; sl@0: } sl@0: if( pCur->aiIdx[pCur->iPage]>=pPage->nCell ){ sl@0: return SQLITE_ERROR; /* The cursor is not pointing to anything */ sl@0: } sl@0: if( !pCur->wrFlag ){ sl@0: return SQLITE_PERM; /* Did not open this cursor for writing */ sl@0: } sl@0: if( checkReadLocks(pCur->pBtree, pCur->pgnoRoot, pCur, pCur->info.nKey) ){ sl@0: return SQLITE_LOCKED; /* The table pCur points to has a read lock */ sl@0: } sl@0: sl@0: /* Restore the current cursor position (a no-op if the cursor is not in sl@0: ** CURSOR_REQUIRESEEK state) and save the positions of any other cursors sl@0: ** open on the same table. Then call sqlite3PagerWrite() on the page sl@0: ** that the entry will be deleted from. sl@0: */ sl@0: if( sl@0: (rc = restoreCursorPosition(pCur))!=0 || sl@0: (rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur))!=0 || sl@0: (rc = sqlite3PagerWrite(pPage->pDbPage))!=0 sl@0: ){ sl@0: return rc; sl@0: } sl@0: sl@0: /* Locate the cell within its page and leave pCell pointing to the sl@0: ** data. The clearCell() call frees any overflow pages associated with the sl@0: ** cell. The cell itself is still intact. sl@0: */ sl@0: idx = pCur->aiIdx[pCur->iPage]; sl@0: pCell = findCell(pPage, idx); sl@0: if( !pPage->leaf ){ sl@0: pgnoChild = get4byte(pCell); sl@0: } sl@0: rc = clearCell(pPage, pCell); sl@0: if( rc ){ sl@0: return rc; sl@0: } sl@0: sl@0: if( !pPage->leaf ){ sl@0: /* sl@0: ** The entry we are about to delete is not a leaf so if we do not sl@0: ** do something we will leave a hole on an internal page. sl@0: ** We have to fill the hole by moving in a cell from a leaf. The sl@0: ** next Cell after the one to be deleted is guaranteed to exist and sl@0: ** to be a leaf so we can use it. sl@0: */ sl@0: BtCursor leafCur; sl@0: MemPage *pLeafPage; sl@0: sl@0: unsigned char *pNext; sl@0: int notUsed; sl@0: unsigned char *tempCell = 0; sl@0: assert( !pPage->intKey ); sl@0: sqlite3BtreeGetTempCursor(pCur, &leafCur); sl@0: rc = sqlite3BtreeNext(&leafCur, ¬Used); sl@0: if( rc==SQLITE_OK ){ sl@0: assert( leafCur.aiIdx[leafCur.iPage]==0 ); sl@0: pLeafPage = leafCur.apPage[leafCur.iPage]; sl@0: rc = sqlite3PagerWrite(pLeafPage->pDbPage); sl@0: } sl@0: if( rc==SQLITE_OK ){ sl@0: int leafCursorInvalid = 0; sl@0: u16 szNext; sl@0: TRACE(("DELETE: table=%d delete internal from %d replace from leaf %d\n", sl@0: pCur->pgnoRoot, pPage->pgno, pLeafPage->pgno)); sl@0: dropCell(pPage, idx, cellSizePtr(pPage, pCell)); sl@0: pNext = findCell(pLeafPage, 0); sl@0: szNext = cellSizePtr(pLeafPage, pNext); sl@0: assert( MX_CELL_SIZE(pBt)>=szNext+4 ); sl@0: allocateTempSpace(pBt); sl@0: tempCell = pBt->pTmpSpace; sl@0: if( tempCell==0 ){ sl@0: rc = SQLITE_NOMEM; sl@0: } sl@0: if( rc==SQLITE_OK ){ sl@0: rc = insertCell(pPage, idx, pNext-4, szNext+4, tempCell, 0); sl@0: } sl@0: sl@0: sl@0: /* The "if" statement in the next code block is critical. The sl@0: ** slightest error in that statement would allow SQLite to operate sl@0: ** correctly most of the time but produce very rare failures. To sl@0: ** guard against this, the following macros help to verify that sl@0: ** the "if" statement is well tested. sl@0: */ sl@0: testcase( pPage->nOverflow==0 && pPage->nFreeusableSize*2/3 sl@0: && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 ); sl@0: testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3 sl@0: && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 ); sl@0: testcase( pPage->nOverflow==0 && pPage->nFree==pBt->usableSize*2/3+1 sl@0: && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 ); sl@0: testcase( pPage->nOverflow>0 && pPage->nFree<=pBt->usableSize*2/3 sl@0: && pLeafPage->nFree+2+szNext > pBt->usableSize*2/3 ); sl@0: testcase( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3)) sl@0: && pLeafPage->nFree+2+szNext == pBt->usableSize*2/3 ); sl@0: sl@0: sl@0: if( (pPage->nOverflow>0 || (pPage->nFree > pBt->usableSize*2/3)) && sl@0: (pLeafPage->nFree+2+szNext > pBt->usableSize*2/3) sl@0: ){ sl@0: /* This branch is taken if the internal node is now either overflowing sl@0: ** or underfull and the leaf node will be underfull after the just cell sl@0: ** copied to the internal node is deleted from it. This is a special sl@0: ** case because the call to balance() to correct the internal node sl@0: ** may change the tree structure and invalidate the contents of sl@0: ** the leafCur.apPage[] and leafCur.aiIdx[] arrays, which will be sl@0: ** used by the balance() required to correct the underfull leaf sl@0: ** node. sl@0: ** sl@0: ** The formula used in the expression above are based on facets of sl@0: ** the SQLite file-format that do not change over time. sl@0: */ sl@0: testcase( pPage->nFree==pBt->usableSize*2/3+1 ); sl@0: testcase( pLeafPage->nFree+2+szNext==pBt->usableSize*2/3+1 ); sl@0: leafCursorInvalid = 1; sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: put4byte(findOverflowCell(pPage, idx), pgnoChild); sl@0: VVA_ONLY( pCur->pagesShuffled = 0 ); sl@0: rc = balance(pCur, 0); sl@0: } sl@0: sl@0: if( rc==SQLITE_OK && leafCursorInvalid ){ sl@0: /* The leaf-node is now underfull and so the tree needs to be sl@0: ** rebalanced. However, the balance() operation on the internal sl@0: ** node above may have modified the structure of the B-Tree and sl@0: ** so the current contents of leafCur.apPage[] and leafCur.aiIdx[] sl@0: ** may not be trusted. sl@0: ** sl@0: ** It is not possible to copy the ancestry from pCur, as the same sl@0: ** balance() call has invalidated the pCur->apPage[] and aiIdx[] sl@0: ** arrays. sl@0: ** sl@0: ** The call to saveCursorPosition() below internally saves the sl@0: ** key that leafCur is currently pointing to. Currently, there sl@0: ** are two copies of that key in the tree - one here on the leaf sl@0: ** page and one on some internal node in the tree. The copy on sl@0: ** the leaf node is always the next key in tree-order after the sl@0: ** copy on the internal node. So, the call to sqlite3BtreeNext() sl@0: ** calls restoreCursorPosition() to point the cursor to the copy sl@0: ** stored on the internal node, then advances to the next entry, sl@0: ** which happens to be the copy of the key on the internal node. sl@0: ** Net effect: leafCur is pointing back to the duplicate cell sl@0: ** that needs to be removed, and the leafCur.apPage[] and sl@0: ** leafCur.aiIdx[] arrays are correct. sl@0: */ sl@0: VVA_ONLY( Pgno leafPgno = pLeafPage->pgno ); sl@0: rc = saveCursorPosition(&leafCur); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3BtreeNext(&leafCur, ¬Used); sl@0: } sl@0: pLeafPage = leafCur.apPage[leafCur.iPage]; sl@0: assert( pLeafPage->pgno==leafPgno ); sl@0: assert( leafCur.aiIdx[leafCur.iPage]==0 ); sl@0: } sl@0: sl@0: if( rc==SQLITE_OK ){ sl@0: dropCell(pLeafPage, 0, szNext); sl@0: VVA_ONLY( leafCur.pagesShuffled = 0 ); sl@0: rc = balance(&leafCur, 0); sl@0: assert( leafCursorInvalid || !leafCur.pagesShuffled sl@0: || !pCur->pagesShuffled ); sl@0: } sl@0: } sl@0: sqlite3BtreeReleaseTempCursor(&leafCur); sl@0: }else{ sl@0: TRACE(("DELETE: table=%d delete from leaf %d\n", sl@0: pCur->pgnoRoot, pPage->pgno)); sl@0: rc = dropCell(pPage, idx, cellSizePtr(pPage, pCell)); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = balance(pCur, 0); sl@0: } sl@0: } sl@0: if( rc==SQLITE_OK ){ sl@0: moveToRoot(pCur); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Create a new BTree table. Write into *piTable the page sl@0: ** number for the root page of the new table. sl@0: ** sl@0: ** The type of type is determined by the flags parameter. Only the sl@0: ** following values of flags are currently in use. Other values for sl@0: ** flags might not work: sl@0: ** sl@0: ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys sl@0: ** BTREE_ZERODATA Used for SQL indices sl@0: */ sl@0: static int btreeCreateTable(Btree *p, int *piTable, int flags){ sl@0: BtShared *pBt = p->pBt; sl@0: MemPage *pRoot; sl@0: Pgno pgnoRoot; sl@0: int rc; sl@0: sl@0: assert( sqlite3BtreeHoldsMutex(p) ); sl@0: if( pBt->inTransaction!=TRANS_WRITE ){ sl@0: /* Must start a transaction first */ sl@0: rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; sl@0: return rc; sl@0: } sl@0: assert( !pBt->readOnly ); sl@0: sl@0: #ifdef SQLITE_OMIT_AUTOVACUUM sl@0: rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); sl@0: if( rc ){ sl@0: return rc; sl@0: } sl@0: #else sl@0: if( pBt->autoVacuum ){ sl@0: Pgno pgnoMove; /* Move a page here to make room for the root-page */ sl@0: MemPage *pPageMove; /* The page to move to. */ sl@0: sl@0: /* Creating a new table may probably require moving an existing database sl@0: ** to make room for the new tables root page. In case this page turns sl@0: ** out to be an overflow page, delete all overflow page-map caches sl@0: ** held by open cursors. sl@0: */ sl@0: invalidateAllOverflowCache(pBt); sl@0: sl@0: /* Read the value of meta[3] from the database to determine where the sl@0: ** root page of the new table should go. meta[3] is the largest root-page sl@0: ** created so far, so the new root-page is (meta[3]+1). sl@0: */ sl@0: rc = sqlite3BtreeGetMeta(p, 4, &pgnoRoot); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: pgnoRoot++; sl@0: sl@0: /* The new root-page may not be allocated on a pointer-map page, or the sl@0: ** PENDING_BYTE page. sl@0: */ sl@0: while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || sl@0: pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ sl@0: pgnoRoot++; sl@0: } sl@0: assert( pgnoRoot>=3 ); sl@0: sl@0: /* Allocate a page. The page that currently resides at pgnoRoot will sl@0: ** be moved to the allocated page (unless the allocated page happens sl@0: ** to reside at pgnoRoot). sl@0: */ sl@0: rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: sl@0: if( pgnoMove!=pgnoRoot ){ sl@0: /* pgnoRoot is the page that will be used for the root-page of sl@0: ** the new table (assuming an error did not occur). But we were sl@0: ** allocated pgnoMove. If required (i.e. if it was not allocated sl@0: ** by extending the file), the current page at position pgnoMove sl@0: ** is already journaled. sl@0: */ sl@0: u8 eType; sl@0: Pgno iPtrPage; sl@0: sl@0: releasePage(pPageMove); sl@0: sl@0: /* Move the page currently at pgnoRoot to pgnoMove. */ sl@0: rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); sl@0: if( rc!=SQLITE_OK || eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ sl@0: releasePage(pRoot); sl@0: return rc; sl@0: } sl@0: assert( eType!=PTRMAP_ROOTPAGE ); sl@0: assert( eType!=PTRMAP_FREEPAGE ); sl@0: rc = sqlite3PagerWrite(pRoot->pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: releasePage(pRoot); sl@0: return rc; sl@0: } sl@0: rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); sl@0: releasePage(pRoot); sl@0: sl@0: /* Obtain the page at pgnoRoot */ sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: rc = sqlite3BtreeGetPage(pBt, pgnoRoot, &pRoot, 0); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: rc = sqlite3PagerWrite(pRoot->pDbPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: releasePage(pRoot); sl@0: return rc; sl@0: } sl@0: }else{ sl@0: pRoot = pPageMove; sl@0: } sl@0: sl@0: /* Update the pointer-map and meta-data with the new root-page number. */ sl@0: rc = ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0); sl@0: if( rc ){ sl@0: releasePage(pRoot); sl@0: return rc; sl@0: } sl@0: rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); sl@0: if( rc ){ sl@0: releasePage(pRoot); sl@0: return rc; sl@0: } sl@0: sl@0: }else{ sl@0: rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); sl@0: if( rc ) return rc; sl@0: } sl@0: #endif sl@0: assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); sl@0: zeroPage(pRoot, flags | PTF_LEAF); sl@0: sqlite3PagerUnref(pRoot->pDbPage); sl@0: *piTable = (int)pgnoRoot; sl@0: return SQLITE_OK; sl@0: } sl@0: int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ sl@0: int rc; sl@0: sqlite3BtreeEnter(p); sl@0: p->pBt->db = p->db; sl@0: rc = btreeCreateTable(p, piTable, flags); sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Erase the given database page and all its children. Return sl@0: ** the page to the freelist. sl@0: */ sl@0: static int clearDatabasePage( sl@0: BtShared *pBt, /* The BTree that contains the table */ sl@0: Pgno pgno, /* Page number to clear */ sl@0: MemPage *pParent, /* Parent page. NULL for the root */ sl@0: int freePageFlag /* Deallocate page if true */ sl@0: ){ sl@0: MemPage *pPage = 0; sl@0: int rc; sl@0: unsigned char *pCell; sl@0: int i; sl@0: sl@0: assert( sqlite3_mutex_held(pBt->mutex) ); sl@0: if( pgno>pagerPagecount(pBt->pPager) ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: sl@0: rc = getAndInitPage(pBt, pgno, &pPage); sl@0: if( rc ) goto cleardatabasepage_out; sl@0: for(i=0; inCell; i++){ sl@0: pCell = findCell(pPage, i); sl@0: if( !pPage->leaf ){ sl@0: rc = clearDatabasePage(pBt, get4byte(pCell), pPage, 1); sl@0: if( rc ) goto cleardatabasepage_out; sl@0: } sl@0: rc = clearCell(pPage, pCell); sl@0: if( rc ) goto cleardatabasepage_out; sl@0: } sl@0: if( !pPage->leaf ){ sl@0: rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), pPage, 1); sl@0: if( rc ) goto cleardatabasepage_out; sl@0: } sl@0: if( freePageFlag ){ sl@0: rc = freePage(pPage); sl@0: }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ sl@0: zeroPage(pPage, pPage->aData[0] | PTF_LEAF); sl@0: } sl@0: sl@0: cleardatabasepage_out: sl@0: releasePage(pPage); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Delete all information from a single table in the database. iTable is sl@0: ** the page number of the root of the table. After this routine returns, sl@0: ** the root page is empty, but still exists. sl@0: ** sl@0: ** This routine will fail with SQLITE_LOCKED if there are any open sl@0: ** read cursors on the table. Open write cursors are moved to the sl@0: ** root of the table. sl@0: */ sl@0: int sqlite3BtreeClearTable(Btree *p, int iTable){ sl@0: int rc; sl@0: BtShared *pBt = p->pBt; sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: if( p->inTrans!=TRANS_WRITE ){ sl@0: rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; sl@0: }else if( (rc = checkReadLocks(p, iTable, 0, 1))!=SQLITE_OK ){ sl@0: /* nothing to do */ sl@0: }else if( SQLITE_OK!=(rc = saveAllCursors(pBt, iTable, 0)) ){ sl@0: /* nothing to do */ sl@0: }else{ sl@0: rc = clearDatabasePage(pBt, (Pgno)iTable, 0, 0); sl@0: } sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Erase all information in a table and add the root of the table to sl@0: ** the freelist. Except, the root of the principle table (the one on sl@0: ** page 1) is never added to the freelist. sl@0: ** sl@0: ** This routine will fail with SQLITE_LOCKED if there are any open sl@0: ** cursors on the table. sl@0: ** sl@0: ** If AUTOVACUUM is enabled and the page at iTable is not the last sl@0: ** root page in the database file, then the last root page sl@0: ** in the database file is moved into the slot formerly occupied by sl@0: ** iTable and that last slot formerly occupied by the last root page sl@0: ** is added to the freelist instead of iTable. In this say, all sl@0: ** root pages are kept at the beginning of the database file, which sl@0: ** is necessary for AUTOVACUUM to work right. *piMoved is set to the sl@0: ** page number that used to be the last root page in the file before sl@0: ** the move. If no page gets moved, *piMoved is set to 0. sl@0: ** The last root page is recorded in meta[3] and the value of sl@0: ** meta[3] is updated by this procedure. sl@0: */ sl@0: static int btreeDropTable(Btree *p, int iTable, int *piMoved){ sl@0: int rc; sl@0: MemPage *pPage = 0; sl@0: BtShared *pBt = p->pBt; sl@0: sl@0: assert( sqlite3BtreeHoldsMutex(p) ); sl@0: if( p->inTrans!=TRANS_WRITE ){ sl@0: return pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; sl@0: } sl@0: sl@0: /* It is illegal to drop a table if any cursors are open on the sl@0: ** database. This is because in auto-vacuum mode the backend may sl@0: ** need to move another root-page to fill a gap left by the deleted sl@0: ** root page. If an open cursor was using this page a problem would sl@0: ** occur. sl@0: */ sl@0: if( pBt->pCursor ){ sl@0: return SQLITE_LOCKED; sl@0: } sl@0: sl@0: rc = sqlite3BtreeGetPage(pBt, (Pgno)iTable, &pPage, 0); sl@0: if( rc ) return rc; sl@0: rc = sqlite3BtreeClearTable(p, iTable); sl@0: if( rc ){ sl@0: releasePage(pPage); sl@0: return rc; sl@0: } sl@0: sl@0: *piMoved = 0; sl@0: sl@0: if( iTable>1 ){ sl@0: #ifdef SQLITE_OMIT_AUTOVACUUM sl@0: rc = freePage(pPage); sl@0: releasePage(pPage); sl@0: #else sl@0: if( pBt->autoVacuum ){ sl@0: Pgno maxRootPgno; sl@0: rc = sqlite3BtreeGetMeta(p, 4, &maxRootPgno); sl@0: if( rc!=SQLITE_OK ){ sl@0: releasePage(pPage); sl@0: return rc; sl@0: } sl@0: sl@0: if( iTable==maxRootPgno ){ sl@0: /* If the table being dropped is the table with the largest root-page sl@0: ** number in the database, put the root page on the free list. sl@0: */ sl@0: rc = freePage(pPage); sl@0: releasePage(pPage); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: }else{ sl@0: /* The table being dropped does not have the largest root-page sl@0: ** number in the database. So move the page that does into the sl@0: ** gap left by the deleted root-page. sl@0: */ sl@0: MemPage *pMove; sl@0: releasePage(pPage); sl@0: rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); sl@0: releasePage(pMove); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: rc = sqlite3BtreeGetPage(pBt, maxRootPgno, &pMove, 0); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: rc = freePage(pMove); sl@0: releasePage(pMove); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: *piMoved = maxRootPgno; sl@0: } sl@0: sl@0: /* Set the new 'max-root-page' value in the database header. This sl@0: ** is the old value less one, less one more if that happens to sl@0: ** be a root-page number, less one again if that is the sl@0: ** PENDING_BYTE_PAGE. sl@0: */ sl@0: maxRootPgno--; sl@0: if( maxRootPgno==PENDING_BYTE_PAGE(pBt) ){ sl@0: maxRootPgno--; sl@0: } sl@0: if( maxRootPgno==PTRMAP_PAGENO(pBt, maxRootPgno) ){ sl@0: maxRootPgno--; sl@0: } sl@0: assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); sl@0: sl@0: rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); sl@0: }else{ sl@0: rc = freePage(pPage); sl@0: releasePage(pPage); sl@0: } sl@0: #endif sl@0: }else{ sl@0: /* If sqlite3BtreeDropTable was called on page 1. */ sl@0: zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); sl@0: releasePage(pPage); sl@0: } sl@0: return rc; sl@0: } sl@0: int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ sl@0: int rc; sl@0: sqlite3BtreeEnter(p); sl@0: p->pBt->db = p->db; sl@0: rc = btreeDropTable(p, iTable, piMoved); sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Read the meta-information out of a database file. Meta[0] sl@0: ** is the number of free pages currently in the database. Meta[1] sl@0: ** through meta[15] are available for use by higher layers. Meta[0] sl@0: ** is read-only, the others are read/write. sl@0: ** sl@0: ** The schema layer numbers meta values differently. At the schema sl@0: ** layer (and the SetCookie and ReadCookie opcodes) the number of sl@0: ** free pages is not visible. So Cookie[0] is the same as Meta[1]. sl@0: */ sl@0: int sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ sl@0: DbPage *pDbPage; sl@0: int rc; sl@0: unsigned char *pP1; sl@0: BtShared *pBt = p->pBt; sl@0: sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: sl@0: /* Reading a meta-data value requires a read-lock on page 1 (and hence sl@0: ** the sqlite_master table. We grab this lock regardless of whether or sl@0: ** not the SQLITE_ReadUncommitted flag is set (the table rooted at page sl@0: ** 1 is treated as a special case by queryTableLock() and lockTable()). sl@0: */ sl@0: rc = queryTableLock(p, 1, READ_LOCK); sl@0: if( rc!=SQLITE_OK ){ sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: assert( idx>=0 && idx<=15 ); sl@0: if( pBt->pPage1 ){ sl@0: /* The b-tree is already holding a reference to page 1 of the database sl@0: ** file. In this case the required meta-data value can be read directly sl@0: ** from the page data of this reference. This is slightly faster than sl@0: ** requesting a new reference from the pager layer. sl@0: */ sl@0: pP1 = (unsigned char *)pBt->pPage1->aData; sl@0: }else{ sl@0: /* The b-tree does not have a reference to page 1 of the database file. sl@0: ** Obtain one from the pager layer. sl@0: */ sl@0: rc = sqlite3PagerGet(pBt->pPager, 1, &pDbPage); sl@0: if( rc ){ sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: pP1 = (unsigned char *)sqlite3PagerGetData(pDbPage); sl@0: } sl@0: *pMeta = get4byte(&pP1[36 + idx*4]); sl@0: sl@0: /* If the b-tree is not holding a reference to page 1, then one was sl@0: ** requested from the pager layer in the above block. Release it now. sl@0: */ sl@0: if( !pBt->pPage1 ){ sl@0: sqlite3PagerUnref(pDbPage); sl@0: } sl@0: sl@0: /* If autovacuumed is disabled in this build but we are trying to sl@0: ** access an autovacuumed database, then make the database readonly. sl@0: */ sl@0: #ifdef SQLITE_OMIT_AUTOVACUUM sl@0: if( idx==4 && *pMeta>0 ) pBt->readOnly = 1; sl@0: #endif sl@0: sl@0: /* Grab the read-lock on page 1. */ sl@0: rc = lockTable(p, 1, READ_LOCK); sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Write meta-information back into the database. Meta[0] is sl@0: ** read-only and may not be written. sl@0: */ sl@0: int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ sl@0: BtShared *pBt = p->pBt; sl@0: unsigned char *pP1; sl@0: int rc; sl@0: assert( idx>=1 && idx<=15 ); sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: if( p->inTrans!=TRANS_WRITE ){ sl@0: rc = pBt->readOnly ? SQLITE_READONLY : SQLITE_ERROR; sl@0: }else{ sl@0: assert( pBt->pPage1!=0 ); sl@0: pP1 = pBt->pPage1->aData; sl@0: rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); sl@0: if( rc==SQLITE_OK ){ sl@0: put4byte(&pP1[36 + idx*4], iMeta); sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( idx==7 ){ sl@0: assert( pBt->autoVacuum || iMeta==0 ); sl@0: assert( iMeta==0 || iMeta==1 ); sl@0: pBt->incrVacuum = iMeta; sl@0: } sl@0: #endif sl@0: } sl@0: } sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Return the flag byte at the beginning of the page that the cursor sl@0: ** is currently pointing to. sl@0: */ sl@0: int sqlite3BtreeFlags(BtCursor *pCur){ sl@0: /* TODO: What about CURSOR_REQUIRESEEK state? Probably need to call sl@0: ** restoreCursorPosition() here. sl@0: */ sl@0: MemPage *pPage; sl@0: restoreCursorPosition(pCur); sl@0: pPage = pCur->apPage[pCur->iPage]; sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( pPage->pBt==pCur->pBt ); sl@0: return pPage ? pPage->aData[pPage->hdrOffset] : 0; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Return the pager associated with a BTree. This routine is used for sl@0: ** testing and debugging only. sl@0: */ sl@0: Pager *sqlite3BtreePager(Btree *p){ sl@0: return p->pBt->pPager; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_INTEGRITY_CHECK sl@0: /* sl@0: ** Append a message to the error message string. sl@0: */ sl@0: static void checkAppendMsg( sl@0: IntegrityCk *pCheck, sl@0: char *zMsg1, sl@0: const char *zFormat, sl@0: ... sl@0: ){ sl@0: va_list ap; sl@0: if( !pCheck->mxErr ) return; sl@0: pCheck->mxErr--; sl@0: pCheck->nErr++; sl@0: va_start(ap, zFormat); sl@0: if( pCheck->errMsg.nChar ){ sl@0: sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); sl@0: } sl@0: if( zMsg1 ){ sl@0: sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1); sl@0: } sl@0: sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap); sl@0: va_end(ap); sl@0: if( pCheck->errMsg.mallocFailed ){ sl@0: pCheck->mallocFailed = 1; sl@0: } sl@0: } sl@0: #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ sl@0: sl@0: #ifndef SQLITE_OMIT_INTEGRITY_CHECK sl@0: /* sl@0: ** Add 1 to the reference count for page iPage. If this is the second sl@0: ** reference to the page, add an error message to pCheck->zErrMsg. sl@0: ** Return 1 if there are 2 ore more references to the page and 0 if sl@0: ** if this is the first reference to the page. sl@0: ** sl@0: ** Also check that the page number is in bounds. sl@0: */ sl@0: static int checkRef(IntegrityCk *pCheck, int iPage, char *zContext){ sl@0: if( iPage==0 ) return 1; sl@0: if( iPage>pCheck->nPage || iPage<0 ){ sl@0: checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage); sl@0: return 1; sl@0: } sl@0: if( pCheck->anRef[iPage]==1 ){ sl@0: checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage); sl@0: return 1; sl@0: } sl@0: return (pCheck->anRef[iPage]++)>1; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: /* sl@0: ** Check that the entry in the pointer-map for page iChild maps to sl@0: ** page iParent, pointer type ptrType. If not, append an error message sl@0: ** to pCheck. sl@0: */ sl@0: static void checkPtrmap( sl@0: IntegrityCk *pCheck, /* Integrity check context */ sl@0: Pgno iChild, /* Child page number */ sl@0: u8 eType, /* Expected pointer map type */ sl@0: Pgno iParent, /* Expected pointer map parent page number */ sl@0: char *zContext /* Context description (used for error msg) */ sl@0: ){ sl@0: int rc; sl@0: u8 ePtrmapType; sl@0: Pgno iPtrmapParent; sl@0: sl@0: rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); sl@0: if( rc!