sl@0: /* sl@0: ** 2001 September 15 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** Internal interface definitions for SQLite. sl@0: ** sl@0: ** @(#) $Id: sqliteInt.h,v 1.752 2008/08/04 20:13:27 drh Exp $ sl@0: */ sl@0: #ifndef _SQLITEINT_H_ sl@0: #define _SQLITEINT_H_ sl@0: sl@0: /* sl@0: ** Include the configuration header output by 'configure' if we're using the sl@0: ** autoconf-based build sl@0: */ sl@0: #ifdef _HAVE_SQLITE_CONFIG_H sl@0: #include "config.h" sl@0: #endif sl@0: sl@0: #include "sqliteLimit.h" sl@0: sl@0: /* Disable nuisance warnings on Borland compilers */ sl@0: #if defined(__BORLANDC__) sl@0: #pragma warn -rch /* unreachable code */ sl@0: #pragma warn -ccc /* Condition is always true or false */ sl@0: #pragma warn -aus /* Assigned value is never used */ sl@0: #pragma warn -csu /* Comparing signed and unsigned */ sl@0: #pragma warn -spa /* Suspicous pointer arithmetic */ sl@0: #endif sl@0: sl@0: /* Needed for various definitions... */ sl@0: #ifndef _GNU_SOURCE sl@0: # define _GNU_SOURCE sl@0: #endif sl@0: sl@0: /* sl@0: ** Include standard header files as necessary sl@0: */ sl@0: #ifdef HAVE_STDINT_H sl@0: #include sl@0: #endif sl@0: #ifdef HAVE_INTTYPES_H sl@0: #include sl@0: #endif sl@0: sl@0: /* sl@0: ** A macro used to aid in coverage testing. When doing coverage sl@0: ** testing, the condition inside the argument must be evaluated sl@0: ** both true and false in order to get full branch coverage. sl@0: ** This macro can be inserted to ensure adequate test coverage sl@0: ** in places where simple condition/decision coverage is inadequate. sl@0: */ sl@0: #ifdef SQLITE_COVERAGE_TEST sl@0: void sqlite3Coverage(int); sl@0: # define testcase(X) if( X ){ sqlite3Coverage(__LINE__); } sl@0: #else sl@0: # define testcase(X) sl@0: #endif sl@0: sl@0: /* sl@0: ** The ALWAYS and NEVER macros surround boolean expressions which sl@0: ** are intended to always be true or false, respectively. Such sl@0: ** expressions could be omitted from the code completely. But they sl@0: ** are included in a few cases in order to enhance the resilience sl@0: ** of SQLite to unexpected behavior - to make the code "self-healing" sl@0: ** or "ductile" rather than being "brittle" and crashing at the first sl@0: ** hint of unplanned behavior. sl@0: ** sl@0: ** When doing coverage testing ALWAYS and NEVER are hard-coded to sl@0: ** be true and false so that the unreachable code then specify will sl@0: ** not be counted as untested code. sl@0: */ sl@0: #ifdef SQLITE_COVERAGE_TEST sl@0: # define ALWAYS(X) (1) sl@0: # define NEVER(X) (0) sl@0: #else sl@0: # define ALWAYS(X) (X) sl@0: # define NEVER(X) (X) sl@0: #endif sl@0: sl@0: /* sl@0: ** The macro unlikely() is a hint that surrounds a boolean sl@0: ** expression that is usually false. Macro likely() surrounds sl@0: ** a boolean expression that is usually true. GCC is able to sl@0: ** use these hints to generate better code, sometimes. sl@0: */ sl@0: #if defined(__GNUC__) && 0 sl@0: # define likely(X) __builtin_expect((X),1) sl@0: # define unlikely(X) __builtin_expect((X),0) sl@0: #else sl@0: # define likely(X) !!(X) sl@0: # define unlikely(X) !!(X) sl@0: #endif sl@0: sl@0: /* sl@0: * This macro is used to "hide" some ugliness in casting an int sl@0: * value to a ptr value under the MSVC 64-bit compiler. Casting sl@0: * non 64-bit values to ptr types results in a "hard" error with sl@0: * the MSVC 64-bit compiler which this attempts to avoid. sl@0: * sl@0: * A simple compiler pragma or casting sequence could not be found sl@0: * to correct this in all situations, so this macro was introduced. sl@0: * sl@0: * It could be argued that the intptr_t type could be used in this sl@0: * case, but that type is not available on all compilers, or sl@0: * requires the #include of specific headers which differs between sl@0: * platforms. sl@0: */ sl@0: #define SQLITE_INT_TO_PTR(X) ((void*)&((char*)0)[X]) sl@0: #define SQLITE_PTR_TO_INT(X) ((int)(((char*)X)-(char*)0)) sl@0: sl@0: /* sl@0: ** These #defines should enable >2GB file support on Posix if the sl@0: ** underlying operating system supports it. If the OS lacks sl@0: ** large file support, or if the OS is windows, these should be no-ops. sl@0: ** sl@0: ** Ticket #2739: The _LARGEFILE_SOURCE macro must appear before any sl@0: ** system #includes. Hence, this block of code must be the very first sl@0: ** code in all source files. sl@0: ** sl@0: ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch sl@0: ** on the compiler command line. This is necessary if you are compiling sl@0: ** on a recent machine (ex: RedHat 7.2) but you want your code to work sl@0: ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 sl@0: ** without this option, LFS is enable. But LFS does not exist in the kernel sl@0: ** in RedHat 6.0, so the code won't work. Hence, for maximum binary sl@0: ** portability you should omit LFS. sl@0: ** sl@0: ** Similar is true for MacOS. LFS is only supported on MacOS 9 and later. sl@0: */ sl@0: #ifndef SQLITE_DISABLE_LFS sl@0: # define _LARGE_FILE 1 sl@0: # ifndef _FILE_OFFSET_BITS sl@0: # define _FILE_OFFSET_BITS 64 sl@0: # endif sl@0: # define _LARGEFILE_SOURCE 1 sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** The SQLITE_THREADSAFE macro must be defined as either 0 or 1. sl@0: ** Older versions of SQLite used an optional THREADSAFE macro. sl@0: ** We support that for legacy sl@0: */ sl@0: #if !defined(SQLITE_THREADSAFE) sl@0: #if defined(THREADSAFE) sl@0: # define SQLITE_THREADSAFE THREADSAFE sl@0: #else sl@0: # define SQLITE_THREADSAFE 1 sl@0: #endif sl@0: #endif sl@0: sl@0: /* sl@0: ** Exactly one of the following macros must be defined in order to sl@0: ** specify which memory allocation subsystem to use. sl@0: ** sl@0: ** SQLITE_SYSTEM_MALLOC // Use normal system malloc() sl@0: ** SQLITE_MEMDEBUG // Debugging version of system malloc() sl@0: ** SQLITE_MEMORY_SIZE // internal allocator #1 sl@0: ** SQLITE_MMAP_HEAP_SIZE // internal mmap() allocator sl@0: ** SQLITE_POW2_MEMORY_SIZE // internal power-of-two allocator sl@0: ** sl@0: ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as sl@0: ** the default. sl@0: */ sl@0: #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ sl@0: defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ sl@0: defined(SQLITE_POW2_MEMORY_SIZE)>1 sl@0: # error "At most one of the following compile-time configuration options\ sl@0: is allows: SQLITE_SYSTEM_MALLOC, SQLITE_MEMDEBUG, SQLITE_MEMORY_SIZE,\ sl@0: SQLITE_MMAP_HEAP_SIZE, SQLITE_POW2_MEMORY_SIZE" sl@0: #endif sl@0: #if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_MEMDEBUG)+\ sl@0: defined(SQLITE_MEMORY_SIZE)+defined(SQLITE_MMAP_HEAP_SIZE)+\ sl@0: defined(SQLITE_POW2_MEMORY_SIZE)==0 sl@0: # define SQLITE_SYSTEM_MALLOC 1 sl@0: #endif sl@0: sl@0: /* sl@0: ** If SQLITE_MALLOC_SOFT_LIMIT is defined, then try to keep the sl@0: ** sizes of memory allocations below this value where possible. sl@0: */ sl@0: #if defined(SQLITE_POW2_MEMORY_SIZE) && !defined(SQLITE_MALLOC_SOFT_LIMIT) sl@0: # define SQLITE_MALLOC_SOFT_LIMIT 1024 sl@0: #endif sl@0: sl@0: /* sl@0: ** We need to define _XOPEN_SOURCE as follows in order to enable sl@0: ** recursive mutexes on most unix systems. But Mac OS X is different. sl@0: ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, sl@0: ** so it is omitted there. See ticket #2673. sl@0: ** sl@0: ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly sl@0: ** implemented on some systems. So we avoid defining it at all sl@0: ** if it is already defined or if it is unneeded because we are sl@0: ** not doing a threadsafe build. Ticket #2681. sl@0: ** sl@0: ** See also ticket #2741. sl@0: */ sl@0: #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) && !defined(__APPLE__) && SQLITE_THREADSAFE sl@0: # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ sl@0: #endif sl@0: sl@0: #if defined(SQLITE_TCL) || defined(TCLSH) sl@0: # include sl@0: #endif sl@0: sl@0: /* sl@0: ** Many people are failing to set -DNDEBUG=1 when compiling SQLite. sl@0: ** Setting NDEBUG makes the code smaller and run faster. So the following sl@0: ** lines are added to automatically set NDEBUG unless the -DSQLITE_DEBUG=1 sl@0: ** option is set. Thus NDEBUG becomes an opt-in rather than an opt-out sl@0: ** feature. sl@0: */ sl@0: #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) sl@0: # define NDEBUG 1 sl@0: #endif sl@0: sl@0: #include "sqlite3.h" sl@0: #include "hash.h" sl@0: #include "parse.h" sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: #include sl@0: sl@0: /* sl@0: ** If compiling for a processor that lacks floating point support, sl@0: ** substitute integer for floating-point sl@0: */ sl@0: #ifdef SQLITE_OMIT_FLOATING_POINT sl@0: # define double sqlite_int64 sl@0: # define LONGDOUBLE_TYPE sqlite_int64 sl@0: # ifndef SQLITE_BIG_DBL sl@0: # define SQLITE_BIG_DBL (0x7fffffffffffffff) sl@0: # endif sl@0: # define SQLITE_OMIT_DATETIME_FUNCS 1 sl@0: # define SQLITE_OMIT_TRACE 1 sl@0: # undef SQLITE_MIXED_ENDIAN_64BIT_FLOAT sl@0: #endif sl@0: #ifndef SQLITE_BIG_DBL sl@0: # define SQLITE_BIG_DBL (1e99) sl@0: #endif sl@0: sl@0: /* sl@0: ** OMIT_TEMPDB is set to 1 if SQLITE_OMIT_TEMPDB is defined, or 0 sl@0: ** afterward. Having this macro allows us to cause the C compiler sl@0: ** to omit code used by TEMP tables without messy #ifndef statements. sl@0: */ sl@0: #ifdef SQLITE_OMIT_TEMPDB sl@0: #define OMIT_TEMPDB 1 sl@0: #else sl@0: #define OMIT_TEMPDB 0 sl@0: #endif sl@0: sl@0: /* sl@0: ** If the following macro is set to 1, then NULL values are considered sl@0: ** distinct when determining whether or not two entries are the same sl@0: ** in a UNIQUE index. This is the way PostgreSQL, Oracle, DB2, MySQL, sl@0: ** OCELOT, and Firebird all work. The SQL92 spec explicitly says this sl@0: ** is the way things are suppose to work. sl@0: ** sl@0: ** If the following macro is set to 0, the NULLs are indistinct for sl@0: ** a UNIQUE index. In this mode, you can only have a single NULL entry sl@0: ** for a column declared UNIQUE. This is the way Informix and SQL Server sl@0: ** work. sl@0: */ sl@0: #define NULL_DISTINCT_FOR_UNIQUE 1 sl@0: sl@0: /* sl@0: ** The "file format" number is an integer that is incremented whenever sl@0: ** the VDBE-level file format changes. The following macros define the sl@0: ** the default file format for new databases and the maximum file format sl@0: ** that the library can read. sl@0: */ sl@0: #define SQLITE_MAX_FILE_FORMAT 4 sl@0: #ifndef SQLITE_DEFAULT_FILE_FORMAT sl@0: # define SQLITE_DEFAULT_FILE_FORMAT 1 sl@0: #endif sl@0: sl@0: /* sl@0: ** Provide a default value for SQLITE_TEMP_STORE in case it is not specified sl@0: ** on the command-line sl@0: */ sl@0: #ifndef SQLITE_TEMP_STORE sl@0: # define SQLITE_TEMP_STORE 1 sl@0: #endif sl@0: sl@0: /* sl@0: ** GCC does not define the offsetof() macro so we'll have to do it sl@0: ** ourselves. sl@0: */ sl@0: #ifndef offsetof sl@0: #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) sl@0: #endif sl@0: sl@0: /* sl@0: ** Check to see if this machine uses EBCDIC. (Yes, believe it or sl@0: ** not, there are still machines out there that use EBCDIC.) sl@0: */ sl@0: #if 'A' == '\301' sl@0: # define SQLITE_EBCDIC 1 sl@0: #else sl@0: # define SQLITE_ASCII 1 sl@0: #endif sl@0: sl@0: /* sl@0: ** Integers of known sizes. These typedefs might change for architectures sl@0: ** where the sizes very. Preprocessor macros are available so that the sl@0: ** types can be conveniently redefined at compile-type. Like this: sl@0: ** sl@0: ** cc '-DUINTPTR_TYPE=long long int' ... sl@0: */ sl@0: #ifndef UINT32_TYPE sl@0: # ifdef HAVE_UINT32_T sl@0: # define UINT32_TYPE uint32_t sl@0: # else sl@0: # define UINT32_TYPE unsigned int sl@0: # endif sl@0: #endif sl@0: #ifndef UINT16_TYPE sl@0: # ifdef HAVE_UINT16_T sl@0: # define UINT16_TYPE uint16_t sl@0: # else sl@0: # define UINT16_TYPE unsigned short int sl@0: # endif sl@0: #endif sl@0: #ifndef INT16_TYPE sl@0: # ifdef HAVE_INT16_T sl@0: # define INT16_TYPE int16_t sl@0: # else sl@0: # define INT16_TYPE short int sl@0: # endif sl@0: #endif sl@0: #ifndef UINT8_TYPE sl@0: # ifdef HAVE_UINT8_T sl@0: # define UINT8_TYPE uint8_t sl@0: # else sl@0: # define UINT8_TYPE unsigned char sl@0: # endif sl@0: #endif sl@0: #ifndef INT8_TYPE sl@0: # ifdef HAVE_INT8_T sl@0: # define INT8_TYPE int8_t sl@0: # else sl@0: # define INT8_TYPE signed char sl@0: # endif sl@0: #endif sl@0: #ifndef LONGDOUBLE_TYPE sl@0: # define LONGDOUBLE_TYPE long double sl@0: #endif sl@0: typedef sqlite_int64 i64; /* 8-byte signed integer */ sl@0: typedef sqlite_uint64 u64; /* 8-byte unsigned integer */ sl@0: typedef UINT32_TYPE u32; /* 4-byte unsigned integer */ sl@0: typedef UINT16_TYPE u16; /* 2-byte unsigned integer */ sl@0: typedef INT16_TYPE i16; /* 2-byte signed integer */ sl@0: typedef UINT8_TYPE u8; /* 1-byte unsigned integer */ sl@0: typedef UINT8_TYPE i8; /* 1-byte signed integer */ sl@0: sl@0: /* sl@0: ** Macros to determine whether the machine is big or little endian, sl@0: ** evaluated at runtime. sl@0: */ sl@0: #ifdef SQLITE_AMALGAMATION sl@0: const int sqlite3one; sl@0: #else sl@0: extern const int sqlite3one; sl@0: #endif sl@0: #if defined(i386) || defined(__i386__) || defined(_M_IX86) sl@0: # define SQLITE_BIGENDIAN 0 sl@0: # define SQLITE_LITTLEENDIAN 1 sl@0: # define SQLITE_UTF16NATIVE SQLITE_UTF16LE sl@0: #else sl@0: # define SQLITE_BIGENDIAN (*(char *)(&sqlite3one)==0) sl@0: # define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1) sl@0: # define SQLITE_UTF16NATIVE (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE) sl@0: #endif sl@0: sl@0: /* sl@0: ** Constants for the largest and smallest possible 64-bit signed integers. sl@0: ** These macros are designed to work correctly on both 32-bit and 64-bit sl@0: ** compilers. sl@0: */ sl@0: #define LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32)) sl@0: #define SMALLEST_INT64 (((i64)-1) - LARGEST_INT64) sl@0: sl@0: /* sl@0: ** An instance of the following structure is used to store the busy-handler sl@0: ** callback for a given sqlite handle. sl@0: ** sl@0: ** The sqlite.busyHandler member of the sqlite struct contains the busy sl@0: ** callback for the database handle. Each pager opened via the sqlite sl@0: ** handle is passed a pointer to sqlite.busyHandler. The busy-handler sl@0: ** callback is currently invoked only from within pager.c. sl@0: */ sl@0: typedef struct BusyHandler BusyHandler; sl@0: struct BusyHandler { sl@0: int (*xFunc)(void *,int); /* The busy callback */ sl@0: void *pArg; /* First arg to busy callback */ sl@0: int nBusy; /* Incremented with each busy call */ sl@0: }; sl@0: sl@0: /* sl@0: ** Name of the master database table. The master database table sl@0: ** is a special table that holds the names and attributes of all sl@0: ** user tables and indices. sl@0: */ sl@0: #define MASTER_NAME "sqlite_master" sl@0: #define TEMP_MASTER_NAME "sqlite_temp_master" sl@0: sl@0: /* sl@0: ** The root-page of the master database table. sl@0: */ sl@0: #define MASTER_ROOT 1 sl@0: sl@0: /* sl@0: ** The name of the schema table. sl@0: */ sl@0: #define SCHEMA_TABLE(x) ((!OMIT_TEMPDB)&&(x==1)?TEMP_MASTER_NAME:MASTER_NAME) sl@0: sl@0: /* sl@0: ** A convenience macro that returns the number of elements in sl@0: ** an array. sl@0: */ sl@0: #define ArraySize(X) (sizeof(X)/sizeof(X[0])) sl@0: sl@0: /* sl@0: ** The following value as a destructor means to use sqlite3DbFree(). sl@0: ** This is an internal extension to SQLITE_STATIC and SQLITE_TRANSIENT. sl@0: */ sl@0: #define SQLITE_DYNAMIC ((sqlite3_destructor_type)sqlite3DbFree) sl@0: sl@0: /* sl@0: ** Forward references to structures sl@0: */ sl@0: typedef struct AggInfo AggInfo; sl@0: typedef struct AuthContext AuthContext; sl@0: typedef struct Bitvec Bitvec; sl@0: typedef struct CollSeq CollSeq; sl@0: typedef struct Column Column; sl@0: typedef struct Db Db; sl@0: typedef struct Schema Schema; sl@0: typedef struct Expr Expr; sl@0: typedef struct ExprList ExprList; sl@0: typedef struct FKey FKey; sl@0: typedef struct FuncDef FuncDef; sl@0: typedef struct IdList IdList; sl@0: typedef struct Index Index; sl@0: typedef struct KeyClass KeyClass; sl@0: typedef struct KeyInfo KeyInfo; sl@0: typedef struct Lookaside Lookaside; sl@0: typedef struct LookasideSlot LookasideSlot; sl@0: typedef struct Module Module; sl@0: typedef struct NameContext NameContext; sl@0: typedef struct Parse Parse; sl@0: typedef struct Select Select; sl@0: typedef struct SrcList SrcList; sl@0: typedef struct StrAccum StrAccum; sl@0: typedef struct Table Table; sl@0: typedef struct TableLock TableLock; sl@0: typedef struct Token Token; sl@0: typedef struct TriggerStack TriggerStack; sl@0: typedef struct TriggerStep TriggerStep; sl@0: typedef struct Trigger Trigger; sl@0: typedef struct WhereInfo WhereInfo; sl@0: typedef struct WhereLevel WhereLevel; sl@0: sl@0: /* sl@0: ** Defer sourcing vdbe.h and btree.h until after the "u8" and sl@0: ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque sl@0: ** pointer types (i.e. FuncDef) defined above. sl@0: */ sl@0: #include "btree.h" sl@0: #include "vdbe.h" sl@0: #include "pager.h" sl@0: sl@0: #include "os.h" sl@0: #include "mutex.h" sl@0: sl@0: sl@0: /* sl@0: ** Each database file to be accessed by the system is an instance sl@0: ** of the following structure. There are normally two of these structures sl@0: ** in the sqlite.aDb[] array. aDb[0] is the main database file and sl@0: ** aDb[1] is the database file used to hold temporary tables. Additional sl@0: ** databases may be attached. sl@0: */ sl@0: struct Db { sl@0: char *zName; /* Name of this database */ sl@0: Btree *pBt; /* The B*Tree structure for this database file */ sl@0: u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ sl@0: u8 safety_level; /* How aggressive at synching data to disk */ sl@0: void *pAux; /* Auxiliary data. Usually NULL */ sl@0: void (*xFreeAux)(void*); /* Routine to free pAux */ sl@0: Schema *pSchema; /* Pointer to database schema (possibly shared) */ sl@0: }; sl@0: sl@0: /* sl@0: ** An instance of the following structure stores a database schema. sl@0: ** sl@0: ** If there are no virtual tables configured in this schema, the sl@0: ** Schema.db variable is set to NULL. After the first virtual table sl@0: ** has been added, it is set to point to the database connection sl@0: ** used to create the connection. Once a virtual table has been sl@0: ** added to the Schema structure and the Schema.db variable populated, sl@0: ** only that database connection may use the Schema to prepare sl@0: ** statements. sl@0: */ sl@0: struct Schema { sl@0: int schema_cookie; /* Database schema version number for this file */ sl@0: Hash tblHash; /* All tables indexed by name */ sl@0: Hash idxHash; /* All (named) indices indexed by name */ sl@0: Hash trigHash; /* All triggers indexed by name */ sl@0: Hash aFKey; /* Foreign keys indexed by to-table */ sl@0: Table *pSeqTab; /* The sqlite_sequence table used by AUTOINCREMENT */ sl@0: u8 file_format; /* Schema format version for this file */ sl@0: u8 enc; /* Text encoding used by this database */ sl@0: u16 flags; /* Flags associated with this schema */ sl@0: int cache_size; /* Number of pages to use in the cache */ sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: sqlite3 *db; /* "Owner" connection. See comment above */ sl@0: #endif sl@0: }; sl@0: sl@0: /* sl@0: ** These macros can be used to test, set, or clear bits in the sl@0: ** Db.flags field. sl@0: */ sl@0: #define DbHasProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))==(P)) sl@0: #define DbHasAnyProperty(D,I,P) (((D)->aDb[I].pSchema->flags&(P))!=0) sl@0: #define DbSetProperty(D,I,P) (D)->aDb[I].pSchema->flags|=(P) sl@0: #define DbClearProperty(D,I,P) (D)->aDb[I].pSchema->flags&=~(P) sl@0: sl@0: /* sl@0: ** Allowed values for the DB.flags field. sl@0: ** sl@0: ** The DB_SchemaLoaded flag is set after the database schema has been sl@0: ** read into internal hash tables. sl@0: ** sl@0: ** DB_UnresetViews means that one or more views have column names that sl@0: ** have been filled out. If the schema changes, these column names might sl@0: ** changes and so the view will need to be reset. sl@0: */ sl@0: #define DB_SchemaLoaded 0x0001 /* The schema has been loaded */ sl@0: #define DB_UnresetViews 0x0002 /* Some views have defined column names */ sl@0: #define DB_Empty 0x0004 /* The file is empty (length 0 bytes) */ sl@0: sl@0: /* sl@0: ** The number of different kinds of things that can be limited sl@0: ** using the sqlite3_limit() interface. sl@0: */ sl@0: #define SQLITE_N_LIMIT (SQLITE_LIMIT_VARIABLE_NUMBER+1) sl@0: sl@0: /* sl@0: ** Lookaside malloc is a set of fixed-size buffers that can be used sl@0: ** to satisify small transient memory allocation requests for objects sl@0: ** associated with a particular database connection. The use of sl@0: ** lookaside malloc provides a significant performance enhancement sl@0: ** (approx 10%) by avoiding numerous malloc/free requests while parsing sl@0: ** SQL statements. sl@0: ** sl@0: ** The Lookaside structure holds configuration information about the sl@0: ** lookaside malloc subsystem. Each available memory allocation in sl@0: ** the lookaside subsystem is stored on a linked list of LookasideSlot sl@0: ** objects. sl@0: */ sl@0: struct Lookaside { sl@0: u16 sz; /* Size of each buffer in bytes */ sl@0: u8 bEnabled; /* True if use lookaside. False to ignore it */ sl@0: u8 bMalloced; /* True if pStart obtained from sqlite3_malloc() */ sl@0: int nOut; /* Number of buffers currently checked out */ sl@0: int mxOut; /* Highwater mark for nOut */ sl@0: LookasideSlot *pFree; /* List if available buffers */ sl@0: void *pStart; /* First byte of available memory space */ sl@0: void *pEnd; /* First byte past end of available space */ sl@0: }; sl@0: struct LookasideSlot { sl@0: LookasideSlot *pNext; /* Next buffer in the list of free buffers */ sl@0: }; sl@0: sl@0: /* sl@0: ** Each database is an instance of the following structure. sl@0: ** sl@0: ** The sqlite.lastRowid records the last insert rowid generated by an sl@0: ** insert statement. Inserts on views do not affect its value. Each sl@0: ** trigger has its own context, so that lastRowid can be updated inside sl@0: ** triggers as usual. The previous value will be restored once the trigger sl@0: ** exits. Upon entering a before or instead of trigger, lastRowid is no sl@0: ** longer (since after version 2.8.12) reset to -1. sl@0: ** sl@0: ** The sqlite.nChange does not count changes within triggers and keeps no sl@0: ** context. It is reset at start of sqlite3_exec. sl@0: ** The sqlite.lsChange represents the number of changes made by the last sl@0: ** insert, update, or delete statement. It remains constant throughout the sl@0: ** length of a statement and is then updated by OP_SetCounts. It keeps a sl@0: ** context stack just like lastRowid so that the count of changes sl@0: ** within a trigger is not seen outside the trigger. Changes to views do not sl@0: ** affect the value of lsChange. sl@0: ** The sqlite.csChange keeps track of the number of current changes (since sl@0: ** the last statement) and is used to update sqlite_lsChange. sl@0: ** sl@0: ** The member variables sqlite.errCode, sqlite.zErrMsg and sqlite.zErrMsg16 sl@0: ** store the most recent error code and, if applicable, string. The sl@0: ** internal function sqlite3Error() is used to set these variables sl@0: ** consistently. sl@0: */ sl@0: struct sqlite3 { sl@0: sqlite3_vfs *pVfs; /* OS Interface */ sl@0: int nDb; /* Number of backends currently in use */ sl@0: Db *aDb; /* All backends */ sl@0: int flags; /* Miscellanous flags. See below */ sl@0: int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ sl@0: int errCode; /* Most recent error code (SQLITE_*) */ sl@0: int errMask; /* & result codes with this before returning */ sl@0: u8 autoCommit; /* The auto-commit flag. */ sl@0: u8 temp_store; /* 1: file 2: memory 0: default */ sl@0: u8 mallocFailed; /* True if we have seen a malloc failure */ sl@0: u8 dfltLockMode; /* Default locking-mode for attached dbs */ sl@0: u8 dfltJournalMode; /* Default journal mode for attached dbs */ sl@0: signed char nextAutovac; /* Autovac setting after VACUUM if >=0 */ sl@0: int nextPagesize; /* Pagesize after VACUUM if >0 */ sl@0: int nTable; /* Number of tables in the database */ sl@0: CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ sl@0: i64 lastRowid; /* ROWID of most recent insert (see above) */ sl@0: i64 priorNewRowid; /* Last randomly generated ROWID */ sl@0: int magic; /* Magic number for detect library misuse */ sl@0: int nChange; /* Value returned by sqlite3_changes() */ sl@0: int nTotalChange; /* Value returned by sqlite3_total_changes() */ sl@0: sqlite3_mutex *mutex; /* Connection mutex */ sl@0: int aLimit[SQLITE_N_LIMIT]; /* Limits */ sl@0: struct sqlite3InitInfo { /* Information used during initialization */ sl@0: int iDb; /* When back is being initialized */ sl@0: int newTnum; /* Rootpage of table being initialized */ sl@0: u8 busy; /* TRUE if currently initializing */ sl@0: } init; sl@0: int nExtension; /* Number of loaded extensions */ sl@0: void **aExtension; /* Array of shared libraray handles */ sl@0: struct Vdbe *pVdbe; /* List of active virtual machines */ sl@0: int activeVdbeCnt; /* Number of vdbes currently executing */ sl@0: void (*xTrace)(void*,const char*); /* Trace function */ sl@0: void *pTraceArg; /* Argument to the trace function */ sl@0: void (*xProfile)(void*,const char*,u64); /* Profiling function */ sl@0: void *pProfileArg; /* Argument to profile function */ sl@0: void *pCommitArg; /* Argument to xCommitCallback() */ sl@0: int (*xCommitCallback)(void*); /* Invoked at every commit. */ sl@0: void *pRollbackArg; /* Argument to xRollbackCallback() */ sl@0: void (*xRollbackCallback)(void*); /* Invoked at every commit. */ sl@0: void *pUpdateArg; sl@0: void (*xUpdateCallback)(void*,int, const char*,const char*,sqlite_int64); sl@0: void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*); sl@0: void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*); sl@0: void *pCollNeededArg; sl@0: sqlite3_value *pErr; /* Most recent error message */ sl@0: char *zErrMsg; /* Most recent error message (UTF-8 encoded) */ sl@0: char *zErrMsg16; /* Most recent error message (UTF-16 encoded) */ sl@0: union { sl@0: int isInterrupted; /* True if sqlite3_interrupt has been called */ sl@0: double notUsed1; /* Spacer */ sl@0: } u1; sl@0: Lookaside lookaside; /* Lookaside malloc configuration */ sl@0: #ifndef SQLITE_OMIT_AUTHORIZATION sl@0: int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); sl@0: /* Access authorization function */ sl@0: void *pAuthArg; /* 1st argument to the access auth function */ sl@0: #endif sl@0: #ifndef SQLITE_OMIT_PROGRESS_CALLBACK sl@0: int (*xProgress)(void *); /* The progress callback */ sl@0: void *pProgressArg; /* Argument to the progress callback */ sl@0: int nProgressOps; /* Number of opcodes for progress callback */ sl@0: #endif sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: Hash aModule; /* populated by sqlite3_create_module() */ sl@0: Table *pVTab; /* vtab with active Connect/Create method */ sl@0: sqlite3_vtab **aVTrans; /* Virtual tables with open transactions */ sl@0: int nVTrans; /* Allocated size of aVTrans */ sl@0: #endif sl@0: Hash aFunc; /* All functions that can be in SQL exprs */ sl@0: Hash aCollSeq; /* All collating sequences */ sl@0: BusyHandler busyHandler; /* Busy callback */ sl@0: int busyTimeout; /* Busy handler timeout, in msec */ sl@0: Db aDbStatic[2]; /* Static space for the 2 default backends */ sl@0: #ifdef SQLITE_SSE sl@0: sqlite3_stmt *pFetch; /* Used by SSE to fetch stored statements */ sl@0: #endif sl@0: }; sl@0: sl@0: /* sl@0: ** A macro to discover the encoding of a database. sl@0: */ sl@0: #define ENC(db) ((db)->aDb[0].pSchema->enc) sl@0: sl@0: /* sl@0: ** Possible values for the sqlite.flags and or Db.flags fields. sl@0: ** sl@0: ** On sqlite.flags, the SQLITE_InTrans value means that we have sl@0: ** executed a BEGIN. On Db.flags, SQLITE_InTrans means a statement sl@0: ** transaction is active on that particular database file. sl@0: */ sl@0: #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ sl@0: #define SQLITE_InTrans 0x00000008 /* True if in a transaction */ sl@0: #define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */ sl@0: #define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */ sl@0: #define SQLITE_ShortColNames 0x00000040 /* Show short columns names */ sl@0: #define SQLITE_CountRows 0x00000080 /* Count rows changed by INSERT, */ sl@0: /* DELETE, or UPDATE and return */ sl@0: /* the count using a callback. */ sl@0: #define SQLITE_NullCallback 0x00000100 /* Invoke the callback once if the */ sl@0: /* result set is empty */ sl@0: #define SQLITE_SqlTrace 0x00000200 /* Debug print SQL as it executes */ sl@0: #define SQLITE_VdbeListing 0x00000400 /* Debug listings of VDBE programs */ sl@0: #define SQLITE_WriteSchema 0x00000800 /* OK to update SQLITE_MASTER */ sl@0: #define SQLITE_NoReadlock 0x00001000 /* Readlocks are omitted when sl@0: ** accessing read-only databases */ sl@0: #define SQLITE_IgnoreChecks 0x00002000 /* Do not enforce check constraints */ sl@0: #define SQLITE_ReadUncommitted 0x00004000 /* For shared-cache mode */ sl@0: #define SQLITE_LegacyFileFmt 0x00008000 /* Create new databases in format 1 */ sl@0: #define SQLITE_FullFSync 0x00010000 /* Use full fsync on the backend */ sl@0: #define SQLITE_LoadExtension 0x00020000 /* Enable load_extension */ sl@0: sl@0: #define SQLITE_RecoveryMode 0x00040000 /* Ignore schema errors */ sl@0: #define SQLITE_SharedCache 0x00080000 /* Cache sharing is enabled */ sl@0: #define SQLITE_Vtab 0x00100000 /* There exists a virtual table */ sl@0: sl@0: /* sl@0: ** Possible values for the sqlite.magic field. sl@0: ** The numbers are obtained at random and have no special meaning, other sl@0: ** than being distinct from one another. sl@0: */ sl@0: #define SQLITE_MAGIC_OPEN 0xa029a697 /* Database is open */ sl@0: #define SQLITE_MAGIC_CLOSED 0x9f3c2d33 /* Database is closed */ sl@0: #define SQLITE_MAGIC_SICK 0x4b771290 /* Error and awaiting close */ sl@0: #define SQLITE_MAGIC_BUSY 0xf03b7906 /* Database currently in use */ sl@0: #define SQLITE_MAGIC_ERROR 0xb5357930 /* An SQLITE_MISUSE error occurred */ sl@0: sl@0: /* sl@0: ** Each SQL function is defined by an instance of the following sl@0: ** structure. A pointer to this structure is stored in the sqlite.aFunc sl@0: ** hash table. When multiple functions have the same name, the hash table sl@0: ** points to a linked list of these structures. sl@0: */ sl@0: struct FuncDef { sl@0: i16 nArg; /* Number of arguments. -1 means unlimited */ sl@0: u8 iPrefEnc; /* Preferred text encoding (SQLITE_UTF8, 16LE, 16BE) */ sl@0: u8 needCollSeq; /* True if sqlite3GetFuncCollSeq() might be called */ sl@0: u8 flags; /* Some combination of SQLITE_FUNC_* */ sl@0: void *pUserData; /* User data parameter */ sl@0: FuncDef *pNext; /* Next function with same name */ sl@0: void (*xFunc)(sqlite3_context*,int,sqlite3_value**); /* Regular function */ sl@0: void (*xStep)(sqlite3_context*,int,sqlite3_value**); /* Aggregate step */ sl@0: void (*xFinalize)(sqlite3_context*); /* Aggregate finializer */ sl@0: char zName[1]; /* SQL name of the function. MUST BE LAST */ sl@0: }; sl@0: sl@0: /* sl@0: ** Each SQLite module (virtual table definition) is defined by an sl@0: ** instance of the following structure, stored in the sqlite3.aModule sl@0: ** hash table. sl@0: */ sl@0: struct Module { sl@0: const sqlite3_module *pModule; /* Callback pointers */ sl@0: const char *zName; /* Name passed to create_module() */ sl@0: void *pAux; /* pAux passed to create_module() */ sl@0: void (*xDestroy)(void *); /* Module destructor function */ sl@0: }; sl@0: sl@0: /* sl@0: ** Possible values for FuncDef.flags sl@0: */ sl@0: #define SQLITE_FUNC_LIKE 0x01 /* Candidate for the LIKE optimization */ sl@0: #define SQLITE_FUNC_CASE 0x02 /* Case-sensitive LIKE-type function */ sl@0: #define SQLITE_FUNC_EPHEM 0x04 /* Ephermeral. Delete with VDBE */ sl@0: sl@0: /* sl@0: ** information about each column of an SQL table is held in an instance sl@0: ** of this structure. sl@0: */ sl@0: struct Column { sl@0: char *zName; /* Name of this column */ sl@0: Expr *pDflt; /* Default value of this column */ sl@0: char *zType; /* Data type for this column */ sl@0: char *zColl; /* Collating sequence. If NULL, use the default */ sl@0: u8 notNull; /* True if there is a NOT NULL constraint */ sl@0: u8 isPrimKey; /* True if this column is part of the PRIMARY KEY */ sl@0: char affinity; /* One of the SQLITE_AFF_... values */ sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: u8 isHidden; /* True if this column is 'hidden' */ sl@0: #endif sl@0: }; sl@0: sl@0: /* sl@0: ** A "Collating Sequence" is defined by an instance of the following sl@0: ** structure. Conceptually, a collating sequence consists of a name and sl@0: ** a comparison routine that defines the order of that sequence. sl@0: ** sl@0: ** There may two seperate implementations of the collation function, one sl@0: ** that processes text in UTF-8 encoding (CollSeq.xCmp) and another that sl@0: ** processes text encoded in UTF-16 (CollSeq.xCmp16), using the machine sl@0: ** native byte order. When a collation sequence is invoked, SQLite selects sl@0: ** the version that will require the least expensive encoding sl@0: ** translations, if any. sl@0: ** sl@0: ** The CollSeq.pUser member variable is an extra parameter that passed in sl@0: ** as the first argument to the UTF-8 comparison function, xCmp. sl@0: ** CollSeq.pUser16 is the equivalent for the UTF-16 comparison function, sl@0: ** xCmp16. sl@0: ** sl@0: ** If both CollSeq.xCmp and CollSeq.xCmp16 are NULL, it means that the sl@0: ** collating sequence is undefined. Indices built on an undefined sl@0: ** collating sequence may not be read or written. sl@0: */ sl@0: struct CollSeq { sl@0: char *zName; /* Name of the collating sequence, UTF-8 encoded */ sl@0: u8 enc; /* Text encoding handled by xCmp() */ sl@0: u8 type; /* One of the SQLITE_COLL_... values below */ sl@0: void *pUser; /* First argument to xCmp() */ sl@0: int (*xCmp)(void*,int, const void*, int, const void*); sl@0: void (*xDel)(void*); /* Destructor for pUser */ sl@0: }; sl@0: sl@0: /* sl@0: ** Allowed values of CollSeq flags: sl@0: */ sl@0: #define SQLITE_COLL_BINARY 1 /* The default memcmp() collating sequence */ sl@0: #define SQLITE_COLL_NOCASE 2 /* The built-in NOCASE collating sequence */ sl@0: #define SQLITE_COLL_REVERSE 3 /* The built-in REVERSE collating sequence */ sl@0: #define SQLITE_COLL_USER 0 /* Any other user-defined collating sequence */ sl@0: sl@0: /* sl@0: ** A sort order can be either ASC or DESC. sl@0: */ sl@0: #define SQLITE_SO_ASC 0 /* Sort in ascending order */ sl@0: #define SQLITE_SO_DESC 1 /* Sort in ascending order */ sl@0: sl@0: /* sl@0: ** Column affinity types. sl@0: ** sl@0: ** These used to have mnemonic name like 'i' for SQLITE_AFF_INTEGER and sl@0: ** 't' for SQLITE_AFF_TEXT. But we can save a little space and improve sl@0: ** the speed a little by number the values consecutively. sl@0: ** sl@0: ** But rather than start with 0 or 1, we begin with 'a'. That way, sl@0: ** when multiple affinity types are concatenated into a string and sl@0: ** used as the P4 operand, they will be more readable. sl@0: ** sl@0: ** Note also that the numeric types are grouped together so that testing sl@0: ** for a numeric type is a single comparison. sl@0: */ sl@0: #define SQLITE_AFF_TEXT 'a' sl@0: #define SQLITE_AFF_NONE 'b' sl@0: #define SQLITE_AFF_NUMERIC 'c' sl@0: #define SQLITE_AFF_INTEGER 'd' sl@0: #define SQLITE_AFF_REAL 'e' sl@0: sl@0: #define sqlite3IsNumericAffinity(X) ((X)>=SQLITE_AFF_NUMERIC) sl@0: sl@0: /* sl@0: ** The SQLITE_AFF_MASK values masks off the significant bits of an sl@0: ** affinity value. sl@0: */ sl@0: #define SQLITE_AFF_MASK 0x67 sl@0: sl@0: /* sl@0: ** Additional bit values that can be ORed with an affinity without sl@0: ** changing the affinity. sl@0: */ sl@0: #define SQLITE_JUMPIFNULL 0x08 /* jumps if either operand is NULL */ sl@0: #define SQLITE_STOREP2 0x10 /* Store result in reg[P2] rather than jump */ sl@0: sl@0: /* sl@0: ** Each SQL table is represented in memory by an instance of the sl@0: ** following structure. sl@0: ** sl@0: ** Table.zName is the name of the table. The case of the original sl@0: ** CREATE TABLE statement is stored, but case is not significant for sl@0: ** comparisons. sl@0: ** sl@0: ** Table.nCol is the number of columns in this table. Table.aCol is a sl@0: ** pointer to an array of Column structures, one for each column. sl@0: ** sl@0: ** If the table has an INTEGER PRIMARY KEY, then Table.iPKey is the index of sl@0: ** the column that is that key. Otherwise Table.iPKey is negative. Note sl@0: ** that the datatype of the PRIMARY KEY must be INTEGER for this field to sl@0: ** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of sl@0: ** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid sl@0: ** is generated for each row of the table. Table.hasPrimKey is true if sl@0: ** the table has any PRIMARY KEY, INTEGER or otherwise. sl@0: ** sl@0: ** Table.tnum is the page number for the root BTree page of the table in the sl@0: ** database file. If Table.iDb is the index of the database table backend sl@0: ** in sqlite.aDb[]. 0 is for the main database and 1 is for the file that sl@0: ** holds temporary tables and indices. If Table.isEphem sl@0: ** is true, then the table is stored in a file that is automatically deleted sl@0: ** when the VDBE cursor to the table is closed. In this case Table.tnum sl@0: ** refers VDBE cursor number that holds the table open, not to the root sl@0: ** page number. Transient tables are used to hold the results of a sl@0: ** sub-query that appears instead of a real table name in the FROM clause sl@0: ** of a SELECT statement. sl@0: */ sl@0: struct Table { sl@0: sqlite3 *db; /* Associated database connection. Might be NULL. */ sl@0: char *zName; /* Name of the table */ sl@0: int nCol; /* Number of columns in this table */ sl@0: Column *aCol; /* Information about each column */ sl@0: int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */ sl@0: Index *pIndex; /* List of SQL indexes on this table. */ sl@0: int tnum; /* Root BTree node for this table (see note above) */ sl@0: Select *pSelect; /* NULL for tables. Points to definition if a view. */ sl@0: int nRef; /* Number of pointers to this Table */ sl@0: Trigger *pTrigger; /* List of SQL triggers on this table */ sl@0: FKey *pFKey; /* Linked list of all foreign keys in this table */ sl@0: char *zColAff; /* String defining the affinity of each column */ sl@0: #ifndef SQLITE_OMIT_CHECK sl@0: Expr *pCheck; /* The AND of all CHECK constraints */ sl@0: #endif sl@0: #ifndef SQLITE_OMIT_ALTERTABLE sl@0: int addColOffset; /* Offset in CREATE TABLE statement to add a new column */ sl@0: #endif sl@0: u8 readOnly; /* True if this table should not be written by the user */ sl@0: u8 isEphem; /* True if created using OP_OpenEphermeral */ sl@0: u8 hasPrimKey; /* True if there exists a primary key */ sl@0: u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */ sl@0: u8 autoInc; /* True if the integer primary key is autoincrement */ sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: u8 isVirtual; /* True if this is a virtual table */ sl@0: u8 isCommit; /* True once the CREATE TABLE has been committed */ sl@0: Module *pMod; /* Pointer to the implementation of the module */ sl@0: sqlite3_vtab *pVtab; /* Pointer to the module instance */ sl@0: int nModuleArg; /* Number of arguments to the module */ sl@0: char **azModuleArg; /* Text of all module args. [0] is module name */ sl@0: #endif sl@0: Schema *pSchema; /* Schema that contains this table */ sl@0: }; sl@0: sl@0: /* sl@0: ** Test to see whether or not a table is a virtual table. This is sl@0: ** done as a macro so that it will be optimized out when virtual sl@0: ** table support is omitted from the build. sl@0: */ sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: # define IsVirtual(X) ((X)->isVirtual) sl@0: # define IsHiddenColumn(X) ((X)->isHidden) sl@0: #else sl@0: # define IsVirtual(X) 0 sl@0: # define IsHiddenColumn(X) 0 sl@0: #endif sl@0: sl@0: /* sl@0: ** Each foreign key constraint is an instance of the following structure. sl@0: ** sl@0: ** A foreign key is associated with two tables. The "from" table is sl@0: ** the table that contains the REFERENCES clause that creates the foreign sl@0: ** key. The "to" table is the table that is named in the REFERENCES clause. sl@0: ** Consider this example: sl@0: ** sl@0: ** CREATE TABLE ex1( sl@0: ** a INTEGER PRIMARY KEY, sl@0: ** b INTEGER CONSTRAINT fk1 REFERENCES ex2(x) sl@0: ** ); sl@0: ** sl@0: ** For foreign key "fk1", the from-table is "ex1" and the to-table is "ex2". sl@0: ** sl@0: ** Each REFERENCES clause generates an instance of the following structure sl@0: ** which is attached to the from-table. The to-table need not exist when sl@0: ** the from-table is created. The existance of the to-table is not checked sl@0: ** until an attempt is made to insert data into the from-table. sl@0: ** sl@0: ** The sqlite.aFKey hash table stores pointers to this structure sl@0: ** given the name of a to-table. For each to-table, all foreign keys sl@0: ** associated with that table are on a linked list using the FKey.pNextTo sl@0: ** field. sl@0: */ sl@0: struct FKey { sl@0: Table *pFrom; /* The table that constains the REFERENCES clause */ sl@0: FKey *pNextFrom; /* Next foreign key in pFrom */ sl@0: char *zTo; /* Name of table that the key points to */ sl@0: FKey *pNextTo; /* Next foreign key that points to zTo */ sl@0: int nCol; /* Number of columns in this key */ sl@0: struct sColMap { /* Mapping of columns in pFrom to columns in zTo */ sl@0: int iFrom; /* Index of column in pFrom */ sl@0: char *zCol; /* Name of column in zTo. If 0 use PRIMARY KEY */ sl@0: } *aCol; /* One entry for each of nCol column s */ sl@0: u8 isDeferred; /* True if constraint checking is deferred till COMMIT */ sl@0: u8 updateConf; /* How to resolve conflicts that occur on UPDATE */ sl@0: u8 deleteConf; /* How to resolve conflicts that occur on DELETE */ sl@0: u8 insertConf; /* How to resolve conflicts that occur on INSERT */ sl@0: }; sl@0: sl@0: /* sl@0: ** SQLite supports many different ways to resolve a constraint sl@0: ** error. ROLLBACK processing means that a constraint violation sl@0: ** causes the operation in process to fail and for the current transaction sl@0: ** to be rolled back. ABORT processing means the operation in process sl@0: ** fails and any prior changes from that one operation are backed out, sl@0: ** but the transaction is not rolled back. FAIL processing means that sl@0: ** the operation in progress stops and returns an error code. But prior sl@0: ** changes due to the same operation are not backed out and no rollback sl@0: ** occurs. IGNORE means that the particular row that caused the constraint sl@0: ** error is not inserted or updated. Processing continues and no error sl@0: ** is returned. REPLACE means that preexisting database rows that caused sl@0: ** a UNIQUE constraint violation are removed so that the new insert or sl@0: ** update can proceed. Processing continues and no error is reported. sl@0: ** sl@0: ** RESTRICT, SETNULL, and CASCADE actions apply only to foreign keys. sl@0: ** RESTRICT is the same as ABORT for IMMEDIATE foreign keys and the sl@0: ** same as ROLLBACK for DEFERRED keys. SETNULL means that the foreign sl@0: ** key is set to NULL. CASCADE means that a DELETE or UPDATE of the sl@0: ** referenced table row is propagated into the row that holds the sl@0: ** foreign key. sl@0: ** sl@0: ** The following symbolic values are used to record which type sl@0: ** of action to take. sl@0: */ sl@0: #define OE_None 0 /* There is no constraint to check */ sl@0: #define OE_Rollback 1 /* Fail the operation and rollback the transaction */ sl@0: #define OE_Abort 2 /* Back out changes but do no rollback transaction */ sl@0: #define OE_Fail 3 /* Stop the operation but leave all prior changes */ sl@0: #define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */ sl@0: #define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */ sl@0: sl@0: #define OE_Restrict 6 /* OE_Abort for IMMEDIATE, OE_Rollback for DEFERRED */ sl@0: #define OE_SetNull 7 /* Set the foreign key value to NULL */ sl@0: #define OE_SetDflt 8 /* Set the foreign key value to its default */ sl@0: #define OE_Cascade 9 /* Cascade the changes */ sl@0: sl@0: #define OE_Default 99 /* Do whatever the default action is */ sl@0: sl@0: sl@0: /* sl@0: ** An instance of the following structure is passed as the first sl@0: ** argument to sqlite3VdbeKeyCompare and is used to control the sl@0: ** comparison of the two index keys. sl@0: ** sl@0: ** If the KeyInfo.incrKey value is true and the comparison would sl@0: ** otherwise be equal, then return a result as if the second key sl@0: ** were larger. sl@0: */ sl@0: struct KeyInfo { sl@0: sqlite3 *db; /* The database connection */ sl@0: u8 enc; /* Text encoding - one of the TEXT_Utf* values */ sl@0: u8 incrKey; /* Increase 2nd key by epsilon before comparison */ sl@0: u8 prefixIsEqual; /* Treat a prefix as equal */ sl@0: int nField; /* Number of entries in aColl[] */ sl@0: u8 *aSortOrder; /* If defined an aSortOrder[i] is true, sort DESC */ sl@0: CollSeq *aColl[1]; /* Collating sequence for each term of the key */ sl@0: }; sl@0: sl@0: /* sl@0: ** Each SQL index is represented in memory by an sl@0: ** instance of the following structure. sl@0: ** sl@0: ** The columns of the table that are to be indexed are described sl@0: ** by the aiColumn[] field of this structure. For example, suppose sl@0: ** we have the following table and index: sl@0: ** sl@0: ** CREATE TABLE Ex1(c1 int, c2 int, c3 text); sl@0: ** CREATE INDEX Ex2 ON Ex1(c3,c1); sl@0: ** sl@0: ** In the Table structure describing Ex1, nCol==3 because there are sl@0: ** three columns in the table. In the Index structure describing sl@0: ** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed. sl@0: ** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the sl@0: ** first column to be indexed (c3) has an index of 2 in Ex1.aCol[]. sl@0: ** The second column to be indexed (c1) has an index of 0 in sl@0: ** Ex1.aCol[], hence Ex2.aiColumn[1]==0. sl@0: ** sl@0: ** The Index.onError field determines whether or not the indexed columns sl@0: ** must be unique and what to do if they are not. When Index.onError=OE_None, sl@0: ** it means this is not a unique index. Otherwise it is a unique index sl@0: ** and the value of Index.onError indicate the which conflict resolution sl@0: ** algorithm to employ whenever an attempt is made to insert a non-unique sl@0: ** element. sl@0: */ sl@0: struct Index { sl@0: char *zName; /* Name of this index */ sl@0: int nColumn; /* Number of columns in the table used by this index */ sl@0: int *aiColumn; /* Which columns are used by this index. 1st is 0 */ sl@0: unsigned *aiRowEst; /* Result of ANALYZE: Est. rows selected by each column */ sl@0: Table *pTable; /* The SQL table being indexed */ sl@0: int tnum; /* Page containing root of this index in database file */ sl@0: u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ sl@0: u8 autoIndex; /* True if is automatically created (ex: by UNIQUE) */ sl@0: char *zColAff; /* String defining the affinity of each column */ sl@0: Index *pNext; /* The next index associated with the same table */ sl@0: Schema *pSchema; /* Schema containing this index */ sl@0: u8 *aSortOrder; /* Array of size Index.nColumn. True==DESC, False==ASC */ sl@0: char **azColl; /* Array of collation sequence names for index */ sl@0: }; sl@0: sl@0: /* sl@0: ** Each token coming out of the lexer is an instance of sl@0: ** this structure. Tokens are also used as part of an expression. sl@0: ** sl@0: ** Note if Token.z==0 then Token.dyn and Token.n are undefined and sl@0: ** may contain random values. Do not make any assuptions about Token.dyn sl@0: ** and Token.n when Token.z==0. sl@0: */ sl@0: struct Token { sl@0: const unsigned char *z; /* Text of the token. Not NULL-terminated! */ sl@0: unsigned dyn : 1; /* True for malloced memory, false for static */ sl@0: unsigned n : 31; /* Number of characters in this token */ sl@0: }; sl@0: sl@0: /* sl@0: ** An instance of this structure contains information needed to generate sl@0: ** code for a SELECT that contains aggregate functions. sl@0: ** sl@0: ** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a sl@0: ** pointer to this structure. The Expr.iColumn field is the index in sl@0: ** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate sl@0: ** code for that node. sl@0: ** sl@0: ** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the sl@0: ** original Select structure that describes the SELECT statement. These sl@0: ** fields do not need to be freed when deallocating the AggInfo structure. sl@0: */ sl@0: struct AggInfo { sl@0: u8 directMode; /* Direct rendering mode means take data directly sl@0: ** from source tables rather than from accumulators */ sl@0: u8 useSortingIdx; /* In direct mode, reference the sorting index rather sl@0: ** than the source table */ sl@0: int sortingIdx; /* Cursor number of the sorting index */ sl@0: ExprList *pGroupBy; /* The group by clause */ sl@0: int nSortingColumn; /* Number of columns in the sorting index */ sl@0: struct AggInfo_col { /* For each column used in source tables */ sl@0: Table *pTab; /* Source table */ sl@0: int iTable; /* Cursor number of the source table */ sl@0: int iColumn; /* Column number within the source table */ sl@0: int iSorterColumn; /* Column number in the sorting index */ sl@0: int iMem; /* Memory location that acts as accumulator */ sl@0: Expr *pExpr; /* The original expression */ sl@0: } *aCol; sl@0: int nColumn; /* Number of used entries in aCol[] */ sl@0: int nColumnAlloc; /* Number of slots allocated for aCol[] */ sl@0: int nAccumulator; /* Number of columns that show through to the output. sl@0: ** Additional columns are used only as parameters to sl@0: ** aggregate functions */ sl@0: struct AggInfo_func { /* For each aggregate function */ sl@0: Expr *pExpr; /* Expression encoding the function */ sl@0: FuncDef *pFunc; /* The aggregate function implementation */ sl@0: int iMem; /* Memory location that acts as accumulator */ sl@0: int iDistinct; /* Ephermeral table used to enforce DISTINCT */ sl@0: } *aFunc; sl@0: int nFunc; /* Number of entries in aFunc[] */ sl@0: int nFuncAlloc; /* Number of slots allocated for aFunc[] */ sl@0: }; sl@0: sl@0: /* sl@0: ** Each node of an expression in the parse tree is an instance sl@0: ** of this structure. sl@0: ** sl@0: ** Expr.op is the opcode. The integer parser token codes are reused sl@0: ** as opcodes here. For example, the parser defines TK_GE to be an integer sl@0: ** code representing the ">=" operator. This same integer code is reused sl@0: ** to represent the greater-than-or-equal-to operator in the expression sl@0: ** tree. sl@0: ** sl@0: ** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list sl@0: ** of argument if the expression is a function. sl@0: ** sl@0: ** Expr.token is the operator token for this node. For some expressions sl@0: ** that have subexpressions, Expr.token can be the complete text that gave sl@0: ** rise to the Expr. In the latter case, the token is marked as being sl@0: ** a compound token. sl@0: ** sl@0: ** An expression of the form ID or ID.ID refers to a column in a table. sl@0: ** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is sl@0: ** the integer cursor number of a VDBE cursor pointing to that table and sl@0: ** Expr.iColumn is the column number for the specific column. If the sl@0: ** expression is used as a result in an aggregate SELECT, then the sl@0: ** value is also stored in the Expr.iAgg column in the aggregate so that sl@0: ** it can be accessed after all aggregates are computed. sl@0: ** sl@0: ** If the expression is a function, the Expr.iTable is an integer code sl@0: ** representing which function. If the expression is an unbound variable sl@0: ** marker (a question mark character '?' in the original SQL) then the sl@0: ** Expr.iTable holds the index number for that variable. sl@0: ** sl@0: ** If the expression is a subquery then Expr.iColumn holds an integer sl@0: ** register number containing the result of the subquery. If the sl@0: ** subquery gives a constant result, then iTable is -1. If the subquery sl@0: ** gives a different answer at different times during statement processing sl@0: ** then iTable is the address of a subroutine that computes the subquery. sl@0: ** sl@0: ** The Expr.pSelect field points to a SELECT statement. The SELECT might sl@0: ** be the right operand of an IN operator. Or, if a scalar SELECT appears sl@0: ** in an expression the opcode is TK_SELECT and Expr.pSelect is the only sl@0: ** operand. sl@0: ** sl@0: ** If the Expr is of type OP_Column, and the table it is selecting from sl@0: ** is a disk table or the "old.*" pseudo-table, then pTab points to the sl@0: ** corresponding table definition. sl@0: */ sl@0: struct Expr { sl@0: u8 op; /* Operation performed by this node */ sl@0: char affinity; /* The affinity of the column or 0 if not a column */ sl@0: u16 flags; /* Various flags. See below */ sl@0: CollSeq *pColl; /* The collation type of the column or 0 */ sl@0: Expr *pLeft, *pRight; /* Left and right subnodes */ sl@0: ExprList *pList; /* A list of expressions used as function arguments sl@0: ** or in " IN (aCol[] or ->aFunc[] */ sl@0: int iRightJoinTable; /* If EP_FromJoin, the right table of the join */ sl@0: Select *pSelect; /* When the expression is a sub-select. Also the sl@0: ** right side of " IN (