sl@0: /* sl@0: ** 2001 September 15 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** Main file for the SQLite library. The routines in this file sl@0: ** implement the programmer interface to the library. Routines in sl@0: ** other files are for internal use by SQLite and should not be sl@0: ** accessed by users of the library. sl@0: ** sl@0: ** $Id: main.c,v 1.508 2008/10/12 00:27:53 shane Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: #include sl@0: sl@0: #ifdef SQLITE_ENABLE_FTS3 sl@0: # include "fts3.h" sl@0: #endif sl@0: #ifdef SQLITE_ENABLE_RTREE sl@0: # include "rtree.h" sl@0: #endif sl@0: #ifdef SQLITE_ENABLE_ICU sl@0: # include "sqliteicu.h" sl@0: #endif sl@0: sl@0: /* sl@0: ** The version of the library sl@0: */ sl@0: const char sqlite3_version[] = SQLITE_VERSION; sl@0: const char *sqlite3_libversion(void){ return sqlite3_version; } sl@0: int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } sl@0: int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } sl@0: sl@0: #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) sl@0: /* sl@0: ** If the following function pointer is not NULL and if sl@0: ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing sl@0: ** I/O active are written using this function. These messages sl@0: ** are intended for debugging activity only. sl@0: */ sl@0: void (*sqlite3IoTrace)(const char*, ...) = 0; sl@0: #endif sl@0: sl@0: /* sl@0: ** If the following global variable points to a string which is the sl@0: ** name of a directory, then that directory will be used to store sl@0: ** temporary files. sl@0: ** sl@0: ** See also the "PRAGMA temp_store_directory" SQL command. sl@0: */ sl@0: char *sqlite3_temp_directory = 0; sl@0: sl@0: /* sl@0: ** Initialize SQLite. sl@0: ** sl@0: ** This routine must be called to initialize the memory allocation, sl@0: ** VFS, and mutex subsystems prior to doing any serious work with sl@0: ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT sl@0: ** this routine will be called automatically by key routines such as sl@0: ** sqlite3_open(). sl@0: ** sl@0: ** This routine is a no-op except on its very first call for the process, sl@0: ** or for the first call after a call to sqlite3_shutdown. sl@0: ** sl@0: ** The first thread to call this routine runs the initialization to sl@0: ** completion. If subsequent threads call this routine before the first sl@0: ** thread has finished the initialization process, then the subsequent sl@0: ** threads must block until the first thread finishes with the initialization. sl@0: ** sl@0: ** The first thread might call this routine recursively. Recursive sl@0: ** calls to this routine should not block, of course. Otherwise the sl@0: ** initialization process would never complete. sl@0: ** sl@0: ** Let X be the first thread to enter this routine. Let Y be some other sl@0: ** thread. Then while the initial invocation of this routine by X is sl@0: ** incomplete, it is required that: sl@0: ** sl@0: ** * Calls to this routine from Y must block until the outer-most sl@0: ** call by X completes. sl@0: ** sl@0: ** * Recursive calls to this routine from thread X return immediately sl@0: ** without blocking. sl@0: */ sl@0: int sqlite3_initialize(void){ sl@0: sqlite3_mutex *pMaster; /* The main static mutex */ sl@0: int rc; /* Result code */ sl@0: sl@0: #ifdef SQLITE_OMIT_WSD sl@0: rc = sqlite3_wsd_init(4096, 24); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: #endif sl@0: sl@0: /* If SQLite is already completely initialized, then this call sl@0: ** to sqlite3_initialize() should be a no-op. But the initialization sl@0: ** must be complete. So isInit must not be set until the very end sl@0: ** of this routine. sl@0: */ sl@0: if( sqlite3GlobalConfig.isInit ) return SQLITE_OK; sl@0: sl@0: /* Make sure the mutex subsystem is initialized. If unable to sl@0: ** initialize the mutex subsystem, return early with the error. sl@0: ** If the system is so sick that we are unable to allocate a mutex, sl@0: ** there is not much SQLite is going to be able to do. sl@0: ** sl@0: ** The mutex subsystem must take care of serializing its own sl@0: ** initialization. sl@0: */ sl@0: rc = sqlite3MutexInit(); sl@0: if( rc ) return rc; sl@0: sl@0: /* Initialize the malloc() system and the recursive pInitMutex mutex. sl@0: ** This operation is protected by the STATIC_MASTER mutex. Note that sl@0: ** MutexAlloc() is called for a static mutex prior to initializing the sl@0: ** malloc subsystem - this implies that the allocation of a static sl@0: ** mutex must not require support from the malloc subsystem. sl@0: */ sl@0: pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); sl@0: sqlite3_mutex_enter(pMaster); sl@0: if( !sqlite3GlobalConfig.isMallocInit ){ sl@0: rc = sqlite3MallocInit(); sl@0: } sl@0: if( rc==SQLITE_OK ){ sl@0: sqlite3GlobalConfig.isMallocInit = 1; sl@0: if( !sqlite3GlobalConfig.pInitMutex ){ sl@0: sqlite3GlobalConfig.pInitMutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); sl@0: if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ sl@0: rc = SQLITE_NOMEM; sl@0: } sl@0: } sl@0: } sl@0: if( rc==SQLITE_OK ){ sl@0: sqlite3GlobalConfig.nRefInitMutex++; sl@0: } sl@0: sqlite3_mutex_leave(pMaster); sl@0: sl@0: /* If unable to initialize the malloc subsystem, then return early. sl@0: ** There is little hope of getting SQLite to run if the malloc sl@0: ** subsystem cannot be initialized. sl@0: */ sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: sl@0: /* Do the rest of the initialization under the recursive mutex so sl@0: ** that we will be able to handle recursive calls into sl@0: ** sqlite3_initialize(). The recursive calls normally come through sl@0: ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other sl@0: ** recursive calls might also be possible. sl@0: */ sl@0: sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); sl@0: if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ sl@0: FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); sl@0: sqlite3GlobalConfig.inProgress = 1; sl@0: memset(pHash, 0, sizeof(sqlite3GlobalFunctions)); sl@0: sqlite3RegisterGlobalFunctions(); sl@0: rc = sqlite3_os_init(); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3PcacheInitialize(); sl@0: sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, sl@0: sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); sl@0: } sl@0: sqlite3GlobalConfig.inProgress = 0; sl@0: sqlite3GlobalConfig.isInit = (rc==SQLITE_OK ? 1 : 0); sl@0: } sl@0: sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); sl@0: sl@0: /* Go back under the static mutex and clean up the recursive sl@0: ** mutex to prevent a resource leak. sl@0: */ sl@0: sqlite3_mutex_enter(pMaster); sl@0: sqlite3GlobalConfig.nRefInitMutex--; sl@0: if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ sl@0: assert( sqlite3GlobalConfig.nRefInitMutex==0 ); sl@0: sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); sl@0: sqlite3GlobalConfig.pInitMutex = 0; sl@0: } sl@0: sqlite3_mutex_leave(pMaster); sl@0: sl@0: /* The following is just a sanity check to make sure SQLite has sl@0: ** been compiled correctly. It is important to run this code, but sl@0: ** we don't want to run it too often and soak up CPU cycles for no sl@0: ** reason. So we run it once during initialization. sl@0: */ sl@0: #ifndef NDEBUG sl@0: /* This section of code's only "output" is via assert() statements. */ sl@0: if ( rc==SQLITE_OK ){ sl@0: u64 x = (((u64)1)<<63)-1; sl@0: double y; sl@0: assert(sizeof(x)==8); sl@0: assert(sizeof(x)==sizeof(y)); sl@0: memcpy(&y, &x, 8); sl@0: assert( sqlite3IsNaN(y) ); sl@0: } sl@0: #endif sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Undo the effects of sqlite3_initialize(). Must not be called while sl@0: ** there are outstanding database connections or memory allocations or sl@0: ** while any part of SQLite is otherwise in use in any thread. This sl@0: ** routine is not threadsafe. Not by a long shot. sl@0: */ sl@0: int sqlite3_shutdown(void){ sl@0: sqlite3GlobalConfig.isMallocInit = 0; sl@0: sqlite3PcacheShutdown(); sl@0: if( sqlite3GlobalConfig.isInit ){ sl@0: sqlite3_os_end(); sl@0: } sl@0: sqlite3MallocEnd(); sl@0: sqlite3MutexEnd(); sl@0: sqlite3GlobalConfig.isInit = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** This API allows applications to modify the global configuration of sl@0: ** the SQLite library at run-time. sl@0: ** sl@0: ** This routine should only be called when there are no outstanding sl@0: ** database connections or memory allocations. This routine is not sl@0: ** threadsafe. Failure to heed these warnings can lead to unpredictable sl@0: ** behavior. sl@0: */ sl@0: int sqlite3_config(int op, ...){ sl@0: va_list ap; sl@0: int rc = SQLITE_OK; sl@0: sl@0: /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while sl@0: ** the SQLite library is in use. */ sl@0: if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE; sl@0: sl@0: va_start(ap, op); sl@0: switch( op ){ sl@0: sl@0: /* Mutex configuration options are only available in a threadsafe sl@0: ** compile. sl@0: */ sl@0: #if SQLITE_THREADSAFE sl@0: case SQLITE_CONFIG_SINGLETHREAD: { sl@0: /* Disable all mutexing */ sl@0: sqlite3GlobalConfig.bCoreMutex = 0; sl@0: sqlite3GlobalConfig.bFullMutex = 0; sl@0: break; sl@0: } sl@0: case SQLITE_CONFIG_MULTITHREAD: { sl@0: /* Disable mutexing of database connections */ sl@0: /* Enable mutexing of core data structures */ sl@0: sqlite3GlobalConfig.bCoreMutex = 1; sl@0: sqlite3GlobalConfig.bFullMutex = 0; sl@0: break; sl@0: } sl@0: case SQLITE_CONFIG_SERIALIZED: { sl@0: /* Enable all mutexing */ sl@0: sqlite3GlobalConfig.bCoreMutex = 1; sl@0: sqlite3GlobalConfig.bFullMutex = 1; sl@0: break; sl@0: } sl@0: case SQLITE_CONFIG_MUTEX: { sl@0: /* Specify an alternative mutex implementation */ sl@0: sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); sl@0: break; sl@0: } sl@0: case SQLITE_CONFIG_GETMUTEX: { sl@0: /* Retrieve the current mutex implementation */ sl@0: *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; sl@0: break; sl@0: } sl@0: #endif sl@0: sl@0: sl@0: case SQLITE_CONFIG_MALLOC: { sl@0: /* Specify an alternative malloc implementation */ sl@0: sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); sl@0: break; sl@0: } sl@0: case SQLITE_CONFIG_GETMALLOC: { sl@0: /* Retrieve the current malloc() implementation */ sl@0: if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); sl@0: *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; sl@0: break; sl@0: } sl@0: case SQLITE_CONFIG_MEMSTATUS: { sl@0: /* Enable or disable the malloc status collection */ sl@0: sqlite3GlobalConfig.bMemstat = va_arg(ap, int); sl@0: break; sl@0: } sl@0: case SQLITE_CONFIG_SCRATCH: { sl@0: /* Designate a buffer for scratch memory space */ sl@0: sqlite3GlobalConfig.pScratch = va_arg(ap, void*); sl@0: sqlite3GlobalConfig.szScratch = va_arg(ap, int); sl@0: sqlite3GlobalConfig.nScratch = va_arg(ap, int); sl@0: break; sl@0: } sl@0: case SQLITE_CONFIG_PAGECACHE: { sl@0: /* Designate a buffer for scratch memory space */ sl@0: sqlite3GlobalConfig.pPage = va_arg(ap, void*); sl@0: sqlite3GlobalConfig.szPage = va_arg(ap, int); sl@0: sqlite3GlobalConfig.nPage = va_arg(ap, int); sl@0: break; sl@0: } sl@0: sl@0: #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) sl@0: case SQLITE_CONFIG_HEAP: { sl@0: /* Designate a buffer for heap memory space */ sl@0: sqlite3GlobalConfig.pHeap = va_arg(ap, void*); sl@0: sqlite3GlobalConfig.nHeap = va_arg(ap, int); sl@0: sqlite3GlobalConfig.mnReq = va_arg(ap, int); sl@0: sl@0: if( sqlite3GlobalConfig.pHeap==0 ){ sl@0: /* If the heap pointer is NULL, then restore the malloc implementation sl@0: ** back to NULL pointers too. This will cause the malloc to go sl@0: ** back to its default implementation when sqlite3_initialize() is sl@0: ** run. sl@0: */ sl@0: memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); sl@0: }else{ sl@0: /* The heap pointer is not NULL, then install one of the sl@0: ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor sl@0: ** ENABLE_MEMSYS5 is defined, return an error. sl@0: ** the default case and return an error. sl@0: */ sl@0: #ifdef SQLITE_ENABLE_MEMSYS3 sl@0: sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); sl@0: #endif sl@0: #ifdef SQLITE_ENABLE_MEMSYS5 sl@0: sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); sl@0: #endif sl@0: } sl@0: break; sl@0: } sl@0: #endif sl@0: sl@0: #if defined(SQLITE_ENABLE_MEMSYS6) sl@0: case SQLITE_CONFIG_CHUNKALLOC: { sl@0: sqlite3GlobalConfig.nSmall = va_arg(ap, int); sl@0: sqlite3GlobalConfig.m = *sqlite3MemGetMemsys6(); sl@0: break; sl@0: } sl@0: #endif sl@0: sl@0: case SQLITE_CONFIG_LOOKASIDE: { sl@0: sqlite3GlobalConfig.szLookaside = va_arg(ap, int); sl@0: sqlite3GlobalConfig.nLookaside = va_arg(ap, int); sl@0: break; sl@0: } sl@0: sl@0: default: { sl@0: rc = SQLITE_ERROR; sl@0: break; sl@0: } sl@0: } sl@0: va_end(ap); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Set up the lookaside buffers for a database connection. sl@0: ** Return SQLITE_OK on success. sl@0: ** If lookaside is already active, return SQLITE_BUSY. sl@0: ** sl@0: ** The sz parameter is the number of bytes in each lookaside slot. sl@0: ** The cnt parameter is the number of slots. If pStart is NULL the sl@0: ** space for the lookaside memory is obtained from sqlite3_malloc(). sl@0: ** If pStart is not NULL then it is sz*cnt bytes of memory to use for sl@0: ** the lookaside memory. sl@0: */ sl@0: static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ sl@0: void *pStart; sl@0: if( db->lookaside.nOut ){ sl@0: return SQLITE_BUSY; sl@0: } sl@0: if( sz<0 ) sz = 0; sl@0: if( cnt<0 ) cnt = 0; sl@0: if( pBuf==0 ){ sl@0: sz = (sz + 7)&~7; sl@0: sqlite3BeginBenignMalloc(); sl@0: pStart = sqlite3Malloc( sz*cnt ); sl@0: sqlite3EndBenignMalloc(); sl@0: }else{ sl@0: sz = sz&~7; sl@0: pStart = pBuf; sl@0: } sl@0: if( db->lookaside.bMalloced ){ sl@0: sqlite3_free(db->lookaside.pStart); sl@0: } sl@0: db->lookaside.pStart = pStart; sl@0: db->lookaside.pFree = 0; sl@0: db->lookaside.sz = sz; sl@0: db->lookaside.bMalloced = pBuf==0; sl@0: if( pStart ){ sl@0: int i; sl@0: LookasideSlot *p; sl@0: p = (LookasideSlot*)pStart; sl@0: for(i=cnt-1; i>=0; i--){ sl@0: p->pNext = db->lookaside.pFree; sl@0: db->lookaside.pFree = p; sl@0: p = (LookasideSlot*)&((u8*)p)[sz]; sl@0: } sl@0: db->lookaside.pEnd = p; sl@0: db->lookaside.bEnabled = 1; sl@0: }else{ sl@0: db->lookaside.pEnd = 0; sl@0: db->lookaside.bEnabled = 0; sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Configuration settings for an individual database connection sl@0: */ sl@0: int sqlite3_db_config(sqlite3 *db, int op, ...){ sl@0: va_list ap; sl@0: int rc; sl@0: va_start(ap, op); sl@0: switch( op ){ sl@0: case SQLITE_DBCONFIG_LOOKASIDE: { sl@0: void *pBuf = va_arg(ap, void*); sl@0: int sz = va_arg(ap, int); sl@0: int cnt = va_arg(ap, int); sl@0: rc = setupLookaside(db, pBuf, sz, cnt); sl@0: break; sl@0: } sl@0: default: { sl@0: rc = SQLITE_ERROR; sl@0: break; sl@0: } sl@0: } sl@0: va_end(ap); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Routine needed to support the testcase() macro. sl@0: */ sl@0: #ifdef SQLITE_COVERAGE_TEST sl@0: void sqlite3Coverage(int x){ sl@0: static int dummy = 0; sl@0: dummy += x; sl@0: } sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** Return true if the buffer z[0..n-1] contains all spaces. sl@0: */ sl@0: static int allSpaces(const char *z, int n){ sl@0: while( n>0 && z[n-1]==' ' ){ n--; } sl@0: return n==0; sl@0: } sl@0: sl@0: /* sl@0: ** This is the default collating function named "BINARY" which is always sl@0: ** available. sl@0: ** sl@0: ** If the padFlag argument is not NULL then space padding at the end sl@0: ** of strings is ignored. This implements the RTRIM collation. sl@0: */ sl@0: static int binCollFunc( sl@0: void *padFlag, sl@0: int nKey1, const void *pKey1, sl@0: int nKey2, const void *pKey2 sl@0: ){ sl@0: int rc, n; sl@0: n = nKey1lastRowid; sl@0: } sl@0: sl@0: /* sl@0: ** Return the number of changes in the most recent call to sqlite3_exec(). sl@0: */ sl@0: int sqlite3_changes(sqlite3 *db){ sl@0: return db->nChange; sl@0: } sl@0: sl@0: /* sl@0: ** Return the number of changes since the database handle was opened. sl@0: */ sl@0: int sqlite3_total_changes(sqlite3 *db){ sl@0: return db->nTotalChange; sl@0: } sl@0: sl@0: /* sl@0: ** Close an existing SQLite database sl@0: */ sl@0: int sqlite3_close(sqlite3 *db){ sl@0: HashElem *i; sl@0: int j; sl@0: sl@0: if( !db ){ sl@0: return SQLITE_OK; sl@0: } sl@0: if( !sqlite3SafetyCheckSickOrOk(db) ){ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: sqlite3_mutex_enter(db->mutex); sl@0: sl@0: #ifdef SQLITE_SSE sl@0: { sl@0: extern void sqlite3SseCleanup(sqlite3*); sl@0: sqlite3SseCleanup(db); sl@0: } sl@0: #endif sl@0: sl@0: sqlite3ResetInternalSchema(db, 0); sl@0: sl@0: /* If a transaction is open, the ResetInternalSchema() call above sl@0: ** will not have called the xDisconnect() method on any virtual sl@0: ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() sl@0: ** call will do so. We need to do this before the check for active sl@0: ** SQL statements below, as the v-table implementation may be storing sl@0: ** some prepared statements internally. sl@0: */ sl@0: sqlite3VtabRollback(db); sl@0: sl@0: /* If there are any outstanding VMs, return SQLITE_BUSY. */ sl@0: if( db->pVdbe ){ sl@0: sqlite3Error(db, SQLITE_BUSY, sl@0: "Unable to close due to unfinalised statements"); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return SQLITE_BUSY; sl@0: } sl@0: assert( sqlite3SafetyCheckSickOrOk(db) ); sl@0: sl@0: for(j=0; jnDb; j++){ sl@0: struct Db *pDb = &db->aDb[j]; sl@0: if( pDb->pBt ){ sl@0: sqlite3BtreeClose(pDb->pBt); sl@0: pDb->pBt = 0; sl@0: if( j!=1 ){ sl@0: pDb->pSchema = 0; sl@0: } sl@0: } sl@0: } sl@0: sqlite3ResetInternalSchema(db, 0); sl@0: assert( db->nDb<=2 ); sl@0: assert( db->aDb==db->aDbStatic ); sl@0: for(j=0; jaFunc.a); j++){ sl@0: FuncDef *pNext, *pHash, *p; sl@0: for(p=db->aFunc.a[j]; p; p=pHash){ sl@0: pHash = p->pHash; sl@0: while( p ){ sl@0: pNext = p->pNext; sl@0: sqlite3DbFree(db, p); sl@0: p = pNext; sl@0: } sl@0: } sl@0: } sl@0: for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ sl@0: CollSeq *pColl = (CollSeq *)sqliteHashData(i); sl@0: /* Invoke any destructors registered for collation sequence user data. */ sl@0: for(j=0; j<3; j++){ sl@0: if( pColl[j].xDel ){ sl@0: pColl[j].xDel(pColl[j].pUser); sl@0: } sl@0: } sl@0: sqlite3DbFree(db, pColl); sl@0: } sl@0: sqlite3HashClear(&db->aCollSeq); sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ sl@0: Module *pMod = (Module *)sqliteHashData(i); sl@0: if( pMod->xDestroy ){ sl@0: pMod->xDestroy(pMod->pAux); sl@0: } sl@0: sqlite3DbFree(db, pMod); sl@0: } sl@0: sqlite3HashClear(&db->aModule); sl@0: #endif sl@0: sl@0: sqlite3Error(db, SQLITE_OK, 0); /* Deallocates any cached error strings. */ sl@0: if( db->pErr ){ sl@0: sqlite3ValueFree(db->pErr); sl@0: } sl@0: sqlite3CloseExtensions(db); sl@0: sl@0: db->magic = SQLITE_MAGIC_ERROR; sl@0: sl@0: /* The temp-database schema is allocated differently from the other schema sl@0: ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). sl@0: ** So it needs to be freed here. Todo: Why not roll the temp schema into sl@0: ** the same sqliteMalloc() as the one that allocates the database sl@0: ** structure? sl@0: */ sl@0: sqlite3DbFree(db, db->aDb[1].pSchema); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: db->magic = SQLITE_MAGIC_CLOSED; sl@0: sqlite3_mutex_free(db->mutex); sl@0: assert( db->lookaside.nOut==0 ); /* Fails on a lookaside memory leak */ sl@0: if( db->lookaside.bMalloced ){ sl@0: sqlite3_free(db->lookaside.pStart); sl@0: } sl@0: sqlite3_free(db); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Rollback all database files. sl@0: */ sl@0: void sqlite3RollbackAll(sqlite3 *db){ sl@0: int i; sl@0: int inTrans = 0; sl@0: assert( sqlite3_mutex_held(db->mutex) ); sl@0: sqlite3BeginBenignMalloc(); sl@0: for(i=0; inDb; i++){ sl@0: if( db->aDb[i].pBt ){ sl@0: if( sqlite3BtreeIsInTrans(db->aDb[i].pBt) ){ sl@0: inTrans = 1; sl@0: } sl@0: sqlite3BtreeRollback(db->aDb[i].pBt); sl@0: db->aDb[i].inTrans = 0; sl@0: } sl@0: } sl@0: sqlite3VtabRollback(db); sl@0: sqlite3EndBenignMalloc(); sl@0: sl@0: if( db->flags&SQLITE_InternChanges ){ sl@0: sqlite3ExpirePreparedStatements(db); sl@0: sqlite3ResetInternalSchema(db, 0); sl@0: } sl@0: sl@0: /* If one has been configured, invoke the rollback-hook callback */ sl@0: if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ sl@0: db->xRollbackCallback(db->pRollbackArg); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Return a static string that describes the kind of error specified in the sl@0: ** argument. sl@0: */ sl@0: const char *sqlite3ErrStr(int rc){ sl@0: const char *z; sl@0: switch( rc & 0xff ){ sl@0: case SQLITE_ROW: sl@0: case SQLITE_DONE: sl@0: case SQLITE_OK: z = "not an error"; break; sl@0: case SQLITE_ERROR: z = "SQL logic error or missing database"; break; sl@0: case SQLITE_PERM: z = "access permission denied"; break; sl@0: case SQLITE_ABORT: z = "callback requested query abort"; break; sl@0: case SQLITE_BUSY: z = "database is locked"; break; sl@0: case SQLITE_LOCKED: z = "database table is locked"; break; sl@0: case SQLITE_NOMEM: z = "out of memory"; break; sl@0: case SQLITE_READONLY: z = "attempt to write a readonly database"; break; sl@0: case SQLITE_INTERRUPT: z = "interrupted"; break; sl@0: case SQLITE_IOERR: z = "disk I/O error"; break; sl@0: case SQLITE_CORRUPT: z = "database disk image is malformed"; break; sl@0: case SQLITE_FULL: z = "database or disk is full"; break; sl@0: case SQLITE_CANTOPEN: z = "unable to open database file"; break; sl@0: case SQLITE_EMPTY: z = "table contains no data"; break; sl@0: case SQLITE_SCHEMA: z = "database schema has changed"; break; sl@0: case SQLITE_TOOBIG: z = "String or BLOB exceeded size limit"; break; sl@0: case SQLITE_CONSTRAINT: z = "constraint failed"; break; sl@0: case SQLITE_MISMATCH: z = "datatype mismatch"; break; sl@0: case SQLITE_MISUSE: z = "library routine called out of sequence";break; sl@0: case SQLITE_NOLFS: z = "large file support is disabled"; break; sl@0: case SQLITE_AUTH: z = "authorization denied"; break; sl@0: case SQLITE_FORMAT: z = "auxiliary database format error"; break; sl@0: case SQLITE_RANGE: z = "bind or column index out of range"; break; sl@0: case SQLITE_NOTADB: z = "file is encrypted or is not a database";break; sl@0: default: z = "unknown error"; break; sl@0: } sl@0: return z; sl@0: } sl@0: sl@0: /* sl@0: ** This routine implements a busy callback that sleeps and tries sl@0: ** again until a timeout value is reached. The timeout value is sl@0: ** an integer number of milliseconds passed in as the first sl@0: ** argument. sl@0: */ sl@0: static int sqliteDefaultBusyCallback( sl@0: void *ptr, /* Database connection */ sl@0: int count /* Number of times table has been busy */ sl@0: ){ sl@0: #if SQLITE_OS_WIN || (defined(HAVE_USLEEP) && HAVE_USLEEP) sl@0: static const u8 delays[] = sl@0: { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; sl@0: static const u8 totals[] = sl@0: { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; sl@0: # define NDELAY (sizeof(delays)/sizeof(delays[0])) sl@0: sqlite3 *db = (sqlite3 *)ptr; sl@0: int timeout = db->busyTimeout; sl@0: int delay, prior; sl@0: sl@0: assert( count>=0 ); sl@0: if( count < NDELAY ){ sl@0: delay = delays[count]; sl@0: prior = totals[count]; sl@0: }else{ sl@0: delay = delays[NDELAY-1]; sl@0: prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); sl@0: } sl@0: if( prior + delay > timeout ){ sl@0: delay = timeout - prior; sl@0: if( delay<=0 ) return 0; sl@0: } sl@0: sqlite3OsSleep(db->pVfs, delay*1000); sl@0: return 1; sl@0: #else sl@0: sqlite3 *db = (sqlite3 *)ptr; sl@0: int timeout = ((sqlite3 *)ptr)->busyTimeout; sl@0: if( (count+1)*1000 > timeout ){ sl@0: return 0; sl@0: } sl@0: sqlite3OsSleep(db->pVfs, 1000000); sl@0: return 1; sl@0: #endif sl@0: } sl@0: sl@0: /* sl@0: ** Invoke the given busy handler. sl@0: ** sl@0: ** This routine is called when an operation failed with a lock. sl@0: ** If this routine returns non-zero, the lock is retried. If it sl@0: ** returns 0, the operation aborts with an SQLITE_BUSY error. sl@0: */ sl@0: int sqlite3InvokeBusyHandler(BusyHandler *p){ sl@0: int rc; sl@0: if( NEVER(p==0) || p->xFunc==0 || p->nBusy<0 ) return 0; sl@0: rc = p->xFunc(p->pArg, p->nBusy); sl@0: if( rc==0 ){ sl@0: p->nBusy = -1; sl@0: }else{ sl@0: p->nBusy++; sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** This routine sets the busy callback for an Sqlite database to the sl@0: ** given callback function with the given argument. sl@0: */ sl@0: int sqlite3_busy_handler( sl@0: sqlite3 *db, sl@0: int (*xBusy)(void*,int), sl@0: void *pArg sl@0: ){ sl@0: sqlite3_mutex_enter(db->mutex); sl@0: db->busyHandler.xFunc = xBusy; sl@0: db->busyHandler.pArg = pArg; sl@0: db->busyHandler.nBusy = 0; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_PROGRESS_CALLBACK sl@0: /* sl@0: ** This routine sets the progress callback for an Sqlite database to the sl@0: ** given callback function with the given argument. The progress callback will sl@0: ** be invoked every nOps opcodes. sl@0: */ sl@0: void sqlite3_progress_handler( sl@0: sqlite3 *db, sl@0: int nOps, sl@0: int (*xProgress)(void*), sl@0: void *pArg sl@0: ){ sl@0: sqlite3_mutex_enter(db->mutex); sl@0: if( nOps>0 ){ sl@0: db->xProgress = xProgress; sl@0: db->nProgressOps = nOps; sl@0: db->pProgressArg = pArg; sl@0: }else{ sl@0: db->xProgress = 0; sl@0: db->nProgressOps = 0; sl@0: db->pProgressArg = 0; sl@0: } sl@0: sqlite3_mutex_leave(db->mutex); sl@0: } sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** This routine installs a default busy handler that waits for the sl@0: ** specified number of milliseconds before returning 0. sl@0: */ sl@0: int sqlite3_busy_timeout(sqlite3 *db, int ms){ sl@0: if( ms>0 ){ sl@0: db->busyTimeout = ms; sl@0: sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db); sl@0: }else{ sl@0: sqlite3_busy_handler(db, 0, 0); sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Cause any pending operation to stop at its earliest opportunity. sl@0: */ sl@0: void sqlite3_interrupt(sqlite3 *db){ sl@0: db->u1.isInterrupted = 1; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** This function is exactly the same as sqlite3_create_function(), except sl@0: ** that it is designed to be called by internal code. The difference is sl@0: ** that if a malloc() fails in sqlite3_create_function(), an error code sl@0: ** is returned and the mallocFailed flag cleared. sl@0: */ sl@0: int sqlite3CreateFunc( sl@0: sqlite3 *db, sl@0: const char *zFunctionName, sl@0: int nArg, sl@0: int enc, sl@0: void *pUserData, sl@0: void (*xFunc)(sqlite3_context*,int,sqlite3_value **), sl@0: void (*xStep)(sqlite3_context*,int,sqlite3_value **), sl@0: void (*xFinal)(sqlite3_context*) sl@0: ){ sl@0: FuncDef *p; sl@0: int nName; sl@0: sl@0: assert( sqlite3_mutex_held(db->mutex) ); sl@0: if( zFunctionName==0 || sl@0: (xFunc && (xFinal || xStep)) || sl@0: (!xFunc && (xFinal && !xStep)) || sl@0: (!xFunc && (!xFinal && xStep)) || sl@0: (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) || sl@0: (255<(nName = sqlite3Strlen(db, zFunctionName))) ){ sl@0: sqlite3Error(db, SQLITE_ERROR, "bad parameters"); sl@0: return SQLITE_ERROR; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: /* If SQLITE_UTF16 is specified as the encoding type, transform this sl@0: ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the sl@0: ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. sl@0: ** sl@0: ** If SQLITE_ANY is specified, add three versions of the function sl@0: ** to the hash table. sl@0: */ sl@0: if( enc==SQLITE_UTF16 ){ sl@0: enc = SQLITE_UTF16NATIVE; sl@0: }else if( enc==SQLITE_ANY ){ sl@0: int rc; sl@0: rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF8, sl@0: pUserData, xFunc, xStep, xFinal); sl@0: if( rc==SQLITE_OK ){ sl@0: rc = sqlite3CreateFunc(db, zFunctionName, nArg, SQLITE_UTF16LE, sl@0: pUserData, xFunc, xStep, xFinal); sl@0: } sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: enc = SQLITE_UTF16BE; sl@0: } sl@0: #else sl@0: enc = SQLITE_UTF8; sl@0: #endif sl@0: sl@0: /* Check if an existing function is being overridden or deleted. If so, sl@0: ** and there are active VMs, then return SQLITE_BUSY. If a function sl@0: ** is being overridden/deleted but there are no active VMs, allow the sl@0: ** operation to continue but invalidate all precompiled statements. sl@0: */ sl@0: p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 0); sl@0: if( p && p->iPrefEnc==enc && p->nArg==nArg ){ sl@0: if( db->activeVdbeCnt ){ sl@0: sqlite3Error(db, SQLITE_BUSY, sl@0: "Unable to delete/modify user-function due to active statements"); sl@0: assert( !db->mallocFailed ); sl@0: return SQLITE_BUSY; sl@0: }else{ sl@0: sqlite3ExpirePreparedStatements(db); sl@0: } sl@0: } sl@0: sl@0: p = sqlite3FindFunction(db, zFunctionName, nName, nArg, enc, 1); sl@0: assert(p || db->mallocFailed); sl@0: if( !p ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: p->flags = 0; sl@0: p->xFunc = xFunc; sl@0: p->xStep = xStep; sl@0: p->xFinalize = xFinal; sl@0: p->pUserData = pUserData; sl@0: p->nArg = nArg; sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Create new user functions. sl@0: */ sl@0: int sqlite3_create_function( sl@0: sqlite3 *db, sl@0: const char *zFunctionName, sl@0: int nArg, sl@0: int enc, sl@0: void *p, sl@0: void (*xFunc)(sqlite3_context*,int,sqlite3_value **), sl@0: void (*xStep)(sqlite3_context*,int,sqlite3_value **), sl@0: void (*xFinal)(sqlite3_context*) sl@0: ){ sl@0: int rc; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: rc = sqlite3CreateFunc(db, zFunctionName, nArg, enc, p, xFunc, xStep, xFinal); sl@0: rc = sqlite3ApiExit(db, rc); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return rc; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: int sqlite3_create_function16( sl@0: sqlite3 *db, sl@0: const void *zFunctionName, sl@0: int nArg, sl@0: int eTextRep, sl@0: void *p, sl@0: void (*xFunc)(sqlite3_context*,int,sqlite3_value**), sl@0: void (*xStep)(sqlite3_context*,int,sqlite3_value**), sl@0: void (*xFinal)(sqlite3_context*) sl@0: ){ sl@0: int rc; sl@0: char *zFunc8; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: assert( !db->mallocFailed ); sl@0: zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1); sl@0: rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal); sl@0: sqlite3DbFree(db, zFunc8); sl@0: rc = sqlite3ApiExit(db, rc); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return rc; sl@0: } sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** Declare that a function has been overloaded by a virtual table. sl@0: ** sl@0: ** If the function already exists as a regular global function, then sl@0: ** this routine is a no-op. If the function does not exist, then create sl@0: ** a new one that always throws a run-time error. sl@0: ** sl@0: ** When virtual tables intend to provide an overloaded function, they sl@0: ** should call this routine to make sure the global function exists. sl@0: ** A global function must exist in order for name resolution to work sl@0: ** properly. sl@0: */ sl@0: int sqlite3_overload_function( sl@0: sqlite3 *db, sl@0: const char *zName, sl@0: int nArg sl@0: ){ sl@0: int nName = sqlite3Strlen(db, zName); sl@0: int rc; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){ sl@0: sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8, sl@0: 0, sqlite3InvalidFunction, 0, 0); sl@0: } sl@0: rc = sqlite3ApiExit(db, SQLITE_OK); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return rc; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_TRACE sl@0: /* sl@0: ** Register a trace function. The pArg from the previously registered trace sl@0: ** is returned. sl@0: ** sl@0: ** A NULL trace function means that no tracing is executes. A non-NULL sl@0: ** trace is a pointer to a function that is invoked at the start of each sl@0: ** SQL statement. sl@0: */ sl@0: void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){ sl@0: void *pOld; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: pOld = db->pTraceArg; sl@0: db->xTrace = xTrace; sl@0: db->pTraceArg = pArg; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return pOld; sl@0: } sl@0: /* sl@0: ** Register a profile function. The pArg from the previously registered sl@0: ** profile function is returned. sl@0: ** sl@0: ** A NULL profile function means that no profiling is executes. A non-NULL sl@0: ** profile is a pointer to a function that is invoked at the conclusion of sl@0: ** each SQL statement that is run. sl@0: */ sl@0: void *sqlite3_profile( sl@0: sqlite3 *db, sl@0: void (*xProfile)(void*,const char*,sqlite_uint64), sl@0: void *pArg sl@0: ){ sl@0: void *pOld; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: pOld = db->pProfileArg; sl@0: db->xProfile = xProfile; sl@0: db->pProfileArg = pArg; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return pOld; sl@0: } sl@0: #endif /* SQLITE_OMIT_TRACE */ sl@0: sl@0: /*** EXPERIMENTAL *** sl@0: ** sl@0: ** Register a function to be invoked when a transaction comments. sl@0: ** If the invoked function returns non-zero, then the commit becomes a sl@0: ** rollback. sl@0: */ sl@0: void *sqlite3_commit_hook( sl@0: sqlite3 *db, /* Attach the hook to this database */ sl@0: int (*xCallback)(void*), /* Function to invoke on each commit */ sl@0: void *pArg /* Argument to the function */ sl@0: ){ sl@0: void *pOld; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: pOld = db->pCommitArg; sl@0: db->xCommitCallback = xCallback; sl@0: db->pCommitArg = pArg; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return pOld; sl@0: } sl@0: sl@0: /* sl@0: ** Register a callback to be invoked each time a row is updated, sl@0: ** inserted or deleted using this database connection. sl@0: */ sl@0: void *sqlite3_update_hook( sl@0: sqlite3 *db, /* Attach the hook to this database */ sl@0: void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), sl@0: void *pArg /* Argument to the function */ sl@0: ){ sl@0: void *pRet; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: pRet = db->pUpdateArg; sl@0: db->xUpdateCallback = xCallback; sl@0: db->pUpdateArg = pArg; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return pRet; sl@0: } sl@0: sl@0: /* sl@0: ** Register a callback to be invoked each time a transaction is rolled sl@0: ** back by this database connection. sl@0: */ sl@0: void *sqlite3_rollback_hook( sl@0: sqlite3 *db, /* Attach the hook to this database */ sl@0: void (*xCallback)(void*), /* Callback function */ sl@0: void *pArg /* Argument to the function */ sl@0: ){ sl@0: void *pRet; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: pRet = db->pRollbackArg; sl@0: db->xRollbackCallback = xCallback; sl@0: db->pRollbackArg = pArg; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return pRet; sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called to create a connection to a database BTree sl@0: ** driver. If zFilename is the name of a file, then that file is sl@0: ** opened and used. If zFilename is the magic name ":memory:" then sl@0: ** the database is stored in memory (and is thus forgotten as soon as sl@0: ** the connection is closed.) If zFilename is NULL then the database sl@0: ** is a "virtual" database for transient use only and is deleted as sl@0: ** soon as the connection is closed. sl@0: ** sl@0: ** A virtual database can be either a disk file (that is automatically sl@0: ** deleted when the file is closed) or it an be held entirely in memory, sl@0: ** depending on the values of the SQLITE_TEMP_STORE compile-time macro and the sl@0: ** db->temp_store variable, according to the following chart: sl@0: ** sl@0: ** SQLITE_TEMP_STORE db->temp_store Location of temporary database sl@0: ** ----------------- -------------- ------------------------------ sl@0: ** 0 any file sl@0: ** 1 1 file sl@0: ** 1 2 memory sl@0: ** 1 0 file sl@0: ** 2 1 file sl@0: ** 2 2 memory sl@0: ** 2 0 memory sl@0: ** 3 any memory sl@0: */ sl@0: int sqlite3BtreeFactory( sl@0: const sqlite3 *db, /* Main database when opening aux otherwise 0 */ sl@0: const char *zFilename, /* Name of the file containing the BTree database */ sl@0: int omitJournal, /* if TRUE then do not journal this file */ sl@0: int nCache, /* How many pages in the page cache */ sl@0: int vfsFlags, /* Flags passed through to vfsOpen */ sl@0: Btree **ppBtree /* Pointer to new Btree object written here */ sl@0: ){ sl@0: int btFlags = 0; sl@0: int rc; sl@0: sl@0: assert( sqlite3_mutex_held(db->mutex) ); sl@0: assert( ppBtree != 0); sl@0: if( omitJournal ){ sl@0: btFlags |= BTREE_OMIT_JOURNAL; sl@0: } sl@0: if( db->flags & SQLITE_NoReadlock ){ sl@0: btFlags |= BTREE_NO_READLOCK; sl@0: } sl@0: if( zFilename==0 ){ sl@0: #if SQLITE_TEMP_STORE==0 sl@0: /* Do nothing */ sl@0: #endif sl@0: #ifndef SQLITE_OMIT_MEMORYDB sl@0: #if SQLITE_TEMP_STORE==1 sl@0: if( db->temp_store==2 ) zFilename = ":memory:"; sl@0: #endif sl@0: #if SQLITE_TEMP_STORE==2 sl@0: if( db->temp_store!=1 ) zFilename = ":memory:"; sl@0: #endif sl@0: #if SQLITE_TEMP_STORE==3 sl@0: zFilename = ":memory:"; sl@0: #endif sl@0: #endif /* SQLITE_OMIT_MEMORYDB */ sl@0: } sl@0: sl@0: if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (zFilename==0 || *zFilename==0) ){ sl@0: vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; sl@0: } sl@0: rc = sqlite3BtreeOpen(zFilename, (sqlite3 *)db, ppBtree, btFlags, vfsFlags); sl@0: sl@0: /* If the B-Tree was successfully opened, set the pager-cache size to the sl@0: ** default value. Except, if the call to BtreeOpen() returned a handle sl@0: ** open on an existing shared pager-cache, do not change the pager-cache sl@0: ** size. sl@0: */ sl@0: if( rc==SQLITE_OK && 0==sqlite3BtreeSchema(*ppBtree, 0, 0) ){ sl@0: sqlite3BtreeSetCacheSize(*ppBtree, nCache); sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Return UTF-8 encoded English language explanation of the most recent sl@0: ** error. sl@0: */ sl@0: const char *sqlite3_errmsg(sqlite3 *db){ sl@0: const char *z; sl@0: if( !db ){ sl@0: return sqlite3ErrStr(SQLITE_NOMEM); sl@0: } sl@0: if( !sqlite3SafetyCheckSickOrOk(db) ){ sl@0: return sqlite3ErrStr(SQLITE_MISUSE); sl@0: } sl@0: sqlite3_mutex_enter(db->mutex); sl@0: assert( !db->mallocFailed ); sl@0: z = (char*)sqlite3_value_text(db->pErr); sl@0: assert( !db->mallocFailed ); sl@0: if( z==0 ){ sl@0: z = sqlite3ErrStr(db->errCode); sl@0: } sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return z; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: /* sl@0: ** Return UTF-16 encoded English language explanation of the most recent sl@0: ** error. sl@0: */ sl@0: const void *sqlite3_errmsg16(sqlite3 *db){ sl@0: static const u16 outOfMem[] = { sl@0: 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 sl@0: }; sl@0: static const u16 misuse[] = { sl@0: 'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', sl@0: 'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', sl@0: 'c', 'a', 'l', 'l', 'e', 'd', ' ', sl@0: 'o', 'u', 't', ' ', sl@0: 'o', 'f', ' ', sl@0: 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', 0 sl@0: }; sl@0: sl@0: const void *z; sl@0: if( !db ){ sl@0: return (void *)outOfMem; sl@0: } sl@0: if( !sqlite3SafetyCheckSickOrOk(db) ){ sl@0: return (void *)misuse; sl@0: } sl@0: sqlite3_mutex_enter(db->mutex); sl@0: assert( !db->mallocFailed ); sl@0: z = sqlite3_value_text16(db->pErr); sl@0: if( z==0 ){ sl@0: sqlite3ValueSetStr(db->pErr, -1, sqlite3ErrStr(db->errCode), sl@0: SQLITE_UTF8, SQLITE_STATIC); sl@0: z = sqlite3_value_text16(db->pErr); sl@0: } sl@0: /* A malloc() may have failed within the call to sqlite3_value_text16() sl@0: ** above. If this is the case, then the db->mallocFailed flag needs to sl@0: ** be cleared before returning. Do this directly, instead of via sl@0: ** sqlite3ApiExit(), to avoid setting the database handle error message. sl@0: */ sl@0: db->mallocFailed = 0; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return z; sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: sl@0: /* sl@0: ** Return the most recent error code generated by an SQLite routine. If NULL is sl@0: ** passed to this function, we assume a malloc() failed during sqlite3_open(). sl@0: */ sl@0: int sqlite3_errcode(sqlite3 *db){ sl@0: if( db && !sqlite3SafetyCheckSickOrOk(db) ){ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: if( !db || db->mallocFailed ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: return db->errCode & db->errMask; sl@0: } sl@0: sl@0: /* sl@0: ** Create a new collating function for database "db". The name is zName sl@0: ** and the encoding is enc. sl@0: */ sl@0: static int createCollation( sl@0: sqlite3* db, sl@0: const char *zName, sl@0: int enc, sl@0: void* pCtx, sl@0: int(*xCompare)(void*,int,const void*,int,const void*), sl@0: void(*xDel)(void*) sl@0: ){ sl@0: CollSeq *pColl; sl@0: int enc2; sl@0: int nName; sl@0: sl@0: assert( sqlite3_mutex_held(db->mutex) ); sl@0: sl@0: /* If SQLITE_UTF16 is specified as the encoding type, transform this sl@0: ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the sl@0: ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. sl@0: */ sl@0: enc2 = enc & ~SQLITE_UTF16_ALIGNED; sl@0: if( enc2==SQLITE_UTF16 ){ sl@0: enc2 = SQLITE_UTF16NATIVE; sl@0: } sl@0: if( (enc2&~3)!=0 ){ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: sl@0: /* Check if this call is removing or replacing an existing collation sl@0: ** sequence. If so, and there are active VMs, return busy. If there sl@0: ** are no active VMs, invalidate any pre-compiled statements. sl@0: */ sl@0: nName = sqlite3Strlen(db, zName); sl@0: pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 0); sl@0: if( pColl && pColl->xCmp ){ sl@0: if( db->activeVdbeCnt ){ sl@0: sqlite3Error(db, SQLITE_BUSY, sl@0: "Unable to delete/modify collation sequence due to active statements"); sl@0: return SQLITE_BUSY; sl@0: } sl@0: sqlite3ExpirePreparedStatements(db); sl@0: sl@0: /* If collation sequence pColl was created directly by a call to sl@0: ** sqlite3_create_collation, and not generated by synthCollSeq(), sl@0: ** then any copies made by synthCollSeq() need to be invalidated. sl@0: ** Also, collation destructor - CollSeq.xDel() - function may need sl@0: ** to be called. sl@0: */ sl@0: if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ sl@0: CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName, nName); sl@0: int j; sl@0: for(j=0; j<3; j++){ sl@0: CollSeq *p = &aColl[j]; sl@0: if( p->enc==pColl->enc ){ sl@0: if( p->xDel ){ sl@0: p->xDel(p->pUser); sl@0: } sl@0: p->xCmp = 0; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, nName, 1); sl@0: if( pColl ){ sl@0: pColl->xCmp = xCompare; sl@0: pColl->pUser = pCtx; sl@0: pColl->xDel = xDel; sl@0: pColl->enc = enc2 | (enc & SQLITE_UTF16_ALIGNED); sl@0: } sl@0: sqlite3Error(db, SQLITE_OK, 0); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** This array defines hard upper bounds on limit values. The sl@0: ** initializer must be kept in sync with the SQLITE_LIMIT_* sl@0: ** #defines in sqlite3.h. sl@0: */ sl@0: static const int aHardLimit[] = { sl@0: SQLITE_MAX_LENGTH, sl@0: SQLITE_MAX_SQL_LENGTH, sl@0: SQLITE_MAX_COLUMN, sl@0: SQLITE_MAX_EXPR_DEPTH, sl@0: SQLITE_MAX_COMPOUND_SELECT, sl@0: SQLITE_MAX_VDBE_OP, sl@0: SQLITE_MAX_FUNCTION_ARG, sl@0: SQLITE_MAX_ATTACHED, sl@0: SQLITE_MAX_LIKE_PATTERN_LENGTH, sl@0: SQLITE_MAX_VARIABLE_NUMBER, sl@0: }; sl@0: sl@0: /* sl@0: ** Make sure the hard limits are set to reasonable values sl@0: */ sl@0: #if SQLITE_MAX_LENGTH<100 sl@0: # error SQLITE_MAX_LENGTH must be at least 100 sl@0: #endif sl@0: #if SQLITE_MAX_SQL_LENGTH<100 sl@0: # error SQLITE_MAX_SQL_LENGTH must be at least 100 sl@0: #endif sl@0: #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH sl@0: # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH sl@0: #endif sl@0: #if SQLITE_MAX_COMPOUND_SELECT<2 sl@0: # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 sl@0: #endif sl@0: #if SQLITE_MAX_VDBE_OP<40 sl@0: # error SQLITE_MAX_VDBE_OP must be at least 40 sl@0: #endif sl@0: #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>1000 sl@0: # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 1000 sl@0: #endif sl@0: #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>30 sl@0: # error SQLITE_MAX_ATTACHED must be between 0 and 30 sl@0: #endif sl@0: #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 sl@0: # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 sl@0: #endif sl@0: #if SQLITE_MAX_VARIABLE_NUMBER<1 sl@0: # error SQLITE_MAX_VARIABLE_NUMBER must be at least 1 sl@0: #endif sl@0: #if SQLITE_MAX_COLUMN>32767 sl@0: # error SQLITE_MAX_COLUMN must not exceed 32767 sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** Change the value of a limit. Report the old value. sl@0: ** If an invalid limit index is supplied, report -1. sl@0: ** Make no changes but still report the old value if the sl@0: ** new limit is negative. sl@0: ** sl@0: ** A new lower limit does not shrink existing constructs. sl@0: ** It merely prevents new constructs that exceed the limit sl@0: ** from forming. sl@0: */ sl@0: int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ sl@0: int oldLimit; sl@0: if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ sl@0: return -1; sl@0: } sl@0: oldLimit = db->aLimit[limitId]; sl@0: if( newLimit>=0 ){ sl@0: if( newLimit>aHardLimit[limitId] ){ sl@0: newLimit = aHardLimit[limitId]; sl@0: } sl@0: db->aLimit[limitId] = newLimit; sl@0: } sl@0: return oldLimit; sl@0: } sl@0: sl@0: /* sl@0: ** This routine does the work of opening a database on behalf of sl@0: ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" sl@0: ** is UTF-8 encoded. sl@0: */ sl@0: static int openDatabase( sl@0: const char *zFilename, /* Database filename UTF-8 encoded */ sl@0: sqlite3 **ppDb, /* OUT: Returned database handle */ sl@0: unsigned flags, /* Operational flags */ sl@0: const char *zVfs /* Name of the VFS to use */ sl@0: ){ sl@0: sqlite3 *db; sl@0: int rc; sl@0: CollSeq *pColl; sl@0: int isThreadsafe; sl@0: sl@0: #ifndef SQLITE_OMIT_AUTOINIT sl@0: rc = sqlite3_initialize(); sl@0: if( rc ) return rc; sl@0: #endif sl@0: sl@0: if( sqlite3GlobalConfig.bCoreMutex==0 ){ sl@0: isThreadsafe = 0; sl@0: }else if( flags & SQLITE_OPEN_NOMUTEX ){ sl@0: isThreadsafe = 0; sl@0: }else if( flags & SQLITE_OPEN_FULLMUTEX ){ sl@0: isThreadsafe = 1; sl@0: }else{ sl@0: isThreadsafe = sqlite3GlobalConfig.bFullMutex; sl@0: } sl@0: sl@0: /* Remove harmful bits from the flags parameter */ sl@0: flags &= ~( SQLITE_OPEN_DELETEONCLOSE | sl@0: SQLITE_OPEN_MAIN_DB | sl@0: SQLITE_OPEN_TEMP_DB | sl@0: SQLITE_OPEN_TRANSIENT_DB | sl@0: SQLITE_OPEN_MAIN_JOURNAL | sl@0: SQLITE_OPEN_TEMP_JOURNAL | sl@0: SQLITE_OPEN_SUBJOURNAL | sl@0: SQLITE_OPEN_MASTER_JOURNAL | sl@0: SQLITE_OPEN_NOMUTEX | sl@0: SQLITE_OPEN_FULLMUTEX sl@0: ); sl@0: sl@0: /* Allocate the sqlite data structure */ sl@0: db = sqlite3MallocZero( sizeof(sqlite3) ); sl@0: if( db==0 ) goto opendb_out; sl@0: if( isThreadsafe ){ sl@0: db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); sl@0: if( db->mutex==0 ){ sl@0: sqlite3_free(db); sl@0: db = 0; sl@0: goto opendb_out; sl@0: } sl@0: } sl@0: sqlite3_mutex_enter(db->mutex); sl@0: db->errMask = 0xff; sl@0: db->priorNewRowid = 0; sl@0: db->nDb = 2; sl@0: db->magic = SQLITE_MAGIC_BUSY; sl@0: db->aDb = db->aDbStatic; sl@0: sl@0: assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); sl@0: memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); sl@0: db->autoCommit = 1; sl@0: db->nextAutovac = -1; sl@0: db->nextPagesize = 0; sl@0: db->flags |= SQLITE_ShortColNames sl@0: #if SQLITE_DEFAULT_FILE_FORMAT<4 sl@0: | SQLITE_LegacyFileFmt sl@0: #endif sl@0: #ifdef SQLITE_ENABLE_LOAD_EXTENSION sl@0: | SQLITE_LoadExtension sl@0: #endif sl@0: ; sl@0: sqlite3HashInit(&db->aCollSeq, 0); sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: sqlite3HashInit(&db->aModule, 0); sl@0: #endif sl@0: sl@0: db->pVfs = sqlite3_vfs_find(zVfs); sl@0: if( !db->pVfs ){ sl@0: rc = SQLITE_ERROR; sl@0: sqlite3Error(db, rc, "no such vfs: %s", zVfs); sl@0: goto opendb_out; sl@0: } sl@0: sl@0: /* Add the default collation sequence BINARY. BINARY works for both UTF-8 sl@0: ** and UTF-16, so add a version for each to avoid any unnecessary sl@0: ** conversions. The only error that can occur here is a malloc() failure. sl@0: */ sl@0: createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0); sl@0: createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0); sl@0: createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0); sl@0: createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0); sl@0: if( db->mallocFailed ){ sl@0: goto opendb_out; sl@0: } sl@0: db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 6, 0); sl@0: assert( db->pDfltColl!=0 ); sl@0: sl@0: /* Also add a UTF-8 case-insensitive collation sequence. */ sl@0: createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); sl@0: sl@0: /* Set flags on the built-in collating sequences */ sl@0: db->pDfltColl->type = SQLITE_COLL_BINARY; sl@0: pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "NOCASE", 6, 0); sl@0: if( pColl ){ sl@0: pColl->type = SQLITE_COLL_NOCASE; sl@0: } sl@0: sl@0: /* Open the backend database driver */ sl@0: db->openFlags = flags; sl@0: rc = sqlite3BtreeFactory(db, zFilename, 0, SQLITE_DEFAULT_CACHE_SIZE, sl@0: flags | SQLITE_OPEN_MAIN_DB, sl@0: &db->aDb[0].pBt); sl@0: if( rc!=SQLITE_OK ){ sl@0: if( rc==SQLITE_IOERR_NOMEM ){ sl@0: rc = SQLITE_NOMEM; sl@0: } sl@0: sqlite3Error(db, rc, 0); sl@0: goto opendb_out; sl@0: } sl@0: db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); sl@0: db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); sl@0: sl@0: sl@0: /* The default safety_level for the main database is 'full'; for the temp sl@0: ** database it is 'NONE'. This matches the pager layer defaults. sl@0: */ sl@0: db->aDb[0].zName = "main"; sl@0: db->aDb[0].safety_level = 3; sl@0: #ifndef SQLITE_OMIT_TEMPDB sl@0: db->aDb[1].zName = "temp"; sl@0: db->aDb[1].safety_level = 1; sl@0: #endif sl@0: sl@0: db->magic = SQLITE_MAGIC_OPEN; sl@0: if( db->mallocFailed ){ sl@0: goto opendb_out; sl@0: } sl@0: sl@0: /* Register all built-in functions, but do not attempt to read the sl@0: ** database schema yet. This is delayed until the first time the database sl@0: ** is accessed. sl@0: */ sl@0: sqlite3Error(db, SQLITE_OK, 0); sl@0: sqlite3RegisterBuiltinFunctions(db); sl@0: sl@0: /* Load automatic extensions - extensions that have been registered sl@0: ** using the sqlite3_automatic_extension() API. sl@0: */ sl@0: (void)sqlite3AutoLoadExtensions(db); sl@0: if( sqlite3_errcode(db)!=SQLITE_OK ){ sl@0: goto opendb_out; sl@0: } sl@0: sl@0: #ifdef SQLITE_ENABLE_FTS1 sl@0: if( !db->mallocFailed ){ sl@0: extern int sqlite3Fts1Init(sqlite3*); sl@0: rc = sqlite3Fts1Init(db); sl@0: } sl@0: #endif sl@0: sl@0: #ifdef SQLITE_ENABLE_FTS2 sl@0: if( !db->mallocFailed && rc==SQLITE_OK ){ sl@0: extern int sqlite3Fts2Init(sqlite3*); sl@0: rc = sqlite3Fts2Init(db); sl@0: } sl@0: #endif sl@0: sl@0: #ifdef SQLITE_ENABLE_FTS3 sl@0: if( !db->mallocFailed && rc==SQLITE_OK ){ sl@0: rc = sqlite3Fts3Init(db); sl@0: } sl@0: #endif sl@0: sl@0: #ifdef SQLITE_ENABLE_ICU sl@0: if( !db->mallocFailed && rc==SQLITE_OK ){ sl@0: rc = sqlite3IcuInit(db); sl@0: } sl@0: #endif sl@0: sl@0: #ifdef SQLITE_ENABLE_RTREE sl@0: if( !db->mallocFailed && rc==SQLITE_OK){ sl@0: rc = sqlite3RtreeInit(db); sl@0: } sl@0: #endif sl@0: sl@0: sqlite3Error(db, rc, 0); sl@0: sl@0: /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking sl@0: ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking sl@0: ** mode. Doing nothing at all also makes NORMAL the default. sl@0: */ sl@0: #ifdef SQLITE_DEFAULT_LOCKING_MODE sl@0: db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; sl@0: sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), sl@0: SQLITE_DEFAULT_LOCKING_MODE); sl@0: #endif sl@0: sl@0: /* Enable the lookaside-malloc subsystem */ sl@0: setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, sl@0: sqlite3GlobalConfig.nLookaside); sl@0: sl@0: opendb_out: sl@0: if( db ){ sl@0: assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 ); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: } sl@0: rc = sqlite3_errcode(db); sl@0: if( rc==SQLITE_NOMEM ){ sl@0: sqlite3_close(db); sl@0: db = 0; sl@0: }else if( rc!=SQLITE_OK ){ sl@0: db->magic = SQLITE_MAGIC_SICK; sl@0: } sl@0: *ppDb = db; sl@0: return sqlite3ApiExit(0, rc); sl@0: } sl@0: sl@0: /* sl@0: ** Open a new database handle. sl@0: */ sl@0: int sqlite3_open( sl@0: const char *zFilename, sl@0: sqlite3 **ppDb sl@0: ){ sl@0: return openDatabase(zFilename, ppDb, sl@0: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); sl@0: } sl@0: int sqlite3_open_v2( sl@0: const char *filename, /* Database filename (UTF-8) */ sl@0: sqlite3 **ppDb, /* OUT: SQLite db handle */ sl@0: int flags, /* Flags */ sl@0: const char *zVfs /* Name of VFS module to use */ sl@0: ){ sl@0: return openDatabase(filename, ppDb, flags, zVfs); sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: /* sl@0: ** Open a new database handle. sl@0: */ sl@0: int sqlite3_open16( sl@0: const void *zFilename, sl@0: sqlite3 **ppDb sl@0: ){ sl@0: char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ sl@0: sqlite3_value *pVal; sl@0: int rc; sl@0: sl@0: assert( zFilename ); sl@0: assert( ppDb ); sl@0: *ppDb = 0; sl@0: #ifndef SQLITE_OMIT_AUTOINIT sl@0: rc = sqlite3_initialize(); sl@0: if( rc ) return rc; sl@0: #endif sl@0: pVal = sqlite3ValueNew(0); sl@0: sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); sl@0: zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); sl@0: if( zFilename8 ){ sl@0: rc = openDatabase(zFilename8, ppDb, sl@0: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); sl@0: assert( *ppDb || rc==SQLITE_NOMEM ); sl@0: if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ sl@0: ENC(*ppDb) = SQLITE_UTF16NATIVE; sl@0: } sl@0: }else{ sl@0: rc = SQLITE_NOMEM; sl@0: } sl@0: sqlite3ValueFree(pVal); sl@0: sl@0: return sqlite3ApiExit(0, rc); sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: sl@0: /* sl@0: ** Register a new collation sequence with the database handle db. sl@0: */ sl@0: int sqlite3_create_collation( sl@0: sqlite3* db, sl@0: const char *zName, sl@0: int enc, sl@0: void* pCtx, sl@0: int(*xCompare)(void*,int,const void*,int,const void*) sl@0: ){ sl@0: int rc; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: assert( !db->mallocFailed ); sl@0: rc = createCollation(db, zName, enc, pCtx, xCompare, 0); sl@0: rc = sqlite3ApiExit(db, rc); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Register a new collation sequence with the database handle db. sl@0: */ sl@0: int sqlite3_create_collation_v2( sl@0: sqlite3* db, sl@0: const char *zName, sl@0: int enc, sl@0: void* pCtx, sl@0: int(*xCompare)(void*,int,const void*,int,const void*), sl@0: void(*xDel)(void*) sl@0: ){ sl@0: int rc; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: assert( !db->mallocFailed ); sl@0: rc = createCollation(db, zName, enc, pCtx, xCompare, xDel); sl@0: rc = sqlite3ApiExit(db, rc); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return rc; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: /* sl@0: ** Register a new collation sequence with the database handle db. sl@0: */ sl@0: int sqlite3_create_collation16( sl@0: sqlite3* db, sl@0: const void *zName, sl@0: int enc, sl@0: void* pCtx, sl@0: int(*xCompare)(void*,int,const void*,int,const void*) sl@0: ){ sl@0: int rc = SQLITE_OK; sl@0: char *zName8; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: assert( !db->mallocFailed ); sl@0: zName8 = sqlite3Utf16to8(db, zName, -1); sl@0: if( zName8 ){ sl@0: rc = createCollation(db, zName8, enc, pCtx, xCompare, 0); sl@0: sqlite3DbFree(db, zName8); sl@0: } sl@0: rc = sqlite3ApiExit(db, rc); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return rc; sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: sl@0: /* sl@0: ** Register a collation sequence factory callback with the database handle sl@0: ** db. Replace any previously installed collation sequence factory. sl@0: */ sl@0: int sqlite3_collation_needed( sl@0: sqlite3 *db, sl@0: void *pCollNeededArg, sl@0: void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) sl@0: ){ sl@0: sqlite3_mutex_enter(db->mutex); sl@0: db->xCollNeeded = xCollNeeded; sl@0: db->xCollNeeded16 = 0; sl@0: db->pCollNeededArg = pCollNeededArg; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: #ifndef SQLITE_OMIT_UTF16 sl@0: /* sl@0: ** Register a collation sequence factory callback with the database handle sl@0: ** db. Replace any previously installed collation sequence factory. sl@0: */ sl@0: int sqlite3_collation_needed16( sl@0: sqlite3 *db, sl@0: void *pCollNeededArg, sl@0: void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) sl@0: ){ sl@0: sqlite3_mutex_enter(db->mutex); sl@0: db->xCollNeeded = 0; sl@0: db->xCollNeeded16 = xCollNeeded16; sl@0: db->pCollNeededArg = pCollNeededArg; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return SQLITE_OK; sl@0: } sl@0: #endif /* SQLITE_OMIT_UTF16 */ sl@0: sl@0: #ifndef SQLITE_OMIT_GLOBALRECOVER sl@0: #ifndef SQLITE_OMIT_DEPRECATED sl@0: /* sl@0: ** This function is now an anachronism. It used to be used to recover from a sl@0: ** malloc() failure, but SQLite now does this automatically. sl@0: */ sl@0: int sqlite3_global_recover(void){ sl@0: return SQLITE_OK; sl@0: } sl@0: #endif sl@0: #endif sl@0: sl@0: /* sl@0: ** Test to see whether or not the database connection is in autocommit sl@0: ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on sl@0: ** by default. Autocommit is disabled by a BEGIN statement and reenabled sl@0: ** by the next COMMIT or ROLLBACK. sl@0: ** sl@0: ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** sl@0: */ sl@0: int sqlite3_get_autocommit(sqlite3 *db){ sl@0: return db->autoCommit; sl@0: } sl@0: sl@0: #ifdef SQLITE_DEBUG sl@0: /* sl@0: ** The following routine is subtituted for constant SQLITE_CORRUPT in sl@0: ** debugging builds. This provides a way to set a breakpoint for when sl@0: ** corruption is first detected. sl@0: */ sl@0: int sqlite3Corrupt(void){ sl@0: return SQLITE_CORRUPT; sl@0: } sl@0: #endif sl@0: sl@0: #ifndef SQLITE_OMIT_DEPRECATED sl@0: /* sl@0: ** This is a convenience routine that makes sure that all thread-specific sl@0: ** data for this thread has been deallocated. sl@0: ** sl@0: ** SQLite no longer uses thread-specific data so this routine is now a sl@0: ** no-op. It is retained for historical compatibility. sl@0: */ sl@0: void sqlite3_thread_cleanup(void){ sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Return meta information about a specific column of a database table. sl@0: ** See comment in sqlite3.h (sqlite.h.in) for details. sl@0: */ sl@0: #ifdef SQLITE_ENABLE_COLUMN_METADATA sl@0: int sqlite3_table_column_metadata( sl@0: sqlite3 *db, /* Connection handle */ sl@0: const char *zDbName, /* Database name or NULL */ sl@0: const char *zTableName, /* Table name */ sl@0: const char *zColumnName, /* Column name */ sl@0: char const **pzDataType, /* OUTPUT: Declared data type */ sl@0: char const **pzCollSeq, /* OUTPUT: Collation sequence name */ sl@0: int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ sl@0: int *pPrimaryKey, /* OUTPUT: True if column part of PK */ sl@0: int *pAutoinc /* OUTPUT: True if column is auto-increment */ sl@0: ){ sl@0: int rc; sl@0: char *zErrMsg = 0; sl@0: Table *pTab = 0; sl@0: Column *pCol = 0; sl@0: int iCol; sl@0: sl@0: char const *zDataType = 0; sl@0: char const *zCollSeq = 0; sl@0: int notnull = 0; sl@0: int primarykey = 0; sl@0: int autoinc = 0; sl@0: sl@0: /* Ensure the database schema has been loaded */ sl@0: sqlite3_mutex_enter(db->mutex); sl@0: (void)sqlite3SafetyOn(db); sl@0: sqlite3BtreeEnterAll(db); sl@0: rc = sqlite3Init(db, &zErrMsg); sl@0: sqlite3BtreeLeaveAll(db); sl@0: if( SQLITE_OK!=rc ){ sl@0: goto error_out; sl@0: } sl@0: sl@0: /* Locate the table in question */ sl@0: pTab = sqlite3FindTable(db, zTableName, zDbName); sl@0: if( !pTab || pTab->pSelect ){ sl@0: pTab = 0; sl@0: goto error_out; sl@0: } sl@0: sl@0: /* Find the column for which info is requested */ sl@0: if( sqlite3IsRowid(zColumnName) ){ sl@0: iCol = pTab->iPKey; sl@0: if( iCol>=0 ){ sl@0: pCol = &pTab->aCol[iCol]; sl@0: } sl@0: }else{ sl@0: for(iCol=0; iColnCol; iCol++){ sl@0: pCol = &pTab->aCol[iCol]; sl@0: if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){ sl@0: break; sl@0: } sl@0: } sl@0: if( iCol==pTab->nCol ){ sl@0: pTab = 0; sl@0: goto error_out; sl@0: } sl@0: } sl@0: sl@0: /* The following block stores the meta information that will be returned sl@0: ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey sl@0: ** and autoinc. At this point there are two possibilities: sl@0: ** sl@0: ** 1. The specified column name was rowid", "oid" or "_rowid_" sl@0: ** and there is no explicitly declared IPK column. sl@0: ** sl@0: ** 2. The table is not a view and the column name identified an sl@0: ** explicitly declared column. Copy meta information from *pCol. sl@0: */ sl@0: if( pCol ){ sl@0: zDataType = pCol->zType; sl@0: zCollSeq = pCol->zColl; sl@0: notnull = pCol->notNull!=0; sl@0: primarykey = pCol->isPrimKey!=0; sl@0: autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; sl@0: }else{ sl@0: zDataType = "INTEGER"; sl@0: primarykey = 1; sl@0: } sl@0: if( !zCollSeq ){ sl@0: zCollSeq = "BINARY"; sl@0: } sl@0: sl@0: error_out: sl@0: (void)sqlite3SafetyOff(db); sl@0: sl@0: /* Whether the function call succeeded or failed, set the output parameters sl@0: ** to whatever their local counterparts contain. If an error did occur, sl@0: ** this has the effect of zeroing all output parameters. sl@0: */ sl@0: if( pzDataType ) *pzDataType = zDataType; sl@0: if( pzCollSeq ) *pzCollSeq = zCollSeq; sl@0: if( pNotNull ) *pNotNull = notnull; sl@0: if( pPrimaryKey ) *pPrimaryKey = primarykey; sl@0: if( pAutoinc ) *pAutoinc = autoinc; sl@0: sl@0: if( SQLITE_OK==rc && !pTab ){ sl@0: sqlite3DbFree(db, zErrMsg); sl@0: zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, sl@0: zColumnName); sl@0: rc = SQLITE_ERROR; sl@0: } sl@0: sqlite3Error(db, rc, (zErrMsg?"%s":0), zErrMsg); sl@0: sqlite3DbFree(db, zErrMsg); sl@0: rc = sqlite3ApiExit(db, rc); sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return rc; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Sleep for a little while. Return the amount of time slept. sl@0: */ sl@0: int sqlite3_sleep(int ms){ sl@0: sqlite3_vfs *pVfs; sl@0: int rc; sl@0: pVfs = sqlite3_vfs_find(0); sl@0: if( pVfs==0 ) return 0; sl@0: sl@0: /* This function works in milliseconds, but the underlying OsSleep() sl@0: ** API uses microseconds. Hence the 1000's. sl@0: */ sl@0: rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Enable or disable the extended result codes. sl@0: */ sl@0: int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ sl@0: sqlite3_mutex_enter(db->mutex); sl@0: db->errMask = onoff ? 0xffffffff : 0xff; sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Invoke the xFileControl method on a particular database. sl@0: */ sl@0: int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ sl@0: int rc = SQLITE_ERROR; sl@0: int iDb; sl@0: sqlite3_mutex_enter(db->mutex); sl@0: if( zDbName==0 ){ sl@0: iDb = 0; sl@0: }else{ sl@0: for(iDb=0; iDbnDb; iDb++){ sl@0: if( strcmp(db->aDb[iDb].zName, zDbName)==0 ) break; sl@0: } sl@0: } sl@0: if( iDbnDb ){ sl@0: Btree *pBtree = db->aDb[iDb].pBt; sl@0: if( pBtree ){ sl@0: Pager *pPager; sl@0: sqlite3_file *fd; sl@0: sqlite3BtreeEnter(pBtree); sl@0: pPager = sqlite3BtreePager(pBtree); sl@0: assert( pPager!=0 ); sl@0: fd = sqlite3PagerFile(pPager); sl@0: assert( fd!=0 ); sl@0: if( fd->pMethods ){ sl@0: rc = sqlite3OsFileControl(fd, op, pArg); sl@0: } sl@0: sqlite3BtreeLeave(pBtree); sl@0: } sl@0: } sl@0: sqlite3_mutex_leave(db->mutex); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Interface to the testing logic. sl@0: */ sl@0: int sqlite3_test_control(int op, ...){ sl@0: int rc = 0; sl@0: #ifndef SQLITE_OMIT_BUILTIN_TEST sl@0: va_list ap; sl@0: va_start(ap, op); sl@0: switch( op ){ sl@0: sl@0: /* sl@0: ** Save the current state of the PRNG. sl@0: */ sl@0: case SQLITE_TESTCTRL_PRNG_SAVE: { sl@0: sqlite3PrngSaveState(); sl@0: break; sl@0: } sl@0: sl@0: /* sl@0: ** Restore the state of the PRNG to the last state saved using sl@0: ** PRNG_SAVE. If PRNG_SAVE has never before been called, then sl@0: ** this verb acts like PRNG_RESET. sl@0: */ sl@0: case SQLITE_TESTCTRL_PRNG_RESTORE: { sl@0: sqlite3PrngRestoreState(); sl@0: break; sl@0: } sl@0: sl@0: /* sl@0: ** Reset the PRNG back to its uninitialized state. The next call sl@0: ** to sqlite3_randomness() will reseed the PRNG using a single call sl@0: ** to the xRandomness method of the default VFS. sl@0: */ sl@0: case SQLITE_TESTCTRL_PRNG_RESET: { sl@0: sqlite3PrngResetState(); sl@0: break; sl@0: } sl@0: sl@0: /* sl@0: ** sqlite3_test_control(BITVEC_TEST, size, program) sl@0: ** sl@0: ** Run a test against a Bitvec object of size. The program argument sl@0: ** is an array of integers that defines the test. Return -1 on a sl@0: ** memory allocation error, 0 on success, or non-zero for an error. sl@0: ** See the sqlite3BitvecBuiltinTest() for additional information. sl@0: */ sl@0: case SQLITE_TESTCTRL_BITVEC_TEST: { sl@0: int sz = va_arg(ap, int); sl@0: int *aProg = va_arg(ap, int*); sl@0: rc = sqlite3BitvecBuiltinTest(sz, aProg); sl@0: break; sl@0: } sl@0: sl@0: /* sl@0: ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) sl@0: ** sl@0: ** Register hooks to call to indicate which malloc() failures sl@0: ** are benign. sl@0: */ sl@0: case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { sl@0: typedef void (*void_function)(void); sl@0: void_function xBenignBegin; sl@0: void_function xBenignEnd; sl@0: xBenignBegin = va_arg(ap, void_function); sl@0: xBenignEnd = va_arg(ap, void_function); sl@0: sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); sl@0: break; sl@0: } sl@0: } sl@0: va_end(ap); sl@0: #endif /* SQLITE_OMIT_BUILTIN_TEST */ sl@0: return rc; sl@0: }