=SQLITE_OK ){ sl@0: checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild); sl@0: return; sl@0: } sl@0: sl@0: if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ sl@0: checkAppendMsg(pCheck, zContext, sl@0: "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", sl@0: iChild, eType, iParent, ePtrmapType, iPtrmapParent); sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Check the integrity of the freelist or of an overflow page list. sl@0: ** Verify that the number of pages on the list is N. sl@0: */ sl@0: static void checkList( sl@0: IntegrityCk *pCheck, /* Integrity checking context */ sl@0: int isFreeList, /* True for a freelist. False for overflow page list */ sl@0: int iPage, /* Page number for first page in the list */ sl@0: int N, /* Expected number of pages in the list */ sl@0: char *zContext /* Context for error messages */ sl@0: ){ sl@0: int i; sl@0: int expected = N; sl@0: int iFirst = iPage; sl@0: while( N-- > 0 && pCheck->mxErr ){ sl@0: DbPage *pOvflPage; sl@0: unsigned char *pOvflData; sl@0: if( iPage<1 ){ sl@0: checkAppendMsg(pCheck, zContext, sl@0: "%d of %d pages missing from overflow list starting at %d", sl@0: N+1, expected, iFirst); sl@0: break; sl@0: } sl@0: if( checkRef(pCheck, iPage, zContext) ) break; sl@0: if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){ sl@0: checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage); sl@0: break; sl@0: } sl@0: pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); sl@0: if( isFreeList ){ sl@0: int n = get4byte(&pOvflData[4]); sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( pCheck->pBt->autoVacuum ){ sl@0: checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext); sl@0: } sl@0: #endif sl@0: if( n>pCheck->pBt->usableSize/4-2 ){ sl@0: checkAppendMsg(pCheck, zContext, sl@0: "freelist leaf count too big on page %d", iPage); sl@0: N--; sl@0: }else{ sl@0: for(i=0; ipBt->autoVacuum ){ sl@0: checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext); sl@0: } sl@0: #endif sl@0: checkRef(pCheck, iFreePage, zContext); sl@0: } sl@0: N -= n; sl@0: } sl@0: } sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: else{ sl@0: /* If this database supports auto-vacuum and iPage is not the last sl@0: ** page in this overflow list, check that the pointer-map entry for sl@0: ** the following page matches iPage. sl@0: */ sl@0: if( pCheck->pBt->autoVacuum && N>0 ){ sl@0: i = get4byte(pOvflData); sl@0: checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext); sl@0: } sl@0: } sl@0: #endif sl@0: iPage = get4byte(pOvflData); sl@0: sqlite3PagerUnref(pOvflPage); sl@0: } sl@0: } sl@0: #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ sl@0: sl@0: #ifndef SQLITE_OMIT_INTEGRITY_CHECK sl@0: /* sl@0: ** Do various sanity checks on a single page of a tree. Return sl@0: ** the tree depth. Root pages return 0. Parents of root pages sl@0: ** return 1, and so forth. sl@0: ** sl@0: ** These checks are done: sl@0: ** sl@0: ** 1. Make sure that cells and freeblocks do not overlap sl@0: ** but combine to completely cover the page. sl@0: ** NO 2. Make sure cell keys are in order. sl@0: ** NO 3. Make sure no key is less than or equal to zLowerBound. sl@0: ** NO 4. Make sure no key is greater than or equal to zUpperBound. sl@0: ** 5. Check the integrity of overflow pages. sl@0: ** 6. Recursively call checkTreePage on all children. sl@0: ** 7. Verify that the depth of all children is the same. sl@0: ** 8. Make sure this page is at least 33% full or else it is sl@0: ** the root of the tree. sl@0: */ sl@0: static int checkTreePage( sl@0: IntegrityCk *pCheck, /* Context for the sanity check */ sl@0: int iPage, /* Page number of the page to check */ sl@0: MemPage *pParent, /* Parent page */ sl@0: char *zParentContext /* Parent context */ sl@0: ){ sl@0: MemPage *pPage; sl@0: int i, rc, depth, d2, pgno, cnt; sl@0: int hdr, cellStart; sl@0: int nCell; sl@0: u8 *data; sl@0: BtShared *pBt; sl@0: int usableSize; sl@0: char zContext[100]; sl@0: char *hit = 0; sl@0: sl@0: sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage); sl@0: sl@0: /* Check that the page exists sl@0: */ sl@0: pBt = pCheck->pBt; sl@0: usableSize = pBt->usableSize; sl@0: if( iPage==0 ) return 0; sl@0: if( checkRef(pCheck, iPage, zParentContext) ) return 0; sl@0: if( (rc = sqlite3BtreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ sl@0: checkAppendMsg(pCheck, zContext, sl@0: "unable to get the page. error code=%d", rc); sl@0: return 0; sl@0: } sl@0: if( (rc = sqlite3BtreeInitPage(pPage))!=0 ){ sl@0: checkAppendMsg(pCheck, zContext, sl@0: "sqlite3BtreeInitPage() returns error code %d", rc); sl@0: releasePage(pPage); sl@0: return 0; sl@0: } sl@0: sl@0: /* Check out all the cells. sl@0: */ sl@0: depth = 0; sl@0: for(i=0; inCell && pCheck->mxErr; i++){ sl@0: u8 *pCell; sl@0: int sz; sl@0: CellInfo info; sl@0: sl@0: /* Check payload overflow pages sl@0: */ sl@0: sqlite3_snprintf(sizeof(zContext), zContext, sl@0: "On tree page %d cell %d: ", iPage, i); sl@0: pCell = findCell(pPage,i); sl@0: sqlite3BtreeParseCellPtr(pPage, pCell, &info); sl@0: sz = info.nData; sl@0: if( !pPage->intKey ) sz += info.nKey; sl@0: assert( sz==info.nPayload ); sl@0: if( sz>info.nLocal ){ sl@0: int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); sl@0: Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( pBt->autoVacuum ){ sl@0: checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext); sl@0: } sl@0: #endif sl@0: checkList(pCheck, 0, pgnoOvfl, nPage, zContext); sl@0: } sl@0: sl@0: /* Check sanity of left child page. sl@0: */ sl@0: if( !pPage->leaf ){ sl@0: pgno = get4byte(pCell); sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( pBt->autoVacuum ){ sl@0: checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext); sl@0: } sl@0: #endif sl@0: d2 = checkTreePage(pCheck,pgno,pPage,zContext); sl@0: if( i>0 && d2!=depth ){ sl@0: checkAppendMsg(pCheck, zContext, "Child page depth differs"); sl@0: } sl@0: depth = d2; sl@0: } sl@0: } sl@0: if( !pPage->leaf ){ sl@0: pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); sl@0: sqlite3_snprintf(sizeof(zContext), zContext, sl@0: "On page %d at right child: ", iPage); sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( pBt->autoVacuum ){ sl@0: checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, 0); sl@0: } sl@0: #endif sl@0: checkTreePage(pCheck, pgno, pPage, zContext); sl@0: } sl@0: sl@0: /* Check for complete coverage of the page sl@0: */ sl@0: data = pPage->aData; sl@0: hdr = pPage->hdrOffset; sl@0: hit = sqlite3PageMalloc( pBt->pageSize ); sl@0: if( hit==0 ){ sl@0: pCheck->mallocFailed = 1; sl@0: }else{ sl@0: u16 contentOffset = get2byte(&data[hdr+5]); sl@0: if (contentOffset > usableSize) { sl@0: checkAppendMsg(pCheck, 0, sl@0: "Corruption detected in header on page %d",iPage,0); sl@0: goto check_page_abort; sl@0: } sl@0: memset(hit, 0, usableSize ); sl@0: memset(hit, 1, get2byte(&data[hdr+5])); sl@0: nCell = get2byte(&data[hdr+3]); sl@0: cellStart = hdr + 12 - 4*pPage->leaf; sl@0: for(i=0; i=usableSize || pc<0 ){ sl@0: checkAppendMsg(pCheck, 0, sl@0: "Corruption detected in cell %d on page %d",i,iPage,0); sl@0: }else{ sl@0: for(j=pc+size-1; j>=pc; j--) hit[j]++; sl@0: } sl@0: } sl@0: for(cnt=0, i=get2byte(&data[hdr+1]); i>0 && i=usableSize || i<0 ){ sl@0: checkAppendMsg(pCheck, 0, sl@0: "Corruption detected in cell %d on page %d",i,iPage,0); sl@0: }else{ sl@0: for(j=i+size-1; j>=i; j--) hit[j]++; sl@0: } sl@0: i = get2byte(&data[i]); sl@0: } sl@0: for(i=cnt=0; i1 ){ sl@0: checkAppendMsg(pCheck, 0, sl@0: "Multiple uses for byte %d of page %d", i, iPage); sl@0: break; sl@0: } sl@0: } sl@0: if( cnt!=data[hdr+7] ){ sl@0: checkAppendMsg(pCheck, 0, sl@0: "Fragmented space is %d byte reported as %d on page %d", sl@0: cnt, data[hdr+7], iPage); sl@0: } sl@0: } sl@0: sl@0: check_page_abort: sl@0: if( hit ) sqlite3PageFree(hit); sl@0: sl@0: releasePage(pPage); sl@0: return depth+1; sl@0: } sl@0: #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ sl@0: sl@0: #ifndef SQLITE_OMIT_INTEGRITY_CHECK sl@0: /* sl@0: ** This routine does a complete check of the given BTree file. aRoot[] is sl@0: ** an array of pages numbers were each page number is the root page of sl@0: ** a table. nRoot is the number of entries in aRoot. sl@0: ** sl@0: ** Write the number of error seen in *pnErr. Except for some memory sl@0: ** allocation errors, nn error message is held in memory obtained from sl@0: ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is sl@0: ** returned. sl@0: */ sl@0: char *sqlite3BtreeIntegrityCheck( sl@0: Btree *p, /* The btree to be checked */ sl@0: int *aRoot, /* An array of root pages numbers for individual trees */ sl@0: int nRoot, /* Number of entries in aRoot[] */ sl@0: int mxErr, /* Stop reporting errors after this many */ sl@0: int *pnErr /* Write number of errors seen to this variable */ sl@0: ){ sl@0: int i; sl@0: int nRef; sl@0: IntegrityCk sCheck; sl@0: BtShared *pBt = p->pBt; sl@0: char zErr[100]; sl@0: sl@0: sqlite3BtreeEnter(p); sl@0: pBt->db = p->db; sl@0: nRef = sqlite3PagerRefcount(pBt->pPager); sl@0: if( lockBtreeWithRetry(p)!=SQLITE_OK ){ sl@0: *pnErr = 1; sl@0: sqlite3BtreeLeave(p); sl@0: return sqlite3DbStrDup(0, "cannot acquire a read lock on the database"); sl@0: } sl@0: sCheck.pBt = pBt; sl@0: sCheck.pPager = pBt->pPager; sl@0: sCheck.nPage = pagerPagecount(sCheck.pPager); sl@0: sCheck.mxErr = mxErr; sl@0: sCheck.nErr = 0; sl@0: sCheck.mallocFailed = 0; sl@0: *pnErr = 0; sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: if( pBt->nTrunc!=0 ){ sl@0: sCheck.nPage = pBt->nTrunc; sl@0: } sl@0: #endif sl@0: if( sCheck.nPage==0 ){ sl@0: unlockBtreeIfUnused(pBt); sl@0: sqlite3BtreeLeave(p); sl@0: return 0; sl@0: } sl@0: sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) ); sl@0: if( !sCheck.anRef ){ sl@0: unlockBtreeIfUnused(pBt); sl@0: *pnErr = 1; sl@0: sqlite3BtreeLeave(p); sl@0: return 0; sl@0: } sl@0: for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; } sl@0: i = PENDING_BYTE_PAGE(pBt); sl@0: if( i<=sCheck.nPage ){ sl@0: sCheck.anRef[i] = 1; sl@0: } sl@0: sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000); sl@0: sl@0: /* Check the integrity of the freelist sl@0: */ sl@0: checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), sl@0: get4byte(&pBt->pPage1->aData[36]), "Main freelist: "); sl@0: sl@0: /* Check all the tables. sl@0: */ sl@0: for(i=0; iautoVacuum && aRoot[i]>1 ){ sl@0: checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0); sl@0: } sl@0: #endif sl@0: checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: "); sl@0: } sl@0: sl@0: /* Make sure every page in the file is referenced sl@0: */ sl@0: for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ sl@0: #ifdef SQLITE_OMIT_AUTOVACUUM sl@0: if( sCheck.anRef[i]==0 ){ sl@0: checkAppendMsg(&sCheck, 0, "Page %d is never used", i); sl@0: } sl@0: #else sl@0: /* If the database supports auto-vacuum, make sure no tables contain sl@0: ** references to pointer-map pages. sl@0: */ sl@0: if( sCheck.anRef[i]==0 && sl@0: (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ sl@0: checkAppendMsg(&sCheck, 0, "Page %d is never used", i); sl@0: } sl@0: if( sCheck.anRef[i]!=0 && sl@0: (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ sl@0: checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i); sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: /* Make sure this analysis did not leave any unref() pages sl@0: */ sl@0: unlockBtreeIfUnused(pBt); sl@0: if( nRef != sqlite3PagerRefcount(pBt->pPager) ){ sl@0: checkAppendMsg(&sCheck, 0, sl@0: "Outstanding page count goes from %d to %d during this analysis", sl@0: nRef, sqlite3PagerRefcount(pBt->pPager) sl@0: ); sl@0: } sl@0: sl@0: /* Clean up and report errors. sl@0: */ sl@0: sqlite3BtreeLeave(p); sl@0: sqlite3_free(sCheck.anRef); sl@0: if( sCheck.mallocFailed ){ sl@0: sqlite3StrAccumReset(&sCheck.errMsg); sl@0: *pnErr = sCheck.nErr+1; sl@0: return 0; sl@0: } sl@0: *pnErr = sCheck.nErr; sl@0: if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); sl@0: return sqlite3StrAccumFinish(&sCheck.errMsg); sl@0: } sl@0: #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ sl@0: sl@0: /* sl@0: ** Return the full pathname of the underlying database file. sl@0: ** sl@0: ** The pager filename is invariant as long as the pager is sl@0: ** open so it is safe to access without the BtShared mutex. sl@0: */ sl@0: const char *sqlite3BtreeGetFilename(Btree *p){ sl@0: assert( p->pBt->pPager!=0 ); sl@0: return sqlite3PagerFilename(p->pBt->pPager); sl@0: } sl@0: sl@0: /* sl@0: ** Return the pathname of the directory that contains the database file. sl@0: ** sl@0: ** The pager directory name is invariant as long as the pager is sl@0: ** open so it is safe to access without the BtShared mutex. sl@0: */ sl@0: const char *sqlite3BtreeGetDirname(Btree *p){ sl@0: assert( p->pBt->pPager!=0 ); sl@0: return sqlite3PagerDirname(p->pBt->pPager); sl@0: } sl@0: sl@0: /* sl@0: ** Return the pathname of the journal file for this database. The return sl@0: ** value of this routine is the same regardless of whether the journal file sl@0: ** has been created or not. sl@0: ** sl@0: ** The pager journal filename is invariant as long as the pager is sl@0: ** open so it is safe to access without the BtShared mutex. sl@0: */ sl@0: const char *sqlite3BtreeGetJournalname(Btree *p){ sl@0: assert( p->pBt->pPager!=0 ); sl@0: return sqlite3PagerJournalname(p->pBt->pPager); sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_VACUUM sl@0: /* sl@0: ** Copy the complete content of pBtFrom into pBtTo. A transaction sl@0: ** must be active for both files. sl@0: ** sl@0: ** The size of file pTo may be reduced by this operation. sl@0: ** If anything goes wrong, the transaction on pTo is rolled back. sl@0: ** sl@0: ** If successful, CommitPhaseOne() may be called on pTo before returning. sl@0: ** The caller should finish committing the transaction on pTo by calling sl@0: ** sqlite3BtreeCommit(). sl@0: */ sl@0: static int btreeCopyFile(Btree *pTo, Btree *pFrom){ sl@0: int rc = SQLITE_OK; sl@0: Pgno i; sl@0: sl@0: Pgno nFromPage; /* Number of pages in pFrom */ sl@0: Pgno nToPage; /* Number of pages in pTo */ sl@0: Pgno nNewPage; /* Number of pages in pTo after the copy */ sl@0: sl@0: Pgno iSkip; /* Pending byte page in pTo */ sl@0: int nToPageSize; /* Page size of pTo in bytes */ sl@0: int nFromPageSize; /* Page size of pFrom in bytes */ sl@0: sl@0: BtShared *pBtTo = pTo->pBt; sl@0: BtShared *pBtFrom = pFrom->pBt; sl@0: pBtTo->db = pTo->db; sl@0: pBtFrom->db = pFrom->db; sl@0: sl@0: nToPageSize = pBtTo->pageSize; sl@0: nFromPageSize = pBtFrom->pageSize; sl@0: sl@0: if( pTo->inTrans!=TRANS_WRITE || pFrom->inTrans!=TRANS_WRITE ){ sl@0: return SQLITE_ERROR; sl@0: } sl@0: if( pBtTo->pCursor ){ sl@0: return SQLITE_BUSY; sl@0: } sl@0: sl@0: nToPage = pagerPagecount(pBtTo->pPager); sl@0: nFromPage = pagerPagecount(pBtFrom->pPager); sl@0: iSkip = PENDING_BYTE_PAGE(pBtTo); sl@0: sl@0: /* Variable nNewPage is the number of pages required to store the sl@0: ** contents of pFrom using the current page-size of pTo. sl@0: */ sl@0: nNewPage = ((i64)nFromPage * (i64)nFromPageSize + (i64)nToPageSize - 1) / sl@0: (i64)nToPageSize; sl@0: sl@0: for(i=1; rc==SQLITE_OK && (i<=nToPage || i<=nNewPage); i++){ sl@0: sl@0: /* Journal the original page. sl@0: ** sl@0: ** iSkip is the page number of the locking page (PENDING_BYTE_PAGE) sl@0: ** in database *pTo (before the copy). This page is never written sl@0: ** into the journal file. Unless i==iSkip or the page was not sl@0: ** present in pTo before the copy operation, journal page i from pTo. sl@0: */ sl@0: if( i!=iSkip && i<=nToPage ){ sl@0: DbPage *pDbPage = 0; sl@0: rc = sqlite3PagerGet(pBtTo->pPager, i, &pDbPage); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3PagerWrite(pDbPage); sl@0: if( rc==SQLITE_OK && i>nFromPage ){ sl@0: /* Yeah. It seems wierd to call DontWrite() right after Write(). But sl@0: ** that is because the names of those procedures do not exactly sl@0: ** represent what they do. Write() really means "put this page in the sl@0: ** rollback journal and mark it as dirty so that it will be written sl@0: ** to the database file later." DontWrite() undoes the second part of sl@0: ** that and prevents the page from being written to the database. The sl@0: ** page is still on the rollback journal, though. And that is the sl@0: ** whole point of this block: to put pages on the rollback journal. sl@0: */ sl@0: rc = sqlite3PagerDontWrite(pDbPage); sl@0: } sl@0: sqlite3PagerUnref(pDbPage); sl@0: } sl@0: } sl@0: sl@0: /* Overwrite the data in page i of the target database */ sl@0: if( rc==SQLITE_OK && i!=iSkip && i<=nNewPage ){ sl@0: sl@0: DbPage *pToPage = 0; sl@0: sqlite3_int64 iOff; sl@0: sl@0: rc = sqlite3PagerGet(pBtTo->pPager, i, &pToPage); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3PagerWrite(pToPage); sl@0: } sl@0: sl@0: for( sl@0: iOff=(i-1)*nToPageSize; sl@0: rc==SQLITE_OK && iOffpPager, iFrom, &pFromPage); sl@0: if( rc==SQLITE_OK ){ sl@0: char *zTo = sqlite3PagerGetData(pToPage); sl@0: char *zFrom = sqlite3PagerGetData(pFromPage); sl@0: int nCopy; sl@0: sl@0: if( nFromPageSize>=nToPageSize ){ sl@0: zFrom += ((i-1)*nToPageSize - ((iFrom-1)*nFromPageSize)); sl@0: nCopy = nToPageSize; sl@0: }else{ sl@0: zTo += (((iFrom-1)*nFromPageSize) - (i-1)*nToPageSize); sl@0: nCopy = nFromPageSize; sl@0: } sl@0: sl@0: memcpy(zTo, zFrom, nCopy); sl@0: sqlite3PagerUnref(pFromPage); sl@0: } sl@0: } sl@0: sl@0: if( pToPage ){ sl@0: MemPage *p = (MemPage *)sqlite3PagerGetExtra(pToPage); sl@0: p->isInit = 0; sl@0: sqlite3PagerUnref(pToPage); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* If things have worked so far, the database file may need to be sl@0: ** truncated. The complex part is that it may need to be truncated to sl@0: ** a size that is not an integer multiple of nToPageSize - the current sl@0: ** page size used by the pager associated with B-Tree pTo. sl@0: ** sl@0: ** For example, say the page-size of pTo is 2048 bytes and the original sl@0: ** number of pages is 5 (10 KB file). If pFrom has a page size of 1024 sl@0: ** bytes and 9 pages, then the file needs to be truncated to 9KB. sl@0: */ sl@0: if( rc==SQLITE_OK ){ sl@0: if( nFromPageSize!=nToPageSize ){ sl@0: sqlite3_file *pFile = sqlite3PagerFile(pBtTo->pPager); sl@0: i64 iSize = (i64)nFromPageSize * (i64)nFromPage; sl@0: i64 iNow = (i64)((nToPage>nNewPage)?nToPage:nNewPage) * (i64)nToPageSize; sl@0: i64 iPending = ((i64)PENDING_BYTE_PAGE(pBtTo)-1) *(i64)nToPageSize; sl@0: sl@0: assert( iSize<=iNow ); sl@0: sl@0: /* Commit phase one syncs the journal file associated with pTo sl@0: ** containing the original data. It does not sync the database file sl@0: ** itself. After doing this it is safe to use OsTruncate() and other sl@0: ** file APIs on the database file directly. sl@0: */ sl@0: pBtTo->db = pTo->db; sl@0: rc = sqlite3PagerCommitPhaseOne(pBtTo->pPager, 0, 0, 1); sl@0: if( iSizeiPending){ sl@0: i64 iOff; sl@0: for( sl@0: iOff=iPending; sl@0: rc==SQLITE_OK && iOff<(iPending+nToPageSize); sl@0: iOff += nFromPageSize sl@0: ){ sl@0: DbPage *pFromPage = 0; sl@0: Pgno iFrom = (iOff/nFromPageSize)+1; sl@0: sl@0: if( iFrom==PENDING_BYTE_PAGE(pBtFrom) || iFrom>nFromPage ){ sl@0: continue; sl@0: } sl@0: sl@0: rc = sqlite3PagerGet(pBtFrom->pPager, iFrom, &pFromPage); sl@0: if( rc==SQLITE_OK ){ sl@0: char *zFrom = sqlite3PagerGetData(pFromPage); sl@0: rc = sqlite3OsWrite(pFile, zFrom, nFromPageSize, iOff); sl@0: sqlite3PagerUnref(pFromPage); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Sync the database file */ sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3PagerSync(pBtTo->pPager); sl@0: } sl@0: }else{ sl@0: rc = sqlite3PagerTruncate(pBtTo->pPager, nNewPage); sl@0: } sl@0: if( rc==SQLITE_OK ){ sl@0: pBtTo->pageSizeFixed = 0; sl@0: } sl@0: } sl@0: sl@0: if( rc ){ sl@0: sqlite3BtreeRollback(pTo); sl@0: } sl@0: sl@0: return rc; sl@0: } sl@0: int sqlite3BtreeCopyFile(Btree *pTo, Btree *pFrom){ sl@0: int rc; sl@0: sqlite3BtreeEnter(pTo); sl@0: sqlite3BtreeEnter(pFrom); sl@0: rc = btreeCopyFile(pTo, pFrom); sl@0: sqlite3BtreeLeave(pFrom); sl@0: sqlite3BtreeLeave(pTo); sl@0: return rc; sl@0: } sl@0: sl@0: #endif /* SQLITE_OMIT_VACUUM */ sl@0: sl@0: /* sl@0: ** Return non-zero if a transaction is active. sl@0: */ sl@0: int sqlite3BtreeIsInTrans(Btree *p){ sl@0: assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); sl@0: return (p && (p->inTrans==TRANS_WRITE)); sl@0: } sl@0: sl@0: /* sl@0: ** Return non-zero if a statement transaction is active. sl@0: */ sl@0: int sqlite3BtreeIsInStmt(Btree *p){ sl@0: assert( sqlite3BtreeHoldsMutex(p) ); sl@0: return (p->pBt && p->pBt->inStmt); sl@0: } sl@0: sl@0: /* sl@0: ** Return non-zero if a read (or write) transaction is active. sl@0: */ sl@0: int sqlite3BtreeIsInReadTrans(Btree *p){ sl@0: assert( sqlite3_mutex_held(p->db->mutex) ); sl@0: return (p && (p->inTrans!=TRANS_NONE)); sl@0: } sl@0: sl@0: /* sl@0: ** This function returns a pointer to a blob of memory associated with sl@0: ** a single shared-btree. The memory is used by client code for its own sl@0: ** purposes (for example, to store a high-level schema associated with sl@0: ** the shared-btree). The btree layer manages reference counting issues. sl@0: ** sl@0: ** The first time this is called on a shared-btree, nBytes bytes of memory sl@0: ** are allocated, zeroed, and returned to the caller. For each subsequent sl@0: ** call the nBytes parameter is ignored and a pointer to the same blob sl@0: ** of memory returned. sl@0: ** sl@0: ** If the nBytes parameter is 0 and the blob of memory has not yet been sl@0: ** allocated, a null pointer is returned. If the blob has already been sl@0: ** allocated, it is returned as normal. sl@0: ** sl@0: ** Just before the shared-btree is closed, the function passed as the sl@0: ** xFree argument when the memory allocation was made is invoked on the sl@0: ** blob of allocated memory. This function should not call sqlite3_free() sl@0: ** on the memory, the btree layer does that. sl@0: */ sl@0: void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ sl@0: BtShared *pBt = p->pBt; sl@0: sqlite3BtreeEnter(p); sl@0: if( !pBt->pSchema && nBytes ){ sl@0: pBt->pSchema = sqlite3MallocZero(nBytes); sl@0: pBt->xFreeSchema = xFree; sl@0: } sl@0: sqlite3BtreeLeave(p); sl@0: return pBt->pSchema; sl@0: } sl@0: sl@0: /* sl@0: ** Return true if another user of the same shared btree as the argument sl@0: ** handle holds an exclusive lock on the sqlite_master table. sl@0: */ sl@0: int sqlite3BtreeSchemaLocked(Btree *p){ sl@0: int rc; sl@0: assert( sqlite3_mutex_held(p->db->mutex) ); sl@0: sqlite3BtreeEnter(p); sl@0: rc = (queryTableLock(p, MASTER_ROOT, READ_LOCK)!=SQLITE_OK); sl@0: sqlite3BtreeLeave(p); sl@0: return rc; sl@0: } sl@0: sl@0: sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: /* sl@0: ** Obtain a lock on the table whose root page is iTab. The sl@0: ** lock is a write lock if isWritelock is true or a read lock sl@0: ** if it is false. sl@0: */ sl@0: int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ sl@0: int rc = SQLITE_OK; sl@0: if( p->sharable ){ sl@0: u8 lockType = READ_LOCK + isWriteLock; sl@0: assert( READ_LOCK+1==WRITE_LOCK ); sl@0: assert( isWriteLock==0 || isWriteLock==1 ); sl@0: sqlite3BtreeEnter(p); sl@0: rc = queryTableLock(p, iTab, lockType); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = lockTable(p, iTab, lockType); sl@0: } sl@0: sqlite3BtreeLeave(p); sl@0: } sl@0: return rc; sl@0: } sl@0: #endif sl@0: sl@0: #ifndef SQLITE_OMIT_INCRBLOB sl@0: /* sl@0: ** Argument pCsr must be a cursor opened for writing on an sl@0: ** INTKEY table currently pointing at a valid table entry. sl@0: ** This function modifies the data stored as part of that entry. sl@0: ** Only the data content may only be modified, it is not possible sl@0: ** to change the length of the data stored. sl@0: */ sl@0: int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ sl@0: assert( cursorHoldsMutex(pCsr) ); sl@0: assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); sl@0: assert(pCsr->isIncrblobHandle); sl@0: sl@0: restoreCursorPosition(pCsr); sl@0: assert( pCsr->eState!=CURSOR_REQUIRESEEK ); sl@0: if( pCsr->eState!=CURSOR_VALID ){ sl@0: return SQLITE_ABORT; sl@0: } sl@0: sl@0: /* Check some preconditions: sl@0: ** (a) the cursor is open for writing, sl@0: ** (b) there is no read-lock on the table being modified and sl@0: ** (c) the cursor points at a valid row of an intKey table. sl@0: */ sl@0: if( !pCsr->wrFlag ){ sl@0: return SQLITE_READONLY; sl@0: } sl@0: assert( !pCsr->pBt->readOnly sl@0: && pCsr->pBt->inTransaction==TRANS_WRITE ); sl@0: if( checkReadLocks(pCsr->pBtree, pCsr->pgnoRoot, pCsr, 0) ){ sl@0: return SQLITE_LOCKED; /* The table pCur points to has a read lock */ sl@0: } sl@0: if( pCsr->eState==CURSOR_INVALID || !pCsr->apPage[pCsr->iPage]->intKey ){ sl@0: return SQLITE_ERROR; sl@0: } sl@0: sl@0: return accessPayload(pCsr, offset, amt, (unsigned char *)z, 0, 1); sl@0: } sl@0: sl@0: /* sl@0: ** Set a flag on this cursor to cache the locations of pages from the sl@0: ** overflow list for the current row. This is used by cursors opened sl@0: ** for incremental blob IO only. sl@0: ** sl@0: ** This function sets a flag only. The actual page location cache sl@0: ** (stored in BtCursor.aOverflow[]) is allocated and used by function sl@0: ** accessPayload() (the worker function for sqlite3BtreeData() and sl@0: ** sqlite3BtreePutData()). sl@0: */ sl@0: void sqlite3BtreeCacheOverflow(BtCursor *pCur){ sl@0: assert( cursorHoldsMutex(pCur) ); sl@0: assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); sl@0: assert(!pCur->isIncrblobHandle); sl@0: assert(!pCur->aOverflow); sl@0: pCur->isIncrblobHandle = 1; sl@0: } sl@0: #endif