sl@0: /* Portions Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies). sl@0: * All rights reserved. sl@0: */ sl@0: sl@0: /* inflate.cpp -- zlib decompression sl@0: * Copyright (C) 1995-2005 Mark Adler sl@0: * For conditions of distribution and use, see copyright notice in zlib.h sl@0: */ sl@0: sl@0: /* sl@0: * Change history: sl@0: * sl@0: * 1.2.beta0 24 Nov 2002 sl@0: * - First version -- complete rewrite of inflate to simplify code, avoid sl@0: * creation of window when not needed, minimize use of window when it is sl@0: * needed, make inffast.c even faster, implement gzip decoding, and to sl@0: * improve code readability and style over the previous zlib inflate code sl@0: * sl@0: * 1.2.beta1 25 Nov 2002 sl@0: * - Use pointers for available input and output checking in inffast.c sl@0: * - Remove input and output counters in inffast.c sl@0: * - Change inffast.c entry and loop from avail_in >= 7 to >= 6 sl@0: * - Remove unnecessary second byte pull from length extra in inffast.c sl@0: * - Unroll direct copy to three copies per loop in inffast.c sl@0: * sl@0: * 1.2.beta2 4 Dec 2002 sl@0: * - Change external routine names to reduce potential conflicts sl@0: * - Correct filename to inffixed.h for fixed tables in inflate.c sl@0: * - Make hbuf[] unsigned char to match parameter type in inflate.c sl@0: * - Change strm->next_out[-state->offset] to *(strm->next_out - state->offset) sl@0: * to avoid negation problem on Alphas (64 bit) in inflate.c sl@0: * sl@0: * 1.2.beta3 22 Dec 2002 sl@0: * - Add comments on state->bits assertion in inffast.c sl@0: * - Add comments on op field in inftrees.h sl@0: * - Fix bug in reuse of allocated window after inflateReset() sl@0: * - Remove bit fields--back to byte structure for speed sl@0: * - Remove distance extra == 0 check in inflate_fast()--only helps for lengths sl@0: * - Change post-increments to pre-increments in inflate_fast(), PPC biased? sl@0: * - Add compile time option, POSTINC, to use post-increments instead (Intel?) sl@0: * - Make MATCH copy in inflate() much faster for when inflate_fast() not used sl@0: * - Use local copies of stream next and avail values, as well as local bit sl@0: * buffer and bit count in inflate()--for speed when inflate_fast() not used sl@0: * sl@0: * 1.2.beta4 1 Jan 2003 sl@0: * - Split ptr - 257 statements in inflate_table() to avoid compiler warnings sl@0: * - Move a comment on output buffer sizes from inffast.c to inflate.c sl@0: * - Add comments in inffast.c to introduce the inflate_fast() routine sl@0: * - Rearrange window copies in inflate_fast() for speed and simplification sl@0: * - Unroll last copy for window match in inflate_fast() sl@0: * - Use local copies of window variables in inflate_fast() for speed sl@0: * - Pull out common write == 0 case for speed in inflate_fast() sl@0: * - Make op and len in inflate_fast() unsigned for consistency sl@0: * - Add FAR to lcode and dcode declarations in inflate_fast() sl@0: * - Simplified bad distance check in inflate_fast() sl@0: * - Added inflateBackInit(), inflateBack(), and inflateBackEnd() in new sl@0: * source file infback.c to provide a call-back interface to inflate for sl@0: * programs like gzip and unzip -- uses window as output buffer to avoid sl@0: * window copying sl@0: * sl@0: * 1.2.beta5 1 Jan 2003 sl@0: * - Improved inflateBack() interface to allow the caller to provide initial sl@0: * input in strm. sl@0: * - Fixed stored blocks bug in inflateBack() sl@0: * sl@0: * 1.2.beta6 4 Jan 2003 sl@0: * - Added comments in inffast.c on effectiveness of POSTINC sl@0: * - Typecasting all around to reduce compiler warnings sl@0: * - Changed loops from while (1) or do {} while (1) to for (;;), again to sl@0: * make compilers happy sl@0: * - Changed type of window in inflateBackInit() to unsigned char * sl@0: * sl@0: * 1.2.beta7 27 Jan 2003 sl@0: * - Changed many types to unsigned or unsigned short to avoid warnings sl@0: * - Added inflateCopy() function sl@0: * sl@0: * 1.2.0 9 Mar 2003 sl@0: * - Changed inflateBack() interface to provide separate opaque descriptors sl@0: * for the in() and out() functions sl@0: * - Changed inflateBack() argument and in_func typedef to swap the length sl@0: * and buffer address return values for the input function sl@0: * - Check next_in and next_out for Z_NULL on entry to inflate() sl@0: * sl@0: * The history for versions after 1.2.0 are in ChangeLog in zlib distribution. sl@0: */ sl@0: sl@0: #include "zutil.h" sl@0: #include "inftrees.h" sl@0: #include "inflate.h" sl@0: #include "inffast.h" sl@0: sl@0: #ifdef MAKEFIXED sl@0: # ifndef BUILDFIXED sl@0: # define BUILDFIXED sl@0: # endif sl@0: #endif sl@0: sl@0: /* function prototypes */ sl@0: local void fixedtables OF((struct inflate_state FAR *state)); sl@0: local int updatewindow OF((z_streamp strm, unsigned out)); sl@0: #ifdef BUILDFIXED sl@0: void makefixed OF((void)); sl@0: #endif sl@0: local unsigned syncsearch OF((unsigned FAR *have, unsigned char FAR *buf, sl@0: unsigned len)); sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflateReset_r (z_streamp strm) sl@0: #else sl@0: int ZEXPORT inflateReset(strm) sl@0: z_streamp strm; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: sl@0: if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; sl@0: state = (struct inflate_state FAR *)strm->state; sl@0: strm->total_in = strm->total_out = state->total = 0; sl@0: strm->msg = Z_NULL; sl@0: strm->adler = 1; /* to support ill-conceived Java test suite */ sl@0: state->mode = HEAD; sl@0: state->last = 0; sl@0: state->havedict = 0; sl@0: state->dmax = 32768U; sl@0: state->head = Z_NULL; sl@0: state->wsize = 0; sl@0: state->whave = 0; sl@0: state->write = 0; sl@0: state->hold = 0; sl@0: state->bits = 0; sl@0: state->lencode = state->distcode = state->next = state->codes; sl@0: Tracev((stderr, "inflate: reset\n")); sl@0: return Z_OK; sl@0: } sl@0: sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflatePrime_r(z_streamp strm, int bits, int value) sl@0: #else sl@0: int ZEXPORT inflatePrime(strm, bits, value) sl@0: z_streamp strm; sl@0: int bits; sl@0: int value; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: sl@0: if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; sl@0: state = (struct inflate_state FAR *)strm->state; sl@0: if (bits > 16 || state->bits + bits > 32) return Z_STREAM_ERROR; sl@0: value &= (1L << bits) - 1; sl@0: state->hold += value << state->bits; sl@0: state->bits += bits; sl@0: return Z_OK; sl@0: } sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflateInit2__r(z_streamp strm, int windowBits,const char * version,int stream_size) sl@0: #else sl@0: int ZEXPORT inflateInit2_(strm, windowBits, version, stream_size) sl@0: z_streamp strm; sl@0: int windowBits; sl@0: const char *version; sl@0: int stream_size; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: sl@0: if (version == Z_NULL || version[0] != ZLIB_VERSION[0] || sl@0: stream_size != (int)(sizeof(z_stream))) sl@0: return Z_VERSION_ERROR; sl@0: if (strm == Z_NULL) return Z_STREAM_ERROR; sl@0: strm->msg = Z_NULL; /* in case we return an error */ sl@0: if (strm->zalloc == (alloc_func)0) { sl@0: strm->zalloc = zcalloc; sl@0: strm->opaque = (voidpf)0; sl@0: } sl@0: if (strm->zfree == (free_func)0) strm->zfree = zcfree; sl@0: state = (struct inflate_state FAR *) sl@0: ZALLOC(strm, 1, sizeof(struct inflate_state)); sl@0: if (state == Z_NULL) return Z_MEM_ERROR; sl@0: Tracev((stderr, "inflate: allocated\n")); sl@0: strm->state = (struct internal_state FAR *)state; sl@0: if (windowBits < 0) { sl@0: state->wrap = 0; sl@0: windowBits = -windowBits; sl@0: } sl@0: else { sl@0: state->wrap = (windowBits >> 4) + 1; sl@0: #ifdef GUNZIP sl@0: if (windowBits < 48) windowBits &= 15; sl@0: #endif sl@0: } sl@0: if (windowBits < 8 || windowBits > 15) { sl@0: ZFREE(strm, state); sl@0: strm->state = Z_NULL; sl@0: return Z_STREAM_ERROR; sl@0: } sl@0: state->wbits = (unsigned)windowBits; sl@0: state->window = Z_NULL; sl@0: return inflateReset_r (strm); sl@0: } sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflateInit__r (z_streamp strm,const char * version,int stream_size) sl@0: #else sl@0: int ZEXPORT inflateInit_(strm, version, stream_size) sl@0: z_streamp strm; sl@0: const char *version; sl@0: int stream_size; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: return inflateInit2__r(strm, DEF_WBITS, version, stream_size); sl@0: } sl@0: sl@0: sl@0: /* sl@0: Return state with length and distance decoding tables and index sizes set to sl@0: fixed code decoding. Normally this returns fixed tables from inffixed.h. sl@0: If BUILDFIXED is defined, then instead this routine builds the tables the sl@0: first time it's called, and returns those tables the first time and sl@0: thereafter. This reduces the size of the code by about 2K bytes, in sl@0: exchange for a little execution time. However, BUILDFIXED should not be sl@0: used for threaded applications, since the rewriting of the tables and virgin sl@0: may not be thread-safe. sl@0: */ sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: local void fixedtables(struct inflate_state FAR * state) sl@0: #else sl@0: local void fixedtables(state) sl@0: struct inflate_state FAR *state; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: #ifdef BUILDFIXED sl@0: static int virgin = 1; sl@0: static code *lenfix, *distfix; sl@0: static code fixed[544]; sl@0: sl@0: /* build fixed huffman tables if first call (may not be thread safe) */ sl@0: if (virgin) { sl@0: unsigned sym, bits; sl@0: static code *next; sl@0: sl@0: /* literal/length table */ sl@0: sym = 0; sl@0: while (sym < 144) state->lens[sym++] = 8; sl@0: while (sym < 256) state->lens[sym++] = 9; sl@0: while (sym < 280) state->lens[sym++] = 7; sl@0: while (sym < 288) state->lens[sym++] = 8; sl@0: next = fixed; sl@0: lenfix = next; sl@0: bits = 9; sl@0: inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work); sl@0: sl@0: /* distance table */ sl@0: sym = 0; sl@0: while (sym < 32) state->lens[sym++] = 5; sl@0: distfix = next; sl@0: bits = 5; sl@0: inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work); sl@0: sl@0: /* do this just once */ sl@0: virgin = 0; sl@0: } sl@0: #else /* !BUILDFIXED */ sl@0: # include "inffixed.h" sl@0: #endif /* BUILDFIXED */ sl@0: state->lencode = lenfix; sl@0: state->lenbits = 9; sl@0: state->distcode = distfix; sl@0: state->distbits = 5; sl@0: } sl@0: sl@0: #ifndef SYMBIAN_EZLIB_DEVICE sl@0: sl@0: #ifdef MAKEFIXED sl@0: #include sl@0: sl@0: /* sl@0: Write out the inffixed.h that is #include'd above. Defining MAKEFIXED also sl@0: defines BUILDFIXED, so the tables are built on the fly. makefixed() writes sl@0: those tables to stdout, which would be piped to inffixed.h. A small program sl@0: can simply call makefixed to do this: sl@0: sl@0: void makefixed(void); sl@0: sl@0: int main(void) sl@0: { sl@0: makefixed(); sl@0: return 0; sl@0: } sl@0: sl@0: Then that can be linked with zlib built with MAKEFIXED defined and run: sl@0: sl@0: a.out > inffixed.h sl@0: */ sl@0: void makefixed() sl@0: { sl@0: unsigned low, size; sl@0: struct inflate_state state; sl@0: sl@0: fixedtables(&state); sl@0: puts(" /* inffixed.h -- table for decoding fixed codes"); sl@0: puts(" * Generated automatically by makefixed()."); sl@0: puts(" */"); sl@0: puts(""); sl@0: puts(" /* WARNING: this file should *not* be used by applications."); sl@0: puts(" It is part of the implementation of this library and is"); sl@0: puts(" subject to change. Applications should only use zlib.h."); sl@0: puts(" */"); sl@0: puts(""); sl@0: size = 1U << 9; sl@0: printf(" static const code lenfix[%u] = {", size); sl@0: low = 0; sl@0: for (;;) { sl@0: if ((low % 7) == 0) printf("\n "); sl@0: printf("{%u,%u,%d}", state.lencode[low].op, state.lencode[low].bits, sl@0: state.lencode[low].val); sl@0: if (++low == size) break; sl@0: putchar(','); sl@0: } sl@0: puts("\n };"); sl@0: size = 1U << 5; sl@0: printf("\n static const code distfix[%u] = {", size); sl@0: low = 0; sl@0: for (;;) { sl@0: if ((low % 6) == 0) printf("\n "); sl@0: printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, sl@0: state.distcode[low].val); sl@0: if (++low == size) break; sl@0: putchar(','); sl@0: } sl@0: puts("\n };"); sl@0: } sl@0: #endif /* MAKEFIXED */ sl@0: sl@0: #endif //SYMBIAN_EZLIB_DEVICE sl@0: sl@0: /* sl@0: Update the window with the last wsize (normally 32K) bytes written before sl@0: returning. If window does not exist yet, create it. This is only called sl@0: when a window is already in use, or when output has been written during this sl@0: inflate call, but the end of the deflate stream has not been reached yet. sl@0: It is also called to create a window for dictionary data when a dictionary sl@0: is loaded. sl@0: sl@0: Providing output buffers larger than 32K to inflate() should provide a speed sl@0: advantage, since only the last 32K of output is copied to the sliding window sl@0: upon return from inflate(), and since all distances after the first 32K of sl@0: output will fall in the output data, making match copies simpler and faster. sl@0: The advantage may be dependent on the size of the processor's data caches. sl@0: */ sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: local int updatewindow(z_streamp strm,unsigned out) sl@0: #else sl@0: local int updatewindow(strm, out) sl@0: z_streamp strm; sl@0: unsigned out; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: unsigned copy, dist; sl@0: sl@0: state = (struct inflate_state FAR *)strm->state; sl@0: sl@0: /* if it hasn't been done already, allocate space for the window */ sl@0: if (state->window == Z_NULL) { sl@0: state->window = (unsigned char FAR *) sl@0: ZALLOC(strm, 1U << state->wbits, sl@0: sizeof(unsigned char)); sl@0: if (state->window == Z_NULL) return 1; sl@0: } sl@0: sl@0: /* if window not in use yet, initialize */ sl@0: if (state->wsize == 0) { sl@0: state->wsize = 1U << state->wbits; sl@0: state->write = 0; sl@0: state->whave = 0; sl@0: } sl@0: sl@0: /* copy state->wsize or less output bytes into the circular window */ sl@0: copy = out - strm->avail_out; sl@0: if (copy >= state->wsize) { sl@0: zmemcpy(state->window, strm->next_out - state->wsize, state->wsize); sl@0: state->write = 0; sl@0: state->whave = state->wsize; sl@0: } sl@0: else { sl@0: dist = state->wsize - state->write; sl@0: if (dist > copy) dist = copy; sl@0: zmemcpy(state->window + state->write, strm->next_out - copy, dist); sl@0: copy -= dist; sl@0: if (copy) { sl@0: zmemcpy(state->window, strm->next_out - copy, copy); sl@0: state->write = copy; sl@0: state->whave = state->wsize; sl@0: } sl@0: else { sl@0: state->write += dist; sl@0: if (state->write == state->wsize) state->write = 0; sl@0: if (state->whave < state->wsize) state->whave += dist; sl@0: } sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: sl@0: sl@0: /* Macros for inflate(): */ sl@0: sl@0: /* check function to use adler32() for zlib or crc32() for gzip */ sl@0: #ifdef GUNZIP sl@0: # define UPDATE(check, buf, len) \ sl@0: (state->flags ? crc32_r(check, buf, len) : adler32_r(check, buf, len)) sl@0: #else sl@0: # define UPDATE(check, buf, len) adler32_r(check, buf, len) sl@0: #endif sl@0: sl@0: /* check macros for header crc */ sl@0: #ifdef GUNZIP sl@0: # define CRC2(check, word) \ sl@0: do { \ sl@0: hbuf[0] = (unsigned char)(word); \ sl@0: hbuf[1] = (unsigned char)((word) >> 8); \ sl@0: check = crc32_r(check, hbuf, 2); \ sl@0: } while (0) sl@0: sl@0: # define CRC4(check, word) \ sl@0: do { \ sl@0: hbuf[0] = (unsigned char)(word); \ sl@0: hbuf[1] = (unsigned char)((word) >> 8); \ sl@0: hbuf[2] = (unsigned char)((word) >> 16); \ sl@0: hbuf[3] = (unsigned char)((word) >> 24); \ sl@0: check = crc32_r(check, hbuf, 4); \ sl@0: } while (0) sl@0: #endif sl@0: sl@0: /* Load registers with state in inflate() for speed */ sl@0: #define LOAD() \ sl@0: do { \ sl@0: put = strm->next_out; \ sl@0: left = strm->avail_out; \ sl@0: next = strm->next_in; \ sl@0: have = strm->avail_in; \ sl@0: hold = state->hold; \ sl@0: bits = state->bits; \ sl@0: } while (0) sl@0: sl@0: /* Restore state from registers in inflate() */ sl@0: #define RESTORE() \ sl@0: do { \ sl@0: strm->next_out = put; \ sl@0: strm->avail_out = left; \ sl@0: strm->next_in = next; \ sl@0: strm->avail_in = have; \ sl@0: state->hold = hold; \ sl@0: state->bits = bits; \ sl@0: } while (0) sl@0: sl@0: /* Clear the input bit accumulator */ sl@0: #define INITBITS() \ sl@0: do { \ sl@0: hold = 0; \ sl@0: bits = 0; \ sl@0: } while (0) sl@0: sl@0: /* Get a byte of input into the bit accumulator, or return from inflate() sl@0: if there is no input available. */ sl@0: #define PULLBYTE() \ sl@0: do { \ sl@0: if (have == 0) goto inf_leave; \ sl@0: have--; \ sl@0: hold += (unsigned long)(*next++) << bits; \ sl@0: bits += 8; \ sl@0: } while (0) sl@0: sl@0: /* Assure that there are at least n bits in the bit accumulator. If there is sl@0: not enough available input to do that, then return from inflate(). */ sl@0: #define NEEDBITS(n) \ sl@0: do { \ sl@0: while (bits < (unsigned)(n)) \ sl@0: PULLBYTE(); \ sl@0: } while (0) sl@0: sl@0: /* Return the low n bits of the bit accumulator (n < 16) */ sl@0: #define BITS(n) \ sl@0: ((unsigned)hold & ((1U << (n)) - 1)) sl@0: sl@0: /* Remove n bits from the bit accumulator */ sl@0: #define DROPBITS(n) \ sl@0: do { \ sl@0: hold >>= (n); \ sl@0: bits -= (unsigned)(n); \ sl@0: } while (0) sl@0: sl@0: /* Remove zero to seven bits as needed to go to a byte boundary */ sl@0: #define BYTEBITS() \ sl@0: do { \ sl@0: hold >>= bits & 7; \ sl@0: bits -= bits & 7; \ sl@0: } while (0) sl@0: sl@0: /* Reverse the bytes in a 32-bit value */ sl@0: #define REVERSE(q) \ sl@0: ((((q) >> 24) & 0xff) + (((q) >> 8) & 0xff00) + \ sl@0: (((q) & 0xff00) << 8) + (((q) & 0xff) << 24)) sl@0: sl@0: sl@0: /* sl@0: inflate() uses a state machine to process as much input data and generate as sl@0: much output data as possible before returning. The state machine is sl@0: structured roughly as follows: sl@0: sl@0: for (;;) switch (state) { sl@0: ... sl@0: case STATEn: sl@0: if (not enough input data or output space to make progress) sl@0: return; sl@0: ... make progress ... sl@0: state = STATEm; sl@0: break; sl@0: ... sl@0: } sl@0: sl@0: so when inflate() is called again, the same case is attempted again, and sl@0: if the appropriate resources are provided, the machine proceeds to the sl@0: next state. The NEEDBITS() macro is usually the way the state evaluates sl@0: whether it can proceed or should return. NEEDBITS() does the return if sl@0: the requested bits are not available. The typical use of the BITS macros sl@0: is: sl@0: sl@0: NEEDBITS(n); sl@0: ... do something with BITS(n) ... sl@0: DROPBITS(n); sl@0: sl@0: where NEEDBITS(n) either returns from inflate() if there isn't enough sl@0: input left to load n bits into the accumulator, or it continues. BITS(n) sl@0: gives the low n bits in the accumulator. When done, DROPBITS(n) drops sl@0: the low n bits off the accumulator. INITBITS() clears the accumulator sl@0: and sets the number of available bits to zero. BYTEBITS() discards just sl@0: enough bits to put the accumulator on a byte boundary. After BYTEBITS() sl@0: and a NEEDBITS(8), then BITS(8) would return the next byte in the stream. sl@0: sl@0: NEEDBITS(n) uses PULLBYTE() to get an available byte of input, or to return sl@0: if there is no input available. The decoding of variable length codes uses sl@0: PULLBYTE() directly in order to pull just enough bytes to decode the next sl@0: code, and no more. sl@0: sl@0: Some states loop until they get enough input, making sure that enough sl@0: state information is maintained to continue the loop where it left off sl@0: if NEEDBITS() returns in the loop. For example, want, need, and keep sl@0: would all have to actually be part of the saved state in case NEEDBITS() sl@0: returns: sl@0: sl@0: case STATEw: sl@0: while (want < need) { sl@0: NEEDBITS(n); sl@0: keep[want++] = BITS(n); sl@0: DROPBITS(n); sl@0: } sl@0: state = STATEx; sl@0: case STATEx: sl@0: sl@0: As shown above, if the next state is also the next case, then the break sl@0: is omitted. sl@0: sl@0: A state may also return if there is not enough output space available to sl@0: complete that state. Those states are copying stored data, writing a sl@0: literal byte, and copying a matching string. sl@0: sl@0: When returning, a "goto inf_leave" is used to update the total counters, sl@0: update the check value, and determine whether any progress has been made sl@0: during that inflate() call in order to return the proper return code. sl@0: Progress is defined as a change in either strm->avail_in or strm->avail_out. sl@0: When there is a window, goto inf_leave will update the window with the last sl@0: output written. If a goto inf_leave occurs in the middle of decompression sl@0: and there is no window currently, goto inf_leave will create one and copy sl@0: output to the window for the next call of inflate(). sl@0: sl@0: In this implementation, the flush parameter of inflate() only affects the sl@0: return code (per zlib.h). inflate() always writes as much as possible to sl@0: strm->next_out, given the space available and the provided input--the effect sl@0: documented in zlib.h of Z_SYNC_FLUSH. Furthermore, inflate() always defers sl@0: the allocation of and copying into a sliding window until necessary, which sl@0: provides the effect documented in zlib.h for Z_FINISH when the entire input sl@0: stream available. So the only thing the flush parameter actually does is: sl@0: when flush is set to Z_FINISH, inflate() cannot return Z_OK. Instead it sl@0: will return Z_BUF_ERROR if it has not reached the end of the stream. sl@0: */ sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflate_r (z_streamp strm,int flush) sl@0: #else sl@0: int ZEXPORT inflate(strm, flush) sl@0: z_streamp strm; sl@0: int flush; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: unsigned char FAR *next; /* next input */ sl@0: unsigned char FAR *put; /* next output */ sl@0: unsigned have, left; /* available input and output */ sl@0: unsigned long hold; /* bit buffer */ sl@0: unsigned bits; /* bits in bit buffer */ sl@0: unsigned in, out; /* save starting available input and output */ sl@0: unsigned copy; /* number of stored or match bytes to copy */ sl@0: unsigned char FAR *from; /* where to copy match bytes from */ sl@0: sl@0: /* Need to replace "this" variable with "current" as "this" is a reserved sl@0: * keyword in C++ which is prefectly fine for a c code. As this file sl@0: * has been changed to C++ "this" needs to be changed. sl@0: */ sl@0: # define this current sl@0: code this; /* current decoding table entry */ sl@0: code last; /* parent table entry */ sl@0: unsigned len; /* length to copy for repeats, bits to drop */ sl@0: int ret; /* return code */ sl@0: #ifdef GUNZIP sl@0: unsigned char hbuf[4]; /* buffer for gzip header crc calculation */ sl@0: #endif sl@0: static const unsigned short order[19] = /* permutation of code lengths */ sl@0: {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; sl@0: sl@0: if (strm == Z_NULL || strm->state == Z_NULL || strm->next_out == Z_NULL || sl@0: (strm->next_in == Z_NULL && strm->avail_in != 0)) sl@0: return Z_STREAM_ERROR; sl@0: sl@0: state = (struct inflate_state FAR *)strm->state; sl@0: if (state->mode == TYPE) state->mode = TYPEDO; /* skip check */ sl@0: LOAD(); sl@0: in = have; sl@0: out = left; sl@0: ret = Z_OK; sl@0: for (;;) sl@0: switch (state->mode) { sl@0: case HEAD: sl@0: if (state->wrap == 0) { sl@0: state->mode = TYPEDO; sl@0: break; sl@0: } sl@0: NEEDBITS(16); sl@0: #ifdef GUNZIP sl@0: if ((state->wrap & 2) && hold == 0x8b1f) { /* gzip header */ sl@0: state->check = crc32_r(0L, Z_NULL, 0); sl@0: CRC2(state->check, hold); sl@0: INITBITS(); sl@0: state->mode = FLAGS; sl@0: break; sl@0: } sl@0: state->flags = 0; /* expect zlib header */ sl@0: if (state->head != Z_NULL) sl@0: state->head->done = -1; sl@0: if (!(state->wrap & 1) || /* check if zlib header allowed */ sl@0: #else sl@0: if ( sl@0: #endif sl@0: ((BITS(8) << 8) + (hold >> 8)) % 31) { sl@0: strm->msg = (char *)"incorrect header check"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: if (BITS(4) != Z_DEFLATED) { sl@0: strm->msg = (char *)"unknown compression method"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: DROPBITS(4); sl@0: len = BITS(4) + 8; sl@0: if (len > state->wbits) { sl@0: strm->msg = (char *)"invalid window size"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: state->dmax = 1U << len; sl@0: Tracev((stderr, "inflate: zlib header ok\n")); sl@0: strm->adler = state->check = adler32_r(0L, Z_NULL, 0); sl@0: state->mode = hold & 0x200 ? DICTID : TYPE; sl@0: INITBITS(); sl@0: break; sl@0: #ifdef GUNZIP sl@0: case FLAGS: sl@0: NEEDBITS(16); sl@0: state->flags = (int)(hold); sl@0: if ((state->flags & 0xff) != Z_DEFLATED) { sl@0: strm->msg = (char *)"unknown compression method"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: if (state->flags & 0xe000) { sl@0: strm->msg = (char *)"unknown header flags set"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: if (state->head != Z_NULL) sl@0: state->head->text = (int)((hold >> 8) & 1); sl@0: if (state->flags & 0x0200) CRC2(state->check, hold); sl@0: INITBITS(); sl@0: state->mode = TIME; sl@0: case TIME: sl@0: NEEDBITS(32); sl@0: if (state->head != Z_NULL) sl@0: state->head->time = hold; sl@0: if (state->flags & 0x0200) CRC4(state->check, hold); sl@0: INITBITS(); sl@0: state->mode = OS; sl@0: case OS: sl@0: NEEDBITS(16); sl@0: if (state->head != Z_NULL) { sl@0: state->head->xflags = (int)(hold & 0xff); sl@0: state->head->os = (int)(hold >> 8); sl@0: } sl@0: if (state->flags & 0x0200) CRC2(state->check, hold); sl@0: INITBITS(); sl@0: state->mode = EXLEN; sl@0: case EXLEN: sl@0: if (state->flags & 0x0400) { sl@0: NEEDBITS(16); sl@0: state->length = (unsigned)(hold); sl@0: if (state->head != Z_NULL) sl@0: state->head->extra_len = (unsigned)hold; sl@0: if (state->flags & 0x0200) CRC2(state->check, hold); sl@0: INITBITS(); sl@0: } sl@0: else if (state->head != Z_NULL) sl@0: state->head->extra = Z_NULL; sl@0: state->mode = EXTRA; sl@0: case EXTRA: sl@0: if (state->flags & 0x0400) { sl@0: copy = state->length; sl@0: if (copy > have) copy = have; sl@0: if (copy) { sl@0: if (state->head != Z_NULL && sl@0: state->head->extra != Z_NULL) { sl@0: len = state->head->extra_len - state->length; sl@0: // Added ignore here as next cannot be NULL sl@0: // a jump to inf_leave would occur first sl@0: // coverity [var_deref_model] sl@0: zmemcpy(state->head->extra + len, next, sl@0: len + copy > state->head->extra_max ? sl@0: state->head->extra_max - len : copy); sl@0: } sl@0: if (state->flags & 0x0200) sl@0: state->check = crc32_r(state->check, next, copy); sl@0: have -= copy; sl@0: next += copy; sl@0: state->length -= copy; sl@0: } sl@0: if (state->length) goto inf_leave; sl@0: } sl@0: state->length = 0; sl@0: state->mode = NAME; sl@0: case NAME: sl@0: if (state->flags & 0x0800) { sl@0: if (have == 0) goto inf_leave; sl@0: copy = 0; sl@0: do { sl@0: len = (unsigned)(next[copy++]); sl@0: if (state->head != Z_NULL && sl@0: state->head->name != Z_NULL && sl@0: state->length < state->head->name_max) sl@0: state->head->name[state->length++] = len; sl@0: } while (len && copy < have); sl@0: if (state->flags & 0x0200) sl@0: state->check = crc32_r(state->check, next, copy); sl@0: have -= copy; sl@0: next += copy; sl@0: if (len) goto inf_leave; sl@0: } sl@0: else if (state->head != Z_NULL) sl@0: state->head->name = Z_NULL; sl@0: state->length = 0; sl@0: state->mode = COMMENT; sl@0: case COMMENT: sl@0: if (state->flags & 0x1000) { sl@0: if (have == 0) goto inf_leave; sl@0: copy = 0; sl@0: do { sl@0: len = (unsigned)(next[copy++]); sl@0: if (state->head != Z_NULL && sl@0: state->head->comment != Z_NULL && sl@0: state->length < state->head->comm_max) sl@0: state->head->comment[state->length++] = len; sl@0: } while (len && copy < have); sl@0: if (state->flags & 0x0200) sl@0: state->check = crc32_r(state->check, next, copy); sl@0: have -= copy; sl@0: next += copy; sl@0: if (len) goto inf_leave; sl@0: } sl@0: else if (state->head != Z_NULL) sl@0: state->head->comment = Z_NULL; sl@0: state->mode = HCRC; sl@0: case HCRC: sl@0: if (state->flags & 0x0200) { sl@0: NEEDBITS(16); sl@0: if (hold != (state->check & 0xffff)) { sl@0: strm->msg = (char *)"header crc mismatch"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: INITBITS(); sl@0: } sl@0: if (state->head != Z_NULL) { sl@0: state->head->hcrc = (int)((state->flags >> 9) & 1); sl@0: state->head->done = 1; sl@0: } sl@0: strm->adler = state->check = crc32_r(0L, Z_NULL, 0); sl@0: state->mode = TYPE; sl@0: break; sl@0: #endif sl@0: case DICTID: sl@0: NEEDBITS(32); sl@0: strm->adler = state->check = REVERSE(hold); sl@0: INITBITS(); sl@0: state->mode = DICT; sl@0: case DICT: sl@0: if (state->havedict == 0) { sl@0: RESTORE(); sl@0: return Z_NEED_DICT; sl@0: } sl@0: strm->adler = state->check = adler32_r(0L, Z_NULL, 0); sl@0: state->mode = TYPE; sl@0: case TYPE: sl@0: if (flush == Z_BLOCK) goto inf_leave; sl@0: case TYPEDO: sl@0: if (state->last) { sl@0: BYTEBITS(); sl@0: state->mode = CHECK; sl@0: break; sl@0: } sl@0: NEEDBITS(3); sl@0: state->last = BITS(1); sl@0: DROPBITS(1); sl@0: switch (BITS(2)) { sl@0: case 0: /* stored block */ sl@0: Tracev((stderr, "inflate: stored block%s\n", sl@0: state->last ? " (last)" : "")); sl@0: state->mode = STORED; sl@0: break; sl@0: case 1: /* fixed block */ sl@0: fixedtables(state); sl@0: Tracev((stderr, "inflate: fixed codes block%s\n", sl@0: state->last ? " (last)" : "")); sl@0: state->mode = LEN; /* decode codes */ sl@0: break; sl@0: case 2: /* dynamic block */ sl@0: Tracev((stderr, "inflate: dynamic codes block%s\n", sl@0: state->last ? " (last)" : "")); sl@0: state->mode = TABLE; sl@0: break; sl@0: case 3: sl@0: strm->msg = (char *)"invalid block type"; sl@0: state->mode = BAD; sl@0: } sl@0: DROPBITS(2); sl@0: break; sl@0: case STORED: sl@0: BYTEBITS(); /* go to byte boundary */ sl@0: NEEDBITS(32); sl@0: if ((hold & 0xffff) != ((hold >> 16) ^ 0xffff)) { sl@0: strm->msg = (char *)"invalid stored block lengths"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: state->length = (unsigned)hold & 0xffff; sl@0: Tracev((stderr, "inflate: stored length %u\n", sl@0: state->length)); sl@0: INITBITS(); sl@0: state->mode = COPY; sl@0: case COPY: sl@0: copy = state->length; sl@0: if (copy) { sl@0: if (copy > have) copy = have; sl@0: if (copy > left) copy = left; sl@0: if (copy == 0) goto inf_leave; sl@0: zmemcpy(put, next, copy); sl@0: have -= copy; sl@0: next += copy; sl@0: left -= copy; sl@0: put += copy; sl@0: state->length -= copy; sl@0: break; sl@0: } sl@0: Tracev((stderr, "inflate: stored end\n")); sl@0: state->mode = TYPE; sl@0: break; sl@0: case TABLE: sl@0: NEEDBITS(14); sl@0: state->nlen = BITS(5) + 257; sl@0: DROPBITS(5); sl@0: state->ndist = BITS(5) + 1; sl@0: DROPBITS(5); sl@0: state->ncode = BITS(4) + 4; sl@0: DROPBITS(4); sl@0: #ifndef PKZIP_BUG_WORKAROUND sl@0: if (state->nlen > 286 || state->ndist > 30) { sl@0: strm->msg = (char *)"too many length or distance symbols"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: #endif sl@0: Tracev((stderr, "inflate: table sizes ok\n")); sl@0: state->have = 0; sl@0: state->mode = LENLENS; sl@0: case LENLENS: sl@0: while (state->have < state->ncode) { sl@0: NEEDBITS(3); sl@0: state->lens[order[state->have++]] = (unsigned short)BITS(3); sl@0: DROPBITS(3); sl@0: } sl@0: while (state->have < 19) sl@0: state->lens[order[state->have++]] = 0; sl@0: state->next = state->codes; sl@0: state->lencode = (code const FAR *)(state->next); sl@0: state->lenbits = 7; sl@0: ret = inflate_table(CODES, state->lens, 19, &(state->next), sl@0: &(state->lenbits), state->work); sl@0: if (ret) { sl@0: strm->msg = (char *)"invalid code lengths set"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: Tracev((stderr, "inflate: code lengths ok\n")); sl@0: state->have = 0; sl@0: state->mode = CODELENS; sl@0: case CODELENS: sl@0: while (state->have < state->nlen + state->ndist) { sl@0: for (;;) { sl@0: this = state->lencode[BITS(state->lenbits)]; sl@0: if ((unsigned)(this.bits) <= bits) break; sl@0: PULLBYTE(); sl@0: } sl@0: if (this.val < 16) { sl@0: NEEDBITS(this.bits); sl@0: DROPBITS(this.bits); sl@0: state->lens[state->have++] = this.val; sl@0: } sl@0: else { sl@0: if (this.val == 16) { sl@0: NEEDBITS(this.bits + 2); sl@0: DROPBITS(this.bits); sl@0: if (state->have == 0) { sl@0: strm->msg = (char *)"invalid bit length repeat"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: len = state->lens[state->have - 1]; sl@0: copy = 3 + BITS(2); sl@0: DROPBITS(2); sl@0: } sl@0: else if (this.val == 17) { sl@0: NEEDBITS(this.bits + 3); sl@0: DROPBITS(this.bits); sl@0: len = 0; sl@0: copy = 3 + BITS(3); sl@0: DROPBITS(3); sl@0: } sl@0: else { sl@0: NEEDBITS(this.bits + 7); sl@0: DROPBITS(this.bits); sl@0: len = 0; sl@0: copy = 11 + BITS(7); sl@0: DROPBITS(7); sl@0: } sl@0: if (state->have + copy > state->nlen + state->ndist) { sl@0: strm->msg = (char *)"invalid bit length repeat"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: while (copy--) sl@0: state->lens[state->have++] = (unsigned short)len; sl@0: } sl@0: } sl@0: sl@0: /* handle error breaks in while */ sl@0: if (state->mode == BAD) break; sl@0: sl@0: /* build code tables */ sl@0: state->next = state->codes; sl@0: state->lencode = (code const FAR *)(state->next); sl@0: state->lenbits = 9; sl@0: ret = inflate_table(LENS, state->lens, state->nlen, &(state->next), sl@0: &(state->lenbits), state->work); sl@0: if (ret) { sl@0: strm->msg = (char *)"invalid literal/lengths set"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: state->distcode = (code const FAR *)(state->next); sl@0: state->distbits = 6; sl@0: ret = inflate_table(DISTS, state->lens + state->nlen, state->ndist, sl@0: &(state->next), &(state->distbits), state->work); sl@0: if (ret) { sl@0: strm->msg = (char *)"invalid distances set"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: Tracev((stderr, "inflate: codes ok\n")); sl@0: state->mode = LEN; sl@0: case LEN: sl@0: if (have >= 6 && left >= 258) { sl@0: RESTORE(); sl@0: inflate_fast(strm, out); sl@0: LOAD(); sl@0: break; sl@0: } sl@0: for (;;) { sl@0: this = state->lencode[BITS(state->lenbits)]; sl@0: if ((unsigned)(this.bits) <= bits) break; sl@0: PULLBYTE(); sl@0: } sl@0: if (this.op && (this.op & 0xf0) == 0) { sl@0: last = this; sl@0: for (;;) { sl@0: this = state->lencode[last.val + sl@0: (BITS(last.bits + last.op) >> last.bits)]; sl@0: if ((unsigned)(last.bits + this.bits) <= bits) break; sl@0: PULLBYTE(); sl@0: } sl@0: DROPBITS(last.bits); sl@0: } sl@0: DROPBITS(this.bits); sl@0: state->length = (unsigned)this.val; sl@0: if ((int)(this.op) == 0) { sl@0: Tracevv((stderr, this.val >= 0x20 && this.val < 0x7f ? sl@0: "inflate: literal '%c'\n" : sl@0: "inflate: literal 0x%02x\n", this.val)); sl@0: state->mode = LIT; sl@0: break; sl@0: } sl@0: if (this.op & 32) { sl@0: Tracevv((stderr, "inflate: end of block\n")); sl@0: state->mode = TYPE; sl@0: break; sl@0: } sl@0: if (this.op & 64) { sl@0: strm->msg = (char *)"invalid literal/length code"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: state->extra = (unsigned)(this.op) & 15; sl@0: state->mode = LENEXT; sl@0: case LENEXT: sl@0: if (state->extra) { sl@0: NEEDBITS(state->extra); sl@0: state->length += BITS(state->extra); sl@0: DROPBITS(state->extra); sl@0: } sl@0: Tracevv((stderr, "inflate: length %u\n", state->length)); sl@0: state->mode = DIST; sl@0: case DIST: sl@0: for (;;) { sl@0: this = state->distcode[BITS(state->distbits)]; sl@0: if ((unsigned)(this.bits) <= bits) break; sl@0: PULLBYTE(); sl@0: } sl@0: if ((this.op & 0xf0) == 0) { sl@0: last = this; sl@0: for (;;) { sl@0: this = state->distcode[last.val + sl@0: (BITS(last.bits + last.op) >> last.bits)]; sl@0: if ((unsigned)(last.bits + this.bits) <= bits) break; sl@0: PULLBYTE(); sl@0: } sl@0: DROPBITS(last.bits); sl@0: } sl@0: DROPBITS(this.bits); sl@0: if (this.op & 64) { sl@0: strm->msg = (char *)"invalid distance code"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: state->offset = (unsigned)this.val; sl@0: state->extra = (unsigned)(this.op) & 15; sl@0: state->mode = DISTEXT; sl@0: case DISTEXT: sl@0: if (state->extra) { sl@0: NEEDBITS(state->extra); sl@0: state->offset += BITS(state->extra); sl@0: DROPBITS(state->extra); sl@0: } sl@0: #ifdef INFLATE_STRICT sl@0: if (state->offset > state->dmax) { sl@0: strm->msg = (char *)"invalid distance too far back"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: #endif sl@0: if (state->offset > state->whave + out - left) { sl@0: strm->msg = (char *)"invalid distance too far back"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: Tracevv((stderr, "inflate: distance %u\n", state->offset)); sl@0: state->mode = MATCH; sl@0: case MATCH: sl@0: if (left == 0) goto inf_leave; sl@0: copy = out - left; sl@0: if (state->offset > copy) { /* copy from window */ sl@0: copy = state->offset - copy; sl@0: if (copy > state->write) { sl@0: copy -= state->write; sl@0: from = state->window + (state->wsize - copy); sl@0: } sl@0: else sl@0: from = state->window + (state->write - copy); sl@0: if (copy > state->length) copy = state->length; sl@0: } sl@0: else { /* copy from output */ sl@0: from = put - state->offset; sl@0: copy = state->length; sl@0: } sl@0: if (copy > left) copy = left; sl@0: left -= copy; sl@0: state->length -= copy; sl@0: do { sl@0: *put++ = *from++; sl@0: } while (--copy); sl@0: if (state->length == 0) state->mode = LEN; sl@0: break; sl@0: case LIT: sl@0: if (left == 0) goto inf_leave; sl@0: *put++ = (unsigned char)(state->length); sl@0: left--; sl@0: state->mode = LEN; sl@0: break; sl@0: case CHECK: sl@0: if (state->wrap) { sl@0: NEEDBITS(32); sl@0: out -= left; sl@0: strm->total_out += out; sl@0: state->total += out; sl@0: if (out) sl@0: strm->adler = state->check = sl@0: UPDATE(state->check, put - out, out); sl@0: out = left; sl@0: if (( sl@0: #ifdef GUNZIP sl@0: state->flags ? hold : sl@0: #endif sl@0: REVERSE(hold)) != state->check) { sl@0: strm->msg = (char *)"incorrect data check"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: INITBITS(); sl@0: Tracev((stderr, "inflate: check matches trailer\n")); sl@0: } sl@0: #ifdef GUNZIP sl@0: state->mode = LENGTH; sl@0: case LENGTH: sl@0: if (state->wrap && state->flags) { sl@0: NEEDBITS(32); sl@0: if (hold != (state->total & 0xffffffffUL)) { sl@0: strm->msg = (char *)"incorrect length check"; sl@0: state->mode = BAD; sl@0: break; sl@0: } sl@0: INITBITS(); sl@0: Tracev((stderr, "inflate: length matches trailer\n")); sl@0: } sl@0: #endif sl@0: state->mode = DONE; sl@0: case DONE: sl@0: ret = Z_STREAM_END; sl@0: goto inf_leave; sl@0: case BAD: sl@0: ret = Z_DATA_ERROR; sl@0: goto inf_leave; sl@0: case MEM: sl@0: return Z_MEM_ERROR; sl@0: case SYNC: sl@0: default: sl@0: return Z_STREAM_ERROR; sl@0: } sl@0: sl@0: /* sl@0: Return from inflate(), updating the total counts and the check value. sl@0: If there was no progress during the inflate() call, return a buffer sl@0: error. Call updatewindow() to create and/or update the window state. sl@0: Note: a memory error from inflate() is non-recoverable. sl@0: */ sl@0: inf_leave: sl@0: RESTORE(); sl@0: if (state->wsize || (state->mode < CHECK && out != strm->avail_out)) sl@0: if (updatewindow(strm, out)) { sl@0: state->mode = MEM; sl@0: return Z_MEM_ERROR; sl@0: } sl@0: in -= strm->avail_in; sl@0: out -= strm->avail_out; sl@0: strm->total_in += in; sl@0: strm->total_out += out; sl@0: state->total += out; sl@0: if (state->wrap && out) sl@0: strm->adler = state->check = sl@0: UPDATE(state->check, strm->next_out - out, out); sl@0: strm->data_type = state->bits + (state->last ? 64 : 0) + sl@0: (state->mode == TYPE ? 128 : 0); sl@0: if (((in == 0 && out == 0) || flush == Z_FINISH) && ret == Z_OK) sl@0: ret = Z_BUF_ERROR; sl@0: return ret; sl@0: } sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflateEnd_r (z_streamp strm) sl@0: #else sl@0: int ZEXPORT inflateEnd(strm) sl@0: z_streamp strm; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: if (strm == Z_NULL || strm->state == Z_NULL || strm->zfree == (free_func)0) sl@0: return Z_STREAM_ERROR; sl@0: state = (struct inflate_state FAR *)strm->state; sl@0: if (state->window != Z_NULL) ZFREE(strm, state->window); sl@0: ZFREE(strm, strm->state); sl@0: strm->state = Z_NULL; sl@0: Tracev((stderr, "inflate: end\n")); sl@0: return Z_OK; sl@0: } sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflateSetDictionary_r (z_streamp strm,const Bytef * dictionary,uInt dictLength) sl@0: #else sl@0: int ZEXPORT inflateSetDictionary(strm, dictionary, dictLength) sl@0: z_streamp strm; sl@0: const Bytef *dictionary; sl@0: uInt dictLength; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: unsigned long id; sl@0: sl@0: /* check state */ sl@0: if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; sl@0: state = (struct inflate_state FAR *)strm->state; sl@0: if (state->wrap != 0 && state->mode != DICT) sl@0: return Z_STREAM_ERROR; sl@0: sl@0: /* check for correct dictionary id */ sl@0: if (state->mode == DICT) { sl@0: id = adler32_r(0L, Z_NULL, 0); sl@0: id = adler32_r(id, dictionary, dictLength); sl@0: if (id != state->check) sl@0: return Z_DATA_ERROR; sl@0: } sl@0: sl@0: /* copy dictionary to window */ sl@0: if (updatewindow(strm, strm->avail_out)) { sl@0: state->mode = MEM; sl@0: return Z_MEM_ERROR; sl@0: } sl@0: if (dictLength > state->wsize) { sl@0: zmemcpy(state->window, dictionary + dictLength - state->wsize, sl@0: state->wsize); sl@0: state->whave = state->wsize; sl@0: } sl@0: else { sl@0: zmemcpy(state->window + state->wsize - dictLength, dictionary, sl@0: dictLength); sl@0: state->whave = dictLength; sl@0: } sl@0: state->havedict = 1; sl@0: Tracev((stderr, "inflate: dictionary set\n")); sl@0: return Z_OK; sl@0: } sl@0: sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflateGetHeader_r(z_streamp strm, gz_headerp head) sl@0: #else sl@0: int ZEXPORT inflateGetHeader(strm, head) sl@0: z_streamp strm; sl@0: gz_headerp head; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: sl@0: /* check state */ sl@0: if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; sl@0: state = (struct inflate_state FAR *)strm->state; sl@0: if ((state->wrap & 2) == 0) return Z_STREAM_ERROR; sl@0: sl@0: /* save header structure */ sl@0: state->head = head; sl@0: head->done = 0; sl@0: return Z_OK; sl@0: } sl@0: sl@0: /* sl@0: Search buf[0..len-1] for the pattern: 0, 0, 0xff, 0xff. Return when found sl@0: or when out of input. When called, *have is the number of pattern bytes sl@0: found in order so far, in 0..3. On return *have is updated to the new sl@0: state. If on return *have equals four, then the pattern was found and the sl@0: return value is how many bytes were read including the last byte of the sl@0: pattern. If *have is less than four, then the pattern has not been found sl@0: yet and the return value is len. In the latter case, syncsearch() can be sl@0: called again with more data and the *have state. *have is initialized to sl@0: zero for the first call. sl@0: */ sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: local unsigned syncsearch(unsigned FAR * have,unsigned char FAR * buf,unsigned len) sl@0: #else sl@0: local unsigned syncsearch(have, buf, len) sl@0: unsigned FAR *have; sl@0: unsigned char FAR *buf; sl@0: unsigned len; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: unsigned got; sl@0: unsigned next; sl@0: sl@0: got = *have; sl@0: next = 0; sl@0: while (next < len && got < 4) { sl@0: if ((int)(buf[next]) == (got < 2 ? 0 : 0xff)) sl@0: got++; sl@0: else if (buf[next]) sl@0: got = 0; sl@0: else sl@0: got = 4 - got; sl@0: next++; sl@0: } sl@0: *have = got; sl@0: return next; sl@0: } sl@0: sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflateSync_r (z_streamp strm) sl@0: #else sl@0: int ZEXPORT inflateSync(strm) sl@0: z_streamp strm; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: unsigned len; /* number of bytes to look at or looked at */ sl@0: unsigned long in, out; /* temporary to save total_in and total_out */ sl@0: unsigned char buf[4]; /* to restore bit buffer to byte string */ sl@0: struct inflate_state FAR *state; sl@0: sl@0: /* check parameters */ sl@0: if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; sl@0: state = (struct inflate_state FAR *)strm->state; sl@0: if (strm->avail_in == 0 && state->bits < 8) return Z_BUF_ERROR; sl@0: sl@0: /* if first time, start search in bit buffer */ sl@0: if (state->mode != SYNC) { sl@0: state->mode = SYNC; sl@0: state->hold <<= state->bits & 7; sl@0: state->bits -= state->bits & 7; sl@0: len = 0; sl@0: while (state->bits >= 8) { sl@0: buf[len++] = (unsigned char)(state->hold); sl@0: state->hold >>= 8; sl@0: state->bits -= 8; sl@0: } sl@0: state->have = 0; sl@0: syncsearch(&(state->have), buf, len); sl@0: } sl@0: sl@0: /* search available input */ sl@0: len = syncsearch(&(state->have), strm->next_in, strm->avail_in); sl@0: strm->avail_in -= len; sl@0: strm->next_in += len; sl@0: strm->total_in += len; sl@0: sl@0: /* return no joy or set up to restart inflate() on a new block */ sl@0: if (state->have != 4) return Z_DATA_ERROR; sl@0: in = strm->total_in; out = strm->total_out; sl@0: inflateReset_r(strm); sl@0: strm->total_in = in; strm->total_out = out; sl@0: state->mode = TYPE; sl@0: return Z_OK; sl@0: } sl@0: sl@0: /* sl@0: Returns true if inflate is currently at the end of a block generated by sl@0: Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP sl@0: implementation to provide an additional safety check. PPP uses sl@0: Z_SYNC_FLUSH but removes the length bytes of the resulting empty stored sl@0: block. When decompressing, PPP checks that at the end of input packet, sl@0: inflate is waiting for these length bytes. sl@0: */ sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflateSyncPoint_r (z_streamp strm) sl@0: #else sl@0: int ZEXPORT inflateSyncPoint(strm) sl@0: z_streamp strm; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: sl@0: if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; sl@0: state = (struct inflate_state FAR *)strm->state; sl@0: return state->mode == STORED && state->bits == 0; sl@0: } sl@0: sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C int inflateCopy_r(z_streamp dest, z_streamp source) sl@0: #else sl@0: int ZEXPORT inflateCopy(dest, source) sl@0: z_streamp dest; sl@0: z_streamp source; sl@0: #endif //__SYMBIAN32__ sl@0: { sl@0: struct inflate_state FAR *state; sl@0: struct inflate_state FAR *copy; sl@0: unsigned char FAR *window; sl@0: unsigned wsize; sl@0: sl@0: /* check input */ sl@0: if (dest == Z_NULL || source == Z_NULL || source->state == Z_NULL || sl@0: source->zalloc == (alloc_func)0 || source->zfree == (free_func)0) sl@0: return Z_STREAM_ERROR; sl@0: state = (struct inflate_state FAR *)source->state; sl@0: sl@0: /* allocate space */ sl@0: copy = (struct inflate_state FAR *) sl@0: ZALLOC(source, 1, sizeof(struct inflate_state)); sl@0: if (copy == Z_NULL) return Z_MEM_ERROR; sl@0: window = Z_NULL; sl@0: if (state->window != Z_NULL) { sl@0: window = (unsigned char FAR *) sl@0: ZALLOC(source, 1U << state->wbits, sizeof(unsigned char)); sl@0: if (window == Z_NULL) { sl@0: ZFREE(source, copy); sl@0: return Z_MEM_ERROR; sl@0: } sl@0: } sl@0: sl@0: /* copy state */ sl@0: zmemcpy(dest, source, sizeof(z_stream)); sl@0: zmemcpy(copy, state, sizeof(struct inflate_state)); sl@0: if (state->lencode >= state->codes && sl@0: state->lencode <= state->codes + ENOUGH - 1) { sl@0: copy->lencode = copy->codes + (state->lencode - state->codes); sl@0: copy->distcode = copy->codes + (state->distcode - state->codes); sl@0: } sl@0: copy->next = copy->codes + (state->next - state->codes); sl@0: if (window != Z_NULL) { sl@0: wsize = 1U << state->wbits; sl@0: zmemcpy(window, state->window, wsize); sl@0: } sl@0: copy->window = window; sl@0: dest->state = (struct internal_state FAR *)copy; sl@0: return Z_OK; sl@0: } sl@0: sl@0: sl@0: sl@0: