sl@0: /* S_EXPM1.C sl@0: * sl@0: * Portions Copyright (c) 1993-2005 Nokia Corporation and/or its subsidiary(-ies). sl@0: * All rights reserved. sl@0: */ sl@0: sl@0: sl@0: /* @(#)s_expm1.c 5.1 93/09/24 */ sl@0: /* sl@0: * ==================================================== sl@0: * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. sl@0: * sl@0: * Developed at SunPro, a Sun Microsystems, Inc. business. sl@0: * Permission to use, copy, modify, and distribute this sl@0: * software is freely granted, provided that this notice sl@0: * is preserved. sl@0: * ==================================================== sl@0: */ sl@0: sl@0: /* sl@0: FUNCTION sl@0: <>, <>---exponential minus 1 sl@0: INDEX sl@0: expm1 sl@0: INDEX sl@0: expm1f sl@0: sl@0: ANSI_SYNOPSIS sl@0: #include sl@0: double expm1(double <[x]>); sl@0: float expm1f(float <[x]>); sl@0: sl@0: TRAD_SYNOPSIS sl@0: #include sl@0: double expm1(<[x]>); sl@0: double <[x]>; sl@0: sl@0: float expm1f(<[x]>); sl@0: float <[x]>; sl@0: sl@0: DESCRIPTION sl@0: <> and <> calculate the exponential of <[x]> sl@0: and subtract 1, that is, sl@0: @ifinfo sl@0: e raised to the power <[x]> minus 1 (where e sl@0: @end ifinfo sl@0: @tex sl@0: $e^x - 1$ (where $e$ sl@0: @end tex sl@0: is the base of the natural system of logarithms, approximately sl@0: 2.71828). The result is accurate even for small values of sl@0: <[x]>, where using <)-1>> would lose many sl@0: significant digits. sl@0: sl@0: RETURNS sl@0: e raised to the power <[x]>, minus 1. sl@0: sl@0: PORTABILITY sl@0: Neither <> nor <> is required by ANSI C or by sl@0: the System V Interface Definition (Issue 2). sl@0: */ sl@0: sl@0: /* expm1(x) sl@0: * Returns exp(x)-1, the exponential of x minus 1. sl@0: * sl@0: * Method sl@0: * 1. Argument reduction: sl@0: * Given x, find r and integer k such that sl@0: * sl@0: * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 sl@0: * sl@0: * Here a correction term c will be computed to compensate sl@0: * the error in r when rounded to a floating-point number. sl@0: * sl@0: * 2. Approximating expm1(r) by a special rational function on sl@0: * the interval [0,0.34658]: sl@0: * Since sl@0: * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... sl@0: * we define R1(r*r) by sl@0: * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) sl@0: * That is, sl@0: * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) sl@0: * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) sl@0: * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... sl@0: * We use a special Reme algorithm on [0,0.347] to generate sl@0: * a polynomial of degree 5 in r*r to approximate R1. The sl@0: * maximum error of this polynomial approximation is bounded sl@0: * by 2**-61. In other words, sl@0: * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 sl@0: * where Q1 = -1.6666666666666567384E-2, sl@0: * Q2 = 3.9682539681370365873E-4, sl@0: * Q3 = -9.9206344733435987357E-6, sl@0: * Q4 = 2.5051361420808517002E-7, sl@0: * Q5 = -6.2843505682382617102E-9; sl@0: * (where z=r*r, and the values of Q1 to Q5 are listed below) sl@0: * with error bounded by sl@0: * | 5 | -61 sl@0: * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 sl@0: * | | sl@0: * sl@0: * expm1(r) = exp(r)-1 is then computed by the following sl@0: * specific way which minimize the accumulation rounding error: sl@0: * 2 3 sl@0: * r r [ 3 - (R1 + R1*r/2) ] sl@0: * expm1(r) = r + --- + --- * [--------------------] sl@0: * 2 2 [ 6 - r*(3 - R1*r/2) ] sl@0: * sl@0: * To compensate the error in the argument reduction, we use sl@0: * expm1(r+c) = expm1(r) + c + expm1(r)*c sl@0: * ~ expm1(r) + c + r*c sl@0: * Thus c+r*c will be added in as the correction terms for sl@0: * expm1(r+c). Now rearrange the term to avoid optimization sl@0: * screw up: sl@0: * ( 2 2 ) sl@0: * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) sl@0: * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) sl@0: * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) sl@0: * ( ) sl@0: * sl@0: * = r - E sl@0: * 3. Scale back to obtain expm1(x): sl@0: * From step 1, we have sl@0: * expm1(x) = either 2^k*[expm1(r)+1] - 1 sl@0: * = or 2^k*[expm1(r) + (1-2^-k)] sl@0: * 4. Implementation notes: sl@0: * (A). To save one multiplication, we scale the coefficient Qi sl@0: * to Qi*2^i, and replace z by (x^2)/2. sl@0: * (B). To achieve maximum accuracy, we compute expm1(x) by sl@0: * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) sl@0: * (ii) if k=0, return r-E sl@0: * (iii) if k=-1, return 0.5*(r-E)-0.5 sl@0: * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) sl@0: * else return 1.0+2.0*(r-E); sl@0: * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) sl@0: * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else sl@0: * (vii) return 2^k(1-((E+2^-k)-r)) sl@0: * sl@0: * Special cases: sl@0: * expm1(INF) is INF, expm1(NaN) is NaN; sl@0: * expm1(-INF) is -1, and sl@0: * for finite argument, only expm1(0)=0 is exact. sl@0: * sl@0: * Accuracy: sl@0: * according to an error analysis, the error is always less than sl@0: * 1 ulp (unit in the last place). sl@0: * sl@0: * Misc. info. sl@0: * For IEEE double sl@0: * if x > 7.09782712893383973096e+02 then expm1(x) overflow sl@0: * sl@0: * Constants: sl@0: * The hexadecimal values are the intended ones for the following sl@0: * constants. The decimal values may be used, provided that the sl@0: * compiler will convert from decimal to binary accurately enough sl@0: * to produce the hexadecimal values shown. sl@0: */ sl@0: sl@0: #include "FDLIBM.H" sl@0: sl@0: static const double sl@0: one = 1.0, sl@0: huge = 1.0e+300, sl@0: tiny = 1.0e-300, sl@0: o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ sl@0: ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ sl@0: ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ sl@0: invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ sl@0: /* scaled coefficients related to expm1 */ sl@0: Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ sl@0: Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ sl@0: Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ sl@0: Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ sl@0: Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ sl@0: sl@0: /** sl@0: Calculate the exponential of x and subtract 1 sl@0: that is raised to the power x minus 1 sl@0: @return e raised to the power x, minus 1. sl@0: @param x e's power. sl@0: */ sl@0: EXPORT_C double expm1(double x) __SOFTFP sl@0: { sl@0: double y,hi,lo,c = 0.0,t,e,hxs,hfx,r1; sl@0: __int32_t k,xsb; sl@0: __uint32_t hx; sl@0: sl@0: GET_HIGH_WORD(hx,x); sl@0: xsb = hx&0x80000000; /* sign bit of x */ sl@0: if(xsb==0) y=x; else y= -x; /* y = |x| */ sl@0: hx &= 0x7fffffff; /* high word of |x| */ sl@0: sl@0: /* filter out huge and non-finite argument */ sl@0: if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ sl@0: if(hx >= 0x40862E42) { /* if |x|>=709.78... */ sl@0: if(hx>=0x7ff00000) { sl@0: __uint32_t low; sl@0: GET_LOW_WORD(low,x); sl@0: if(((hx&0xfffff)|low)!=0) sl@0: return x+x; /* NaN */ sl@0: else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ sl@0: } sl@0: if(x > o_threshold) return huge*huge; /* overflow */ sl@0: } sl@0: if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ sl@0: if(x+tiny<0.0) /* raise inexact */ sl@0: return tiny-one; /* return -1 */ sl@0: } sl@0: } sl@0: sl@0: /* argument reduction */ sl@0: if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ sl@0: if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ sl@0: if(xsb==0) sl@0: {hi = x - ln2_hi; lo = ln2_lo; k = 1;} sl@0: else sl@0: {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} sl@0: } else { sl@0: k = invln2*x+((xsb==0)?0.5:-0.5); sl@0: t = k; sl@0: hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ sl@0: lo = t*ln2_lo; sl@0: } sl@0: x = hi - lo; sl@0: c = (hi-x)-lo; sl@0: } sl@0: else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ sl@0: t = huge+x; /* return x with inexact flags when x!=0 */ sl@0: return x - (t-(huge+x)); sl@0: } sl@0: else k = 0; sl@0: sl@0: /* x is now in primary range */ sl@0: hfx = 0.5*x; sl@0: hxs = x*hfx; sl@0: r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); sl@0: t = 3.0-r1*hfx; sl@0: e = hxs*((r1-t)/(6.0 - x*t)); sl@0: if(k==0) return x - (x*e-hxs); /* c is 0 */ sl@0: else { sl@0: e = (x*(e-c)-c); sl@0: e -= hxs; sl@0: if(k== -1) return 0.5*(x-e)-0.5; sl@0: if(k==1) { sl@0: if(x < -0.25) return -2.0*(e-(x+0.5)); sl@0: else return one+2.0*(x-e); sl@0: } sl@0: if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ sl@0: __uint32_t high; sl@0: y = one-(e-x); sl@0: GET_HIGH_WORD(high,y); sl@0: SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ sl@0: return y-one; sl@0: } sl@0: t = one; sl@0: if(k<20) { sl@0: __uint32_t high; sl@0: SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */ sl@0: y = t-(e-x); sl@0: GET_HIGH_WORD(high,y); sl@0: SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ sl@0: } else { sl@0: __uint32_t high; sl@0: SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */ sl@0: y = x-(e+t); sl@0: y += one; sl@0: GET_HIGH_WORD(high,y); sl@0: SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ sl@0: } sl@0: } sl@0: return y; sl@0: }