sl@0: /* sl@0: ** 2007 August 14 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This file contains the C functions that implement mutexes. sl@0: ** sl@0: ** The implementation in this file does not provide any mutual sl@0: ** exclusion and is thus suitable for use only in applications sl@0: ** that use SQLite in a single thread. But this implementation sl@0: ** does do a lot of error checking on mutexes to make sure they sl@0: ** are called correctly and at appropriate times. Hence, this sl@0: ** implementation is suitable for testing. sl@0: ** debugging purposes sl@0: ** sl@0: ** $Id: mutex.c,v 1.27 2008/06/19 08:51:24 danielk1977 Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: sl@0: #ifndef SQLITE_MUTEX_NOOP sl@0: /* sl@0: ** Initialize the mutex system. sl@0: */ sl@0: int sqlite3MutexInit(void){ sl@0: int rc = SQLITE_OK; sl@0: if( sqlite3Config.bCoreMutex ){ sl@0: if( !sqlite3Config.mutex.xMutexAlloc ){ sl@0: /* If the xMutexAlloc method has not been set, then the user did not sl@0: ** install a mutex implementation via sqlite3_config() prior to sl@0: ** sqlite3_initialize() being called. This block copies pointers to sl@0: ** the default implementation into the sqlite3Config structure. sl@0: ** sl@0: ** The danger is that although sqlite3_config() is not a threadsafe sl@0: ** API, sqlite3_initialize() is, and so multiple threads may be sl@0: ** attempting to run this function simultaneously. To guard write sl@0: ** access to the sqlite3Config structure, the 'MASTER' static mutex sl@0: ** is obtained before modifying it. sl@0: */ sl@0: sqlite3_mutex_methods *p = sqlite3DefaultMutex(); sl@0: sqlite3_mutex *pMaster = 0; sl@0: sl@0: rc = p->xMutexInit(); sl@0: if( rc==SQLITE_OK ){ sl@0: pMaster = p->xMutexAlloc(SQLITE_MUTEX_STATIC_MASTER); sl@0: assert(pMaster); sl@0: p->xMutexEnter(pMaster); sl@0: assert( sqlite3Config.mutex.xMutexAlloc==0 sl@0: || sqlite3Config.mutex.xMutexAlloc==p->xMutexAlloc sl@0: ); sl@0: if( !sqlite3Config.mutex.xMutexAlloc ){ sl@0: sqlite3Config.mutex = *p; sl@0: } sl@0: p->xMutexLeave(pMaster); sl@0: } sl@0: }else{ sl@0: rc = sqlite3Config.mutex.xMutexInit(); sl@0: } sl@0: } sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Shutdown the mutex system. This call frees resources allocated by sl@0: ** sqlite3MutexInit(). sl@0: */ sl@0: int sqlite3MutexEnd(void){ sl@0: int rc = SQLITE_OK; sl@0: rc = sqlite3Config.mutex.xMutexEnd(); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Retrieve a pointer to a static mutex or allocate a new dynamic one. sl@0: */ sl@0: sqlite3_mutex *sqlite3_mutex_alloc(int id){ sl@0: #ifndef SQLITE_OMIT_AUTOINIT sl@0: if( sqlite3_initialize() ) return 0; sl@0: #endif sl@0: return sqlite3Config.mutex.xMutexAlloc(id); sl@0: } sl@0: sl@0: sqlite3_mutex *sqlite3MutexAlloc(int id){ sl@0: if( !sqlite3Config.bCoreMutex ){ sl@0: return 0; sl@0: } sl@0: return sqlite3Config.mutex.xMutexAlloc(id); sl@0: } sl@0: sl@0: /* sl@0: ** Free a dynamic mutex. sl@0: */ sl@0: void sqlite3_mutex_free(sqlite3_mutex *p){ sl@0: if( p ){ sl@0: sqlite3Config.mutex.xMutexFree(p); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Obtain the mutex p. If some other thread already has the mutex, block sl@0: ** until it can be obtained. sl@0: */ sl@0: void sqlite3_mutex_enter(sqlite3_mutex *p){ sl@0: if( p ){ sl@0: sqlite3Config.mutex.xMutexEnter(p); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another sl@0: ** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY. sl@0: */ sl@0: int sqlite3_mutex_try(sqlite3_mutex *p){ sl@0: int rc = SQLITE_OK; sl@0: if( p ){ sl@0: return sqlite3Config.mutex.xMutexTry(p); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** The sqlite3_mutex_leave() routine exits a mutex that was previously sl@0: ** entered by the same thread. The behavior is undefined if the mutex sl@0: ** is not currently entered. If a NULL pointer is passed as an argument sl@0: ** this function is a no-op. sl@0: */ sl@0: void sqlite3_mutex_leave(sqlite3_mutex *p){ sl@0: if( p ){ sl@0: sqlite3Config.mutex.xMutexLeave(p); sl@0: } sl@0: } sl@0: sl@0: #ifndef NDEBUG sl@0: /* sl@0: ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are sl@0: ** intended for use inside assert() statements. sl@0: */ sl@0: int sqlite3_mutex_held(sqlite3_mutex *p){ sl@0: return p==0 || sqlite3Config.mutex.xMutexHeld(p); sl@0: } sl@0: int sqlite3_mutex_notheld(sqlite3_mutex *p){ sl@0: return p==0 || sqlite3Config.mutex.xMutexNotheld(p); sl@0: } sl@0: #endif sl@0: sl@0: #endif sl@0: sl@0: #ifdef SQLITE_MUTEX_NOOP_DEBUG sl@0: /* sl@0: ** In this implementation, mutexes do not provide any mutual exclusion. sl@0: ** But the error checking is provided. This implementation is useful sl@0: ** for test purposes. sl@0: */ sl@0: sl@0: /* sl@0: ** The mutex object sl@0: */ sl@0: struct sqlite3_mutex { sl@0: int id; /* The mutex type */ sl@0: int cnt; /* Number of entries without a matching leave */ sl@0: }; sl@0: sl@0: /* sl@0: ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are sl@0: ** intended for use inside assert() statements. sl@0: */ sl@0: static int noopMutexHeld(sqlite3_mutex *p){ sl@0: return p==0 || p->cnt>0; sl@0: } sl@0: static int noopMutexNotheld(sqlite3_mutex *p){ sl@0: return p==0 || p->cnt==0; sl@0: } sl@0: sl@0: /* sl@0: ** Initialize and deinitialize the mutex subsystem. sl@0: */ sl@0: static int noopMutexInit(void){ return SQLITE_OK; } sl@0: static int noopMutexEnd(void){ return SQLITE_OK; } sl@0: sl@0: /* sl@0: ** The sqlite3_mutex_alloc() routine allocates a new sl@0: ** mutex and returns a pointer to it. If it returns NULL sl@0: ** that means that a mutex could not be allocated. sl@0: */ sl@0: static sqlite3_mutex *noopMutexAlloc(int id){ sl@0: static sqlite3_mutex aStatic[6]; sl@0: sqlite3_mutex *pNew = 0; sl@0: switch( id ){ sl@0: case SQLITE_MUTEX_FAST: sl@0: case SQLITE_MUTEX_RECURSIVE: { sl@0: pNew = sqlite3Malloc(sizeof(*pNew)); sl@0: if( pNew ){ sl@0: pNew->id = id; sl@0: pNew->cnt = 0; sl@0: } sl@0: break; sl@0: } sl@0: default: { sl@0: assert( id-2 >= 0 ); sl@0: assert( id-2 < sizeof(aStatic)/sizeof(aStatic[0]) ); sl@0: pNew = &aStatic[id-2]; sl@0: pNew->id = id; sl@0: break; sl@0: } sl@0: } sl@0: return pNew; sl@0: } sl@0: sl@0: /* sl@0: ** This routine deallocates a previously allocated mutex. sl@0: */ sl@0: static void noopMutexFree(sqlite3_mutex *p){ sl@0: assert( p->cnt==0 ); sl@0: assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ); sl@0: sqlite3_free(p); sl@0: } sl@0: sl@0: /* sl@0: ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt sl@0: ** to enter a mutex. If another thread is already within the mutex, sl@0: ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return sl@0: ** SQLITE_BUSY. The sqlite3_mutex_try() interface returns SQLITE_OK sl@0: ** upon successful entry. Mutexes created using SQLITE_MUTEX_RECURSIVE can sl@0: ** be entered multiple times by the same thread. In such cases the, sl@0: ** mutex must be exited an equal number of times before another thread sl@0: ** can enter. If the same thread tries to enter any other kind of mutex sl@0: ** more than once, the behavior is undefined. sl@0: */ sl@0: static void noopMutexEnter(sqlite3_mutex *p){ sl@0: assert( p->id==SQLITE_MUTEX_RECURSIVE || noopMutexNotheld(p) ); sl@0: p->cnt++; sl@0: } sl@0: static int noopMutexTry(sqlite3_mutex *p){ sl@0: assert( p->id==SQLITE_MUTEX_RECURSIVE || noopMutexNotheld(p) ); sl@0: p->cnt++; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** The sqlite3_mutex_leave() routine exits a mutex that was sl@0: ** previously entered by the same thread. The behavior sl@0: ** is undefined if the mutex is not currently entered or sl@0: ** is not currently allocated. SQLite will never do either. sl@0: */ sl@0: static void noopMutexLeave(sqlite3_mutex *p){ sl@0: assert( noopMutexHeld(p) ); sl@0: p->cnt--; sl@0: assert( p->id==SQLITE_MUTEX_RECURSIVE || noopMutexNotheld(p) ); sl@0: } sl@0: sl@0: sqlite3_mutex_methods *sqlite3DefaultMutex(void){ sl@0: static sqlite3_mutex_methods sMutex = { sl@0: noopMutexInit, sl@0: noopMutexEnd, sl@0: noopMutexAlloc, sl@0: noopMutexFree, sl@0: noopMutexEnter, sl@0: noopMutexTry, sl@0: noopMutexLeave, sl@0: sl@0: noopMutexHeld, sl@0: noopMutexNotheld sl@0: }; sl@0: sl@0: return &sMutex; sl@0: } sl@0: #endif /* SQLITE_MUTEX_NOOP_DEBUG */