sl@0: // Boost Lambda Library ret.hpp ----------------------------------------- sl@0: sl@0: // Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi) sl@0: // sl@0: // Distributed under the Boost Software License, Version 1.0. (See sl@0: // accompanying file LICENSE_1_0.txt or copy at sl@0: // http://www.boost.org/LICENSE_1_0.txt) sl@0: // sl@0: // For more information, see www.boost.org sl@0: sl@0: sl@0: #ifndef BOOST_LAMBDA_RET_HPP sl@0: #define BOOST_LAMBDA_RET_HPP sl@0: sl@0: namespace boost { sl@0: namespace lambda { sl@0: sl@0: // TODO: sl@0: sl@0: // Add specializations for function references for ret, protect and unlambda sl@0: // e.g void foo(); unlambda(foo); fails, as it would add a const qualifier sl@0: // for a function type. sl@0: // on the other hand unlambda(*foo) does work sl@0: sl@0: sl@0: // -- ret ------------------------- sl@0: // the explicit return type template sl@0: sl@0: // TODO: It'd be nice to make ret a nop for other than lambda functors sl@0: // but causes an ambiguiyty with gcc (not with KCC), check what is the sl@0: // right interpretation. sl@0: sl@0: // // ret for others than lambda functors has no effect sl@0: // template <class U, class T> sl@0: // inline const T& ret(const T& t) { return t; } sl@0: sl@0: sl@0: template<class RET, class Arg> sl@0: inline const sl@0: lambda_functor< sl@0: lambda_functor_base< sl@0: explicit_return_type_action<RET>, sl@0: tuple<lambda_functor<Arg> > sl@0: > sl@0: > sl@0: ret(const lambda_functor<Arg>& a1) sl@0: { sl@0: return sl@0: lambda_functor_base< sl@0: explicit_return_type_action<RET>, sl@0: tuple<lambda_functor<Arg> > sl@0: > sl@0: (tuple<lambda_functor<Arg> >(a1)); sl@0: } sl@0: sl@0: // protect ------------------ sl@0: sl@0: // protecting others than lambda functors has no effect sl@0: template <class T> sl@0: inline const T& protect(const T& t) { return t; } sl@0: sl@0: template<class Arg> sl@0: inline const sl@0: lambda_functor< sl@0: lambda_functor_base< sl@0: protect_action, sl@0: tuple<lambda_functor<Arg> > sl@0: > sl@0: > sl@0: protect(const lambda_functor<Arg>& a1) sl@0: { sl@0: return sl@0: lambda_functor_base< sl@0: protect_action, sl@0: tuple<lambda_functor<Arg> > sl@0: > sl@0: (tuple<lambda_functor<Arg> >(a1)); sl@0: } sl@0: sl@0: // ------------------------------------------------------------------- sl@0: sl@0: // Hides the lambda functorness of a lambda functor. sl@0: // After this, the functor is immune to argument substitution, etc. sl@0: // This can be used, e.g. to make it safe to pass lambda functors as sl@0: // arguments to functions, which might use them as target functions sl@0: sl@0: // note, unlambda and protect are different things. Protect hides the lambda sl@0: // functor for one application, unlambda for good. sl@0: sl@0: template <class LambdaFunctor> sl@0: class non_lambda_functor sl@0: { sl@0: LambdaFunctor lf; sl@0: public: sl@0: sl@0: // This functor defines the result_type typedef. sl@0: // The result type must be deducible without knowing the arguments sl@0: sl@0: template <class SigArgs> struct sig { sl@0: typedef typename sl@0: LambdaFunctor::inherited:: sl@0: template sig<typename SigArgs::tail_type>::type type; sl@0: }; sl@0: sl@0: explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {} sl@0: sl@0: typename LambdaFunctor::nullary_return_type sl@0: operator()() const { sl@0: return lf.template sl@0: call<typename LambdaFunctor::nullary_return_type> sl@0: (cnull_type(), cnull_type(), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template<class A> sl@0: typename sig<tuple<const non_lambda_functor, A&> >::type sl@0: operator()(A& a) const { sl@0: return lf.template call<typename sig<tuple<const non_lambda_functor, A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template<class A, class B> sl@0: typename sig<tuple<const non_lambda_functor, A&, B&> >::type sl@0: operator()(A& a, B& b) const { sl@0: return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&> >::type >(a, b, cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template<class A, class B, class C> sl@0: typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type sl@0: operator()(A& a, B& b, C& c) const { sl@0: return lf.template call<typename sig<tuple<const non_lambda_functor, A&, B&, C&> >::type>(a, b, c, cnull_type()); sl@0: } sl@0: }; sl@0: sl@0: template <class Arg> sl@0: inline const Arg& unlambda(const Arg& a) { return a; } sl@0: sl@0: template <class Arg> sl@0: inline const non_lambda_functor<lambda_functor<Arg> > sl@0: unlambda(const lambda_functor<Arg>& a) sl@0: { sl@0: return non_lambda_functor<lambda_functor<Arg> >(a); sl@0: } sl@0: sl@0: // Due to a language restriction, lambda functors cannot be made to sl@0: // accept non-const rvalue arguments. Usually iterators do not return sl@0: // temporaries, but sometimes they do. That's why a workaround is provided. sl@0: // Note, that this potentially breaks const correctness, so be careful! sl@0: sl@0: // any lambda functor can be turned into a const_incorrect_lambda_functor sl@0: // The operator() takes arguments as consts and then casts constness sl@0: // away. So this breaks const correctness!!! but is a necessary workaround sl@0: // in some cases due to language limitations. sl@0: // Note, that this is not a lambda_functor anymore, so it can not be used sl@0: // as a sub lambda expression. sl@0: sl@0: template <class LambdaFunctor> sl@0: struct const_incorrect_lambda_functor { sl@0: LambdaFunctor lf; sl@0: public: sl@0: sl@0: explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {} sl@0: sl@0: template <class SigArgs> struct sig { sl@0: typedef typename sl@0: LambdaFunctor::inherited::template sl@0: sig<typename SigArgs::tail_type>::type type; sl@0: }; sl@0: sl@0: // The nullary case is not needed (no arguments, no parameter type problems) sl@0: sl@0: template<class A> sl@0: typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type sl@0: operator()(const A& a) const { sl@0: return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&> >::type >(const_cast<A&>(a), cnull_type(), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template<class A, class B> sl@0: typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type sl@0: operator()(const A& a, const B& b) const { sl@0: return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&> >::type >(const_cast<A&>(a), const_cast<B&>(b), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template<class A, class B, class C> sl@0: typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type sl@0: operator()(const A& a, const B& b, const C& c) const { sl@0: return lf.template call<typename sig<tuple<const const_incorrect_lambda_functor, A&, B&, C&> >::type>(const_cast<A&>(a), const_cast<B&>(b), const_cast<C&>(c), cnull_type()); sl@0: } sl@0: }; sl@0: sl@0: // ------------------------------------------------------------------------ sl@0: // any lambda functor can be turned into a const_parameter_lambda_functor sl@0: // The operator() takes arguments as const. sl@0: // This is useful if lambda functors are called with non-const rvalues. sl@0: // Note, that this is not a lambda_functor anymore, so it can not be used sl@0: // as a sub lambda expression. sl@0: sl@0: template <class LambdaFunctor> sl@0: struct const_parameter_lambda_functor { sl@0: LambdaFunctor lf; sl@0: public: sl@0: sl@0: explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {} sl@0: sl@0: template <class SigArgs> struct sig { sl@0: typedef typename sl@0: LambdaFunctor::inherited::template sl@0: sig<typename SigArgs::tail_type>::type type; sl@0: }; sl@0: sl@0: // The nullary case is not needed: no arguments, no constness problems. sl@0: sl@0: template<class A> sl@0: typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type sl@0: operator()(const A& a) const { sl@0: return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&> >::type >(a, cnull_type(), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template<class A, class B> sl@0: typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type sl@0: operator()(const A& a, const B& b) const { sl@0: return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&> >::type >(a, b, cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template<class A, class B, class C> sl@0: typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> sl@0: >::type sl@0: operator()(const A& a, const B& b, const C& c) const { sl@0: return lf.template call<typename sig<tuple<const const_parameter_lambda_functor, const A&, const B&, const C&> >::type>(a, b, c, cnull_type()); sl@0: } sl@0: }; sl@0: sl@0: template <class Arg> sl@0: inline const const_incorrect_lambda_functor<lambda_functor<Arg> > sl@0: break_const(const lambda_functor<Arg>& lf) sl@0: { sl@0: return const_incorrect_lambda_functor<lambda_functor<Arg> >(lf); sl@0: } sl@0: sl@0: sl@0: template <class Arg> sl@0: inline const const_parameter_lambda_functor<lambda_functor<Arg> > sl@0: const_parameters(const lambda_functor<Arg>& lf) sl@0: { sl@0: return const_parameter_lambda_functor<lambda_functor<Arg> >(lf); sl@0: } sl@0: sl@0: // make void ------------------------------------------------ sl@0: // make_void( x ) turns a lambda functor x with some return type y into sl@0: // another lambda functor, which has a void return type sl@0: // when called, the original return type is discarded sl@0: sl@0: // we use this action. The action class will be called, which means that sl@0: // the wrapped lambda functor is evaluated, but we just don't do anything sl@0: // with the result. sl@0: struct voidifier_action { sl@0: template<class Ret, class A> static void apply(A&) {} sl@0: }; sl@0: sl@0: template<class Args> struct return_type_N<voidifier_action, Args> { sl@0: typedef void type; sl@0: }; sl@0: sl@0: template<class Arg1> sl@0: inline const sl@0: lambda_functor< sl@0: lambda_functor_base< sl@0: action<1, voidifier_action>, sl@0: tuple<lambda_functor<Arg1> > sl@0: > sl@0: > sl@0: make_void(const lambda_functor<Arg1>& a1) { sl@0: return sl@0: lambda_functor_base< sl@0: action<1, voidifier_action>, sl@0: tuple<lambda_functor<Arg1> > sl@0: > sl@0: (tuple<lambda_functor<Arg1> > (a1)); sl@0: } sl@0: sl@0: // for non-lambda functors, make_void does nothing sl@0: // (the argument gets evaluated immediately) sl@0: sl@0: template<class Arg1> sl@0: inline const sl@0: lambda_functor< sl@0: lambda_functor_base<do_nothing_action, null_type> sl@0: > sl@0: make_void(const Arg1& a1) { sl@0: return sl@0: lambda_functor_base<do_nothing_action, null_type>(); sl@0: } sl@0: sl@0: // std_functor ----------------------------------------------------- sl@0: sl@0: // The STL uses the result_type typedef as the convention to let binders know sl@0: // the return type of a function object. sl@0: // LL uses the sig template. sl@0: // To let LL know that the function object has the result_type typedef sl@0: // defined, it can be wrapped with the std_functor function. sl@0: sl@0: sl@0: // Just inherit form the template parameter (the standard functor), sl@0: // and provide a sig template. So we have a class which is still the sl@0: // same functor + the sig template. sl@0: sl@0: template<class T> sl@0: struct result_type_to_sig : public T { sl@0: template<class Args> struct sig { typedef typename T::result_type type; }; sl@0: result_type_to_sig(const T& t) : T(t) {} sl@0: }; sl@0: sl@0: template<class F> sl@0: inline result_type_to_sig<F> std_functor(const F& f) { return f; } sl@0: sl@0: sl@0: } // namespace lambda sl@0: } // namespace boost sl@0: sl@0: #endif sl@0: sl@0: sl@0: sl@0: sl@0: sl@0: sl@0: