sl@0: /* sl@0: ** 2001 September 15 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This file contains C code routines that are called by the SQLite parser sl@0: ** when syntax rules are reduced. The routines in this file handle the sl@0: ** following kinds of SQL syntax: sl@0: ** sl@0: ** CREATE TABLE sl@0: ** DROP TABLE sl@0: ** CREATE INDEX sl@0: ** DROP INDEX sl@0: ** creating ID lists sl@0: ** BEGIN TRANSACTION sl@0: ** COMMIT sl@0: ** ROLLBACK sl@0: ** sl@0: ** $Id: build.c,v 1.493 2008/08/04 04:39:49 danielk1977 Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: #include sl@0: sl@0: /* sl@0: ** This routine is called when a new SQL statement is beginning to sl@0: ** be parsed. Initialize the pParse structure as needed. sl@0: */ sl@0: void sqlite3BeginParse(Parse *pParse, int explainFlag){ sl@0: pParse->explain = explainFlag; sl@0: pParse->nVar = 0; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_SHARED_CACHE sl@0: /* sl@0: ** The TableLock structure is only used by the sqlite3TableLock() and sl@0: ** codeTableLocks() functions. sl@0: */ sl@0: struct TableLock { sl@0: int iDb; /* The database containing the table to be locked */ sl@0: int iTab; /* The root page of the table to be locked */ sl@0: u8 isWriteLock; /* True for write lock. False for a read lock */ sl@0: const char *zName; /* Name of the table */ sl@0: }; sl@0: sl@0: /* sl@0: ** Record the fact that we want to lock a table at run-time. sl@0: ** sl@0: ** The table to be locked has root page iTab and is found in database iDb. sl@0: ** A read or a write lock can be taken depending on isWritelock. sl@0: ** sl@0: ** This routine just records the fact that the lock is desired. The sl@0: ** code to make the lock occur is generated by a later call to sl@0: ** codeTableLocks() which occurs during sqlite3FinishCoding(). sl@0: */ sl@0: void sqlite3TableLock( sl@0: Parse *pParse, /* Parsing context */ sl@0: int iDb, /* Index of the database containing the table to lock */ sl@0: int iTab, /* Root page number of the table to be locked */ sl@0: u8 isWriteLock, /* True for a write lock */ sl@0: const char *zName /* Name of the table to be locked */ sl@0: ){ sl@0: int i; sl@0: int nBytes; sl@0: TableLock *p; sl@0: sl@0: if( iDb<0 ){ sl@0: return; sl@0: } sl@0: sl@0: for(i=0; inTableLock; i++){ sl@0: p = &pParse->aTableLock[i]; sl@0: if( p->iDb==iDb && p->iTab==iTab ){ sl@0: p->isWriteLock = (p->isWriteLock || isWriteLock); sl@0: return; sl@0: } sl@0: } sl@0: sl@0: nBytes = sizeof(TableLock) * (pParse->nTableLock+1); sl@0: pParse->aTableLock = sl@0: sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes); sl@0: if( pParse->aTableLock ){ sl@0: p = &pParse->aTableLock[pParse->nTableLock++]; sl@0: p->iDb = iDb; sl@0: p->iTab = iTab; sl@0: p->isWriteLock = isWriteLock; sl@0: p->zName = zName; sl@0: }else{ sl@0: pParse->nTableLock = 0; sl@0: pParse->db->mallocFailed = 1; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Code an OP_TableLock instruction for each table locked by the sl@0: ** statement (configured by calls to sqlite3TableLock()). sl@0: */ sl@0: static void codeTableLocks(Parse *pParse){ sl@0: int i; sl@0: Vdbe *pVdbe; sl@0: sl@0: if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ sl@0: return; sl@0: } sl@0: sl@0: for(i=0; inTableLock; i++){ sl@0: TableLock *p = &pParse->aTableLock[i]; sl@0: int p1 = p->iDb; sl@0: sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, sl@0: p->zName, P4_STATIC); sl@0: } sl@0: } sl@0: #else sl@0: #define codeTableLocks(x) sl@0: #endif sl@0: sl@0: /* sl@0: ** This routine is called after a single SQL statement has been sl@0: ** parsed and a VDBE program to execute that statement has been sl@0: ** prepared. This routine puts the finishing touches on the sl@0: ** VDBE program and resets the pParse structure for the next sl@0: ** parse. sl@0: ** sl@0: ** Note that if an error occurred, it might be the case that sl@0: ** no VDBE code was generated. sl@0: */ sl@0: void sqlite3FinishCoding(Parse *pParse){ sl@0: sqlite3 *db; sl@0: Vdbe *v; sl@0: sl@0: db = pParse->db; sl@0: if( db->mallocFailed ) return; sl@0: if( pParse->nested ) return; sl@0: if( pParse->nErr ) return; sl@0: sl@0: /* Begin by generating some termination code at the end of the sl@0: ** vdbe program sl@0: */ sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v ){ sl@0: sqlite3VdbeAddOp0(v, OP_Halt); sl@0: sl@0: /* The cookie mask contains one bit for each database file open. sl@0: ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are sl@0: ** set for each database that is used. Generate code to start a sl@0: ** transaction on each used database and to verify the schema cookie sl@0: ** on each used database. sl@0: */ sl@0: if( pParse->cookieGoto>0 ){ sl@0: u32 mask; sl@0: int iDb; sl@0: sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); sl@0: for(iDb=0, mask=1; iDbnDb; mask<<=1, iDb++){ sl@0: if( (mask & pParse->cookieMask)==0 ) continue; sl@0: sqlite3VdbeUsesBtree(v, iDb); sl@0: sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); sl@0: sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); sl@0: } sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: { sl@0: int i; sl@0: for(i=0; inVtabLock; i++){ sl@0: char *vtab = (char *)pParse->apVtabLock[i]->pVtab; sl@0: sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); sl@0: } sl@0: pParse->nVtabLock = 0; sl@0: } sl@0: #endif sl@0: sl@0: /* Once all the cookies have been verified and transactions opened, sl@0: ** obtain the required table-locks. This is a no-op unless the sl@0: ** shared-cache feature is enabled. sl@0: */ sl@0: codeTableLocks(pParse); sl@0: sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_TRACE sl@0: if( !db->init.busy ){ sl@0: /* Change the P4 argument of the first opcode (which will always be sl@0: ** an OP_Trace) to be the complete text of the current SQL statement. sl@0: */ sl@0: VdbeOp *pOp = sqlite3VdbeGetOp(v, 0); sl@0: if( pOp && pOp->opcode==OP_Trace ){ sl@0: sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql); sl@0: } sl@0: } sl@0: #endif /* SQLITE_OMIT_TRACE */ sl@0: } sl@0: sl@0: sl@0: /* Get the VDBE program ready for execution sl@0: */ sl@0: if( v && pParse->nErr==0 && !db->mallocFailed ){ sl@0: #ifdef SQLITE_DEBUG sl@0: FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; sl@0: sqlite3VdbeTrace(v, trace); sl@0: #endif sl@0: assert( pParse->disableColCache==0 ); /* Disables and re-enables match */ sl@0: sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, sl@0: pParse->nTab+3, pParse->explain); sl@0: pParse->rc = SQLITE_DONE; sl@0: pParse->colNamesSet = 0; sl@0: }else if( pParse->rc==SQLITE_OK ){ sl@0: pParse->rc = SQLITE_ERROR; sl@0: } sl@0: pParse->nTab = 0; sl@0: pParse->nMem = 0; sl@0: pParse->nSet = 0; sl@0: pParse->nVar = 0; sl@0: pParse->cookieMask = 0; sl@0: pParse->cookieGoto = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Run the parser and code generator recursively in order to generate sl@0: ** code for the SQL statement given onto the end of the pParse context sl@0: ** currently under construction. When the parser is run recursively sl@0: ** this way, the final OP_Halt is not appended and other initialization sl@0: ** and finalization steps are omitted because those are handling by the sl@0: ** outermost parser. sl@0: ** sl@0: ** Not everything is nestable. This facility is designed to permit sl@0: ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use sl@0: ** care if you decide to try to use this routine for some other purposes. sl@0: */ sl@0: void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ sl@0: va_list ap; sl@0: char *zSql; sl@0: char *zErrMsg = 0; sl@0: sqlite3 *db = pParse->db; sl@0: # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) sl@0: char saveBuf[SAVE_SZ]; sl@0: sl@0: if( pParse->nErr ) return; sl@0: assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ sl@0: va_start(ap, zFormat); sl@0: zSql = sqlite3VMPrintf(db, zFormat, ap); sl@0: va_end(ap); sl@0: if( zSql==0 ){ sl@0: return; /* A malloc must have failed */ sl@0: } sl@0: pParse->nested++; sl@0: memcpy(saveBuf, &pParse->nVar, SAVE_SZ); sl@0: memset(&pParse->nVar, 0, SAVE_SZ); sl@0: sqlite3RunParser(pParse, zSql, &zErrMsg); sl@0: sqlite3DbFree(db, zErrMsg); sl@0: sqlite3DbFree(db, zSql); sl@0: memcpy(&pParse->nVar, saveBuf, SAVE_SZ); sl@0: pParse->nested--; sl@0: } sl@0: sl@0: /* sl@0: ** Locate the in-memory structure that describes a particular database sl@0: ** table given the name of that table and (optionally) the name of the sl@0: ** database containing the table. Return NULL if not found. sl@0: ** sl@0: ** If zDatabase is 0, all databases are searched for the table and the sl@0: ** first matching table is returned. (No checking for duplicate table sl@0: ** names is done.) The search order is TEMP first, then MAIN, then any sl@0: ** auxiliary databases added using the ATTACH command. sl@0: ** sl@0: ** See also sqlite3LocateTable(). sl@0: */ sl@0: Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ sl@0: Table *p = 0; sl@0: int i; sl@0: int nName; sl@0: assert( zName!=0 ); sl@0: nName = sqlite3Strlen(db, zName) + 1; sl@0: for(i=OMIT_TEMPDB; inDb; i++){ sl@0: int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ sl@0: if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; sl@0: p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); sl@0: if( p ) break; sl@0: } sl@0: return p; sl@0: } sl@0: sl@0: /* sl@0: ** Locate the in-memory structure that describes a particular database sl@0: ** table given the name of that table and (optionally) the name of the sl@0: ** database containing the table. Return NULL if not found. Also leave an sl@0: ** error message in pParse->zErrMsg. sl@0: ** sl@0: ** The difference between this routine and sqlite3FindTable() is that this sl@0: ** routine leaves an error message in pParse->zErrMsg where sl@0: ** sqlite3FindTable() does not. sl@0: */ sl@0: Table *sqlite3LocateTable( sl@0: Parse *pParse, /* context in which to report errors */ sl@0: int isView, /* True if looking for a VIEW rather than a TABLE */ sl@0: const char *zName, /* Name of the table we are looking for */ sl@0: const char *zDbase /* Name of the database. Might be NULL */ sl@0: ){ sl@0: Table *p; sl@0: sl@0: /* Read the database schema. If an error occurs, leave an error message sl@0: ** and code in pParse and return NULL. */ sl@0: if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ sl@0: return 0; sl@0: } sl@0: sl@0: p = sqlite3FindTable(pParse->db, zName, zDbase); sl@0: if( p==0 ){ sl@0: const char *zMsg = isView ? "no such view" : "no such table"; sl@0: if( zDbase ){ sl@0: sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); sl@0: }else{ sl@0: sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); sl@0: } sl@0: pParse->checkSchema = 1; sl@0: } sl@0: return p; sl@0: } sl@0: sl@0: /* sl@0: ** Locate the in-memory structure that describes sl@0: ** a particular index given the name of that index sl@0: ** and the name of the database that contains the index. sl@0: ** Return NULL if not found. sl@0: ** sl@0: ** If zDatabase is 0, all databases are searched for the sl@0: ** table and the first matching index is returned. (No checking sl@0: ** for duplicate index names is done.) The search order is sl@0: ** TEMP first, then MAIN, then any auxiliary databases added sl@0: ** using the ATTACH command. sl@0: */ sl@0: Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ sl@0: Index *p = 0; sl@0: int i; sl@0: int nName = sqlite3Strlen(db, zName)+1; sl@0: for(i=OMIT_TEMPDB; inDb; i++){ sl@0: int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ sl@0: Schema *pSchema = db->aDb[j].pSchema; sl@0: if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; sl@0: assert( pSchema || (j==1 && !db->aDb[1].pBt) ); sl@0: if( pSchema ){ sl@0: p = sqlite3HashFind(&pSchema->idxHash, zName, nName); sl@0: } sl@0: if( p ) break; sl@0: } sl@0: return p; sl@0: } sl@0: sl@0: /* sl@0: ** Reclaim the memory used by an index sl@0: */ sl@0: static void freeIndex(Index *p){ sl@0: sqlite3 *db = p->pTable->db; sl@0: sqlite3DbFree(db, p->zColAff); sl@0: sqlite3DbFree(db, p); sl@0: } sl@0: sl@0: /* sl@0: ** Remove the given index from the index hash table, and free sl@0: ** its memory structures. sl@0: ** sl@0: ** The index is removed from the database hash tables but sl@0: ** it is not unlinked from the Table that it indexes. sl@0: ** Unlinking from the Table must be done by the calling function. sl@0: */ sl@0: static void sqliteDeleteIndex(Index *p){ sl@0: Index *pOld; sl@0: const char *zName = p->zName; sl@0: sl@0: pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0); sl@0: assert( pOld==0 || pOld==p ); sl@0: freeIndex(p); sl@0: } sl@0: sl@0: /* sl@0: ** For the index called zIdxName which is found in the database iDb, sl@0: ** unlike that index from its Table then remove the index from sl@0: ** the index hash table and free all memory structures associated sl@0: ** with the index. sl@0: */ sl@0: void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ sl@0: Index *pIndex; sl@0: int len; sl@0: Hash *pHash = &db->aDb[iDb].pSchema->idxHash; sl@0: sl@0: len = sqlite3Strlen(db, zIdxName); sl@0: pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); sl@0: if( pIndex ){ sl@0: if( pIndex->pTable->pIndex==pIndex ){ sl@0: pIndex->pTable->pIndex = pIndex->pNext; sl@0: }else{ sl@0: Index *p; sl@0: for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} sl@0: if( p && p->pNext==pIndex ){ sl@0: p->pNext = pIndex->pNext; sl@0: } sl@0: } sl@0: freeIndex(pIndex); sl@0: } sl@0: db->flags |= SQLITE_InternChanges; sl@0: } sl@0: sl@0: /* sl@0: ** Erase all schema information from the in-memory hash tables of sl@0: ** a single database. This routine is called to reclaim memory sl@0: ** before the database closes. It is also called during a rollback sl@0: ** if there were schema changes during the transaction or if a sl@0: ** schema-cookie mismatch occurs. sl@0: ** sl@0: ** If iDb<=0 then reset the internal schema tables for all database sl@0: ** files. If iDb>=2 then reset the internal schema for only the sl@0: ** single file indicated. sl@0: */ sl@0: void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ sl@0: int i, j; sl@0: assert( iDb>=0 && iDbnDb ); sl@0: sl@0: if( iDb==0 ){ sl@0: sqlite3BtreeEnterAll(db); sl@0: } sl@0: for(i=iDb; inDb; i++){ sl@0: Db *pDb = &db->aDb[i]; sl@0: if( pDb->pSchema ){ sl@0: assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt))); sl@0: sqlite3SchemaFree(pDb->pSchema); sl@0: } sl@0: if( iDb>0 ) return; sl@0: } sl@0: assert( iDb==0 ); sl@0: db->flags &= ~SQLITE_InternChanges; sl@0: sqlite3BtreeLeaveAll(db); sl@0: sl@0: /* If one or more of the auxiliary database files has been closed, sl@0: ** then remove them from the auxiliary database list. We take the sl@0: ** opportunity to do this here since we have just deleted all of the sl@0: ** schema hash tables and therefore do not have to make any changes sl@0: ** to any of those tables. sl@0: */ sl@0: for(i=0; inDb; i++){ sl@0: struct Db *pDb = &db->aDb[i]; sl@0: if( pDb->pBt==0 ){ sl@0: if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); sl@0: pDb->pAux = 0; sl@0: } sl@0: } sl@0: for(i=j=2; inDb; i++){ sl@0: struct Db *pDb = &db->aDb[i]; sl@0: if( pDb->pBt==0 ){ sl@0: sqlite3DbFree(db, pDb->zName); sl@0: pDb->zName = 0; sl@0: continue; sl@0: } sl@0: if( jaDb[j] = db->aDb[i]; sl@0: } sl@0: j++; sl@0: } sl@0: memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); sl@0: db->nDb = j; sl@0: if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ sl@0: memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); sl@0: sqlite3DbFree(db, db->aDb); sl@0: db->aDb = db->aDbStatic; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called when a commit occurs. sl@0: */ sl@0: void sqlite3CommitInternalChanges(sqlite3 *db){ sl@0: db->flags &= ~SQLITE_InternChanges; sl@0: } sl@0: sl@0: /* sl@0: ** Clear the column names from a table or view. sl@0: */ sl@0: static void sqliteResetColumnNames(Table *pTable){ sl@0: int i; sl@0: Column *pCol; sl@0: sqlite3 *db = pTable->db; sl@0: assert( pTable!=0 ); sl@0: if( (pCol = pTable->aCol)!=0 ){ sl@0: for(i=0; inCol; i++, pCol++){ sl@0: sqlite3DbFree(db, pCol->zName); sl@0: sqlite3ExprDelete(db, pCol->pDflt); sl@0: sqlite3DbFree(db, pCol->zType); sl@0: sqlite3DbFree(db, pCol->zColl); sl@0: } sl@0: sqlite3DbFree(db, pTable->aCol); sl@0: } sl@0: pTable->aCol = 0; sl@0: pTable->nCol = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Remove the memory data structures associated with the given sl@0: ** Table. No changes are made to disk by this routine. sl@0: ** sl@0: ** This routine just deletes the data structure. It does not unlink sl@0: ** the table data structure from the hash table. Nor does it remove sl@0: ** foreign keys from the sqlite.aFKey hash table. But it does destroy sl@0: ** memory structures of the indices and foreign keys associated with sl@0: ** the table. sl@0: */ sl@0: void sqlite3DeleteTable(Table *pTable){ sl@0: Index *pIndex, *pNext; sl@0: FKey *pFKey, *pNextFKey; sl@0: sqlite3 *db; sl@0: sl@0: if( pTable==0 ) return; sl@0: db = pTable->db; sl@0: sl@0: /* Do not delete the table until the reference count reaches zero. */ sl@0: pTable->nRef--; sl@0: if( pTable->nRef>0 ){ sl@0: return; sl@0: } sl@0: assert( pTable->nRef==0 ); sl@0: sl@0: /* Delete all indices associated with this table sl@0: */ sl@0: for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ sl@0: pNext = pIndex->pNext; sl@0: assert( pIndex->pSchema==pTable->pSchema ); sl@0: sqliteDeleteIndex(pIndex); sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_FOREIGN_KEY sl@0: /* Delete all foreign keys associated with this table. The keys sl@0: ** should have already been unlinked from the pSchema->aFKey hash table sl@0: */ sl@0: for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ sl@0: pNextFKey = pFKey->pNextFrom; sl@0: assert( sqlite3HashFind(&pTable->pSchema->aFKey, sl@0: pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); sl@0: sqlite3DbFree(db, pFKey); sl@0: } sl@0: #endif sl@0: sl@0: /* Delete the Table structure itself. sl@0: */ sl@0: sqliteResetColumnNames(pTable); sl@0: sqlite3DbFree(db, pTable->zName); sl@0: sqlite3DbFree(db, pTable->zColAff); sl@0: sqlite3SelectDelete(db, pTable->pSelect); sl@0: #ifndef SQLITE_OMIT_CHECK sl@0: sqlite3ExprDelete(db, pTable->pCheck); sl@0: #endif sl@0: sqlite3VtabClear(pTable); sl@0: sqlite3DbFree(db, pTable); sl@0: } sl@0: sl@0: /* sl@0: ** Unlink the given table from the hash tables and the delete the sl@0: ** table structure with all its indices and foreign keys. sl@0: */ sl@0: void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ sl@0: Table *p; sl@0: FKey *pF1, *pF2; sl@0: Db *pDb; sl@0: sl@0: assert( db!=0 ); sl@0: assert( iDb>=0 && iDbnDb ); sl@0: assert( zTabName && zTabName[0] ); sl@0: pDb = &db->aDb[iDb]; sl@0: p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); sl@0: if( p ){ sl@0: #ifndef SQLITE_OMIT_FOREIGN_KEY sl@0: for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ sl@0: int nTo = strlen(pF1->zTo) + 1; sl@0: pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); sl@0: if( pF2==pF1 ){ sl@0: sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); sl@0: }else{ sl@0: while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } sl@0: if( pF2 ){ sl@0: pF2->pNextTo = pF1->pNextTo; sl@0: } sl@0: } sl@0: } sl@0: #endif sl@0: sqlite3DeleteTable(p); sl@0: } sl@0: db->flags |= SQLITE_InternChanges; sl@0: } sl@0: sl@0: /* sl@0: ** Given a token, return a string that consists of the text of that sl@0: ** token with any quotations removed. Space to hold the returned string sl@0: ** is obtained from sqliteMalloc() and must be freed by the calling sl@0: ** function. sl@0: ** sl@0: ** Tokens are often just pointers into the original SQL text and so sl@0: ** are not \000 terminated and are not persistent. The returned string sl@0: ** is \000 terminated and is persistent. sl@0: */ sl@0: char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ sl@0: char *zName; sl@0: if( pName ){ sl@0: zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); sl@0: sqlite3Dequote(zName); sl@0: }else{ sl@0: zName = 0; sl@0: } sl@0: return zName; sl@0: } sl@0: sl@0: /* sl@0: ** Open the sqlite_master table stored in database number iDb for sl@0: ** writing. The table is opened using cursor 0. sl@0: */ sl@0: void sqlite3OpenMasterTable(Parse *p, int iDb){ sl@0: Vdbe *v = sqlite3GetVdbe(p); sl@0: sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); sl@0: sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */ sl@0: sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); sl@0: } sl@0: sl@0: /* sl@0: ** The token *pName contains the name of a database (either "main" or sl@0: ** "temp" or the name of an attached db). This routine returns the sl@0: ** index of the named database in db->aDb[], or -1 if the named db sl@0: ** does not exist. sl@0: */ sl@0: int sqlite3FindDb(sqlite3 *db, Token *pName){ sl@0: int i = -1; /* Database number */ sl@0: int n; /* Number of characters in the name */ sl@0: Db *pDb; /* A database whose name space is being searched */ sl@0: char *zName; /* Name we are searching for */ sl@0: sl@0: zName = sqlite3NameFromToken(db, pName); sl@0: if( zName ){ sl@0: n = strlen(zName); sl@0: for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ sl@0: if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && sl@0: 0==sqlite3StrICmp(pDb->zName, zName) ){ sl@0: break; sl@0: } sl@0: } sl@0: sqlite3DbFree(db, zName); sl@0: } sl@0: return i; sl@0: } sl@0: sl@0: /* The table or view or trigger name is passed to this routine via tokens sl@0: ** pName1 and pName2. If the table name was fully qualified, for example: sl@0: ** sl@0: ** CREATE TABLE xxx.yyy (...); sl@0: ** sl@0: ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if sl@0: ** the table name is not fully qualified, i.e.: sl@0: ** sl@0: ** CREATE TABLE yyy(...); sl@0: ** sl@0: ** Then pName1 is set to "yyy" and pName2 is "". sl@0: ** sl@0: ** This routine sets the *ppUnqual pointer to point at the token (pName1 or sl@0: ** pName2) that stores the unqualified table name. The index of the sl@0: ** database "xxx" is returned. sl@0: */ sl@0: int sqlite3TwoPartName( sl@0: Parse *pParse, /* Parsing and code generating context */ sl@0: Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ sl@0: Token *pName2, /* The "yyy" in the name "xxx.yyy" */ sl@0: Token **pUnqual /* Write the unqualified object name here */ sl@0: ){ sl@0: int iDb; /* Database holding the object */ sl@0: sqlite3 *db = pParse->db; sl@0: sl@0: if( pName2 && pName2->n>0 ){ sl@0: assert( !db->init.busy ); sl@0: *pUnqual = pName2; sl@0: iDb = sqlite3FindDb(db, pName1); sl@0: if( iDb<0 ){ sl@0: sqlite3ErrorMsg(pParse, "unknown database %T", pName1); sl@0: pParse->nErr++; sl@0: return -1; sl@0: } sl@0: }else{ sl@0: assert( db->init.iDb==0 || db->init.busy ); sl@0: iDb = db->init.iDb; sl@0: *pUnqual = pName1; sl@0: } sl@0: return iDb; sl@0: } sl@0: sl@0: /* sl@0: ** This routine is used to check if the UTF-8 string zName is a legal sl@0: ** unqualified name for a new schema object (table, index, view or sl@0: ** trigger). All names are legal except those that begin with the string sl@0: ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace sl@0: ** is reserved for internal use. sl@0: */ sl@0: int sqlite3CheckObjectName(Parse *pParse, const char *zName){ sl@0: if( !pParse->db->init.busy && pParse->nested==0 sl@0: && (pParse->db->flags & SQLITE_WriteSchema)==0 sl@0: && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ sl@0: sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); sl@0: return SQLITE_ERROR; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Begin constructing a new table representation in memory. This is sl@0: ** the first of several action routines that get called in response sl@0: ** to a CREATE TABLE statement. In particular, this routine is called sl@0: ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp sl@0: ** flag is true if the table should be stored in the auxiliary database sl@0: ** file instead of in the main database file. This is normally the case sl@0: ** when the "TEMP" or "TEMPORARY" keyword occurs in between sl@0: ** CREATE and TABLE. sl@0: ** sl@0: ** The new table record is initialized and put in pParse->pNewTable. sl@0: ** As more of the CREATE TABLE statement is parsed, additional action sl@0: ** routines will be called to add more information to this record. sl@0: ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine sl@0: ** is called to complete the construction of the new table record. sl@0: */ sl@0: void sqlite3StartTable( sl@0: Parse *pParse, /* Parser context */ sl@0: Token *pName1, /* First part of the name of the table or view */ sl@0: Token *pName2, /* Second part of the name of the table or view */ sl@0: int isTemp, /* True if this is a TEMP table */ sl@0: int isView, /* True if this is a VIEW */ sl@0: int isVirtual, /* True if this is a VIRTUAL table */ sl@0: int noErr /* Do nothing if table already exists */ sl@0: ){ sl@0: Table *pTable; sl@0: char *zName = 0; /* The name of the new table */ sl@0: sqlite3 *db = pParse->db; sl@0: Vdbe *v; sl@0: int iDb; /* Database number to create the table in */ sl@0: Token *pName; /* Unqualified name of the table to create */ sl@0: sl@0: /* The table or view name to create is passed to this routine via tokens sl@0: ** pName1 and pName2. If the table name was fully qualified, for example: sl@0: ** sl@0: ** CREATE TABLE xxx.yyy (...); sl@0: ** sl@0: ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if sl@0: ** the table name is not fully qualified, i.e.: sl@0: ** sl@0: ** CREATE TABLE yyy(...); sl@0: ** sl@0: ** Then pName1 is set to "yyy" and pName2 is "". sl@0: ** sl@0: ** The call below sets the pName pointer to point at the token (pName1 or sl@0: ** pName2) that stores the unqualified table name. The variable iDb is sl@0: ** set to the index of the database that the table or view is to be sl@0: ** created in. sl@0: */ sl@0: iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); sl@0: if( iDb<0 ) return; sl@0: if( !OMIT_TEMPDB && isTemp && iDb>1 ){ sl@0: /* If creating a temp table, the name may not be qualified */ sl@0: sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); sl@0: return; sl@0: } sl@0: if( !OMIT_TEMPDB && isTemp ) iDb = 1; sl@0: sl@0: pParse->sNameToken = *pName; sl@0: zName = sqlite3NameFromToken(db, pName); sl@0: if( zName==0 ) return; sl@0: if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ sl@0: goto begin_table_error; sl@0: } sl@0: if( db->init.iDb==1 ) isTemp = 1; sl@0: #ifndef SQLITE_OMIT_AUTHORIZATION sl@0: assert( (isTemp & 1)==isTemp ); sl@0: { sl@0: int code; sl@0: char *zDb = db->aDb[iDb].zName; sl@0: if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ sl@0: goto begin_table_error; sl@0: } sl@0: if( isView ){ sl@0: if( !OMIT_TEMPDB && isTemp ){ sl@0: code = SQLITE_CREATE_TEMP_VIEW; sl@0: }else{ sl@0: code = SQLITE_CREATE_VIEW; sl@0: } sl@0: }else{ sl@0: if( !OMIT_TEMPDB && isTemp ){ sl@0: code = SQLITE_CREATE_TEMP_TABLE; sl@0: }else{ sl@0: code = SQLITE_CREATE_TABLE; sl@0: } sl@0: } sl@0: if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ sl@0: goto begin_table_error; sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* Make sure the new table name does not collide with an existing sl@0: ** index or table name in the same database. Issue an error message if sl@0: ** it does. The exception is if the statement being parsed was passed sl@0: ** to an sqlite3_declare_vtab() call. In that case only the column names sl@0: ** and types will be used, so there is no need to test for namespace sl@0: ** collisions. sl@0: */ sl@0: if( !IN_DECLARE_VTAB ){ sl@0: if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ sl@0: goto begin_table_error; sl@0: } sl@0: pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); sl@0: if( pTable ){ sl@0: if( !noErr ){ sl@0: sqlite3ErrorMsg(pParse, "table %T already exists", pName); sl@0: } sl@0: goto begin_table_error; sl@0: } sl@0: if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ sl@0: sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); sl@0: goto begin_table_error; sl@0: } sl@0: } sl@0: sl@0: pTable = sqlite3DbMallocZero(db, sizeof(Table)); sl@0: if( pTable==0 ){ sl@0: db->mallocFailed = 1; sl@0: pParse->rc = SQLITE_NOMEM; sl@0: pParse->nErr++; sl@0: goto begin_table_error; sl@0: } sl@0: pTable->zName = zName; sl@0: pTable->iPKey = -1; sl@0: pTable->pSchema = db->aDb[iDb].pSchema; sl@0: pTable->nRef = 1; sl@0: pTable->db = db; sl@0: if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable); sl@0: pParse->pNewTable = pTable; sl@0: sl@0: /* If this is the magic sqlite_sequence table used by autoincrement, sl@0: ** then record a pointer to this table in the main database structure sl@0: ** so that INSERT can find the table easily. sl@0: */ sl@0: #ifndef SQLITE_OMIT_AUTOINCREMENT sl@0: if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ sl@0: pTable->pSchema->pSeqTab = pTable; sl@0: } sl@0: #endif sl@0: sl@0: /* Begin generating the code that will insert the table record into sl@0: ** the SQLITE_MASTER table. Note in particular that we must go ahead sl@0: ** and allocate the record number for the table entry now. Before any sl@0: ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause sl@0: ** indices to be created and the table record must come before the sl@0: ** indices. Hence, the record number for the table must be allocated sl@0: ** now. sl@0: */ sl@0: if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ sl@0: int j1; sl@0: int fileFormat; sl@0: int reg1, reg2, reg3; sl@0: sqlite3BeginWriteOperation(pParse, 0, iDb); sl@0: sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( isVirtual ){ sl@0: sqlite3VdbeAddOp0(v, OP_VBegin); sl@0: } sl@0: #endif sl@0: sl@0: /* If the file format and encoding in the database have not been set, sl@0: ** set them now. sl@0: */ sl@0: reg1 = pParse->regRowid = ++pParse->nMem; sl@0: reg2 = pParse->regRoot = ++pParse->nMem; sl@0: reg3 = ++pParse->nMem; sl@0: sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */ sl@0: sqlite3VdbeUsesBtree(v, iDb); sl@0: j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); sl@0: fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? sl@0: 1 : SQLITE_MAX_FILE_FORMAT; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); sl@0: sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); sl@0: sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3); sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: sl@0: /* This just creates a place-holder record in the sqlite_master table. sl@0: ** The record created does not contain anything yet. It will be replaced sl@0: ** by the real entry in code generated at sqlite3EndTable(). sl@0: ** sl@0: ** The rowid for the new entry is left on the top of the stack. sl@0: ** The rowid value is needed by the code that sqlite3EndTable will sl@0: ** generate. sl@0: */ sl@0: #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) sl@0: if( isView || isVirtual ){ sl@0: sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); sl@0: }else sl@0: #endif sl@0: { sl@0: sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); sl@0: } sl@0: sqlite3OpenMasterTable(pParse, iDb); sl@0: sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); sl@0: sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); sl@0: sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); sl@0: sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sl@0: sqlite3VdbeAddOp0(v, OP_Close); sl@0: } sl@0: sl@0: /* Normal (non-error) return. */ sl@0: return; sl@0: sl@0: /* If an error occurs, we jump here */ sl@0: begin_table_error: sl@0: sqlite3DbFree(db, zName); sl@0: return; sl@0: } sl@0: sl@0: /* sl@0: ** This macro is used to compare two strings in a case-insensitive manner. sl@0: ** It is slightly faster than calling sqlite3StrICmp() directly, but sl@0: ** produces larger code. sl@0: ** sl@0: ** WARNING: This macro is not compatible with the strcmp() family. It sl@0: ** returns true if the two strings are equal, otherwise false. sl@0: */ sl@0: #define STRICMP(x, y) (\ sl@0: sqlite3UpperToLower[*(unsigned char *)(x)]== \ sl@0: sqlite3UpperToLower[*(unsigned char *)(y)] \ sl@0: && sqlite3StrICmp((x)+1,(y)+1)==0 ) sl@0: sl@0: /* sl@0: ** Add a new column to the table currently being constructed. sl@0: ** sl@0: ** The parser calls this routine once for each column declaration sl@0: ** in a CREATE TABLE statement. sqlite3StartTable() gets called sl@0: ** first to get things going. Then this routine is called for each sl@0: ** column. sl@0: */ sl@0: void sqlite3AddColumn(Parse *pParse, Token *pName){ sl@0: Table *p; sl@0: int i; sl@0: char *z; sl@0: Column *pCol; sl@0: sqlite3 *db = pParse->db; sl@0: if( (p = pParse->pNewTable)==0 ) return; sl@0: #if SQLITE_MAX_COLUMN sl@0: if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ sl@0: sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); sl@0: return; sl@0: } sl@0: #endif sl@0: z = sqlite3NameFromToken(pParse->db, pName); sl@0: if( z==0 ) return; sl@0: for(i=0; inCol; i++){ sl@0: if( STRICMP(z, p->aCol[i].zName) ){ sl@0: sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); sl@0: sqlite3DbFree(db, z); sl@0: return; sl@0: } sl@0: } sl@0: if( (p->nCol & 0x7)==0 ){ sl@0: Column *aNew; sl@0: aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); sl@0: if( aNew==0 ){ sl@0: sqlite3DbFree(db, z); sl@0: return; sl@0: } sl@0: p->aCol = aNew; sl@0: } sl@0: pCol = &p->aCol[p->nCol]; sl@0: memset(pCol, 0, sizeof(p->aCol[0])); sl@0: pCol->zName = z; sl@0: sl@0: /* If there is no type specified, columns have the default affinity sl@0: ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will sl@0: ** be called next to set pCol->affinity correctly. sl@0: */ sl@0: pCol->affinity = SQLITE_AFF_NONE; sl@0: p->nCol++; sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called by the parser while in the middle of sl@0: ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has sl@0: ** been seen on a column. This routine sets the notNull flag on sl@0: ** the column currently under construction. sl@0: */ sl@0: void sqlite3AddNotNull(Parse *pParse, int onError){ sl@0: Table *p; sl@0: int i; sl@0: if( (p = pParse->pNewTable)==0 ) return; sl@0: i = p->nCol-1; sl@0: if( i>=0 ) p->aCol[i].notNull = onError; sl@0: } sl@0: sl@0: /* sl@0: ** Scan the column type name zType (length nType) and return the sl@0: ** associated affinity type. sl@0: ** sl@0: ** This routine does a case-independent search of zType for the sl@0: ** substrings in the following table. If one of the substrings is sl@0: ** found, the corresponding affinity is returned. If zType contains sl@0: ** more than one of the substrings, entries toward the top of sl@0: ** the table take priority. For example, if zType is 'BLOBINT', sl@0: ** SQLITE_AFF_INTEGER is returned. sl@0: ** sl@0: ** Substring | Affinity sl@0: ** -------------------------------- sl@0: ** 'INT' | SQLITE_AFF_INTEGER sl@0: ** 'CHAR' | SQLITE_AFF_TEXT sl@0: ** 'CLOB' | SQLITE_AFF_TEXT sl@0: ** 'TEXT' | SQLITE_AFF_TEXT sl@0: ** 'BLOB' | SQLITE_AFF_NONE sl@0: ** 'REAL' | SQLITE_AFF_REAL sl@0: ** 'FLOA' | SQLITE_AFF_REAL sl@0: ** 'DOUB' | SQLITE_AFF_REAL sl@0: ** sl@0: ** If none of the substrings in the above table are found, sl@0: ** SQLITE_AFF_NUMERIC is returned. sl@0: */ sl@0: char sqlite3AffinityType(const Token *pType){ sl@0: u32 h = 0; sl@0: char aff = SQLITE_AFF_NUMERIC; sl@0: const unsigned char *zIn = pType->z; sl@0: const unsigned char *zEnd = &pType->z[pType->n]; sl@0: sl@0: while( zIn!=zEnd ){ sl@0: h = (h<<8) + sqlite3UpperToLower[*zIn]; sl@0: zIn++; sl@0: if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ sl@0: aff = SQLITE_AFF_TEXT; sl@0: }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ sl@0: aff = SQLITE_AFF_TEXT; sl@0: }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ sl@0: aff = SQLITE_AFF_TEXT; sl@0: }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ sl@0: && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ sl@0: aff = SQLITE_AFF_NONE; sl@0: #ifndef SQLITE_OMIT_FLOATING_POINT sl@0: }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ sl@0: && aff==SQLITE_AFF_NUMERIC ){ sl@0: aff = SQLITE_AFF_REAL; sl@0: }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ sl@0: && aff==SQLITE_AFF_NUMERIC ){ sl@0: aff = SQLITE_AFF_REAL; sl@0: }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ sl@0: && aff==SQLITE_AFF_NUMERIC ){ sl@0: aff = SQLITE_AFF_REAL; sl@0: #endif sl@0: }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ sl@0: aff = SQLITE_AFF_INTEGER; sl@0: break; sl@0: } sl@0: } sl@0: sl@0: return aff; sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called by the parser while in the middle of sl@0: ** parsing a CREATE TABLE statement. The pFirst token is the first sl@0: ** token in the sequence of tokens that describe the type of the sl@0: ** column currently under construction. pLast is the last token sl@0: ** in the sequence. Use this information to construct a string sl@0: ** that contains the typename of the column and store that string sl@0: ** in zType. sl@0: */ sl@0: void sqlite3AddColumnType(Parse *pParse, Token *pType){ sl@0: Table *p; sl@0: int i; sl@0: Column *pCol; sl@0: sqlite3 *db; sl@0: sl@0: if( (p = pParse->pNewTable)==0 ) return; sl@0: i = p->nCol-1; sl@0: if( i<0 ) return; sl@0: pCol = &p->aCol[i]; sl@0: db = pParse->db; sl@0: sqlite3DbFree(db, pCol->zType); sl@0: pCol->zType = sqlite3NameFromToken(db, pType); sl@0: pCol->affinity = sqlite3AffinityType(pType); sl@0: } sl@0: sl@0: /* sl@0: ** The expression is the default value for the most recently added column sl@0: ** of the table currently under construction. sl@0: ** sl@0: ** Default value expressions must be constant. Raise an exception if this sl@0: ** is not the case. sl@0: ** sl@0: ** This routine is called by the parser while in the middle of sl@0: ** parsing a CREATE TABLE statement. sl@0: */ sl@0: void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ sl@0: Table *p; sl@0: Column *pCol; sl@0: sqlite3 *db = pParse->db; sl@0: if( (p = pParse->pNewTable)!=0 ){ sl@0: pCol = &(p->aCol[p->nCol-1]); sl@0: if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ sl@0: sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", sl@0: pCol->zName); sl@0: }else{ sl@0: Expr *pCopy; sl@0: sqlite3ExprDelete(db, pCol->pDflt); sl@0: pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr); sl@0: if( pCopy ){ sl@0: sqlite3TokenCopy(db, &pCopy->span, &pExpr->span); sl@0: } sl@0: } sl@0: } sl@0: sqlite3ExprDelete(db, pExpr); sl@0: } sl@0: sl@0: /* sl@0: ** Designate the PRIMARY KEY for the table. pList is a list of names sl@0: ** of columns that form the primary key. If pList is NULL, then the sl@0: ** most recently added column of the table is the primary key. sl@0: ** sl@0: ** A table can have at most one primary key. If the table already has sl@0: ** a primary key (and this is the second primary key) then create an sl@0: ** error. sl@0: ** sl@0: ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, sl@0: ** then we will try to use that column as the rowid. Set the Table.iPKey sl@0: ** field of the table under construction to be the index of the sl@0: ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is sl@0: ** no INTEGER PRIMARY KEY. sl@0: ** sl@0: ** If the key is not an INTEGER PRIMARY KEY, then create a unique sl@0: ** index for the key. No index is created for INTEGER PRIMARY KEYs. sl@0: */ sl@0: void sqlite3AddPrimaryKey( sl@0: Parse *pParse, /* Parsing context */ sl@0: ExprList *pList, /* List of field names to be indexed */ sl@0: int onError, /* What to do with a uniqueness conflict */ sl@0: int autoInc, /* True if the AUTOINCREMENT keyword is present */ sl@0: int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ sl@0: ){ sl@0: Table *pTab = pParse->pNewTable; sl@0: char *zType = 0; sl@0: int iCol = -1, i; sl@0: if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; sl@0: if( pTab->hasPrimKey ){ sl@0: sqlite3ErrorMsg(pParse, sl@0: "table \"%s\" has more than one primary key", pTab->zName); sl@0: goto primary_key_exit; sl@0: } sl@0: pTab->hasPrimKey = 1; sl@0: if( pList==0 ){ sl@0: iCol = pTab->nCol - 1; sl@0: pTab->aCol[iCol].isPrimKey = 1; sl@0: }else{ sl@0: for(i=0; inExpr; i++){ sl@0: for(iCol=0; iColnCol; iCol++){ sl@0: if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ sl@0: break; sl@0: } sl@0: } sl@0: if( iColnCol ){ sl@0: pTab->aCol[iCol].isPrimKey = 1; sl@0: } sl@0: } sl@0: if( pList->nExpr>1 ) iCol = -1; sl@0: } sl@0: if( iCol>=0 && iColnCol ){ sl@0: zType = pTab->aCol[iCol].zType; sl@0: } sl@0: if( zType && sqlite3StrICmp(zType, "INTEGER")==0 sl@0: && sortOrder==SQLITE_SO_ASC ){ sl@0: pTab->iPKey = iCol; sl@0: pTab->keyConf = onError; sl@0: pTab->autoInc = autoInc; sl@0: }else if( autoInc ){ sl@0: #ifndef SQLITE_OMIT_AUTOINCREMENT sl@0: sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " sl@0: "INTEGER PRIMARY KEY"); sl@0: #endif sl@0: }else{ sl@0: sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); sl@0: pList = 0; sl@0: } sl@0: sl@0: primary_key_exit: sl@0: sqlite3ExprListDelete(pParse->db, pList); sl@0: return; sl@0: } sl@0: sl@0: /* sl@0: ** Add a new CHECK constraint to the table currently under construction. sl@0: */ sl@0: void sqlite3AddCheckConstraint( sl@0: Parse *pParse, /* Parsing context */ sl@0: Expr *pCheckExpr /* The check expression */ sl@0: ){ sl@0: sqlite3 *db = pParse->db; sl@0: #ifndef SQLITE_OMIT_CHECK sl@0: Table *pTab = pParse->pNewTable; sl@0: if( pTab && !IN_DECLARE_VTAB ){ sl@0: /* The CHECK expression must be duplicated so that tokens refer sl@0: ** to malloced space and not the (ephemeral) text of the CREATE TABLE sl@0: ** statement */ sl@0: pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, sl@0: sqlite3ExprDup(db, pCheckExpr)); sl@0: } sl@0: #endif sl@0: sqlite3ExprDelete(db, pCheckExpr); sl@0: } sl@0: sl@0: /* sl@0: ** Set the collation function of the most recently parsed table column sl@0: ** to the CollSeq given. sl@0: */ sl@0: void sqlite3AddCollateType(Parse *pParse, Token *pToken){ sl@0: Table *p; sl@0: int i; sl@0: char *zColl; /* Dequoted name of collation sequence */ sl@0: sqlite3 *db; sl@0: sl@0: if( (p = pParse->pNewTable)==0 ) return; sl@0: i = p->nCol-1; sl@0: db = pParse->db; sl@0: zColl = sqlite3NameFromToken(db, pToken); sl@0: if( !zColl ) return; sl@0: sl@0: if( sqlite3LocateCollSeq(pParse, zColl, -1) ){ sl@0: Index *pIdx; sl@0: p->aCol[i].zColl = zColl; sl@0: sl@0: /* If the column is declared as " PRIMARY KEY COLLATE ", sl@0: ** then an index may have been created on this column before the sl@0: ** collation type was added. Correct this if it is the case. sl@0: */ sl@0: for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ sl@0: assert( pIdx->nColumn==1 ); sl@0: if( pIdx->aiColumn[0]==i ){ sl@0: pIdx->azColl[0] = p->aCol[i].zColl; sl@0: } sl@0: } sl@0: }else{ sl@0: sqlite3DbFree(db, zColl); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This function returns the collation sequence for database native text sl@0: ** encoding identified by the string zName, length nName. sl@0: ** sl@0: ** If the requested collation sequence is not available, or not available sl@0: ** in the database native encoding, the collation factory is invoked to sl@0: ** request it. If the collation factory does not supply such a sequence, sl@0: ** and the sequence is available in another text encoding, then that is sl@0: ** returned instead. sl@0: ** sl@0: ** If no versions of the requested collations sequence are available, or sl@0: ** another error occurs, NULL is returned and an error message written into sl@0: ** pParse. sl@0: ** sl@0: ** This routine is a wrapper around sqlite3FindCollSeq(). This routine sl@0: ** invokes the collation factory if the named collation cannot be found sl@0: ** and generates an error message. sl@0: */ sl@0: CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ sl@0: sqlite3 *db = pParse->db; sl@0: u8 enc = ENC(db); sl@0: u8 initbusy = db->init.busy; sl@0: CollSeq *pColl; sl@0: sl@0: pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); sl@0: if( !initbusy && (!pColl || !pColl->xCmp) ){ sl@0: pColl = sqlite3GetCollSeq(db, pColl, zName, nName); sl@0: if( !pColl ){ sl@0: if( nName<0 ){ sl@0: nName = sqlite3Strlen(db, zName); sl@0: } sl@0: sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); sl@0: pColl = 0; sl@0: } sl@0: } sl@0: sl@0: return pColl; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Generate code that will increment the schema cookie. sl@0: ** sl@0: ** The schema cookie is used to determine when the schema for the sl@0: ** database changes. After each schema change, the cookie value sl@0: ** changes. When a process first reads the schema it records the sl@0: ** cookie. Thereafter, whenever it goes to access the database, sl@0: ** it checks the cookie to make sure the schema has not changed sl@0: ** since it was last read. sl@0: ** sl@0: ** This plan is not completely bullet-proof. It is possible for sl@0: ** the schema to change multiple times and for the cookie to be sl@0: ** set back to prior value. But schema changes are infrequent sl@0: ** and the probability of hitting the same cookie value is only sl@0: ** 1 chance in 2^32. So we're safe enough. sl@0: */ sl@0: void sqlite3ChangeCookie(Parse *pParse, int iDb){ sl@0: int r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3 *db = pParse->db; sl@0: Vdbe *v = pParse->pVdbe; sl@0: sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); sl@0: sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: } sl@0: sl@0: /* sl@0: ** Measure the number of characters needed to output the given sl@0: ** identifier. The number returned includes any quotes used sl@0: ** but does not include the null terminator. sl@0: ** sl@0: ** The estimate is conservative. It might be larger that what is sl@0: ** really needed. sl@0: */ sl@0: static int identLength(const char *z){ sl@0: int n; sl@0: for(n=0; *z; n++, z++){ sl@0: if( *z=='"' ){ n++; } sl@0: } sl@0: return n + 2; sl@0: } sl@0: sl@0: /* sl@0: ** Write an identifier onto the end of the given string. Add sl@0: ** quote characters as needed. sl@0: */ sl@0: static void identPut(char *z, int *pIdx, char *zSignedIdent){ sl@0: unsigned char *zIdent = (unsigned char*)zSignedIdent; sl@0: int i, j, needQuote; sl@0: i = *pIdx; sl@0: for(j=0; zIdent[j]; j++){ sl@0: if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; sl@0: } sl@0: needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) sl@0: || sqlite3KeywordCode(zIdent, j)!=TK_ID; sl@0: if( needQuote ) z[i++] = '"'; sl@0: for(j=0; zIdent[j]; j++){ sl@0: z[i++] = zIdent[j]; sl@0: if( zIdent[j]=='"' ) z[i++] = '"'; sl@0: } sl@0: if( needQuote ) z[i++] = '"'; sl@0: z[i] = 0; sl@0: *pIdx = i; sl@0: } sl@0: sl@0: /* sl@0: ** Generate a CREATE TABLE statement appropriate for the given sl@0: ** table. Memory to hold the text of the statement is obtained sl@0: ** from sqliteMalloc() and must be freed by the calling function. sl@0: */ sl@0: static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){ sl@0: int i, k, n; sl@0: char *zStmt; sl@0: char *zSep, *zSep2, *zEnd, *z; sl@0: Column *pCol; sl@0: n = 0; sl@0: for(pCol = p->aCol, i=0; inCol; i++, pCol++){ sl@0: n += identLength(pCol->zName); sl@0: z = pCol->zType; sl@0: if( z ){ sl@0: n += (strlen(z) + 1); sl@0: } sl@0: } sl@0: n += identLength(p->zName); sl@0: if( n<50 ){ sl@0: zSep = ""; sl@0: zSep2 = ","; sl@0: zEnd = ")"; sl@0: }else{ sl@0: zSep = "\n "; sl@0: zSep2 = ",\n "; sl@0: zEnd = "\n)"; sl@0: } sl@0: n += 35 + 6*p->nCol; sl@0: zStmt = sqlite3Malloc( n ); sl@0: if( zStmt==0 ){ sl@0: db->mallocFailed = 1; sl@0: return 0; sl@0: } sl@0: sqlite3_snprintf(n, zStmt, sl@0: !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); sl@0: k = strlen(zStmt); sl@0: identPut(zStmt, &k, p->zName); sl@0: zStmt[k++] = '('; sl@0: for(pCol=p->aCol, i=0; inCol; i++, pCol++){ sl@0: sqlite3_snprintf(n-k, &zStmt[k], zSep); sl@0: k += strlen(&zStmt[k]); sl@0: zSep = zSep2; sl@0: identPut(zStmt, &k, pCol->zName); sl@0: if( (z = pCol->zType)!=0 ){ sl@0: zStmt[k++] = ' '; sl@0: assert( strlen(z)+k+1<=n ); sl@0: sqlite3_snprintf(n-k, &zStmt[k], "%s", z); sl@0: k += strlen(z); sl@0: } sl@0: } sl@0: sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); sl@0: return zStmt; sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called to report the final ")" that terminates sl@0: ** a CREATE TABLE statement. sl@0: ** sl@0: ** The table structure that other action routines have been building sl@0: ** is added to the internal hash tables, assuming no errors have sl@0: ** occurred. sl@0: ** sl@0: ** An entry for the table is made in the master table on disk, unless sl@0: ** this is a temporary table or db->init.busy==1. When db->init.busy==1 sl@0: ** it means we are reading the sqlite_master table because we just sl@0: ** connected to the database or because the sqlite_master table has sl@0: ** recently changed, so the entry for this table already exists in sl@0: ** the sqlite_master table. We do not want to create it again. sl@0: ** sl@0: ** If the pSelect argument is not NULL, it means that this routine sl@0: ** was called to create a table generated from a sl@0: ** "CREATE TABLE ... AS SELECT ..." statement. The column names of sl@0: ** the new table will match the result set of the SELECT. sl@0: */ sl@0: void sqlite3EndTable( sl@0: Parse *pParse, /* Parse context */ sl@0: Token *pCons, /* The ',' token after the last column defn. */ sl@0: Token *pEnd, /* The final ')' token in the CREATE TABLE */ sl@0: Select *pSelect /* Select from a "CREATE ... AS SELECT" */ sl@0: ){ sl@0: Table *p; sl@0: sqlite3 *db = pParse->db; sl@0: int iDb; sl@0: sl@0: if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) { sl@0: return; sl@0: } sl@0: p = pParse->pNewTable; sl@0: if( p==0 ) return; sl@0: sl@0: assert( !db->init.busy || !pSelect ); sl@0: sl@0: iDb = sqlite3SchemaToIndex(db, p->pSchema); sl@0: sl@0: #ifndef SQLITE_OMIT_CHECK sl@0: /* Resolve names in all CHECK constraint expressions. sl@0: */ sl@0: if( p->pCheck ){ sl@0: SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ sl@0: NameContext sNC; /* Name context for pParse->pNewTable */ sl@0: sl@0: memset(&sNC, 0, sizeof(sNC)); sl@0: memset(&sSrc, 0, sizeof(sSrc)); sl@0: sSrc.nSrc = 1; sl@0: sSrc.a[0].zName = p->zName; sl@0: sSrc.a[0].pTab = p; sl@0: sSrc.a[0].iCursor = -1; sl@0: sNC.pParse = pParse; sl@0: sNC.pSrcList = &sSrc; sl@0: sNC.isCheck = 1; sl@0: if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){ sl@0: return; sl@0: } sl@0: } sl@0: #endif /* !defined(SQLITE_OMIT_CHECK) */ sl@0: sl@0: /* If the db->init.busy is 1 it means we are reading the SQL off the sl@0: ** "sqlite_master" or "sqlite_temp_master" table on the disk. sl@0: ** So do not write to the disk again. Extract the root page number sl@0: ** for the table from the db->init.newTnum field. (The page number sl@0: ** should have been put there by the sqliteOpenCb routine.) sl@0: */ sl@0: if( db->init.busy ){ sl@0: p->tnum = db->init.newTnum; sl@0: } sl@0: sl@0: /* If not initializing, then create a record for the new table sl@0: ** in the SQLITE_MASTER table of the database. The record number sl@0: ** for the new table entry should already be on the stack. sl@0: ** sl@0: ** If this is a TEMPORARY table, write the entry into the auxiliary sl@0: ** file instead of into the main database file. sl@0: */ sl@0: if( !db->init.busy ){ sl@0: int n; sl@0: Vdbe *v; sl@0: char *zType; /* "view" or "table" */ sl@0: char *zType2; /* "VIEW" or "TABLE" */ sl@0: char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) return; sl@0: sl@0: sqlite3VdbeAddOp1(v, OP_Close, 0); sl@0: sl@0: /* Create the rootpage for the new table and push it onto the stack. sl@0: ** A view has no rootpage, so just push a zero onto the stack for sl@0: ** views. Initialize zType at the same time. sl@0: */ sl@0: if( p->pSelect==0 ){ sl@0: /* A regular table */ sl@0: zType = "table"; sl@0: zType2 = "TABLE"; sl@0: #ifndef SQLITE_OMIT_VIEW sl@0: }else{ sl@0: /* A view */ sl@0: zType = "view"; sl@0: zType2 = "VIEW"; sl@0: #endif sl@0: } sl@0: sl@0: /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT sl@0: ** statement to populate the new table. The root-page number for the sl@0: ** new table is on the top of the vdbe stack. sl@0: ** sl@0: ** Once the SELECT has been coded by sqlite3Select(), it is in a sl@0: ** suitable state to query for the column names and types to be used sl@0: ** by the new table. sl@0: ** sl@0: ** A shared-cache write-lock is not required to write to the new table, sl@0: ** as a schema-lock must have already been obtained to create it. Since sl@0: ** a schema-lock excludes all other database users, the write-lock would sl@0: ** be redundant. sl@0: */ sl@0: if( pSelect ){ sl@0: SelectDest dest; sl@0: Table *pSelTab; sl@0: sl@0: assert(pParse->nTab==0); sl@0: sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); sl@0: sqlite3VdbeChangeP5(v, 1); sl@0: pParse->nTab = 2; sl@0: sqlite3SelectDestInit(&dest, SRT_Table, 1); sl@0: sqlite3Select(pParse, pSelect, &dest, 0, 0, 0); sl@0: sqlite3VdbeAddOp1(v, OP_Close, 1); sl@0: if( pParse->nErr==0 ){ sl@0: pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); sl@0: if( pSelTab==0 ) return; sl@0: assert( p->aCol==0 ); sl@0: p->nCol = pSelTab->nCol; sl@0: p->aCol = pSelTab->aCol; sl@0: pSelTab->nCol = 0; sl@0: pSelTab->aCol = 0; sl@0: sqlite3DeleteTable(pSelTab); sl@0: } sl@0: } sl@0: sl@0: /* Compute the complete text of the CREATE statement */ sl@0: if( pSelect ){ sl@0: zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema); sl@0: }else{ sl@0: n = pEnd->z - pParse->sNameToken.z + 1; sl@0: zStmt = sqlite3MPrintf(db, sl@0: "CREATE %s %.*s", zType2, n, pParse->sNameToken.z sl@0: ); sl@0: } sl@0: sl@0: /* A slot for the record has already been allocated in the sl@0: ** SQLITE_MASTER table. We just need to update that slot with all sl@0: ** the information we've collected. The rowid for the preallocated sl@0: ** slot is the 2nd item on the stack. The top of the stack is the sl@0: ** root page for the new table (or a 0 if this is a view). sl@0: */ sl@0: sqlite3NestedParse(pParse, sl@0: "UPDATE %Q.%s " sl@0: "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " sl@0: "WHERE rowid=#%d", sl@0: db->aDb[iDb].zName, SCHEMA_TABLE(iDb), sl@0: zType, sl@0: p->zName, sl@0: p->zName, sl@0: pParse->regRoot, sl@0: zStmt, sl@0: pParse->regRowid sl@0: ); sl@0: sqlite3DbFree(db, zStmt); sl@0: sqlite3ChangeCookie(pParse, iDb); sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOINCREMENT sl@0: /* Check to see if we need to create an sqlite_sequence table for sl@0: ** keeping track of autoincrement keys. sl@0: */ sl@0: if( p->autoInc ){ sl@0: Db *pDb = &db->aDb[iDb]; sl@0: if( pDb->pSchema->pSeqTab==0 ){ sl@0: sqlite3NestedParse(pParse, sl@0: "CREATE TABLE %Q.sqlite_sequence(name,seq)", sl@0: pDb->zName sl@0: ); sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* Reparse everything to update our internal data structures */ sl@0: sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sl@0: sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); sl@0: } sl@0: sl@0: sl@0: /* Add the table to the in-memory representation of the database. sl@0: */ sl@0: if( db->init.busy && pParse->nErr==0 ){ sl@0: Table *pOld; sl@0: FKey *pFKey; sl@0: Schema *pSchema = p->pSchema; sl@0: pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); sl@0: if( pOld ){ sl@0: assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ sl@0: db->mallocFailed = 1; sl@0: return; sl@0: } sl@0: #ifndef SQLITE_OMIT_FOREIGN_KEY sl@0: for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ sl@0: void *data; sl@0: int nTo = strlen(pFKey->zTo) + 1; sl@0: pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); sl@0: data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); sl@0: if( data==(void *)pFKey ){ sl@0: db->mallocFailed = 1; sl@0: } sl@0: } sl@0: #endif sl@0: pParse->pNewTable = 0; sl@0: db->nTable++; sl@0: db->flags |= SQLITE_InternChanges; sl@0: sl@0: #ifndef SQLITE_OMIT_ALTERTABLE sl@0: if( !p->pSelect ){ sl@0: const char *zName = (const char *)pParse->sNameToken.z; sl@0: int nName; sl@0: assert( !pSelect && pCons && pEnd ); sl@0: if( pCons->z==0 ){ sl@0: pCons = pEnd; sl@0: } sl@0: nName = (const char *)pCons->z - zName; sl@0: p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); sl@0: } sl@0: #endif sl@0: } sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_VIEW sl@0: /* sl@0: ** The parser calls this routine in order to create a new VIEW sl@0: */ sl@0: void sqlite3CreateView( sl@0: Parse *pParse, /* The parsing context */ sl@0: Token *pBegin, /* The CREATE token that begins the statement */ sl@0: Token *pName1, /* The token that holds the name of the view */ sl@0: Token *pName2, /* The token that holds the name of the view */ sl@0: Select *pSelect, /* A SELECT statement that will become the new view */ sl@0: int isTemp, /* TRUE for a TEMPORARY view */ sl@0: int noErr /* Suppress error messages if VIEW already exists */ sl@0: ){ sl@0: Table *p; sl@0: int n; sl@0: const unsigned char *z; sl@0: Token sEnd; sl@0: DbFixer sFix; sl@0: Token *pName; sl@0: int iDb; sl@0: sqlite3 *db = pParse->db; sl@0: sl@0: if( pParse->nVar>0 ){ sl@0: sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); sl@0: sqlite3SelectDelete(db, pSelect); sl@0: return; sl@0: } sl@0: sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); sl@0: p = pParse->pNewTable; sl@0: if( p==0 || pParse->nErr ){ sl@0: sqlite3SelectDelete(db, pSelect); sl@0: return; sl@0: } sl@0: sqlite3TwoPartName(pParse, pName1, pName2, &pName); sl@0: iDb = sqlite3SchemaToIndex(db, p->pSchema); sl@0: if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) sl@0: && sqlite3FixSelect(&sFix, pSelect) sl@0: ){ sl@0: sqlite3SelectDelete(db, pSelect); sl@0: return; sl@0: } sl@0: sl@0: /* Make a copy of the entire SELECT statement that defines the view. sl@0: ** This will force all the Expr.token.z values to be dynamically sl@0: ** allocated rather than point to the input string - which means that sl@0: ** they will persist after the current sqlite3_exec() call returns. sl@0: */ sl@0: p->pSelect = sqlite3SelectDup(db, pSelect); sl@0: sqlite3SelectDelete(db, pSelect); sl@0: if( db->mallocFailed ){ sl@0: return; sl@0: } sl@0: if( !db->init.busy ){ sl@0: sqlite3ViewGetColumnNames(pParse, p); sl@0: } sl@0: sl@0: /* Locate the end of the CREATE VIEW statement. Make sEnd point to sl@0: ** the end. sl@0: */ sl@0: sEnd = pParse->sLastToken; sl@0: if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ sl@0: sEnd.z += sEnd.n; sl@0: } sl@0: sEnd.n = 0; sl@0: n = sEnd.z - pBegin->z; sl@0: z = (const unsigned char*)pBegin->z; sl@0: while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } sl@0: sEnd.z = &z[n-1]; sl@0: sEnd.n = 1; sl@0: sl@0: /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ sl@0: sqlite3EndTable(pParse, 0, &sEnd, 0); sl@0: return; sl@0: } sl@0: #endif /* SQLITE_OMIT_VIEW */ sl@0: sl@0: #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) sl@0: /* sl@0: ** The Table structure pTable is really a VIEW. Fill in the names of sl@0: ** the columns of the view in the pTable structure. Return the number sl@0: ** of errors. If an error is seen leave an error message in pParse->zErrMsg. sl@0: */ sl@0: int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ sl@0: Table *pSelTab; /* A fake table from which we get the result set */ sl@0: Select *pSel; /* Copy of the SELECT that implements the view */ sl@0: int nErr = 0; /* Number of errors encountered */ sl@0: int n; /* Temporarily holds the number of cursors assigned */ sl@0: sqlite3 *db = pParse->db; /* Database connection for malloc errors */ sl@0: int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); sl@0: sl@0: assert( pTable ); sl@0: sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( sqlite3VtabCallConnect(pParse, pTable) ){ sl@0: return SQLITE_ERROR; sl@0: } sl@0: if( IsVirtual(pTable) ) return 0; sl@0: #endif sl@0: sl@0: #ifndef SQLITE_OMIT_VIEW sl@0: /* A positive nCol means the columns names for this view are sl@0: ** already known. sl@0: */ sl@0: if( pTable->nCol>0 ) return 0; sl@0: sl@0: /* A negative nCol is a special marker meaning that we are currently sl@0: ** trying to compute the column names. If we enter this routine with sl@0: ** a negative nCol, it means two or more views form a loop, like this: sl@0: ** sl@0: ** CREATE VIEW one AS SELECT * FROM two; sl@0: ** CREATE VIEW two AS SELECT * FROM one; sl@0: ** sl@0: ** Actually, this error is caught previously and so the following test sl@0: ** should always fail. But we will leave it in place just to be safe. sl@0: */ sl@0: if( pTable->nCol<0 ){ sl@0: sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); sl@0: return 1; sl@0: } sl@0: assert( pTable->nCol>=0 ); sl@0: sl@0: /* If we get this far, it means we need to compute the table names. sl@0: ** Note that the call to sqlite3ResultSetOfSelect() will expand any sl@0: ** "*" elements in the results set of the view and will assign cursors sl@0: ** to the elements of the FROM clause. But we do not want these changes sl@0: ** to be permanent. So the computation is done on a copy of the SELECT sl@0: ** statement that defines the view. sl@0: */ sl@0: assert( pTable->pSelect ); sl@0: pSel = sqlite3SelectDup(db, pTable->pSelect); sl@0: if( pSel ){ sl@0: n = pParse->nTab; sl@0: sqlite3SrcListAssignCursors(pParse, pSel->pSrc); sl@0: pTable->nCol = -1; sl@0: #ifndef SQLITE_OMIT_AUTHORIZATION sl@0: xAuth = db->xAuth; sl@0: db->xAuth = 0; sl@0: pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); sl@0: db->xAuth = xAuth; sl@0: #else sl@0: pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); sl@0: #endif sl@0: pParse->nTab = n; sl@0: if( pSelTab ){ sl@0: assert( pTable->aCol==0 ); sl@0: pTable->nCol = pSelTab->nCol; sl@0: pTable->aCol = pSelTab->aCol; sl@0: pSelTab->nCol = 0; sl@0: pSelTab->aCol = 0; sl@0: sqlite3DeleteTable(pSelTab); sl@0: pTable->pSchema->flags |= DB_UnresetViews; sl@0: }else{ sl@0: pTable->nCol = 0; sl@0: nErr++; sl@0: } sl@0: sqlite3SelectDelete(db, pSel); sl@0: } else { sl@0: nErr++; sl@0: } sl@0: #endif /* SQLITE_OMIT_VIEW */ sl@0: return nErr; sl@0: } sl@0: #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ sl@0: sl@0: #ifndef SQLITE_OMIT_VIEW sl@0: /* sl@0: ** Clear the column names from every VIEW in database idx. sl@0: */ sl@0: static void sqliteViewResetAll(sqlite3 *db, int idx){ sl@0: HashElem *i; sl@0: if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; sl@0: for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ sl@0: Table *pTab = sqliteHashData(i); sl@0: if( pTab->pSelect ){ sl@0: sqliteResetColumnNames(pTab); sl@0: } sl@0: } sl@0: DbClearProperty(db, idx, DB_UnresetViews); sl@0: } sl@0: #else sl@0: # define sqliteViewResetAll(A,B) sl@0: #endif /* SQLITE_OMIT_VIEW */ sl@0: sl@0: /* sl@0: ** This function is called by the VDBE to adjust the internal schema sl@0: ** used by SQLite when the btree layer moves a table root page. The sl@0: ** root-page of a table or index in database iDb has changed from iFrom sl@0: ** to iTo. sl@0: ** sl@0: ** Ticket #1728: The symbol table might still contain information sl@0: ** on tables and/or indices that are the process of being deleted. sl@0: ** If you are unlucky, one of those deleted indices or tables might sl@0: ** have the same rootpage number as the real table or index that is sl@0: ** being moved. So we cannot stop searching after the first match sl@0: ** because the first match might be for one of the deleted indices sl@0: ** or tables and not the table/index that is actually being moved. sl@0: ** We must continue looping until all tables and indices with sl@0: ** rootpage==iFrom have been converted to have a rootpage of iTo sl@0: ** in order to be certain that we got the right one. sl@0: */ sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ sl@0: HashElem *pElem; sl@0: Hash *pHash; sl@0: sl@0: pHash = &pDb->pSchema->tblHash; sl@0: for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ sl@0: Table *pTab = sqliteHashData(pElem); sl@0: if( pTab->tnum==iFrom ){ sl@0: pTab->tnum = iTo; sl@0: } sl@0: } sl@0: pHash = &pDb->pSchema->idxHash; sl@0: for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ sl@0: Index *pIdx = sqliteHashData(pElem); sl@0: if( pIdx->tnum==iFrom ){ sl@0: pIdx->tnum = iTo; sl@0: } sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Write code to erase the table with root-page iTable from database iDb. sl@0: ** Also write code to modify the sqlite_master table and internal schema sl@0: ** if a root-page of another table is moved by the btree-layer whilst sl@0: ** erasing iTable (this can happen with an auto-vacuum database). sl@0: */ sl@0: static void destroyRootPage(Parse *pParse, int iTable, int iDb){ sl@0: Vdbe *v = sqlite3GetVdbe(pParse); sl@0: int r1 = sqlite3GetTempReg(pParse); sl@0: sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); sl@0: #ifndef SQLITE_OMIT_AUTOVACUUM sl@0: /* OP_Destroy stores an in integer r1. If this integer sl@0: ** is non-zero, then it is the root page number of a table moved to sl@0: ** location iTable. The following code modifies the sqlite_master table to sl@0: ** reflect this. sl@0: ** sl@0: ** The "#%d" in the SQL is a special constant that means whatever value sl@0: ** is on the top of the stack. See sqlite3RegisterExpr(). sl@0: */ sl@0: sqlite3NestedParse(pParse, sl@0: "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", sl@0: pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); sl@0: #endif sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: } sl@0: sl@0: /* sl@0: ** Write VDBE code to erase table pTab and all associated indices on disk. sl@0: ** Code to update the sqlite_master tables and internal schema definitions sl@0: ** in case a root-page belonging to another table is moved by the btree layer sl@0: ** is also added (this can happen with an auto-vacuum database). sl@0: */ sl@0: static void destroyTable(Parse *pParse, Table *pTab){ sl@0: #ifdef SQLITE_OMIT_AUTOVACUUM sl@0: Index *pIdx; sl@0: int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sl@0: destroyRootPage(pParse, pTab->tnum, iDb); sl@0: for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sl@0: destroyRootPage(pParse, pIdx->tnum, iDb); sl@0: } sl@0: #else sl@0: /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM sl@0: ** is not defined), then it is important to call OP_Destroy on the sl@0: ** table and index root-pages in order, starting with the numerically sl@0: ** largest root-page number. This guarantees that none of the root-pages sl@0: ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the sl@0: ** following were coded: sl@0: ** sl@0: ** OP_Destroy 4 0 sl@0: ** ... sl@0: ** OP_Destroy 5 0 sl@0: ** sl@0: ** and root page 5 happened to be the largest root-page number in the sl@0: ** database, then root page 5 would be moved to page 4 by the sl@0: ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit sl@0: ** a free-list page. sl@0: */ sl@0: int iTab = pTab->tnum; sl@0: int iDestroyed = 0; sl@0: sl@0: while( 1 ){ sl@0: Index *pIdx; sl@0: int iLargest = 0; sl@0: sl@0: if( iDestroyed==0 || iTabpIndex; pIdx; pIdx=pIdx->pNext){ sl@0: int iIdx = pIdx->tnum; sl@0: assert( pIdx->pSchema==pTab->pSchema ); sl@0: if( (iDestroyed==0 || (iIdxiLargest ){ sl@0: iLargest = iIdx; sl@0: } sl@0: } sl@0: if( iLargest==0 ){ sl@0: return; sl@0: }else{ sl@0: int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sl@0: destroyRootPage(pParse, iLargest, iDb); sl@0: iDestroyed = iLargest; sl@0: } sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called to do the work of a DROP TABLE statement. sl@0: ** pName is the name of the table to be dropped. sl@0: */ sl@0: void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ sl@0: Table *pTab; sl@0: Vdbe *v; sl@0: sqlite3 *db = pParse->db; sl@0: int iDb; sl@0: sl@0: if( pParse->nErr || db->mallocFailed ){ sl@0: goto exit_drop_table; sl@0: } sl@0: assert( pName->nSrc==1 ); sl@0: pTab = sqlite3LocateTable(pParse, isView, sl@0: pName->a[0].zName, pName->a[0].zDatabase); sl@0: sl@0: if( pTab==0 ){ sl@0: if( noErr ){ sl@0: sqlite3ErrorClear(pParse); sl@0: } sl@0: goto exit_drop_table; sl@0: } sl@0: iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sl@0: assert( iDb>=0 && iDbnDb ); sl@0: sl@0: /* If pTab is a virtual table, call ViewGetColumnNames() to ensure sl@0: ** it is initialized. sl@0: */ sl@0: if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ sl@0: goto exit_drop_table; sl@0: } sl@0: #ifndef SQLITE_OMIT_AUTHORIZATION sl@0: { sl@0: int code; sl@0: const char *zTab = SCHEMA_TABLE(iDb); sl@0: const char *zDb = db->aDb[iDb].zName; sl@0: const char *zArg2 = 0; sl@0: if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ sl@0: goto exit_drop_table; sl@0: } sl@0: if( isView ){ sl@0: if( !OMIT_TEMPDB && iDb==1 ){ sl@0: code = SQLITE_DROP_TEMP_VIEW; sl@0: }else{ sl@0: code = SQLITE_DROP_VIEW; sl@0: } sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: }else if( IsVirtual(pTab) ){ sl@0: code = SQLITE_DROP_VTABLE; sl@0: zArg2 = pTab->pMod->zName; sl@0: #endif sl@0: }else{ sl@0: if( !OMIT_TEMPDB && iDb==1 ){ sl@0: code = SQLITE_DROP_TEMP_TABLE; sl@0: }else{ sl@0: code = SQLITE_DROP_TABLE; sl@0: } sl@0: } sl@0: if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ sl@0: goto exit_drop_table; sl@0: } sl@0: if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ sl@0: goto exit_drop_table; sl@0: } sl@0: } sl@0: #endif sl@0: if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ sl@0: sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); sl@0: goto exit_drop_table; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_VIEW sl@0: /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used sl@0: ** on a table. sl@0: */ sl@0: if( isView && pTab->pSelect==0 ){ sl@0: sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); sl@0: goto exit_drop_table; sl@0: } sl@0: if( !isView && pTab->pSelect ){ sl@0: sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); sl@0: goto exit_drop_table; sl@0: } sl@0: #endif sl@0: sl@0: /* Generate code to remove the table from the master table sl@0: ** on disk. sl@0: */ sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v ){ sl@0: Trigger *pTrigger; sl@0: Db *pDb = &db->aDb[iDb]; sl@0: sqlite3BeginWriteOperation(pParse, 1, iDb); sl@0: sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( IsVirtual(pTab) ){ sl@0: Vdbe *v = sqlite3GetVdbe(pParse); sl@0: if( v ){ sl@0: sqlite3VdbeAddOp0(v, OP_VBegin); sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* Drop all triggers associated with the table being dropped. Code sl@0: ** is generated to remove entries from sqlite_master and/or sl@0: ** sqlite_temp_master if required. sl@0: */ sl@0: pTrigger = pTab->pTrigger; sl@0: while( pTrigger ){ sl@0: assert( pTrigger->pSchema==pTab->pSchema || sl@0: pTrigger->pSchema==db->aDb[1].pSchema ); sl@0: sqlite3DropTriggerPtr(pParse, pTrigger); sl@0: pTrigger = pTrigger->pNext; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOINCREMENT sl@0: /* Remove any entries of the sqlite_sequence table associated with sl@0: ** the table being dropped. This is done before the table is dropped sl@0: ** at the btree level, in case the sqlite_sequence table needs to sl@0: ** move as a result of the drop (can happen in auto-vacuum mode). sl@0: */ sl@0: if( pTab->autoInc ){ sl@0: sqlite3NestedParse(pParse, sl@0: "DELETE FROM %s.sqlite_sequence WHERE name=%Q", sl@0: pDb->zName, pTab->zName sl@0: ); sl@0: } sl@0: #endif sl@0: sl@0: /* Drop all SQLITE_MASTER table and index entries that refer to the sl@0: ** table. The program name loops through the master table and deletes sl@0: ** every row that refers to a table of the same name as the one being sl@0: ** dropped. Triggers are handled seperately because a trigger can be sl@0: ** created in the temp database that refers to a table in another sl@0: ** database. sl@0: */ sl@0: sqlite3NestedParse(pParse, sl@0: "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", sl@0: pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); sl@0: sl@0: /* Drop any statistics from the sqlite_stat1 table, if it exists */ sl@0: if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ sl@0: sqlite3NestedParse(pParse, sl@0: "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName sl@0: ); sl@0: } sl@0: sl@0: if( !isView && !IsVirtual(pTab) ){ sl@0: destroyTable(pParse, pTab); sl@0: } sl@0: sl@0: /* Remove the table entry from SQLite's internal schema and modify sl@0: ** the schema cookie. sl@0: */ sl@0: if( IsVirtual(pTab) ){ sl@0: sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); sl@0: } sl@0: sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); sl@0: sqlite3ChangeCookie(pParse, iDb); sl@0: } sl@0: sqliteViewResetAll(db, iDb); sl@0: sl@0: exit_drop_table: sl@0: sqlite3SrcListDelete(db, pName); sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called to create a new foreign key on the table sl@0: ** currently under construction. pFromCol determines which columns sl@0: ** in the current table point to the foreign key. If pFromCol==0 then sl@0: ** connect the key to the last column inserted. pTo is the name of sl@0: ** the table referred to. pToCol is a list of tables in the other sl@0: ** pTo table that the foreign key points to. flags contains all sl@0: ** information about the conflict resolution algorithms specified sl@0: ** in the ON DELETE, ON UPDATE and ON INSERT clauses. sl@0: ** sl@0: ** An FKey structure is created and added to the table currently sl@0: ** under construction in the pParse->pNewTable field. The new FKey sl@0: ** is not linked into db->aFKey at this point - that does not happen sl@0: ** until sqlite3EndTable(). sl@0: ** sl@0: ** The foreign key is set for IMMEDIATE processing. A subsequent call sl@0: ** to sqlite3DeferForeignKey() might change this to DEFERRED. sl@0: */ sl@0: void sqlite3CreateForeignKey( sl@0: Parse *pParse, /* Parsing context */ sl@0: ExprList *pFromCol, /* Columns in this table that point to other table */ sl@0: Token *pTo, /* Name of the other table */ sl@0: ExprList *pToCol, /* Columns in the other table */ sl@0: int flags /* Conflict resolution algorithms. */ sl@0: ){ sl@0: #ifndef SQLITE_OMIT_FOREIGN_KEY sl@0: FKey *pFKey = 0; sl@0: Table *p = pParse->pNewTable; sl@0: int nByte; sl@0: int i; sl@0: int nCol; sl@0: char *z; sl@0: sqlite3 *db; sl@0: sl@0: assert( pTo!=0 ); sl@0: db = pParse->db; sl@0: if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; sl@0: if( pFromCol==0 ){ sl@0: int iCol = p->nCol-1; sl@0: if( iCol<0 ) goto fk_end; sl@0: if( pToCol && pToCol->nExpr!=1 ){ sl@0: sqlite3ErrorMsg(pParse, "foreign key on %s" sl@0: " should reference only one column of table %T", sl@0: p->aCol[iCol].zName, pTo); sl@0: goto fk_end; sl@0: } sl@0: nCol = 1; sl@0: }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ sl@0: sqlite3ErrorMsg(pParse, sl@0: "number of columns in foreign key does not match the number of " sl@0: "columns in the referenced table"); sl@0: goto fk_end; sl@0: }else{ sl@0: nCol = pFromCol->nExpr; sl@0: } sl@0: nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; sl@0: if( pToCol ){ sl@0: for(i=0; inExpr; i++){ sl@0: nByte += strlen(pToCol->a[i].zName) + 1; sl@0: } sl@0: } sl@0: pFKey = sqlite3DbMallocZero(db, nByte ); sl@0: if( pFKey==0 ){ sl@0: goto fk_end; sl@0: } sl@0: pFKey->pFrom = p; sl@0: pFKey->pNextFrom = p->pFKey; sl@0: z = (char*)&pFKey[1]; sl@0: pFKey->aCol = (struct sColMap*)z; sl@0: z += sizeof(struct sColMap)*nCol; sl@0: pFKey->zTo = z; sl@0: memcpy(z, pTo->z, pTo->n); sl@0: z[pTo->n] = 0; sl@0: z += pTo->n+1; sl@0: pFKey->pNextTo = 0; sl@0: pFKey->nCol = nCol; sl@0: if( pFromCol==0 ){ sl@0: pFKey->aCol[0].iFrom = p->nCol-1; sl@0: }else{ sl@0: for(i=0; inCol; j++){ sl@0: if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ sl@0: pFKey->aCol[i].iFrom = j; sl@0: break; sl@0: } sl@0: } sl@0: if( j>=p->nCol ){ sl@0: sqlite3ErrorMsg(pParse, sl@0: "unknown column \"%s\" in foreign key definition", sl@0: pFromCol->a[i].zName); sl@0: goto fk_end; sl@0: } sl@0: } sl@0: } sl@0: if( pToCol ){ sl@0: for(i=0; ia[i].zName); sl@0: pFKey->aCol[i].zCol = z; sl@0: memcpy(z, pToCol->a[i].zName, n); sl@0: z[n] = 0; sl@0: z += n+1; sl@0: } sl@0: } sl@0: pFKey->isDeferred = 0; sl@0: pFKey->deleteConf = flags & 0xff; sl@0: pFKey->updateConf = (flags >> 8 ) & 0xff; sl@0: pFKey->insertConf = (flags >> 16 ) & 0xff; sl@0: sl@0: /* Link the foreign key to the table as the last step. sl@0: */ sl@0: p->pFKey = pFKey; sl@0: pFKey = 0; sl@0: sl@0: fk_end: sl@0: sqlite3DbFree(db, pFKey); sl@0: #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ sl@0: sqlite3ExprListDelete(db, pFromCol); sl@0: sqlite3ExprListDelete(db, pToCol); sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED sl@0: ** clause is seen as part of a foreign key definition. The isDeferred sl@0: ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. sl@0: ** The behavior of the most recently created foreign key is adjusted sl@0: ** accordingly. sl@0: */ sl@0: void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ sl@0: #ifndef SQLITE_OMIT_FOREIGN_KEY sl@0: Table *pTab; sl@0: FKey *pFKey; sl@0: if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; sl@0: pFKey->isDeferred = isDeferred; sl@0: #endif sl@0: } sl@0: sl@0: /* sl@0: ** Generate code that will erase and refill index *pIdx. This is sl@0: ** used to initialize a newly created index or to recompute the sl@0: ** content of an index in response to a REINDEX command. sl@0: ** sl@0: ** if memRootPage is not negative, it means that the index is newly sl@0: ** created. The register specified by memRootPage contains the sl@0: ** root page number of the index. If memRootPage is negative, then sl@0: ** the index already exists and must be cleared before being refilled and sl@0: ** the root page number of the index is taken from pIndex->tnum. sl@0: */ sl@0: static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ sl@0: Table *pTab = pIndex->pTable; /* The table that is indexed */ sl@0: int iTab = pParse->nTab; /* Btree cursor used for pTab */ sl@0: int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ sl@0: int addr1; /* Address of top of loop */ sl@0: int tnum; /* Root page of index */ sl@0: Vdbe *v; /* Generate code into this virtual machine */ sl@0: KeyInfo *pKey; /* KeyInfo for index */ sl@0: int regIdxKey; /* Registers containing the index key */ sl@0: int regRecord; /* Register holding assemblied index record */ sl@0: sqlite3 *db = pParse->db; /* The database connection */ sl@0: int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); sl@0: sl@0: #ifndef SQLITE_OMIT_AUTHORIZATION sl@0: if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, sl@0: db->aDb[iDb].zName ) ){ sl@0: return; sl@0: } sl@0: #endif sl@0: sl@0: /* Require a write-lock on the table to perform this operation */ sl@0: sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) return; sl@0: if( memRootPage>=0 ){ sl@0: tnum = memRootPage; sl@0: }else{ sl@0: tnum = pIndex->tnum; sl@0: sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); sl@0: } sl@0: pKey = sqlite3IndexKeyinfo(pParse, pIndex); sl@0: sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, sl@0: (char *)pKey, P4_KEYINFO_HANDOFF); sl@0: if( memRootPage>=0 ){ sl@0: sqlite3VdbeChangeP5(v, 1); sl@0: } sl@0: sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); sl@0: addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); sl@0: regRecord = sqlite3GetTempReg(pParse); sl@0: regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); sl@0: if( pIndex->onError!=OE_None ){ sl@0: int j1, j2; sl@0: int regRowid; sl@0: sl@0: regRowid = regIdxKey + pIndex->nColumn; sl@0: j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn); sl@0: j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, sl@0: 0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32); sl@0: sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0, sl@0: "indexed columns are not unique", P4_STATIC); sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: sqlite3VdbeJumpHere(v, j2); sl@0: } sl@0: sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); sl@0: sqlite3ReleaseTempReg(pParse, regRecord); sl@0: sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); sl@0: sqlite3VdbeJumpHere(v, addr1); sl@0: sqlite3VdbeAddOp1(v, OP_Close, iTab); sl@0: sqlite3VdbeAddOp1(v, OP_Close, iIdx); sl@0: } sl@0: sl@0: /* sl@0: ** Create a new index for an SQL table. pName1.pName2 is the name of the index sl@0: ** and pTblList is the name of the table that is to be indexed. Both will sl@0: ** be NULL for a primary key or an index that is created to satisfy a sl@0: ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable sl@0: ** as the table to be indexed. pParse->pNewTable is a table that is sl@0: ** currently being constructed by a CREATE TABLE statement. sl@0: ** sl@0: ** pList is a list of columns to be indexed. pList will be NULL if this sl@0: ** is a primary key or unique-constraint on the most recent column added sl@0: ** to the table currently under construction. sl@0: */ sl@0: void sqlite3CreateIndex( sl@0: Parse *pParse, /* All information about this parse */ sl@0: Token *pName1, /* First part of index name. May be NULL */ sl@0: Token *pName2, /* Second part of index name. May be NULL */ sl@0: SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ sl@0: ExprList *pList, /* A list of columns to be indexed */ sl@0: int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ sl@0: Token *pStart, /* The CREATE token that begins this statement */ sl@0: Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ sl@0: int sortOrder, /* Sort order of primary key when pList==NULL */ sl@0: int ifNotExist /* Omit error if index already exists */ sl@0: ){ sl@0: Table *pTab = 0; /* Table to be indexed */ sl@0: Index *pIndex = 0; /* The index to be created */ sl@0: char *zName = 0; /* Name of the index */ sl@0: int nName; /* Number of characters in zName */ sl@0: int i, j; sl@0: Token nullId; /* Fake token for an empty ID list */ sl@0: DbFixer sFix; /* For assigning database names to pTable */ sl@0: int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ sl@0: sqlite3 *db = pParse->db; sl@0: Db *pDb; /* The specific table containing the indexed database */ sl@0: int iDb; /* Index of the database that is being written */ sl@0: Token *pName = 0; /* Unqualified name of the index to create */ sl@0: struct ExprList_item *pListItem; /* For looping over pList */ sl@0: int nCol; sl@0: int nExtra = 0; sl@0: char *zExtra; sl@0: sl@0: if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){ sl@0: goto exit_create_index; sl@0: } sl@0: sl@0: /* sl@0: ** Find the table that is to be indexed. Return early if not found. sl@0: */ sl@0: if( pTblName!=0 ){ sl@0: sl@0: /* Use the two-part index name to determine the database sl@0: ** to search for the table. 'Fix' the table name to this db sl@0: ** before looking up the table. sl@0: */ sl@0: assert( pName1 && pName2 ); sl@0: iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); sl@0: if( iDb<0 ) goto exit_create_index; sl@0: sl@0: #ifndef SQLITE_OMIT_TEMPDB sl@0: /* If the index name was unqualified, check if the the table sl@0: ** is a temp table. If so, set the database to 1. Do not do this sl@0: ** if initialising a database schema. sl@0: */ sl@0: if( !db->init.busy ){ sl@0: pTab = sqlite3SrcListLookup(pParse, pTblName); sl@0: if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ sl@0: iDb = 1; sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && sl@0: sqlite3FixSrcList(&sFix, pTblName) sl@0: ){ sl@0: /* Because the parser constructs pTblName from a single identifier, sl@0: ** sqlite3FixSrcList can never fail. */ sl@0: assert(0); sl@0: } sl@0: pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, sl@0: pTblName->a[0].zDatabase); sl@0: if( !pTab ) goto exit_create_index; sl@0: assert( db->aDb[iDb].pSchema==pTab->pSchema ); sl@0: }else{ sl@0: assert( pName==0 ); sl@0: pTab = pParse->pNewTable; sl@0: if( !pTab ) goto exit_create_index; sl@0: iDb = sqlite3SchemaToIndex(db, pTab->pSchema); sl@0: } sl@0: pDb = &db->aDb[iDb]; sl@0: sl@0: if( pTab==0 || pParse->nErr ) goto exit_create_index; sl@0: if( pTab->readOnly ){ sl@0: sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); sl@0: goto exit_create_index; sl@0: } sl@0: #ifndef SQLITE_OMIT_VIEW sl@0: if( pTab->pSelect ){ sl@0: sqlite3ErrorMsg(pParse, "views may not be indexed"); sl@0: goto exit_create_index; sl@0: } sl@0: #endif sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( IsVirtual(pTab) ){ sl@0: sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); sl@0: goto exit_create_index; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Find the name of the index. Make sure there is not already another sl@0: ** index or table with the same name. sl@0: ** sl@0: ** Exception: If we are reading the names of permanent indices from the sl@0: ** sqlite_master table (because some other process changed the schema) and sl@0: ** one of the index names collides with the name of a temporary table or sl@0: ** index, then we will continue to process this index. sl@0: ** sl@0: ** If pName==0 it means that we are sl@0: ** dealing with a primary key or UNIQUE constraint. We have to invent our sl@0: ** own name. sl@0: */ sl@0: if( pName ){ sl@0: zName = sqlite3NameFromToken(db, pName); sl@0: if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; sl@0: if( zName==0 ) goto exit_create_index; sl@0: if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ sl@0: goto exit_create_index; sl@0: } sl@0: if( !db->init.busy ){ sl@0: if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; sl@0: if( sqlite3FindTable(db, zName, 0)!=0 ){ sl@0: sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); sl@0: goto exit_create_index; sl@0: } sl@0: } sl@0: if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ sl@0: if( !ifNotExist ){ sl@0: sqlite3ErrorMsg(pParse, "index %s already exists", zName); sl@0: } sl@0: goto exit_create_index; sl@0: } sl@0: }else{ sl@0: int n; sl@0: Index *pLoop; sl@0: for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} sl@0: zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); sl@0: if( zName==0 ){ sl@0: goto exit_create_index; sl@0: } sl@0: } sl@0: sl@0: /* Check for authorization to create an index. sl@0: */ sl@0: #ifndef SQLITE_OMIT_AUTHORIZATION sl@0: { sl@0: const char *zDb = pDb->zName; sl@0: if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ sl@0: goto exit_create_index; sl@0: } sl@0: i = SQLITE_CREATE_INDEX; sl@0: if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; sl@0: if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ sl@0: goto exit_create_index; sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* If pList==0, it means this routine was called to make a primary sl@0: ** key out of the last column added to the table under construction. sl@0: ** So create a fake list to simulate this. sl@0: */ sl@0: if( pList==0 ){ sl@0: nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; sl@0: nullId.n = strlen((char*)nullId.z); sl@0: pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId); sl@0: if( pList==0 ) goto exit_create_index; sl@0: pList->a[0].sortOrder = sortOrder; sl@0: } sl@0: sl@0: /* Figure out how many bytes of space are required to store explicitly sl@0: ** specified collation sequence names. sl@0: */ sl@0: for(i=0; inExpr; i++){ sl@0: Expr *pExpr = pList->a[i].pExpr; sl@0: if( pExpr ){ sl@0: nExtra += (1 + strlen(pExpr->pColl->zName)); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Allocate the index structure. sl@0: */ sl@0: nName = strlen(zName); sl@0: nCol = pList->nExpr; sl@0: pIndex = sqlite3DbMallocZero(db, sl@0: sizeof(Index) + /* Index structure */ sl@0: sizeof(int)*nCol + /* Index.aiColumn */ sl@0: sizeof(int)*(nCol+1) + /* Index.aiRowEst */ sl@0: sizeof(char *)*nCol + /* Index.azColl */ sl@0: sizeof(u8)*nCol + /* Index.aSortOrder */ sl@0: nName + 1 + /* Index.zName */ sl@0: nExtra /* Collation sequence names */ sl@0: ); sl@0: if( db->mallocFailed ){ sl@0: goto exit_create_index; sl@0: } sl@0: pIndex->azColl = (char**)(&pIndex[1]); sl@0: pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); sl@0: pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); sl@0: pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); sl@0: pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); sl@0: zExtra = (char *)(&pIndex->zName[nName+1]); sl@0: memcpy(pIndex->zName, zName, nName+1); sl@0: pIndex->pTable = pTab; sl@0: pIndex->nColumn = pList->nExpr; sl@0: pIndex->onError = onError; sl@0: pIndex->autoIndex = pName==0; sl@0: pIndex->pSchema = db->aDb[iDb].pSchema; sl@0: sl@0: /* Check to see if we should honor DESC requests on index columns sl@0: */ sl@0: if( pDb->pSchema->file_format>=4 ){ sl@0: sortOrderMask = -1; /* Honor DESC */ sl@0: }else{ sl@0: sortOrderMask = 0; /* Ignore DESC */ sl@0: } sl@0: sl@0: /* Scan the names of the columns of the table to be indexed and sl@0: ** load the column indices into the Index structure. Report an error sl@0: ** if any column is not found. sl@0: */ sl@0: for(i=0, pListItem=pList->a; inExpr; i++, pListItem++){ sl@0: const char *zColName = pListItem->zName; sl@0: Column *pTabCol; sl@0: int requestedSortOrder; sl@0: char *zColl; /* Collation sequence name */ sl@0: sl@0: for(j=0, pTabCol=pTab->aCol; jnCol; j++, pTabCol++){ sl@0: if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; sl@0: } sl@0: if( j>=pTab->nCol ){ sl@0: sqlite3ErrorMsg(pParse, "table %s has no column named %s", sl@0: pTab->zName, zColName); sl@0: goto exit_create_index; sl@0: } sl@0: /* TODO: Add a test to make sure that the same column is not named sl@0: ** more than once within the same index. Only the first instance of sl@0: ** the column will ever be used by the optimizer. Note that using the sl@0: ** same column more than once cannot be an error because that would sl@0: ** break backwards compatibility - it needs to be a warning. sl@0: */ sl@0: pIndex->aiColumn[i] = j; sl@0: if( pListItem->pExpr ){ sl@0: assert( pListItem->pExpr->pColl ); sl@0: zColl = zExtra; sl@0: sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName); sl@0: zExtra += (strlen(zColl) + 1); sl@0: }else{ sl@0: zColl = pTab->aCol[j].zColl; sl@0: if( !zColl ){ sl@0: zColl = db->pDfltColl->zName; sl@0: } sl@0: } sl@0: if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ sl@0: goto exit_create_index; sl@0: } sl@0: pIndex->azColl[i] = zColl; sl@0: requestedSortOrder = pListItem->sortOrder & sortOrderMask; sl@0: pIndex->aSortOrder[i] = requestedSortOrder; sl@0: } sl@0: sqlite3DefaultRowEst(pIndex); sl@0: sl@0: if( pTab==pParse->pNewTable ){ sl@0: /* This routine has been called to create an automatic index as a sl@0: ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or sl@0: ** a PRIMARY KEY or UNIQUE clause following the column definitions. sl@0: ** i.e. one of: sl@0: ** sl@0: ** CREATE TABLE t(x PRIMARY KEY, y); sl@0: ** CREATE TABLE t(x, y, UNIQUE(x, y)); sl@0: ** sl@0: ** Either way, check to see if the table already has such an index. If sl@0: ** so, don't bother creating this one. This only applies to sl@0: ** automatically created indices. Users can do as they wish with sl@0: ** explicit indices. sl@0: */ sl@0: Index *pIdx; sl@0: for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sl@0: int k; sl@0: assert( pIdx->onError!=OE_None ); sl@0: assert( pIdx->autoIndex ); sl@0: assert( pIndex->onError!=OE_None ); sl@0: sl@0: if( pIdx->nColumn!=pIndex->nColumn ) continue; sl@0: for(k=0; knColumn; k++){ sl@0: const char *z1 = pIdx->azColl[k]; sl@0: const char *z2 = pIndex->azColl[k]; sl@0: if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; sl@0: if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; sl@0: if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; sl@0: } sl@0: if( k==pIdx->nColumn ){ sl@0: if( pIdx->onError!=pIndex->onError ){ sl@0: /* This constraint creates the same index as a previous sl@0: ** constraint specified somewhere in the CREATE TABLE statement. sl@0: ** However the ON CONFLICT clauses are different. If both this sl@0: ** constraint and the previous equivalent constraint have explicit sl@0: ** ON CONFLICT clauses this is an error. Otherwise, use the sl@0: ** explicitly specified behaviour for the index. sl@0: */ sl@0: if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ sl@0: sqlite3ErrorMsg(pParse, sl@0: "conflicting ON CONFLICT clauses specified", 0); sl@0: } sl@0: if( pIdx->onError==OE_Default ){ sl@0: pIdx->onError = pIndex->onError; sl@0: } sl@0: } sl@0: goto exit_create_index; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Link the new Index structure to its table and to the other sl@0: ** in-memory database structures. sl@0: */ sl@0: if( db->init.busy ){ sl@0: Index *p; sl@0: p = sqlite3HashInsert(&pIndex->pSchema->idxHash, sl@0: pIndex->zName, strlen(pIndex->zName)+1, pIndex); sl@0: if( p ){ sl@0: assert( p==pIndex ); /* Malloc must have failed */ sl@0: db->mallocFailed = 1; sl@0: goto exit_create_index; sl@0: } sl@0: db->flags |= SQLITE_InternChanges; sl@0: if( pTblName!=0 ){ sl@0: pIndex->tnum = db->init.newTnum; sl@0: } sl@0: } sl@0: sl@0: /* If the db->init.busy is 0 then create the index on disk. This sl@0: ** involves writing the index into the master table and filling in the sl@0: ** index with the current table contents. sl@0: ** sl@0: ** The db->init.busy is 0 when the user first enters a CREATE INDEX sl@0: ** command. db->init.busy is 1 when a database is opened and sl@0: ** CREATE INDEX statements are read out of the master table. In sl@0: ** the latter case the index already exists on disk, which is why sl@0: ** we don't want to recreate it. sl@0: ** sl@0: ** If pTblName==0 it means this index is generated as a primary key sl@0: ** or UNIQUE constraint of a CREATE TABLE statement. Since the table sl@0: ** has just been created, it contains no data and the index initialization sl@0: ** step can be skipped. sl@0: */ sl@0: else if( db->init.busy==0 ){ sl@0: Vdbe *v; sl@0: char *zStmt; sl@0: int iMem = ++pParse->nMem; sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) goto exit_create_index; sl@0: sl@0: sl@0: /* Create the rootpage for the index sl@0: */ sl@0: sqlite3BeginWriteOperation(pParse, 1, iDb); sl@0: sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); sl@0: sl@0: /* Gather the complete text of the CREATE INDEX statement into sl@0: ** the zStmt variable sl@0: */ sl@0: if( pStart && pEnd ){ sl@0: /* A named index with an explicit CREATE INDEX statement */ sl@0: zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", sl@0: onError==OE_None ? "" : " UNIQUE", sl@0: pEnd->z - pName->z + 1, sl@0: pName->z); sl@0: }else{ sl@0: /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ sl@0: /* zStmt = sqlite3MPrintf(""); */ sl@0: zStmt = 0; sl@0: } sl@0: sl@0: /* Add an entry in sqlite_master for this index sl@0: */ sl@0: sqlite3NestedParse(pParse, sl@0: "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", sl@0: db->aDb[iDb].zName, SCHEMA_TABLE(iDb), sl@0: pIndex->zName, sl@0: pTab->zName, sl@0: iMem, sl@0: zStmt sl@0: ); sl@0: sqlite3DbFree(db, zStmt); sl@0: sl@0: /* Fill the index with data and reparse the schema. Code an OP_Expire sl@0: ** to invalidate all pre-compiled statements. sl@0: */ sl@0: if( pTblName ){ sl@0: sqlite3RefillIndex(pParse, pIndex, iMem); sl@0: sqlite3ChangeCookie(pParse, iDb); sl@0: sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, sl@0: sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC); sl@0: sqlite3VdbeAddOp1(v, OP_Expire, 0); sl@0: } sl@0: } sl@0: sl@0: /* When adding an index to the list of indices for a table, make sl@0: ** sure all indices labeled OE_Replace come after all those labeled sl@0: ** OE_Ignore. This is necessary for the correct operation of UPDATE sl@0: ** and INSERT. sl@0: */ sl@0: if( db->init.busy || pTblName==0 ){ sl@0: if( onError!=OE_Replace || pTab->pIndex==0 sl@0: || pTab->pIndex->onError==OE_Replace){ sl@0: pIndex->pNext = pTab->pIndex; sl@0: pTab->pIndex = pIndex; sl@0: }else{ sl@0: Index *pOther = pTab->pIndex; sl@0: while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ sl@0: pOther = pOther->pNext; sl@0: } sl@0: pIndex->pNext = pOther->pNext; sl@0: pOther->pNext = pIndex; sl@0: } sl@0: pIndex = 0; sl@0: } sl@0: sl@0: /* Clean up before exiting */ sl@0: exit_create_index: sl@0: if( pIndex ){ sl@0: sqlite3_free(pIndex->zColAff); sl@0: sqlite3DbFree(db, pIndex); sl@0: } sl@0: sqlite3ExprListDelete(db, pList); sl@0: sqlite3SrcListDelete(db, pTblName); sl@0: sqlite3DbFree(db, zName); sl@0: return; sl@0: } sl@0: sl@0: /* sl@0: ** Generate code to make sure the file format number is at least minFormat. sl@0: ** The generated code will increase the file format number if necessary. sl@0: */ sl@0: void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ sl@0: Vdbe *v; sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v ){ sl@0: int r1 = sqlite3GetTempReg(pParse); sl@0: int r2 = sqlite3GetTempReg(pParse); sl@0: int j1; sl@0: sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1); sl@0: sqlite3VdbeUsesBtree(v, iDb); sl@0: sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); sl@0: j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); sl@0: sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2); sl@0: sqlite3VdbeJumpHere(v, j1); sl@0: sqlite3ReleaseTempReg(pParse, r1); sl@0: sqlite3ReleaseTempReg(pParse, r2); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Fill the Index.aiRowEst[] array with default information - information sl@0: ** to be used when we have not run the ANALYZE command. sl@0: ** sl@0: ** aiRowEst[0] is suppose to contain the number of elements in the index. sl@0: ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the sl@0: ** number of rows in the table that match any particular value of the sl@0: ** first column of the index. aiRowEst[2] is an estimate of the number sl@0: ** of rows that match any particular combiniation of the first 2 columns sl@0: ** of the index. And so forth. It must always be the case that sl@0: * sl@0: ** aiRowEst[N]<=aiRowEst[N-1] sl@0: ** aiRowEst[N]>=1 sl@0: ** sl@0: ** Apart from that, we have little to go on besides intuition as to sl@0: ** how aiRowEst[] should be initialized. The numbers generated here sl@0: ** are based on typical values found in actual indices. sl@0: */ sl@0: void sqlite3DefaultRowEst(Index *pIdx){ sl@0: unsigned *a = pIdx->aiRowEst; sl@0: int i; sl@0: assert( a!=0 ); sl@0: a[0] = 1000000; sl@0: for(i=pIdx->nColumn; i>=5; i--){ sl@0: a[i] = 5; sl@0: } sl@0: while( i>=1 ){ sl@0: a[i] = 11 - i; sl@0: i--; sl@0: } sl@0: if( pIdx->onError!=OE_None ){ sl@0: a[pIdx->nColumn] = 1; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This routine will drop an existing named index. This routine sl@0: ** implements the DROP INDEX statement. sl@0: */ sl@0: void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ sl@0: Index *pIndex; sl@0: Vdbe *v; sl@0: sqlite3 *db = pParse->db; sl@0: int iDb; sl@0: sl@0: if( pParse->nErr || db->mallocFailed ){ sl@0: goto exit_drop_index; sl@0: } sl@0: assert( pName->nSrc==1 ); sl@0: if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ sl@0: goto exit_drop_index; sl@0: } sl@0: pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); sl@0: if( pIndex==0 ){ sl@0: if( !ifExists ){ sl@0: sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); sl@0: } sl@0: pParse->checkSchema = 1; sl@0: goto exit_drop_index; sl@0: } sl@0: if( pIndex->autoIndex ){ sl@0: sqlite3ErrorMsg(pParse, "index associated with UNIQUE " sl@0: "or PRIMARY KEY constraint cannot be dropped", 0); sl@0: goto exit_drop_index; sl@0: } sl@0: iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); sl@0: #ifndef SQLITE_OMIT_AUTHORIZATION sl@0: { sl@0: int code = SQLITE_DROP_INDEX; sl@0: Table *pTab = pIndex->pTable; sl@0: const char *zDb = db->aDb[iDb].zName; sl@0: const char *zTab = SCHEMA_TABLE(iDb); sl@0: if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ sl@0: goto exit_drop_index; sl@0: } sl@0: if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; sl@0: if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ sl@0: goto exit_drop_index; sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* Generate code to remove the index and from the master table */ sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v ){ sl@0: sqlite3BeginWriteOperation(pParse, 1, iDb); sl@0: sqlite3NestedParse(pParse, sl@0: "DELETE FROM %Q.%s WHERE name=%Q", sl@0: db->aDb[iDb].zName, SCHEMA_TABLE(iDb), sl@0: pIndex->zName sl@0: ); sl@0: if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ sl@0: sqlite3NestedParse(pParse, sl@0: "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", sl@0: db->aDb[iDb].zName, pIndex->zName sl@0: ); sl@0: } sl@0: sqlite3ChangeCookie(pParse, iDb); sl@0: destroyRootPage(pParse, pIndex->tnum, iDb); sl@0: sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); sl@0: } sl@0: sl@0: exit_drop_index: sl@0: sqlite3SrcListDelete(db, pName); sl@0: } sl@0: sl@0: /* sl@0: ** pArray is a pointer to an array of objects. Each object in the sl@0: ** array is szEntry bytes in size. This routine allocates a new sl@0: ** object on the end of the array. sl@0: ** sl@0: ** *pnEntry is the number of entries already in use. *pnAlloc is sl@0: ** the previously allocated size of the array. initSize is the sl@0: ** suggested initial array size allocation. sl@0: ** sl@0: ** The index of the new entry is returned in *pIdx. sl@0: ** sl@0: ** This routine returns a pointer to the array of objects. This sl@0: ** might be the same as the pArray parameter or it might be a different sl@0: ** pointer if the array was resized. sl@0: */ sl@0: void *sqlite3ArrayAllocate( sl@0: sqlite3 *db, /* Connection to notify of malloc failures */ sl@0: void *pArray, /* Array of objects. Might be reallocated */ sl@0: int szEntry, /* Size of each object in the array */ sl@0: int initSize, /* Suggested initial allocation, in elements */ sl@0: int *pnEntry, /* Number of objects currently in use */ sl@0: int *pnAlloc, /* Current size of the allocation, in elements */ sl@0: int *pIdx /* Write the index of a new slot here */ sl@0: ){ sl@0: char *z; sl@0: if( *pnEntry >= *pnAlloc ){ sl@0: void *pNew; sl@0: int newSize; sl@0: newSize = (*pnAlloc)*2 + initSize; sl@0: pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); sl@0: if( pNew==0 ){ sl@0: *pIdx = -1; sl@0: return pArray; sl@0: } sl@0: *pnAlloc = newSize; sl@0: pArray = pNew; sl@0: } sl@0: z = (char*)pArray; sl@0: memset(&z[*pnEntry * szEntry], 0, szEntry); sl@0: *pIdx = *pnEntry; sl@0: ++*pnEntry; sl@0: return pArray; sl@0: } sl@0: sl@0: /* sl@0: ** Append a new element to the given IdList. Create a new IdList if sl@0: ** need be. sl@0: ** sl@0: ** A new IdList is returned, or NULL if malloc() fails. sl@0: */ sl@0: IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ sl@0: int i; sl@0: if( pList==0 ){ sl@0: pList = sqlite3DbMallocZero(db, sizeof(IdList) ); sl@0: if( pList==0 ) return 0; sl@0: pList->nAlloc = 0; sl@0: } sl@0: pList->a = sqlite3ArrayAllocate( sl@0: db, sl@0: pList->a, sl@0: sizeof(pList->a[0]), sl@0: 5, sl@0: &pList->nId, sl@0: &pList->nAlloc, sl@0: &i sl@0: ); sl@0: if( i<0 ){ sl@0: sqlite3IdListDelete(db, pList); sl@0: return 0; sl@0: } sl@0: pList->a[i].zName = sqlite3NameFromToken(db, pToken); sl@0: return pList; sl@0: } sl@0: sl@0: /* sl@0: ** Delete an IdList. sl@0: */ sl@0: void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ sl@0: int i; sl@0: if( pList==0 ) return; sl@0: for(i=0; inId; i++){ sl@0: sqlite3DbFree(db, pList->a[i].zName); sl@0: } sl@0: sqlite3DbFree(db, pList->a); sl@0: sqlite3DbFree(db, pList); sl@0: } sl@0: sl@0: /* sl@0: ** Return the index in pList of the identifier named zId. Return -1 sl@0: ** if not found. sl@0: */ sl@0: int sqlite3IdListIndex(IdList *pList, const char *zName){ sl@0: int i; sl@0: if( pList==0 ) return -1; sl@0: for(i=0; inId; i++){ sl@0: if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; sl@0: } sl@0: return -1; sl@0: } sl@0: sl@0: /* sl@0: ** Append a new table name to the given SrcList. Create a new SrcList if sl@0: ** need be. A new entry is created in the SrcList even if pToken is NULL. sl@0: ** sl@0: ** A new SrcList is returned, or NULL if malloc() fails. sl@0: ** sl@0: ** If pDatabase is not null, it means that the table has an optional sl@0: ** database name prefix. Like this: "database.table". The pDatabase sl@0: ** points to the table name and the pTable points to the database name. sl@0: ** The SrcList.a[].zName field is filled with the table name which might sl@0: ** come from pTable (if pDatabase is NULL) or from pDatabase. sl@0: ** SrcList.a[].zDatabase is filled with the database name from pTable, sl@0: ** or with NULL if no database is specified. sl@0: ** sl@0: ** In other words, if call like this: sl@0: ** sl@0: ** sqlite3SrcListAppend(D,A,B,0); sl@0: ** sl@0: ** Then B is a table name and the database name is unspecified. If called sl@0: ** like this: sl@0: ** sl@0: ** sqlite3SrcListAppend(D,A,B,C); sl@0: ** sl@0: ** Then C is the table name and B is the database name. sl@0: */ sl@0: SrcList *sqlite3SrcListAppend( sl@0: sqlite3 *db, /* Connection to notify of malloc failures */ sl@0: SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ sl@0: Token *pTable, /* Table to append */ sl@0: Token *pDatabase /* Database of the table */ sl@0: ){ sl@0: struct SrcList_item *pItem; sl@0: if( pList==0 ){ sl@0: pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); sl@0: if( pList==0 ) return 0; sl@0: pList->nAlloc = 1; sl@0: } sl@0: if( pList->nSrc>=pList->nAlloc ){ sl@0: SrcList *pNew; sl@0: pList->nAlloc *= 2; sl@0: pNew = sqlite3DbRealloc(db, pList, sl@0: sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); sl@0: if( pNew==0 ){ sl@0: sqlite3SrcListDelete(db, pList); sl@0: return 0; sl@0: } sl@0: pList = pNew; sl@0: } sl@0: pItem = &pList->a[pList->nSrc]; sl@0: memset(pItem, 0, sizeof(pList->a[0])); sl@0: if( pDatabase && pDatabase->z==0 ){ sl@0: pDatabase = 0; sl@0: } sl@0: if( pDatabase && pTable ){ sl@0: Token *pTemp = pDatabase; sl@0: pDatabase = pTable; sl@0: pTable = pTemp; sl@0: } sl@0: pItem->zName = sqlite3NameFromToken(db, pTable); sl@0: pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); sl@0: pItem->iCursor = -1; sl@0: pItem->isPopulated = 0; sl@0: pList->nSrc++; sl@0: return pList; sl@0: } sl@0: sl@0: /* sl@0: ** Assign cursors to all tables in a SrcList sl@0: */ sl@0: void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ sl@0: int i; sl@0: struct SrcList_item *pItem; sl@0: assert(pList || pParse->db->mallocFailed ); sl@0: if( pList ){ sl@0: for(i=0, pItem=pList->a; inSrc; i++, pItem++){ sl@0: if( pItem->iCursor>=0 ) break; sl@0: pItem->iCursor = pParse->nTab++; sl@0: if( pItem->pSelect ){ sl@0: sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Delete an entire SrcList including all its substructure. sl@0: */ sl@0: void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ sl@0: int i; sl@0: struct SrcList_item *pItem; sl@0: if( pList==0 ) return; sl@0: for(pItem=pList->a, i=0; inSrc; i++, pItem++){ sl@0: sqlite3DbFree(db, pItem->zDatabase); sl@0: sqlite3DbFree(db, pItem->zName); sl@0: sqlite3DbFree(db, pItem->zAlias); sl@0: sqlite3DeleteTable(pItem->pTab); sl@0: sqlite3SelectDelete(db, pItem->pSelect); sl@0: sqlite3ExprDelete(db, pItem->pOn); sl@0: sqlite3IdListDelete(db, pItem->pUsing); sl@0: } sl@0: sqlite3DbFree(db, pList); sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called by the parser to add a new term to the sl@0: ** end of a growing FROM clause. The "p" parameter is the part of sl@0: ** the FROM clause that has already been constructed. "p" is NULL sl@0: ** if this is the first term of the FROM clause. pTable and pDatabase sl@0: ** are the name of the table and database named in the FROM clause term. sl@0: ** pDatabase is NULL if the database name qualifier is missing - the sl@0: ** usual case. If the term has a alias, then pAlias points to the sl@0: ** alias token. If the term is a subquery, then pSubquery is the sl@0: ** SELECT statement that the subquery encodes. The pTable and sl@0: ** pDatabase parameters are NULL for subqueries. The pOn and pUsing sl@0: ** parameters are the content of the ON and USING clauses. sl@0: ** sl@0: ** Return a new SrcList which encodes is the FROM with the new sl@0: ** term added. sl@0: */ sl@0: SrcList *sqlite3SrcListAppendFromTerm( sl@0: Parse *pParse, /* Parsing context */ sl@0: SrcList *p, /* The left part of the FROM clause already seen */ sl@0: Token *pTable, /* Name of the table to add to the FROM clause */ sl@0: Token *pDatabase, /* Name of the database containing pTable */ sl@0: Token *pAlias, /* The right-hand side of the AS subexpression */ sl@0: Select *pSubquery, /* A subquery used in place of a table name */ sl@0: Expr *pOn, /* The ON clause of a join */ sl@0: IdList *pUsing /* The USING clause of a join */ sl@0: ){ sl@0: struct SrcList_item *pItem; sl@0: sqlite3 *db = pParse->db; sl@0: p = sqlite3SrcListAppend(db, p, pTable, pDatabase); sl@0: if( p==0 || p->nSrc==0 ){ sl@0: sqlite3ExprDelete(db, pOn); sl@0: sqlite3IdListDelete(db, pUsing); sl@0: sqlite3SelectDelete(db, pSubquery); sl@0: return p; sl@0: } sl@0: pItem = &p->a[p->nSrc-1]; sl@0: if( pAlias && pAlias->n ){ sl@0: pItem->zAlias = sqlite3NameFromToken(db, pAlias); sl@0: } sl@0: pItem->pSelect = pSubquery; sl@0: pItem->pOn = pOn; sl@0: pItem->pUsing = pUsing; sl@0: return p; sl@0: } sl@0: sl@0: /* sl@0: ** When building up a FROM clause in the parser, the join operator sl@0: ** is initially attached to the left operand. But the code generator sl@0: ** expects the join operator to be on the right operand. This routine sl@0: ** Shifts all join operators from left to right for an entire FROM sl@0: ** clause. sl@0: ** sl@0: ** Example: Suppose the join is like this: sl@0: ** sl@0: ** A natural cross join B sl@0: ** sl@0: ** The operator is "natural cross join". The A and B operands are stored sl@0: ** in p->a[0] and p->a[1], respectively. The parser initially stores the sl@0: ** operator with A. This routine shifts that operator over to B. sl@0: */ sl@0: void sqlite3SrcListShiftJoinType(SrcList *p){ sl@0: if( p && p->a ){ sl@0: int i; sl@0: for(i=p->nSrc-1; i>0; i--){ sl@0: p->a[i].jointype = p->a[i-1].jointype; sl@0: } sl@0: p->a[0].jointype = 0; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Begin a transaction sl@0: */ sl@0: void sqlite3BeginTransaction(Parse *pParse, int type){ sl@0: sqlite3 *db; sl@0: Vdbe *v; sl@0: int i; sl@0: sl@0: if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; sl@0: if( pParse->nErr || db->mallocFailed ) return; sl@0: if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( !v ) return; sl@0: if( type!=TK_DEFERRED ){ sl@0: for(i=0; inDb; i++){ sl@0: sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); sl@0: sqlite3VdbeUsesBtree(v, i); sl@0: } sl@0: } sl@0: sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); sl@0: } sl@0: sl@0: /* sl@0: ** Commit a transaction sl@0: */ sl@0: void sqlite3CommitTransaction(Parse *pParse){ sl@0: sqlite3 *db; sl@0: Vdbe *v; sl@0: sl@0: if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; sl@0: if( pParse->nErr || db->mallocFailed ) return; sl@0: if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v ){ sl@0: sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Rollback a transaction sl@0: */ sl@0: void sqlite3RollbackTransaction(Parse *pParse){ sl@0: sqlite3 *db; sl@0: Vdbe *v; sl@0: sl@0: if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; sl@0: if( pParse->nErr || db->mallocFailed ) return; sl@0: if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v ){ sl@0: sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Make sure the TEMP database is open and available for use. Return sl@0: ** the number of errors. Leave any error messages in the pParse structure. sl@0: */ sl@0: int sqlite3OpenTempDatabase(Parse *pParse){ sl@0: sqlite3 *db = pParse->db; sl@0: if( db->aDb[1].pBt==0 && !pParse->explain ){ sl@0: int rc; sl@0: static const int flags = sl@0: SQLITE_OPEN_READWRITE | sl@0: SQLITE_OPEN_CREATE | sl@0: SQLITE_OPEN_EXCLUSIVE | sl@0: SQLITE_OPEN_DELETEONCLOSE | sl@0: SQLITE_OPEN_TEMP_DB; sl@0: sl@0: rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags, sl@0: &db->aDb[1].pBt); sl@0: if( rc!=SQLITE_OK ){ sl@0: sqlite3ErrorMsg(pParse, "unable to open a temporary database " sl@0: "file for storing temporary tables"); sl@0: pParse->rc = rc; sl@0: return 1; sl@0: } sl@0: assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit ); sl@0: assert( db->aDb[1].pSchema ); sl@0: sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt), sl@0: db->dfltJournalMode); sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Generate VDBE code that will verify the schema cookie and start sl@0: ** a read-transaction for all named database files. sl@0: ** sl@0: ** It is important that all schema cookies be verified and all sl@0: ** read transactions be started before anything else happens in sl@0: ** the VDBE program. But this routine can be called after much other sl@0: ** code has been generated. So here is what we do: sl@0: ** sl@0: ** The first time this routine is called, we code an OP_Goto that sl@0: ** will jump to a subroutine at the end of the program. Then we sl@0: ** record every database that needs its schema verified in the sl@0: ** pParse->cookieMask field. Later, after all other code has been sl@0: ** generated, the subroutine that does the cookie verifications and sl@0: ** starts the transactions will be coded and the OP_Goto P2 value sl@0: ** will be made to point to that subroutine. The generation of the sl@0: ** cookie verification subroutine code happens in sqlite3FinishCoding(). sl@0: ** sl@0: ** If iDb<0 then code the OP_Goto only - don't set flag to verify the sl@0: ** schema on any databases. This can be used to position the OP_Goto sl@0: ** early in the code, before we know if any database tables will be used. sl@0: */ sl@0: void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ sl@0: sqlite3 *db; sl@0: Vdbe *v; sl@0: int mask; sl@0: sl@0: v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) return; /* This only happens if there was a prior error */ sl@0: db = pParse->db; sl@0: if( pParse->cookieGoto==0 ){ sl@0: pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; sl@0: } sl@0: if( iDb>=0 ){ sl@0: assert( iDbnDb ); sl@0: assert( db->aDb[iDb].pBt!=0 || iDb==1 ); sl@0: assert( iDbcookieMask & mask)==0 ){ sl@0: pParse->cookieMask |= mask; sl@0: pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; sl@0: if( !OMIT_TEMPDB && iDb==1 ){ sl@0: sqlite3OpenTempDatabase(pParse); sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Generate VDBE code that prepares for doing an operation that sl@0: ** might change the database. sl@0: ** sl@0: ** This routine starts a new transaction if we are not already within sl@0: ** a transaction. If we are already within a transaction, then a checkpoint sl@0: ** is set if the setStatement parameter is true. A checkpoint should sl@0: ** be set for operations that might fail (due to a constraint) part of sl@0: ** the way through and which will need to undo some writes without having to sl@0: ** rollback the whole transaction. For operations where all constraints sl@0: ** can be checked before any changes are made to the database, it is never sl@0: ** necessary to undo a write and the checkpoint should not be set. sl@0: ** sl@0: ** Only database iDb and the temp database are made writable by this call. sl@0: ** If iDb==0, then the main and temp databases are made writable. If sl@0: ** iDb==1 then only the temp database is made writable. If iDb>1 then the sl@0: ** specified auxiliary database and the temp database are made writable. sl@0: */ sl@0: void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ sl@0: Vdbe *v = sqlite3GetVdbe(pParse); sl@0: if( v==0 ) return; sl@0: sqlite3CodeVerifySchema(pParse, iDb); sl@0: pParse->writeMask |= 1<nested==0 ){ sl@0: sqlite3VdbeAddOp1(v, OP_Statement, iDb); sl@0: } sl@0: if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ sl@0: sqlite3BeginWriteOperation(pParse, setStatement, 1); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Check to see if pIndex uses the collating sequence pColl. Return sl@0: ** true if it does and false if it does not. sl@0: */ sl@0: #ifndef SQLITE_OMIT_REINDEX sl@0: static int collationMatch(const char *zColl, Index *pIndex){ sl@0: int i; sl@0: for(i=0; inColumn; i++){ sl@0: const char *z = pIndex->azColl[i]; sl@0: if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ sl@0: return 1; sl@0: } sl@0: } sl@0: return 0; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Recompute all indices of pTab that use the collating sequence pColl. sl@0: ** If pColl==0 then recompute all indices of pTab. sl@0: */ sl@0: #ifndef SQLITE_OMIT_REINDEX sl@0: static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ sl@0: Index *pIndex; /* An index associated with pTab */ sl@0: sl@0: for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ sl@0: if( zColl==0 || collationMatch(zColl, pIndex) ){ sl@0: int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); sl@0: sqlite3BeginWriteOperation(pParse, 0, iDb); sl@0: sqlite3RefillIndex(pParse, pIndex, -1); sl@0: } sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Recompute all indices of all tables in all databases where the sl@0: ** indices use the collating sequence pColl. If pColl==0 then recompute sl@0: ** all indices everywhere. sl@0: */ sl@0: #ifndef SQLITE_OMIT_REINDEX sl@0: static void reindexDatabases(Parse *pParse, char const *zColl){ sl@0: Db *pDb; /* A single database */ sl@0: int iDb; /* The database index number */ sl@0: sqlite3 *db = pParse->db; /* The database connection */ sl@0: HashElem *k; /* For looping over tables in pDb */ sl@0: Table *pTab; /* A table in the database */ sl@0: sl@0: for(iDb=0, pDb=db->aDb; iDbnDb; iDb++, pDb++){ sl@0: assert( pDb!=0 ); sl@0: for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ sl@0: pTab = (Table*)sqliteHashData(k); sl@0: reindexTable(pParse, pTab, zColl); sl@0: } sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Generate code for the REINDEX command. sl@0: ** sl@0: ** REINDEX -- 1 sl@0: ** REINDEX -- 2 sl@0: ** REINDEX ?.? -- 3 sl@0: ** REINDEX ?.? -- 4 sl@0: ** sl@0: ** Form 1 causes all indices in all attached databases to be rebuilt. sl@0: ** Form 2 rebuilds all indices in all databases that use the named sl@0: ** collating function. Forms 3 and 4 rebuild the named index or all sl@0: ** indices associated with the named table. sl@0: */ sl@0: #ifndef SQLITE_OMIT_REINDEX sl@0: void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ sl@0: CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ sl@0: char *z; /* Name of a table or index */ sl@0: const char *zDb; /* Name of the database */ sl@0: Table *pTab; /* A table in the database */ sl@0: Index *pIndex; /* An index associated with pTab */ sl@0: int iDb; /* The database index number */ sl@0: sqlite3 *db = pParse->db; /* The database connection */ sl@0: Token *pObjName; /* Name of the table or index to be reindexed */ sl@0: sl@0: /* Read the database schema. If an error occurs, leave an error message sl@0: ** and code in pParse and return NULL. */ sl@0: if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ sl@0: return; sl@0: } sl@0: sl@0: if( pName1==0 || pName1->z==0 ){ sl@0: reindexDatabases(pParse, 0); sl@0: return; sl@0: }else if( pName2==0 || pName2->z==0 ){ sl@0: char *zColl; sl@0: assert( pName1->z ); sl@0: zColl = sqlite3NameFromToken(pParse->db, pName1); sl@0: if( !zColl ) return; sl@0: pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0); sl@0: if( pColl ){ sl@0: if( zColl ){ sl@0: reindexDatabases(pParse, zColl); sl@0: sqlite3DbFree(db, zColl); sl@0: } sl@0: return; sl@0: } sl@0: sqlite3DbFree(db, zColl); sl@0: } sl@0: iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); sl@0: if( iDb<0 ) return; sl@0: z = sqlite3NameFromToken(db, pObjName); sl@0: if( z==0 ) return; sl@0: zDb = db->aDb[iDb].zName; sl@0: pTab = sqlite3FindTable(db, z, zDb); sl@0: if( pTab ){ sl@0: reindexTable(pParse, pTab, 0); sl@0: sqlite3DbFree(db, z); sl@0: return; sl@0: } sl@0: pIndex = sqlite3FindIndex(db, z, zDb); sl@0: sqlite3DbFree(db, z); sl@0: if( pIndex ){ sl@0: sqlite3BeginWriteOperation(pParse, 0, iDb); sl@0: sqlite3RefillIndex(pParse, pIndex, -1); sl@0: return; sl@0: } sl@0: sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Return a dynamicly allocated KeyInfo structure that can be used sl@0: ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. sl@0: ** sl@0: ** If successful, a pointer to the new structure is returned. In this case sl@0: ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned sl@0: ** pointer. If an error occurs (out of memory or missing collation sl@0: ** sequence), NULL is returned and the state of pParse updated to reflect sl@0: ** the error. sl@0: */ sl@0: KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ sl@0: int i; sl@0: int nCol = pIdx->nColumn; sl@0: int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; sl@0: sqlite3 *db = pParse->db; sl@0: KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); sl@0: sl@0: if( pKey ){ sl@0: pKey->db = pParse->db; sl@0: pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); sl@0: assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); sl@0: for(i=0; iazColl[i]; sl@0: assert( zColl ); sl@0: pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); sl@0: pKey->aSortOrder[i] = pIdx->aSortOrder[i]; sl@0: } sl@0: pKey->nField = nCol; sl@0: } sl@0: sl@0: if( pParse->nErr ){ sl@0: sqlite3DbFree(db, pKey); sl@0: pKey = 0; sl@0: } sl@0: return pKey; sl@0: }