sl@0: /* sl@0: * Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies). sl@0: * All rights reserved. sl@0: * This component and the accompanying materials are made available sl@0: * under the terms of the License "Eclipse Public License v1.0" sl@0: * which accompanies this distribution, and is available sl@0: * at the URL "http://www.eclipse.org/legal/epl-v10.html". sl@0: * sl@0: * Initial Contributors: sl@0: * Nokia Corporation - initial contribution. sl@0: * sl@0: * Contributors: sl@0: * sl@0: * Description: sl@0: * sl@0: */ sl@0: sl@0: sl@0: #include "words.h" sl@0: #include "algorithms.h" sl@0: sl@0: word Add(word *C, const word *A, const word *B, unsigned int N) sl@0: { sl@0: assert (N%2 == 0); sl@0: word carry = 0; sl@0: for (unsigned int i = 0; i < N; i+=2) sl@0: { sl@0: dword u = (dword) carry + A[i] + B[i]; sl@0: C[i] = LOW_WORD(u); sl@0: u = (dword) HIGH_WORD(u) + A[i+1] + B[i+1]; sl@0: C[i+1] = LOW_WORD(u); sl@0: carry = HIGH_WORD(u); sl@0: } sl@0: return carry; sl@0: } sl@0: sl@0: word Subtract(word *C, const word *A, const word *B, unsigned int N) sl@0: { sl@0: assert (N%2 == 0); sl@0: word borrow=0; sl@0: for (unsigned i = 0; i < N; i+=2) sl@0: { sl@0: dword u = (dword) A[i] - B[i] - borrow; sl@0: C[i] = LOW_WORD(u); sl@0: u = (dword) A[i+1] - B[i+1] - (word)(0-HIGH_WORD(u)); sl@0: C[i+1] = LOW_WORD(u); sl@0: borrow = 0-HIGH_WORD(u); sl@0: } sl@0: return borrow; sl@0: } sl@0: sl@0: int Compare(const word *A, const word *B, unsigned int N) sl@0: { sl@0: while (N--) sl@0: if (A[N] > B[N]) sl@0: return 1; sl@0: else if (A[N] < B[N]) sl@0: return -1; sl@0: sl@0: return 0; sl@0: } sl@0: sl@0: // It is the job of the calling code to ensure that this won't carry. sl@0: // If you aren't sure, use the next version that will tell you if you need to sl@0: // grow your integer. sl@0: // Having two of these creates ever so slightly more code but avoids having sl@0: // ifdefs all over the rest of the code checking the following type stuff which sl@0: // causes warnings in certain compilers about unused parameters in release sl@0: // builds. We can't have that can we! sl@0: /* sl@0: Allows avoid this all over bigint.cpp and primes.cpp sl@0: ifdef _DEBUG sl@0: TUint carry = Increment(Ptr(), Size()); sl@0: assert(!carry); sl@0: else sl@0: Increment(Ptr(), Size()) sl@0: endif sl@0: */ sl@0: void IncrementNoCarry(word *A, unsigned int N, word B) sl@0: { sl@0: assert(N); sl@0: word t = A[0]; sl@0: A[0] = t+B; sl@0: if (A[0] >= t) sl@0: return; sl@0: for (unsigned i=1; i= t) sl@0: return 0; sl@0: for (unsigned i=1; i= A0) sl@0: if (B0 >= B1) sl@0: { sl@0: s = 0; sl@0: d = (dword)(A1-A0)*(B0-B1); sl@0: } sl@0: else sl@0: { sl@0: s = (A1-A0); sl@0: d = (dword)s*(word)(B0-B1); sl@0: } sl@0: else sl@0: if (B0 > B1) sl@0: { sl@0: s = (B0-B1); sl@0: d = (word)(A1-A0)*(dword)s; sl@0: } sl@0: else sl@0: { sl@0: s = 0; sl@0: d = (dword)(A0-A1)*(B1-B0); sl@0: } sl@0: */ sl@0: // this segment is the branchless equivalent of above sl@0: word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]}; sl@0: unsigned int ai = A[1] < A[0]; sl@0: unsigned int bi = B[0] < B[1]; sl@0: unsigned int di = ai & bi; sl@0: dword d = (dword)D[di]*D[di+2]; sl@0: D[1] = D[3] = 0; sl@0: unsigned int si = ai + !bi; sl@0: word s = D[si]; sl@0: sl@0: dword A0B0 = (dword)A[0]*B[0]; sl@0: C[0] = LOW_WORD(A0B0); sl@0: sl@0: dword A1B1 = (dword)A[1]*B[1]; sl@0: dword t = (dword) HIGH_WORD(A0B0) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1); sl@0: C[1] = LOW_WORD(t); sl@0: sl@0: t = A1B1 + HIGH_WORD(t) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s; sl@0: C[2] = LOW_WORD(t); sl@0: C[3] = HIGH_WORD(t); sl@0: } sl@0: sl@0: static word AtomicMultiplyAdd(word *C, const word *A, const word *B) sl@0: { sl@0: word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]}; sl@0: unsigned int ai = A[1] < A[0]; sl@0: unsigned int bi = B[0] < B[1]; sl@0: unsigned int di = ai & bi; sl@0: dword d = (dword)D[di]*D[di+2]; sl@0: D[1] = D[3] = 0; sl@0: unsigned int si = ai + !bi; sl@0: word s = D[si]; sl@0: sl@0: dword A0B0 = (dword)A[0]*B[0]; sl@0: dword t = A0B0 + C[0]; sl@0: C[0] = LOW_WORD(t); sl@0: sl@0: dword A1B1 = (dword)A[1]*B[1]; sl@0: t = (dword) HIGH_WORD(t) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1) + C[1]; sl@0: C[1] = LOW_WORD(t); sl@0: sl@0: t = (dword) HIGH_WORD(t) + LOW_WORD(A1B1) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s + C[2]; sl@0: C[2] = LOW_WORD(t); sl@0: sl@0: t = (dword) HIGH_WORD(t) + HIGH_WORD(A1B1) + C[3]; sl@0: C[3] = LOW_WORD(t); sl@0: return HIGH_WORD(t); sl@0: } sl@0: sl@0: static inline void AtomicMultiplyBottom(word *C, const word *A, const word *B) sl@0: { sl@0: dword t = (dword)A[0]*B[0]; sl@0: C[0] = LOW_WORD(t); sl@0: C[1] = HIGH_WORD(t) + A[0]*B[1] + A[1]*B[0]; sl@0: } sl@0: sl@0: #define MulAcc(x, y) \ sl@0: p = (dword)A[x] * B[y] + c; \ sl@0: c = LOW_WORD(p); \ sl@0: p = (dword)d + HIGH_WORD(p); \ sl@0: d = LOW_WORD(p); \ sl@0: e += HIGH_WORD(p); sl@0: sl@0: #define SaveMulAcc(s, x, y) \ sl@0: R[s] = c; \ sl@0: p = (dword)A[x] * B[y] + d; \ sl@0: c = LOW_WORD(p); \ sl@0: p = (dword)e + HIGH_WORD(p); \ sl@0: d = LOW_WORD(p); \ sl@0: e = HIGH_WORD(p); sl@0: sl@0: #define MulAcc1(x, y) \ sl@0: p = (dword)A[x] * A[y] + c; \ sl@0: c = LOW_WORD(p); \ sl@0: p = (dword)d + HIGH_WORD(p); \ sl@0: d = LOW_WORD(p); \ sl@0: e += HIGH_WORD(p); sl@0: sl@0: #define SaveMulAcc1(s, x, y) \ sl@0: R[s] = c; \ sl@0: p = (dword)A[x] * A[y] + d; \ sl@0: c = LOW_WORD(p); \ sl@0: p = (dword)e + HIGH_WORD(p); \ sl@0: d = LOW_WORD(p); \ sl@0: e = HIGH_WORD(p); sl@0: sl@0: #define SquAcc(x, y) \ sl@0: p = (dword)A[x] * A[y]; \ sl@0: p = p + p + c; \ sl@0: c = LOW_WORD(p); \ sl@0: p = (dword)d + HIGH_WORD(p); \ sl@0: d = LOW_WORD(p); \ sl@0: e += HIGH_WORD(p); sl@0: sl@0: #define SaveSquAcc(s, x, y) \ sl@0: R[s] = c; \ sl@0: p = (dword)A[x] * A[y]; \ sl@0: p = p + p + d; \ sl@0: c = LOW_WORD(p); \ sl@0: p = (dword)e + HIGH_WORD(p); \ sl@0: d = LOW_WORD(p); \ sl@0: e = HIGH_WORD(p); sl@0: sl@0: // VC60 workaround: MSVC 6.0 has an optimization problem that makes sl@0: // (dword)A*B where either A or B has been cast to a dword before sl@0: // very expensive. Revisit a CombaSquare4() function when this sl@0: // problem is fixed. sl@0: sl@0: // WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware sl@0: // either. I've completely removed it. It may be worth looking into sometime sl@0: // in the future. sl@0: /*#ifndef __WINS__ sl@0: static void CombaSquare4(word *R, const word *A) sl@0: { sl@0: dword p; sl@0: word c, d, e; sl@0: sl@0: p = (dword)A[0] * A[0]; sl@0: R[0] = LOW_WORD(p); sl@0: c = HIGH_WORD(p); sl@0: d = e = 0; sl@0: sl@0: SquAcc(0, 1); sl@0: sl@0: SaveSquAcc(1, 2, 0); sl@0: MulAcc1(1, 1); sl@0: sl@0: SaveSquAcc(2, 0, 3); sl@0: SquAcc(1, 2); sl@0: sl@0: SaveSquAcc(3, 3, 1); sl@0: MulAcc1(2, 2); sl@0: sl@0: SaveSquAcc(4, 2, 3); sl@0: sl@0: R[5] = c; sl@0: p = (dword)A[3] * A[3] + d; sl@0: R[6] = LOW_WORD(p); sl@0: R[7] = e + HIGH_WORD(p); sl@0: } sl@0: #endif */ sl@0: sl@0: static void CombaMultiply4(word *R, const word *A, const word *B) sl@0: { sl@0: dword p; sl@0: word c, d, e; sl@0: sl@0: p = (dword)A[0] * B[0]; sl@0: R[0] = LOW_WORD(p); sl@0: c = HIGH_WORD(p); sl@0: d = e = 0; sl@0: sl@0: MulAcc(0, 1); sl@0: MulAcc(1, 0); sl@0: sl@0: SaveMulAcc(1, 2, 0); sl@0: MulAcc(1, 1); sl@0: MulAcc(0, 2); sl@0: sl@0: SaveMulAcc(2, 0, 3); sl@0: MulAcc(1, 2); sl@0: MulAcc(2, 1); sl@0: MulAcc(3, 0); sl@0: sl@0: SaveMulAcc(3, 3, 1); sl@0: MulAcc(2, 2); sl@0: MulAcc(1, 3); sl@0: sl@0: SaveMulAcc(4, 2, 3); sl@0: MulAcc(3, 2); sl@0: sl@0: R[5] = c; sl@0: p = (dword)A[3] * B[3] + d; sl@0: R[6] = LOW_WORD(p); sl@0: R[7] = e + HIGH_WORD(p); sl@0: } sl@0: sl@0: static void CombaMultiply8(word *R, const word *A, const word *B) sl@0: { sl@0: dword p; sl@0: word c, d, e; sl@0: sl@0: p = (dword)A[0] * B[0]; sl@0: R[0] = LOW_WORD(p); sl@0: c = HIGH_WORD(p); sl@0: d = e = 0; sl@0: sl@0: MulAcc(0, 1); sl@0: MulAcc(1, 0); sl@0: sl@0: SaveMulAcc(1, 2, 0); sl@0: MulAcc(1, 1); sl@0: MulAcc(0, 2); sl@0: sl@0: SaveMulAcc(2, 0, 3); sl@0: MulAcc(1, 2); sl@0: MulAcc(2, 1); sl@0: MulAcc(3, 0); sl@0: sl@0: SaveMulAcc(3, 0, 4); sl@0: MulAcc(1, 3); sl@0: MulAcc(2, 2); sl@0: MulAcc(3, 1); sl@0: MulAcc(4, 0); sl@0: sl@0: SaveMulAcc(4, 0, 5); sl@0: MulAcc(1, 4); sl@0: MulAcc(2, 3); sl@0: MulAcc(3, 2); sl@0: MulAcc(4, 1); sl@0: MulAcc(5, 0); sl@0: sl@0: SaveMulAcc(5, 0, 6); sl@0: MulAcc(1, 5); sl@0: MulAcc(2, 4); sl@0: MulAcc(3, 3); sl@0: MulAcc(4, 2); sl@0: MulAcc(5, 1); sl@0: MulAcc(6, 0); sl@0: sl@0: SaveMulAcc(6, 0, 7); sl@0: MulAcc(1, 6); sl@0: MulAcc(2, 5); sl@0: MulAcc(3, 4); sl@0: MulAcc(4, 3); sl@0: MulAcc(5, 2); sl@0: MulAcc(6, 1); sl@0: MulAcc(7, 0); sl@0: sl@0: SaveMulAcc(7, 1, 7); sl@0: MulAcc(2, 6); sl@0: MulAcc(3, 5); sl@0: MulAcc(4, 4); sl@0: MulAcc(5, 3); sl@0: MulAcc(6, 2); sl@0: MulAcc(7, 1); sl@0: sl@0: SaveMulAcc(8, 2, 7); sl@0: MulAcc(3, 6); sl@0: MulAcc(4, 5); sl@0: MulAcc(5, 4); sl@0: MulAcc(6, 3); sl@0: MulAcc(7, 2); sl@0: sl@0: SaveMulAcc(9, 3, 7); sl@0: MulAcc(4, 6); sl@0: MulAcc(5, 5); sl@0: MulAcc(6, 4); sl@0: MulAcc(7, 3); sl@0: sl@0: SaveMulAcc(10, 4, 7); sl@0: MulAcc(5, 6); sl@0: MulAcc(6, 5); sl@0: MulAcc(7, 4); sl@0: sl@0: SaveMulAcc(11, 5, 7); sl@0: MulAcc(6, 6); sl@0: MulAcc(7, 5); sl@0: sl@0: SaveMulAcc(12, 6, 7); sl@0: MulAcc(7, 6); sl@0: sl@0: R[13] = c; sl@0: p = (dword)A[7] * B[7] + d; sl@0: R[14] = LOW_WORD(p); sl@0: R[15] = e + HIGH_WORD(p); sl@0: } sl@0: sl@0: static void CombaMultiplyBottom4(word *R, const word *A, const word *B) sl@0: { sl@0: dword p; sl@0: word c, d, e; sl@0: sl@0: p = (dword)A[0] * B[0]; sl@0: R[0] = LOW_WORD(p); sl@0: c = HIGH_WORD(p); sl@0: d = e = 0; sl@0: sl@0: MulAcc(0, 1); sl@0: MulAcc(1, 0); sl@0: sl@0: SaveMulAcc(1, 2, 0); sl@0: MulAcc(1, 1); sl@0: MulAcc(0, 2); sl@0: sl@0: R[2] = c; sl@0: R[3] = d + A[0] * B[3] + A[1] * B[2] + A[2] * B[1] + A[3] * B[0]; sl@0: } sl@0: sl@0: static void CombaMultiplyBottom8(word *R, const word *A, const word *B) sl@0: { sl@0: dword p; sl@0: word c, d, e; sl@0: sl@0: p = (dword)A[0] * B[0]; sl@0: R[0] = LOW_WORD(p); sl@0: c = HIGH_WORD(p); sl@0: d = e = 0; sl@0: sl@0: MulAcc(0, 1); sl@0: MulAcc(1, 0); sl@0: sl@0: SaveMulAcc(1, 2, 0); sl@0: MulAcc(1, 1); sl@0: MulAcc(0, 2); sl@0: sl@0: SaveMulAcc(2, 0, 3); sl@0: MulAcc(1, 2); sl@0: MulAcc(2, 1); sl@0: MulAcc(3, 0); sl@0: sl@0: SaveMulAcc(3, 0, 4); sl@0: MulAcc(1, 3); sl@0: MulAcc(2, 2); sl@0: MulAcc(3, 1); sl@0: MulAcc(4, 0); sl@0: sl@0: SaveMulAcc(4, 0, 5); sl@0: MulAcc(1, 4); sl@0: MulAcc(2, 3); sl@0: MulAcc(3, 2); sl@0: MulAcc(4, 1); sl@0: MulAcc(5, 0); sl@0: sl@0: SaveMulAcc(5, 0, 6); sl@0: MulAcc(1, 5); sl@0: MulAcc(2, 4); sl@0: MulAcc(3, 3); sl@0: MulAcc(4, 2); sl@0: MulAcc(5, 1); sl@0: MulAcc(6, 0); sl@0: sl@0: R[6] = c; sl@0: R[7] = d + A[0] * B[7] + A[1] * B[6] + A[2] * B[5] + A[3] * B[4] + sl@0: A[4] * B[3] + A[5] * B[2] + A[6] * B[1] + A[7] * B[0]; sl@0: } sl@0: sl@0: #undef MulAcc sl@0: #undef SaveMulAcc sl@0: static void AtomicInverseModPower2(word *C, word A0, word A1) sl@0: { sl@0: assert(A0%2==1); sl@0: sl@0: dword A=MAKE_DWORD(A0, A1), R=A0%8; sl@0: sl@0: for (unsigned i=3; i<2*WORD_BITS; i*=2) sl@0: R = R*(2-R*A); sl@0: sl@0: assert(R*A==1); sl@0: sl@0: C[0] = LOW_WORD(R); sl@0: C[1] = HIGH_WORD(R); sl@0: } sl@0: // ******************************************************** sl@0: sl@0: #define A0 A sl@0: #define A1 (A+N2) sl@0: #define B0 B sl@0: #define B1 (B+N2) sl@0: sl@0: #define T0 T sl@0: #define T1 (T+N2) sl@0: #define T2 (T+N) sl@0: #define T3 (T+N+N2) sl@0: sl@0: #define R0 R sl@0: #define R1 (R+N2) sl@0: #define R2 (R+N) sl@0: #define R3 (R+N+N2) sl@0: sl@0: // R[2*N] - result = A*B sl@0: // T[2*N] - temporary work space sl@0: // A[N] --- multiplier sl@0: // B[N] --- multiplicant sl@0: sl@0: void RecursiveMultiply(word *R, word *T, const word *A, const word *B, unsigned int N) sl@0: { sl@0: assert(N>=2 && N%2==0); sl@0: sl@0: if (N==2) sl@0: AtomicMultiply(R, A, B); sl@0: else if (N==4) sl@0: CombaMultiply4(R, A, B); sl@0: else if (N==8) sl@0: CombaMultiply8(R, A, B); sl@0: else sl@0: { sl@0: const unsigned int N2 = N/2; sl@0: int carry; sl@0: sl@0: int aComp = Compare(A0, A1, N2); sl@0: int bComp = Compare(B0, B1, N2); sl@0: sl@0: switch (2*aComp + aComp + bComp) sl@0: { sl@0: case -4: sl@0: Subtract(R0, A1, A0, N2); sl@0: Subtract(R1, B0, B1, N2); sl@0: RecursiveMultiply(T0, T2, R0, R1, N2); sl@0: Subtract(T1, T1, R0, N2); sl@0: carry = -1; sl@0: break; sl@0: case -2: sl@0: Subtract(R0, A1, A0, N2); sl@0: Subtract(R1, B0, B1, N2); sl@0: RecursiveMultiply(T0, T2, R0, R1, N2); sl@0: carry = 0; sl@0: break; sl@0: case 2: sl@0: Subtract(R0, A0, A1, N2); sl@0: Subtract(R1, B1, B0, N2); sl@0: RecursiveMultiply(T0, T2, R0, R1, N2); sl@0: carry = 0; sl@0: break; sl@0: case 4: sl@0: Subtract(R0, A1, A0, N2); sl@0: Subtract(R1, B0, B1, N2); sl@0: RecursiveMultiply(T0, T2, R0, R1, N2); sl@0: Subtract(T1, T1, R1, N2); sl@0: carry = -1; sl@0: break; sl@0: default: sl@0: SetWords(T0, 0, N); sl@0: carry = 0; sl@0: } sl@0: sl@0: RecursiveMultiply(R0, T2, A0, B0, N2); sl@0: RecursiveMultiply(R2, T2, A1, B1, N2); sl@0: sl@0: // now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1 sl@0: sl@0: carry += Add(T0, T0, R0, N); sl@0: carry += Add(T0, T0, R2, N); sl@0: carry += Add(R1, R1, T0, N); sl@0: sl@0: assert (carry >= 0 && carry <= 2); sl@0: Increment(R3, N2, carry); sl@0: } sl@0: } sl@0: sl@0: // R[2*N] - result = A*A sl@0: // T[2*N] - temporary work space sl@0: // A[N] --- number to be squared sl@0: sl@0: void RecursiveSquare(word *R, word *T, const word *A, unsigned int N) sl@0: { sl@0: assert(N && N%2==0); sl@0: sl@0: if (N==2) sl@0: AtomicMultiply(R, A, A); sl@0: else if (N==4) sl@0: { sl@0: // VC60 workaround: MSVC 6.0 has an optimization problem that makes sl@0: // (dword)A*B where either A or B has been cast to a dword before sl@0: // very expensive. Revisit a CombaSquare4() function when this sl@0: // problem is fixed. sl@0: sl@0: // WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware sl@0: // either. I've completely removed it. It may be worth looking into sometime sl@0: // in the future. Therefore, we use the CombaMultiply4 on all targets. sl@0: //#ifdef __WINS__ sl@0: CombaMultiply4(R, A, A); sl@0: /*#else sl@0: CombaSquare4(R, A); sl@0: #endif*/ sl@0: } sl@0: else sl@0: { sl@0: const unsigned int N2 = N/2; sl@0: sl@0: RecursiveSquare(R0, T2, A0, N2); sl@0: RecursiveSquare(R2, T2, A1, N2); sl@0: RecursiveMultiply(T0, T2, A0, A1, N2); sl@0: sl@0: word carry = Add(R1, R1, T0, N); sl@0: carry += Add(R1, R1, T0, N); sl@0: Increment(R3, N2, carry); sl@0: } sl@0: } sl@0: // R[N] - bottom half of A*B sl@0: // T[N] - temporary work space sl@0: // A[N] - multiplier sl@0: // B[N] - multiplicant sl@0: sl@0: void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, unsigned int N) sl@0: { sl@0: assert(N>=2 && N%2==0); sl@0: sl@0: if (N==2) sl@0: AtomicMultiplyBottom(R, A, B); sl@0: else if (N==4) sl@0: CombaMultiplyBottom4(R, A, B); sl@0: else if (N==8) sl@0: CombaMultiplyBottom8(R, A, B); sl@0: else sl@0: { sl@0: const unsigned int N2 = N/2; sl@0: sl@0: RecursiveMultiply(R, T, A0, B0, N2); sl@0: RecursiveMultiplyBottom(T0, T1, A1, B0, N2); sl@0: Add(R1, R1, T0, N2); sl@0: RecursiveMultiplyBottom(T0, T1, A0, B1, N2); sl@0: Add(R1, R1, T0, N2); sl@0: } sl@0: } sl@0: sl@0: // R[N] --- upper half of A*B sl@0: // T[2*N] - temporary work space sl@0: // L[N] --- lower half of A*B sl@0: // A[N] --- multiplier sl@0: // B[N] --- multiplicant sl@0: sl@0: void RecursiveMultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, unsigned int N) sl@0: { sl@0: assert(N>=2 && N%2==0); sl@0: sl@0: if (N==2) sl@0: { sl@0: AtomicMultiply(T, A, B); sl@0: ((dword *)R)[0] = ((dword *)T)[1]; sl@0: } sl@0: else if (N==4) sl@0: { sl@0: CombaMultiply4(T, A, B); sl@0: ((dword *)R)[0] = ((dword *)T)[2]; sl@0: ((dword *)R)[1] = ((dword *)T)[3]; sl@0: } sl@0: else sl@0: { sl@0: const unsigned int N2 = N/2; sl@0: int carry; sl@0: sl@0: int aComp = Compare(A0, A1, N2); sl@0: int bComp = Compare(B0, B1, N2); sl@0: sl@0: switch (2*aComp + aComp + bComp) sl@0: { sl@0: case -4: sl@0: Subtract(R0, A1, A0, N2); sl@0: Subtract(R1, B0, B1, N2); sl@0: RecursiveMultiply(T0, T2, R0, R1, N2); sl@0: Subtract(T1, T1, R0, N2); sl@0: carry = -1; sl@0: break; sl@0: case -2: sl@0: Subtract(R0, A1, A0, N2); sl@0: Subtract(R1, B0, B1, N2); sl@0: RecursiveMultiply(T0, T2, R0, R1, N2); sl@0: carry = 0; sl@0: break; sl@0: case 2: sl@0: Subtract(R0, A0, A1, N2); sl@0: Subtract(R1, B1, B0, N2); sl@0: RecursiveMultiply(T0, T2, R0, R1, N2); sl@0: carry = 0; sl@0: break; sl@0: case 4: sl@0: Subtract(R0, A1, A0, N2); sl@0: Subtract(R1, B0, B1, N2); sl@0: RecursiveMultiply(T0, T2, R0, R1, N2); sl@0: Subtract(T1, T1, R1, N2); sl@0: carry = -1; sl@0: break; sl@0: default: sl@0: SetWords(T0, 0, N); sl@0: carry = 0; sl@0: } sl@0: sl@0: RecursiveMultiply(T2, R0, A1, B1, N2); sl@0: sl@0: // now T[01] holds (A1-A0)*(B0-B1), T[23] holds A1*B1 sl@0: sl@0: CopyWords(R0, L+N2, N2); sl@0: word c2 = Subtract(R0, R0, L, N2); sl@0: c2 += Subtract(R0, R0, T0, N2); sl@0: word t = (Compare(R0, T2, N2) == -1); sl@0: sl@0: carry += t; sl@0: carry += Increment(R0, N2, c2+t); sl@0: carry += Add(R0, R0, T1, N2); sl@0: carry += Add(R0, R0, T3, N2); sl@0: sl@0: CopyWords(R1, T3, N2); sl@0: assert (carry >= 0 && carry <= 2); sl@0: Increment(R1, N2, carry); sl@0: } sl@0: } sl@0: sl@0: // R[NA+NB] - result = A*B sl@0: // T[NA+NB] - temporary work space sl@0: // A[NA] ---- multiplier sl@0: // B[NB] ---- multiplicant sl@0: sl@0: void AsymmetricMultiply(word *R, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB) sl@0: { sl@0: if (NA == NB) sl@0: { sl@0: if (A == B) sl@0: RecursiveSquare(R, T, A, NA); sl@0: else sl@0: RecursiveMultiply(R, T, A, B, NA); sl@0: sl@0: return; sl@0: } sl@0: sl@0: if (NA > NB) sl@0: { sl@0: TClassSwap(A, B); sl@0: TClassSwap(NA, NB); sl@0: //std::swap(A, B); sl@0: //std::swap(NA, NB); sl@0: } sl@0: sl@0: assert(NB % NA == 0); sl@0: assert((NB/NA)%2 == 0); // NB is an even multiple of NA sl@0: sl@0: if (NA==2 && !A[1]) sl@0: { sl@0: switch (A[0]) sl@0: { sl@0: case 0: sl@0: SetWords(R, 0, NB+2); sl@0: return; sl@0: case 1: sl@0: CopyWords(R, B, NB); sl@0: R[NB] = R[NB+1] = 0; sl@0: return; sl@0: default: sl@0: R[NB] = LinearMultiply(R, B, A[0], NB); sl@0: R[NB+1] = 0; sl@0: return; sl@0: } sl@0: } sl@0: sl@0: RecursiveMultiply(R, T, A, B, NA); sl@0: CopyWords(T+2*NA, R+NA, NA); sl@0: sl@0: unsigned i; sl@0: sl@0: for (i=2*NA; i B1 || (A[1]==B1 && A[0]>=B0)) sl@0: { sl@0: u = (dword) A[0] - B0; sl@0: A[0] = LOW_WORD(u); sl@0: u = (dword) A[1] - B1 - (word)(0-HIGH_WORD(u)); sl@0: A[1] = LOW_WORD(u); sl@0: A[2] += HIGH_WORD(u); sl@0: Q++; sl@0: assert(Q); // shouldn't overflow sl@0: } sl@0: sl@0: return Q; sl@0: } sl@0: sl@0: // do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1 sl@0: static inline void AtomicDivide(word *Q, const word *A, const word *B) sl@0: { sl@0: if (!B[0] && !B[1]) // if divisor is 0, we assume divisor==2**(2*WORD_BITS) sl@0: { sl@0: Q[0] = A[2]; sl@0: Q[1] = A[3]; sl@0: } sl@0: else sl@0: { sl@0: word T[4]; sl@0: T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3]; sl@0: Q[1] = SubatomicDivide(T+1, B[0], B[1]); sl@0: Q[0] = SubatomicDivide(T, B[0], B[1]); sl@0: sl@0: #ifdef _DEBUG sl@0: // multiply quotient and divisor and add remainder, make sure it equals dividend sl@0: assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]= 0) sl@0: { sl@0: R[N] -= Subtract(R, R, B, N); sl@0: Q[1] += (++Q[0]==0); sl@0: assert(Q[0] || Q[1]); // no overflow sl@0: } sl@0: } sl@0: sl@0: // R[NB] -------- remainder = A%B sl@0: // Q[NA-NB+2] --- quotient = A/B sl@0: // T[NA+2*NB+4] - temp work space sl@0: // A[NA] -------- dividend sl@0: // B[NB] -------- divisor sl@0: sl@0: void Divide(word *R, word *Q, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB) sl@0: { sl@0: assert(NA && NB && NA%2==0 && NB%2==0); sl@0: assert(B[NB-1] || B[NB-2]); sl@0: assert(NB <= NA); sl@0: sl@0: // set up temporary work space sl@0: word *const TA=T; sl@0: word *const TB=T+NA+2; sl@0: word *const TP=T+NA+2+NB; sl@0: sl@0: // copy B into TB and normalize it so that TB has highest bit set to 1 sl@0: unsigned shiftWords = (B[NB-1]==0); sl@0: TB[0] = TB[NB-1] = 0; sl@0: CopyWords(TB+shiftWords, B, NB-shiftWords); sl@0: unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]); sl@0: assert(shiftBits < WORD_BITS); sl@0: ShiftWordsLeftByBits(TB, NB, shiftBits); sl@0: sl@0: // copy A into TA and normalize it sl@0: TA[0] = TA[NA] = TA[NA+1] = 0; sl@0: CopyWords(TA+shiftWords, A, NA); sl@0: ShiftWordsLeftByBits(TA, NA+2, shiftBits); sl@0: sl@0: if (TA[NA+1]==0 && TA[NA] <= 1) sl@0: { sl@0: Q[NA-NB+1] = Q[NA-NB] = 0; sl@0: while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0) sl@0: { sl@0: TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB); sl@0: ++Q[NA-NB]; sl@0: } sl@0: } sl@0: else sl@0: { sl@0: NA+=2; sl@0: assert(Compare(TA+NA-NB, TB, NB) < 0); sl@0: } sl@0: sl@0: word BT[2]; sl@0: BT[0] = TB[NB-2] + 1; sl@0: BT[1] = TB[NB-1] + (BT[0]==0); sl@0: sl@0: // start reducing TA mod TB, 2 words at a time sl@0: for (unsigned i=NA-2; i>=NB; i-=2) sl@0: { sl@0: AtomicDivide(Q+i-NB, TA+i-2, BT); sl@0: CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB); sl@0: } sl@0: sl@0: // copy TA into R, and denormalize it sl@0: CopyWords(R, TA+shiftWords, NB); sl@0: ShiftWordsRightByBits(R, NB, shiftBits); sl@0: } sl@0: sl@0: static inline unsigned int EvenWordCount(const word *X, unsigned int N) sl@0: { sl@0: while (N && X[N-2]==0 && X[N-1]==0) sl@0: N-=2; sl@0: return N; sl@0: } sl@0: sl@0: // return k sl@0: // R[N] --- result = A^(-1) * 2^k mod M sl@0: // T[4*N] - temporary work space sl@0: // A[NA] -- number to take inverse of sl@0: // M[N] --- modulus sl@0: sl@0: unsigned int AlmostInverse(word *R, word *T, const word *A, unsigned int NA, const word *M, unsigned int N) sl@0: { sl@0: assert(NA<=N && N && N%2==0); sl@0: sl@0: word *b = T; sl@0: word *c = T+N; sl@0: word *f = T+2*N; sl@0: word *g = T+3*N; sl@0: unsigned int bcLen=2, fgLen=EvenWordCount(M, N); sl@0: unsigned int k=0, s=0; sl@0: sl@0: SetWords(T, 0, 3*N); sl@0: b[0]=1; sl@0: CopyWords(f, A, NA); sl@0: CopyWords(g, M, N); sl@0: sl@0: FOREVER sl@0: { sl@0: word t=f[0]; sl@0: while (!t) sl@0: { sl@0: if (EvenWordCount(f, fgLen)==0) sl@0: { sl@0: SetWords(R, 0, N); sl@0: return 0; sl@0: } sl@0: sl@0: ShiftWordsRightByWords(f, fgLen, 1); sl@0: if (c[bcLen-1]) bcLen+=2; sl@0: assert(bcLen <= N); sl@0: ShiftWordsLeftByWords(c, bcLen, 1); sl@0: k+=WORD_BITS; sl@0: t=f[0]; sl@0: } sl@0: sl@0: unsigned int i=0; sl@0: while (t%2 == 0) sl@0: { sl@0: t>>=1; sl@0: i++; sl@0: } sl@0: k+=i; sl@0: sl@0: if (t==1 && f[1]==0 && EvenWordCount(f, fgLen)==2) sl@0: { sl@0: if (s%2==0) sl@0: CopyWords(R, b, N); sl@0: else sl@0: Subtract(R, M, b, N); sl@0: return k; sl@0: } sl@0: sl@0: ShiftWordsRightByBits(f, fgLen, i); sl@0: t=ShiftWordsLeftByBits(c, bcLen, i); sl@0: if (t) sl@0: { sl@0: c[bcLen] = t; sl@0: bcLen+=2; sl@0: assert(bcLen <= N); sl@0: } sl@0: sl@0: if (f[fgLen-2]==0 && g[fgLen-2]==0 && f[fgLen-1]==0 && g[fgLen-1]==0) sl@0: fgLen-=2; sl@0: sl@0: if (Compare(f, g, fgLen)==-1) sl@0: { sl@0: TClassSwap(f,g); sl@0: TClassSwap(b,c); sl@0: s++; sl@0: } sl@0: sl@0: Subtract(f, f, g, fgLen); sl@0: sl@0: if (Add(b, b, c, bcLen)) sl@0: { sl@0: b[bcLen] = 1; sl@0: bcLen+=2; sl@0: assert(bcLen <= N); sl@0: } sl@0: } sl@0: } sl@0: sl@0: // R[N] - result = A/(2^k) mod M sl@0: // A[N] - input sl@0: // M[N] - modulus sl@0: sl@0: void DivideByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N) sl@0: { sl@0: CopyWords(R, A, N); sl@0: sl@0: while (k--) sl@0: { sl@0: if (R[0]%2==0) sl@0: ShiftWordsRightByBits(R, N, 1); sl@0: else sl@0: { sl@0: word carry = Add(R, R, M, N); sl@0: ShiftWordsRightByBits(R, N, 1); sl@0: R[N-1] += carry<<(WORD_BITS-1); sl@0: } sl@0: } sl@0: } sl@0: