sl@0: /* Portions Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies). sl@0: * All rights reserved. sl@0: */ sl@0: sl@0: /* adler32.cpp -- compute the Adler-32 checksum of a data stream sl@0: * Copyright (C) 1995-2004 Mark Adler sl@0: * For conditions of distribution and use, see copyright notice in zlib.h sl@0: */ sl@0: sl@0: /* @(#) $Id$ */ sl@0: sl@0: #define ZLIB_INTERNAL sl@0: #include "libzcore.h" sl@0: sl@0: #define BASE 65521UL /* largest prime smaller than 65536 */ sl@0: #define NMAX 5552 sl@0: /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ sl@0: sl@0: #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} sl@0: #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); sl@0: #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); sl@0: #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); sl@0: #define DO16(buf) DO8(buf,0); DO8(buf,8); sl@0: sl@0: /* use NO_DIVIDE if your processor does not do division in hardware */ sl@0: #ifdef NO_DIVIDE sl@0: # define MOD(a) \ sl@0: do { \ sl@0: if (a >= (BASE << 16)) a -= (BASE << 16); \ sl@0: if (a >= (BASE << 15)) a -= (BASE << 15); \ sl@0: if (a >= (BASE << 14)) a -= (BASE << 14); \ sl@0: if (a >= (BASE << 13)) a -= (BASE << 13); \ sl@0: if (a >= (BASE << 12)) a -= (BASE << 12); \ sl@0: if (a >= (BASE << 11)) a -= (BASE << 11); \ sl@0: if (a >= (BASE << 10)) a -= (BASE << 10); \ sl@0: if (a >= (BASE << 9)) a -= (BASE << 9); \ sl@0: if (a >= (BASE << 8)) a -= (BASE << 8); \ sl@0: if (a >= (BASE << 7)) a -= (BASE << 7); \ sl@0: if (a >= (BASE << 6)) a -= (BASE << 6); \ sl@0: if (a >= (BASE << 5)) a -= (BASE << 5); \ sl@0: if (a >= (BASE << 4)) a -= (BASE << 4); \ sl@0: if (a >= (BASE << 3)) a -= (BASE << 3); \ sl@0: if (a >= (BASE << 2)) a -= (BASE << 2); \ sl@0: if (a >= (BASE << 1)) a -= (BASE << 1); \ sl@0: if (a >= BASE) a -= BASE; \ sl@0: } while (0) sl@0: # define MOD4(a) \ sl@0: do { \ sl@0: if (a >= (BASE << 4)) a -= (BASE << 4); \ sl@0: if (a >= (BASE << 3)) a -= (BASE << 3); \ sl@0: if (a >= (BASE << 2)) a -= (BASE << 2); \ sl@0: if (a >= (BASE << 1)) a -= (BASE << 1); \ sl@0: if (a >= BASE) a -= BASE; \ sl@0: } while (0) sl@0: #else sl@0: # define MOD(a) a %= BASE sl@0: # define MOD4(a) a %= BASE sl@0: #endif sl@0: sl@0: /* ========================================================================= */ sl@0: sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C uLong adler32_r(uLong adler,const Bytef * buf,uInt len) sl@0: #else sl@0: uLong ZEXPORT adler32(adler, buf, len) sl@0: uLong adler; sl@0: const Bytef *buf; sl@0: uInt len; sl@0: #endif /* __SYMBIAN32__ */ sl@0: { sl@0: unsigned long sum2; sl@0: unsigned n; sl@0: sl@0: /* split Adler-32 into component sums */ sl@0: sum2 = (adler >> 16) & 0xffff; sl@0: adler &= 0xffff; sl@0: sl@0: /* in case user likes doing a byte at a time, keep it fast */ sl@0: if (len == 1) { sl@0: adler += buf[0]; sl@0: if (adler >= BASE) sl@0: adler -= BASE; sl@0: sum2 += adler; sl@0: if (sum2 >= BASE) sl@0: sum2 -= BASE; sl@0: return adler | (sum2 << 16); sl@0: } sl@0: sl@0: /* initial Adler-32 value (deferred check for len == 1 speed) */ sl@0: if (buf == Z_NULL) sl@0: return 1L; sl@0: sl@0: /* in case short lengths are provided, keep it somewhat fast */ sl@0: if (len < 16) { sl@0: while (len--) { sl@0: adler += *buf++; sl@0: sum2 += adler; sl@0: } sl@0: if (adler >= BASE) sl@0: adler -= BASE; sl@0: MOD4(sum2); /* only added so many BASE's */ sl@0: return adler | (sum2 << 16); sl@0: } sl@0: sl@0: /* do length NMAX blocks -- requires just one modulo operation */ sl@0: while (len >= NMAX) { sl@0: len -= NMAX; sl@0: n = NMAX / 16; /* NMAX is divisible by 16 */ sl@0: do { sl@0: DO16(buf); /* 16 sums unrolled */ sl@0: buf += 16; sl@0: } while (--n); sl@0: MOD(adler); sl@0: MOD(sum2); sl@0: } sl@0: sl@0: /* do remaining bytes (less than NMAX, still just one modulo) */ sl@0: if (len) { /* avoid modulos if none remaining */ sl@0: while (len >= 16) { sl@0: len -= 16; sl@0: DO16(buf); sl@0: buf += 16; sl@0: } sl@0: while (len--) { sl@0: adler += *buf++; sl@0: sum2 += adler; sl@0: } sl@0: MOD(adler); sl@0: MOD(sum2); sl@0: } sl@0: sl@0: /* return recombined sums */ sl@0: return adler | (sum2 << 16); sl@0: } sl@0: sl@0: /* ========================================================================= */ sl@0: sl@0: #ifdef __SYMBIAN32__ sl@0: EXPORT_C uLong adler32_combine_r(uLong adler1, uLong adler2, z_off_t len2) sl@0: #else sl@0: uLong ZEXPORT adler32_combine(adler1, adler2, len2) sl@0: uLong adler1; sl@0: uLong adler2; sl@0: z_off_t len2; sl@0: #endif /* __SYMBIAN32__ */ sl@0: { sl@0: unsigned long sum1; sl@0: unsigned long sum2; sl@0: unsigned rem; sl@0: sl@0: /* the derivation of this formula is left as an exercise for the reader */ sl@0: rem = (unsigned)(len2 % BASE); sl@0: sum1 = adler1 & 0xffff; sl@0: sum2 = rem * sum1; sl@0: MOD(sum2); sl@0: sum1 += (adler2 & 0xffff) + BASE - 1; sl@0: sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; sl@0: if (sum1 > BASE) sum1 -= BASE; sl@0: if (sum1 > BASE) sum1 -= BASE; sl@0: if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); sl@0: if (sum2 > BASE) sum2 -= BASE; sl@0: return sum1 | (sum2 << 16); sl@0: }