sl@0: /* crypto/md32_common.h */ sl@0: /* ==================================================================== sl@0: * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved. sl@0: * sl@0: * Redistribution and use in source and binary forms, with or without sl@0: * modification, are permitted provided that the following conditions sl@0: * are met: sl@0: * sl@0: * 1. Redistributions of source code must retain the above copyright sl@0: * notice, this list of conditions and the following disclaimer. sl@0: * sl@0: * 2. Redistributions in binary form must reproduce the above copyright sl@0: * notice, this list of conditions and the following disclaimer in sl@0: * the documentation and/or other materials provided with the sl@0: * distribution. sl@0: * sl@0: * 3. All advertising materials mentioning features or use of this sl@0: * software must display the following acknowledgment: sl@0: * "This product includes software developed by the OpenSSL Project sl@0: * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" sl@0: * sl@0: * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to sl@0: * endorse or promote products derived from this software without sl@0: * prior written permission. For written permission, please contact sl@0: * licensing@OpenSSL.org. sl@0: * sl@0: * 5. Products derived from this software may not be called "OpenSSL" sl@0: * nor may "OpenSSL" appear in their names without prior written sl@0: * permission of the OpenSSL Project. sl@0: * sl@0: * 6. Redistributions of any form whatsoever must retain the following sl@0: * acknowledgment: sl@0: * "This product includes software developed by the OpenSSL Project sl@0: * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" sl@0: * sl@0: * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY sl@0: * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE sl@0: * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR sl@0: * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR sl@0: * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, sl@0: * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT sl@0: * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; sl@0: * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) sl@0: * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, sl@0: * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) sl@0: * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED sl@0: * OF THE POSSIBILITY OF SUCH DAMAGE. sl@0: * ==================================================================== sl@0: * sl@0: * This product includes cryptographic software written by Eric Young sl@0: * (eay@cryptsoft.com). This product includes software written by Tim sl@0: * Hudson (tjh@cryptsoft.com). sl@0: * sl@0: */ sl@0: sl@0: /* sl@0: * This is a generic 32 bit "collector" for message digest algorithms. sl@0: * Whenever needed it collects input character stream into chunks of sl@0: * 32 bit values and invokes a block function that performs actual hash sl@0: * calculations. sl@0: * sl@0: * Porting guide. sl@0: * sl@0: * Obligatory macros: sl@0: * sl@0: * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN sl@0: * this macro defines byte order of input stream. sl@0: * HASH_CBLOCK sl@0: * size of a unit chunk HASH_BLOCK operates on. sl@0: * HASH_LONG sl@0: * has to be at lest 32 bit wide, if it's wider, then sl@0: * HASH_LONG_LOG2 *has to* be defined along sl@0: * HASH_CTX sl@0: * context structure that at least contains following sl@0: * members: sl@0: * typedef struct { sl@0: * ... sl@0: * HASH_LONG Nl,Nh; sl@0: * HASH_LONG data[HASH_LBLOCK]; sl@0: * unsigned int num; sl@0: * ... sl@0: * } HASH_CTX; sl@0: * HASH_UPDATE sl@0: * name of "Update" function, implemented here. sl@0: * HASH_TRANSFORM sl@0: * name of "Transform" function, implemented here. sl@0: * HASH_FINAL sl@0: * name of "Final" function, implemented here. sl@0: * HASH_BLOCK_HOST_ORDER sl@0: * name of "block" function treating *aligned* input message sl@0: * in host byte order, implemented externally. sl@0: * HASH_BLOCK_DATA_ORDER sl@0: * name of "block" function treating *unaligned* input message sl@0: * in original (data) byte order, implemented externally (it sl@0: * actually is optional if data and host are of the same sl@0: * "endianess"). sl@0: * HASH_MAKE_STRING sl@0: * macro convering context variables to an ASCII hash string. sl@0: * sl@0: * Optional macros: sl@0: * sl@0: * B_ENDIAN or L_ENDIAN sl@0: * defines host byte-order. sl@0: * HASH_LONG_LOG2 sl@0: * defaults to 2 if not states otherwise. sl@0: * HASH_LBLOCK sl@0: * assumed to be HASH_CBLOCK/4 if not stated otherwise. sl@0: * HASH_BLOCK_DATA_ORDER_ALIGNED sl@0: * alternative "block" function capable of treating sl@0: * aligned input message in original (data) order, sl@0: * implemented externally. sl@0: * sl@0: * MD5 example: sl@0: * sl@0: * #define DATA_ORDER_IS_LITTLE_ENDIAN sl@0: * sl@0: * #define HASH_LONG MD5_LONG sl@0: * #define HASH_LONG_LOG2 MD5_LONG_LOG2 sl@0: * #define HASH_CTX MD5_CTX sl@0: * #define HASH_CBLOCK MD5_CBLOCK sl@0: * #define HASH_LBLOCK MD5_LBLOCK sl@0: * #define HASH_UPDATE MD5_Update sl@0: * #define HASH_TRANSFORM MD5_Transform sl@0: * #define HASH_FINAL MD5_Final sl@0: * #define HASH_BLOCK_HOST_ORDER md5_block_host_order sl@0: * #define HASH_BLOCK_DATA_ORDER md5_block_data_order sl@0: * sl@0: * sl@0: */ sl@0: sl@0: #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN) sl@0: #error "DATA_ORDER must be defined!" sl@0: #endif sl@0: sl@0: #ifndef HASH_CBLOCK sl@0: #error "HASH_CBLOCK must be defined!" sl@0: #endif sl@0: #ifndef HASH_LONG sl@0: #error "HASH_LONG must be defined!" sl@0: #endif sl@0: #ifndef HASH_CTX sl@0: #error "HASH_CTX must be defined!" sl@0: #endif sl@0: sl@0: #ifndef HASH_UPDATE sl@0: #error "HASH_UPDATE must be defined!" sl@0: #endif sl@0: #ifndef HASH_TRANSFORM sl@0: #error "HASH_TRANSFORM must be defined!" sl@0: #endif sl@0: #ifndef HASH_FINAL sl@0: #error "HASH_FINAL must be defined!" sl@0: #endif sl@0: sl@0: #ifndef HASH_BLOCK_HOST_ORDER sl@0: #error "HASH_BLOCK_HOST_ORDER must be defined!" sl@0: #endif sl@0: sl@0: #if 0 sl@0: /* sl@0: * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED sl@0: * isn't defined. sl@0: */ sl@0: #ifndef HASH_BLOCK_DATA_ORDER sl@0: #error "HASH_BLOCK_DATA_ORDER must be defined!" sl@0: #endif sl@0: #endif sl@0: sl@0: #ifndef HASH_LBLOCK sl@0: #define HASH_LBLOCK (HASH_CBLOCK/4) sl@0: #endif sl@0: sl@0: #ifndef HASH_LONG_LOG2 sl@0: #define HASH_LONG_LOG2 2 sl@0: #endif sl@0: sl@0: /* sl@0: * Engage compiler specific rotate intrinsic function if available. sl@0: */ sl@0: #undef ROTATE sl@0: #ifndef PEDANTIC sl@0: # if defined(_MSC_VER) || defined(__ICC) sl@0: # define ROTATE(a,n) _lrotl(a,n) sl@0: # elif defined(__MWERKS__) sl@0: # if defined(__POWERPC__) sl@0: # define ROTATE(a,n) __rlwinm(a,n,0,31) sl@0: # elif defined(__MC68K__) sl@0: /* Motorola specific tweak. */ sl@0: # define ROTATE(a,n) ( n<24 ? __rol(a,n) : __ror(a,32-n) ) sl@0: # else sl@0: # define ROTATE(a,n) __rol(a,n) sl@0: # endif sl@0: # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) sl@0: /* sl@0: * Some GNU C inline assembler templates. Note that these are sl@0: * rotates by *constant* number of bits! But that's exactly sl@0: * what we need here... sl@0: * sl@0: */ sl@0: # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) sl@0: # define ROTATE(a,n) ({ register unsigned int ret; \ sl@0: asm ( \ sl@0: "roll %1,%0" \ sl@0: : "=r"(ret) \ sl@0: : "I"(n), "0"(a) \ sl@0: : "cc"); \ sl@0: ret; \ sl@0: }) sl@0: # elif defined(__powerpc) || defined(__ppc__) || defined(__powerpc64__) sl@0: # define ROTATE(a,n) ({ register unsigned int ret; \ sl@0: asm ( \ sl@0: "rlwinm %0,%1,%2,0,31" \ sl@0: : "=r"(ret) \ sl@0: : "r"(a), "I"(n)); \ sl@0: ret; \ sl@0: }) sl@0: # endif sl@0: # endif sl@0: #endif /* PEDANTIC */ sl@0: sl@0: #if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */ sl@0: /* A nice byte order reversal from Wei Dai */ sl@0: #ifdef ROTATE sl@0: /* 5 instructions with rotate instruction, else 9 */ sl@0: #define REVERSE_FETCH32(a,l) ( \ sl@0: l=*(const HASH_LONG *)(a), \ sl@0: ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \ sl@0: ) sl@0: #else sl@0: /* 6 instructions with rotate instruction, else 8 */ sl@0: #define REVERSE_FETCH32(a,l) ( \ sl@0: l=*(const HASH_LONG *)(a), \ sl@0: l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \ sl@0: ROTATE(l,16) \ sl@0: ) sl@0: /* sl@0: * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|... sl@0: * It's rewritten as above for two reasons: sl@0: * - RISCs aren't good at long constants and have to explicitely sl@0: * compose 'em with several (well, usually 2) instructions in a sl@0: * register before performing the actual operation and (as you sl@0: * already realized:-) having same constant should inspire the sl@0: * compiler to permanently allocate the only register for it; sl@0: * - most modern CPUs have two ALUs, but usually only one has sl@0: * circuitry for shifts:-( this minor tweak inspires compiler sl@0: * to schedule shift instructions in a better way... sl@0: * sl@0: * sl@0: */ sl@0: #endif sl@0: #endif sl@0: sl@0: #ifndef ROTATE sl@0: #define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n)))) sl@0: #endif sl@0: sl@0: /* sl@0: * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED sl@0: * and HASH_BLOCK_HOST_ORDER ought to be the same if input data sl@0: * and host are of the same "endianess". It's possible to mask sl@0: * this with blank #define HASH_BLOCK_DATA_ORDER though... sl@0: * sl@0: * sl@0: */ sl@0: #if defined(B_ENDIAN) sl@0: # if defined(DATA_ORDER_IS_BIG_ENDIAN) sl@0: # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 sl@0: # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER sl@0: # endif sl@0: # endif sl@0: #elif defined(L_ENDIAN) sl@0: # if defined(DATA_ORDER_IS_LITTLE_ENDIAN) sl@0: # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2 sl@0: # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER sl@0: # endif sl@0: # endif sl@0: #endif sl@0: sl@0: #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) sl@0: #ifndef HASH_BLOCK_DATA_ORDER sl@0: #error "HASH_BLOCK_DATA_ORDER must be defined!" sl@0: #endif sl@0: #endif sl@0: sl@0: #if defined(DATA_ORDER_IS_BIG_ENDIAN) sl@0: sl@0: #ifndef PEDANTIC sl@0: # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) sl@0: # if ((defined(__i386) || defined(__i386__)) && !defined(I386_ONLY)) || \ sl@0: (defined(__x86_64) || defined(__x86_64__)) sl@0: /* sl@0: * This gives ~30-40% performance improvement in SHA-256 compiled sl@0: * with gcc [on P4]. Well, first macro to be frank. We can pull sl@0: * this trick on x86* platforms only, because these CPUs can fetch sl@0: * unaligned data without raising an exception. sl@0: */ sl@0: # define HOST_c2l(c,l) ({ unsigned int r=*((const unsigned int *)(c)); \ sl@0: asm ("bswapl %0":"=r"(r):"0"(r)); \ sl@0: (c)+=4; (l)=r; }) sl@0: # define HOST_l2c(l,c) ({ unsigned int r=(l); \ sl@0: asm ("bswapl %0":"=r"(r):"0"(r)); \ sl@0: *((unsigned int *)(c))=r; (c)+=4; r; }) sl@0: # endif sl@0: # endif sl@0: #endif sl@0: sl@0: #ifndef HOST_c2l sl@0: #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \ sl@0: l|=(((unsigned long)(*((c)++)))<<16), \ sl@0: l|=(((unsigned long)(*((c)++)))<< 8), \ sl@0: l|=(((unsigned long)(*((c)++))) ), \ sl@0: l) sl@0: #endif sl@0: #define HOST_p_c2l(c,l,n) { \ sl@0: switch (n) { \ sl@0: case 0: l =((unsigned long)(*((c)++)))<<24; \ sl@0: case 1: l|=((unsigned long)(*((c)++)))<<16; \ sl@0: case 2: l|=((unsigned long)(*((c)++)))<< 8; \ sl@0: case 3: l|=((unsigned long)(*((c)++))); \ sl@0: } } sl@0: #define HOST_p_c2l_p(c,l,sc,len) { \ sl@0: switch (sc) { \ sl@0: case 0: l =((unsigned long)(*((c)++)))<<24; \ sl@0: if (--len == 0) break; \ sl@0: case 1: l|=((unsigned long)(*((c)++)))<<16; \ sl@0: if (--len == 0) break; \ sl@0: case 2: l|=((unsigned long)(*((c)++)))<< 8; \ sl@0: } } sl@0: /* NOTE the pointer is not incremented at the end of this */ sl@0: #define HOST_c2l_p(c,l,n) { \ sl@0: l=0; (c)+=n; \ sl@0: switch (n) { \ sl@0: case 3: l =((unsigned long)(*(--(c))))<< 8; \ sl@0: case 2: l|=((unsigned long)(*(--(c))))<<16; \ sl@0: case 1: l|=((unsigned long)(*(--(c))))<<24; \ sl@0: } } sl@0: #ifndef HOST_l2c sl@0: #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \ sl@0: *((c)++)=(unsigned char)(((l)>>16)&0xff), \ sl@0: *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ sl@0: *((c)++)=(unsigned char)(((l) )&0xff), \ sl@0: l) sl@0: #endif sl@0: sl@0: #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) sl@0: sl@0: #if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__) sl@0: # ifndef B_ENDIAN sl@0: /* See comment in DATA_ORDER_IS_BIG_ENDIAN section. */ sl@0: # define HOST_c2l(c,l) ((l)=*((const unsigned int *)(c)), (c)+=4, l) sl@0: # define HOST_l2c(l,c) (*((unsigned int *)(c))=(l), (c)+=4, l) sl@0: # endif sl@0: #endif sl@0: sl@0: #ifndef HOST_c2l sl@0: #define HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \ sl@0: l|=(((unsigned long)(*((c)++)))<< 8), \ sl@0: l|=(((unsigned long)(*((c)++)))<<16), \ sl@0: l|=(((unsigned long)(*((c)++)))<<24), \ sl@0: l) sl@0: #endif sl@0: #define HOST_p_c2l(c,l,n) { \ sl@0: switch (n) { \ sl@0: case 0: l =((unsigned long)(*((c)++))); \ sl@0: case 1: l|=((unsigned long)(*((c)++)))<< 8; \ sl@0: case 2: l|=((unsigned long)(*((c)++)))<<16; \ sl@0: case 3: l|=((unsigned long)(*((c)++)))<<24; \ sl@0: } } sl@0: #define HOST_p_c2l_p(c,l,sc,len) { \ sl@0: switch (sc) { \ sl@0: case 0: l =((unsigned long)(*((c)++))); \ sl@0: if (--len == 0) break; \ sl@0: case 1: l|=((unsigned long)(*((c)++)))<< 8; \ sl@0: if (--len == 0) break; \ sl@0: case 2: l|=((unsigned long)(*((c)++)))<<16; \ sl@0: } } sl@0: /* NOTE the pointer is not incremented at the end of this */ sl@0: #define HOST_c2l_p(c,l,n) { \ sl@0: l=0; (c)+=n; \ sl@0: switch (n) { \ sl@0: case 3: l =((unsigned long)(*(--(c))))<<16; \ sl@0: case 2: l|=((unsigned long)(*(--(c))))<< 8; \ sl@0: case 1: l|=((unsigned long)(*(--(c)))); \ sl@0: } } sl@0: #ifndef HOST_l2c sl@0: #define HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \ sl@0: *((c)++)=(unsigned char)(((l)>> 8)&0xff), \ sl@0: *((c)++)=(unsigned char)(((l)>>16)&0xff), \ sl@0: *((c)++)=(unsigned char)(((l)>>24)&0xff), \ sl@0: l) sl@0: #endif sl@0: sl@0: #endif sl@0: sl@0: /* sl@0: * Time for some action:-) sl@0: */ sl@0: sl@0: EXPORT_C int HASH_UPDATE (HASH_CTX *c, const void *data_, size_t len) sl@0: { sl@0: const unsigned char *data=data_; sl@0: register HASH_LONG * p; sl@0: register HASH_LONG l; sl@0: size_t sw,sc,ew,ec; sl@0: sl@0: if (len==0) return 1; sl@0: sl@0: l=(c->Nl+(((HASH_LONG)len)<<3))&0xffffffffUL; sl@0: /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to sl@0: * Wei Dai for pointing it out. */ sl@0: if (l < c->Nl) /* overflow */ sl@0: c->Nh++; sl@0: c->Nh+=(len>>29); /* might cause compiler warning on 16-bit */ sl@0: c->Nl=l; sl@0: sl@0: if (c->num != 0) sl@0: { sl@0: p=c->data; sl@0: sw=c->num>>2; sl@0: sc=c->num&0x03; sl@0: sl@0: if ((c->num+len) >= HASH_CBLOCK) sl@0: { sl@0: l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l; sl@0: for (; swnum); sl@0: c->num=0; sl@0: /* drop through and do the rest */ sl@0: } sl@0: else sl@0: { sl@0: c->num+=(unsigned int)len; sl@0: if ((sc+len) < 4) /* ugly, add char's to a word */ sl@0: { sl@0: l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l; sl@0: } sl@0: else sl@0: { sl@0: ew=(c->num>>2); sl@0: ec=(c->num&0x03); sl@0: if (sc) sl@0: l=p[sw]; sl@0: HOST_p_c2l(data,l,sc); sl@0: p[sw++]=l; sl@0: for (; sw < ew; sw++) sl@0: { sl@0: HOST_c2l(data,l); p[sw]=l; sl@0: } sl@0: if (ec) sl@0: { sl@0: HOST_c2l_p(data,l,ec); p[sw]=l; sl@0: } sl@0: } sl@0: return 1; sl@0: } sl@0: } sl@0: sl@0: sw=len/HASH_CBLOCK; sl@0: if (sw > 0) sl@0: { sl@0: #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) sl@0: /* sl@0: * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined sl@0: * only if sizeof(HASH_LONG)==4. sl@0: */ sl@0: if ((((size_t)data)%4) == 0) sl@0: { sl@0: /* data is properly aligned so that we can cast it: */ sl@0: HASH_BLOCK_DATA_ORDER_ALIGNED (c,(const HASH_LONG *)data,sw); sl@0: sw*=HASH_CBLOCK; sl@0: data+=sw; sl@0: len-=sw; sl@0: } sl@0: else sl@0: #if !defined(HASH_BLOCK_DATA_ORDER) sl@0: while (sw--) sl@0: { sl@0: memcpy (p=c->data,data,HASH_CBLOCK); sl@0: HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1); sl@0: data+=HASH_CBLOCK; sl@0: len-=HASH_CBLOCK; sl@0: } sl@0: #endif sl@0: #endif sl@0: #if defined(HASH_BLOCK_DATA_ORDER) sl@0: { sl@0: HASH_BLOCK_DATA_ORDER(c,data,sw); sl@0: sw*=HASH_CBLOCK; sl@0: data+=sw; sl@0: len-=sw; sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: if (len!=0) sl@0: { sl@0: p = c->data; sl@0: c->num = len; sl@0: ew=len>>2; /* words to copy */ sl@0: ec=len&0x03; sl@0: for (; ew; ew--,p++) sl@0: { sl@0: HOST_c2l(data,l); *p=l; sl@0: } sl@0: HOST_c2l_p(data,l,ec); sl@0: *p=l; sl@0: } sl@0: return 1; sl@0: } sl@0: sl@0: sl@0: EXPORT_C void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data) sl@0: { sl@0: #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED) sl@0: if ((((size_t)data)%4) == 0) sl@0: /* data is properly aligned so that we can cast it: */ sl@0: HASH_BLOCK_DATA_ORDER_ALIGNED (c,(const HASH_LONG *)data,1); sl@0: else sl@0: #if !defined(HASH_BLOCK_DATA_ORDER) sl@0: { sl@0: memcpy (c->data,data,HASH_CBLOCK); sl@0: HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1); sl@0: } sl@0: #endif sl@0: #endif sl@0: #if defined(HASH_BLOCK_DATA_ORDER) sl@0: HASH_BLOCK_DATA_ORDER (c,data,1); sl@0: #endif sl@0: } sl@0: sl@0: sl@0: EXPORT_C int HASH_FINAL (unsigned char *md, HASH_CTX *c) sl@0: { sl@0: register HASH_LONG *p; sl@0: register unsigned long l; sl@0: register int i,j; sl@0: static const unsigned char end[4]={0x80,0x00,0x00,0x00}; sl@0: const unsigned char *cp=end; sl@0: sl@0: /* c->num should definitly have room for at least one more byte. */ sl@0: p=c->data; sl@0: i=c->num>>2; sl@0: j=c->num&0x03; sl@0: sl@0: #if 0 sl@0: /* purify often complains about the following line as an sl@0: * Uninitialized Memory Read. While this can be true, the sl@0: * following p_c2l macro will reset l when that case is true. sl@0: * This is because j&0x03 contains the number of 'valid' bytes sl@0: * already in p[i]. If and only if j&0x03 == 0, the UMR will sl@0: * occur but this is also the only time p_c2l will do sl@0: * l= *(cp++) instead of l|= *(cp++) sl@0: * Many thanks to Alex Tang for pickup this sl@0: * 'potential bug' */ sl@0: #ifdef PURIFY sl@0: if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */ sl@0: #endif sl@0: l=p[i]; sl@0: #else sl@0: l = (j==0) ? 0 : p[i]; sl@0: #endif sl@0: HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */ sl@0: sl@0: if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */ sl@0: { sl@0: if (iNh; sl@0: p[HASH_LBLOCK-1]=c->Nl; sl@0: #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN) sl@0: p[HASH_LBLOCK-2]=c->Nl; sl@0: p[HASH_LBLOCK-1]=c->Nh; sl@0: #endif sl@0: HASH_BLOCK_HOST_ORDER (c,p,1); sl@0: sl@0: #ifndef HASH_MAKE_STRING sl@0: #error "HASH_MAKE_STRING must be defined!" sl@0: #else sl@0: HASH_MAKE_STRING(c,md); sl@0: #endif sl@0: sl@0: c->num=0; sl@0: /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack sl@0: * but I'm not worried :-) sl@0: OPENSSL_cleanse((void *)c,sizeof(HASH_CTX)); sl@0: */ sl@0: return 1; sl@0: } sl@0: sl@0: #ifndef MD32_REG_T sl@0: #define MD32_REG_T long sl@0: /* sl@0: * This comment was originaly written for MD5, which is why it sl@0: * discusses A-D. But it basically applies to all 32-bit digests, sl@0: * which is why it was moved to common header file. sl@0: * sl@0: * In case you wonder why A-D are declared as long and not sl@0: * as MD5_LONG. Doing so results in slight performance sl@0: * boost on LP64 architectures. The catch is we don't sl@0: * really care if 32 MSBs of a 64-bit register get polluted sl@0: * with eventual overflows as we *save* only 32 LSBs in sl@0: * *either* case. Now declaring 'em long excuses the compiler sl@0: * from keeping 32 MSBs zeroed resulting in 13% performance sl@0: * improvement under SPARC Solaris7/64 and 5% under AlphaLinux. sl@0: * Well, to be honest it should say that this *prevents* sl@0: * performance degradation. sl@0: * sl@0: * Apparently there're LP64 compilers that generate better sl@0: * code if A-D are declared int. Most notably GCC-x86_64 sl@0: * generates better code. sl@0: * sl@0: */ sl@0: #endif