sl@0: /* sl@0: ** 2003 September 6 sl@0: ** sl@0: ** The author disclaims copyright to this source code. In place of sl@0: ** a legal notice, here is a blessing: sl@0: ** sl@0: ** May you do good and not evil. sl@0: ** May you find forgiveness for yourself and forgive others. sl@0: ** May you share freely, never taking more than you give. sl@0: ** sl@0: ************************************************************************* sl@0: ** This file contains code used for creating, destroying, and populating sl@0: ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior sl@0: ** to version 2.8.7, all this code was combined into the vdbe.c source file. sl@0: ** But that file was getting too big so this subroutines were split out. sl@0: ** sl@0: ** $Id: vdbeaux.c,v 1.405 2008/08/02 03:50:39 drh Exp $ sl@0: */ sl@0: #include "sqliteInt.h" sl@0: #include sl@0: #include "vdbeInt.h" sl@0: sl@0: sl@0: sl@0: /* sl@0: ** When debugging the code generator in a symbolic debugger, one can sl@0: ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed sl@0: ** as they are added to the instruction stream. sl@0: */ sl@0: #ifdef SQLITE_DEBUG sl@0: int sqlite3VdbeAddopTrace = 0; sl@0: #endif sl@0: sl@0: sl@0: /* sl@0: ** Create a new virtual database engine. sl@0: */ sl@0: Vdbe *sqlite3VdbeCreate(sqlite3 *db){ sl@0: Vdbe *p; sl@0: p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); sl@0: if( p==0 ) return 0; sl@0: p->db = db; sl@0: if( db->pVdbe ){ sl@0: db->pVdbe->pPrev = p; sl@0: } sl@0: p->pNext = db->pVdbe; sl@0: p->pPrev = 0; sl@0: db->pVdbe = p; sl@0: p->magic = VDBE_MAGIC_INIT; sl@0: return p; sl@0: } sl@0: sl@0: /* sl@0: ** Remember the SQL string for a prepared statement. sl@0: */ sl@0: void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){ sl@0: if( p==0 ) return; sl@0: assert( p->zSql==0 ); sl@0: p->zSql = sqlite3DbStrNDup(p->db, z, n); sl@0: } sl@0: sl@0: /* sl@0: ** Return the SQL associated with a prepared statement sl@0: */ sl@0: const char *sqlite3_sql(sqlite3_stmt *pStmt){ sl@0: return ((Vdbe *)pStmt)->zSql; sl@0: } sl@0: sl@0: /* sl@0: ** Swap all content between two VDBE structures. sl@0: */ sl@0: void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ sl@0: Vdbe tmp, *pTmp; sl@0: char *zTmp; sl@0: int nTmp; sl@0: tmp = *pA; sl@0: *pA = *pB; sl@0: *pB = tmp; sl@0: pTmp = pA->pNext; sl@0: pA->pNext = pB->pNext; sl@0: pB->pNext = pTmp; sl@0: pTmp = pA->pPrev; sl@0: pA->pPrev = pB->pPrev; sl@0: pB->pPrev = pTmp; sl@0: zTmp = pA->zSql; sl@0: pA->zSql = pB->zSql; sl@0: pB->zSql = zTmp; sl@0: nTmp = pA->nSql; sl@0: pA->nSql = pB->nSql; sl@0: pB->nSql = nTmp; sl@0: } sl@0: sl@0: #ifdef SQLITE_DEBUG sl@0: /* sl@0: ** Turn tracing on or off sl@0: */ sl@0: void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ sl@0: p->trace = trace; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Resize the Vdbe.aOp array so that it contains at least N sl@0: ** elements. sl@0: ** sl@0: ** If an out-of-memory error occurs while resizing the array, sl@0: ** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that sl@0: ** any opcodes already allocated can be correctly deallocated sl@0: ** along with the rest of the Vdbe). sl@0: */ sl@0: static void resizeOpArray(Vdbe *p, int N){ sl@0: VdbeOp *pNew; sl@0: pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op)); sl@0: if( pNew ){ sl@0: p->nOpAlloc = N; sl@0: p->aOp = pNew; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Add a new instruction to the list of instructions current in the sl@0: ** VDBE. Return the address of the new instruction. sl@0: ** sl@0: ** Parameters: sl@0: ** sl@0: ** p Pointer to the VDBE sl@0: ** sl@0: ** op The opcode for this instruction sl@0: ** sl@0: ** p1, p2, p3 Operands sl@0: ** sl@0: ** Use the sqlite3VdbeResolveLabel() function to fix an address and sl@0: ** the sqlite3VdbeChangeP4() function to change the value of the P4 sl@0: ** operand. sl@0: */ sl@0: int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ sl@0: int i; sl@0: VdbeOp *pOp; sl@0: sl@0: i = p->nOp; sl@0: assert( p->magic==VDBE_MAGIC_INIT ); sl@0: if( p->nOpAlloc<=i ){ sl@0: resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op)); sl@0: if( p->db->mallocFailed ){ sl@0: return 0; sl@0: } sl@0: } sl@0: p->nOp++; sl@0: pOp = &p->aOp[i]; sl@0: pOp->opcode = op; sl@0: pOp->p5 = 0; sl@0: pOp->p1 = p1; sl@0: pOp->p2 = p2; sl@0: pOp->p3 = p3; sl@0: pOp->p4.p = 0; sl@0: pOp->p4type = P4_NOTUSED; sl@0: p->expired = 0; sl@0: #ifdef SQLITE_DEBUG sl@0: pOp->zComment = 0; sl@0: if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); sl@0: #endif sl@0: #ifdef VDBE_PROFILE sl@0: pOp->cycles = 0; sl@0: pOp->cnt = 0; sl@0: #endif sl@0: return i; sl@0: } sl@0: int sqlite3VdbeAddOp0(Vdbe *p, int op){ sl@0: return sqlite3VdbeAddOp3(p, op, 0, 0, 0); sl@0: } sl@0: int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ sl@0: return sqlite3VdbeAddOp3(p, op, p1, 0, 0); sl@0: } sl@0: int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ sl@0: return sqlite3VdbeAddOp3(p, op, p1, p2, 0); sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Add an opcode that includes the p4 value as a pointer. sl@0: */ sl@0: int sqlite3VdbeAddOp4( sl@0: Vdbe *p, /* Add the opcode to this VM */ sl@0: int op, /* The new opcode */ sl@0: int p1, /* The P1 operand */ sl@0: int p2, /* The P2 operand */ sl@0: int p3, /* The P3 operand */ sl@0: const char *zP4, /* The P4 operand */ sl@0: int p4type /* P4 operand type */ sl@0: ){ sl@0: int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); sl@0: sqlite3VdbeChangeP4(p, addr, zP4, p4type); sl@0: return addr; sl@0: } sl@0: sl@0: /* sl@0: ** Create a new symbolic label for an instruction that has yet to be sl@0: ** coded. The symbolic label is really just a negative number. The sl@0: ** label can be used as the P2 value of an operation. Later, when sl@0: ** the label is resolved to a specific address, the VDBE will scan sl@0: ** through its operation list and change all values of P2 which match sl@0: ** the label into the resolved address. sl@0: ** sl@0: ** The VDBE knows that a P2 value is a label because labels are sl@0: ** always negative and P2 values are suppose to be non-negative. sl@0: ** Hence, a negative P2 value is a label that has yet to be resolved. sl@0: ** sl@0: ** Zero is returned if a malloc() fails. sl@0: */ sl@0: int sqlite3VdbeMakeLabel(Vdbe *p){ sl@0: int i; sl@0: i = p->nLabel++; sl@0: assert( p->magic==VDBE_MAGIC_INIT ); sl@0: if( i>=p->nLabelAlloc ){ sl@0: p->nLabelAlloc = p->nLabelAlloc*2 + 10; sl@0: p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, sl@0: p->nLabelAlloc*sizeof(p->aLabel[0])); sl@0: } sl@0: if( p->aLabel ){ sl@0: p->aLabel[i] = -1; sl@0: } sl@0: return -1-i; sl@0: } sl@0: sl@0: /* sl@0: ** Resolve label "x" to be the address of the next instruction to sl@0: ** be inserted. The parameter "x" must have been obtained from sl@0: ** a prior call to sqlite3VdbeMakeLabel(). sl@0: */ sl@0: void sqlite3VdbeResolveLabel(Vdbe *p, int x){ sl@0: int j = -1-x; sl@0: assert( p->magic==VDBE_MAGIC_INIT ); sl@0: assert( j>=0 && jnLabel ); sl@0: if( p->aLabel ){ sl@0: p->aLabel[j] = p->nOp; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Loop through the program looking for P2 values that are negative sl@0: ** on jump instructions. Each such value is a label. Resolve the sl@0: ** label by setting the P2 value to its correct non-zero value. sl@0: ** sl@0: ** This routine is called once after all opcodes have been inserted. sl@0: ** sl@0: ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument sl@0: ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by sl@0: ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. sl@0: ** sl@0: ** This routine also does the following optimization: It scans for sl@0: ** instructions that might cause a statement rollback. Such instructions sl@0: ** are: sl@0: ** sl@0: ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. sl@0: ** * OP_Destroy sl@0: ** * OP_VUpdate sl@0: ** * OP_VRename sl@0: ** sl@0: ** If no such instruction is found, then every Statement instruction sl@0: ** is changed to a Noop. In this way, we avoid creating the statement sl@0: ** journal file unnecessarily. sl@0: */ sl@0: static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ sl@0: int i; sl@0: int nMaxArgs = 0; sl@0: Op *pOp; sl@0: int *aLabel = p->aLabel; sl@0: int doesStatementRollback = 0; sl@0: int hasStatementBegin = 0; sl@0: for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ sl@0: u8 opcode = pOp->opcode; sl@0: sl@0: if( opcode==OP_Function || opcode==OP_AggStep ){ sl@0: if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: }else if( opcode==OP_VUpdate ){ sl@0: if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; sl@0: #endif sl@0: } sl@0: if( opcode==OP_Halt ){ sl@0: if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){ sl@0: doesStatementRollback = 1; sl@0: } sl@0: }else if( opcode==OP_Statement ){ sl@0: hasStatementBegin = 1; sl@0: }else if( opcode==OP_Destroy ){ sl@0: doesStatementRollback = 1; sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: }else if( opcode==OP_VUpdate || opcode==OP_VRename ){ sl@0: doesStatementRollback = 1; sl@0: }else if( opcode==OP_VFilter ){ sl@0: int n; sl@0: assert( p->nOp - i >= 3 ); sl@0: assert( pOp[-1].opcode==OP_Integer ); sl@0: n = pOp[-1].p1; sl@0: if( n>nMaxArgs ) nMaxArgs = n; sl@0: #endif sl@0: } sl@0: sl@0: if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){ sl@0: assert( -1-pOp->p2nLabel ); sl@0: pOp->p2 = aLabel[-1-pOp->p2]; sl@0: } sl@0: } sl@0: sqlite3DbFree(p->db, p->aLabel); sl@0: p->aLabel = 0; sl@0: sl@0: *pMaxFuncArgs = nMaxArgs; sl@0: sl@0: /* If we never rollback a statement transaction, then statement sl@0: ** transactions are not needed. So change every OP_Statement sl@0: ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive() sl@0: ** which can be expensive on some platforms. sl@0: */ sl@0: if( hasStatementBegin && !doesStatementRollback ){ sl@0: for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ sl@0: if( pOp->opcode==OP_Statement ){ sl@0: pOp->opcode = OP_Noop; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Return the address of the next instruction to be inserted. sl@0: */ sl@0: int sqlite3VdbeCurrentAddr(Vdbe *p){ sl@0: assert( p->magic==VDBE_MAGIC_INIT ); sl@0: return p->nOp; sl@0: } sl@0: sl@0: /* sl@0: ** Add a whole list of operations to the operation stack. Return the sl@0: ** address of the first operation added. sl@0: */ sl@0: int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ sl@0: int addr; sl@0: assert( p->magic==VDBE_MAGIC_INIT ); sl@0: if( p->nOp + nOp > p->nOpAlloc ){ sl@0: resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op)); sl@0: assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed ); sl@0: } sl@0: if( p->db->mallocFailed ){ sl@0: return 0; sl@0: } sl@0: addr = p->nOp; sl@0: if( nOp>0 ){ sl@0: int i; sl@0: VdbeOpList const *pIn = aOp; sl@0: for(i=0; ip2; sl@0: VdbeOp *pOut = &p->aOp[i+addr]; sl@0: pOut->opcode = pIn->opcode; sl@0: pOut->p1 = pIn->p1; sl@0: if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){ sl@0: pOut->p2 = addr + ADDR(p2); sl@0: }else{ sl@0: pOut->p2 = p2; sl@0: } sl@0: pOut->p3 = pIn->p3; sl@0: pOut->p4type = P4_NOTUSED; sl@0: pOut->p4.p = 0; sl@0: pOut->p5 = 0; sl@0: #ifdef SQLITE_DEBUG sl@0: pOut->zComment = 0; sl@0: if( sqlite3VdbeAddopTrace ){ sl@0: sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); sl@0: } sl@0: #endif sl@0: } sl@0: p->nOp += nOp; sl@0: } sl@0: return addr; sl@0: } sl@0: sl@0: /* sl@0: ** Change the value of the P1 operand for a specific instruction. sl@0: ** This routine is useful when a large program is loaded from a sl@0: ** static array using sqlite3VdbeAddOpList but we want to make a sl@0: ** few minor changes to the program. sl@0: */ sl@0: void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ sl@0: assert( p==0 || p->magic==VDBE_MAGIC_INIT ); sl@0: if( p && addr>=0 && p->nOp>addr && p->aOp ){ sl@0: p->aOp[addr].p1 = val; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Change the value of the P2 operand for a specific instruction. sl@0: ** This routine is useful for setting a jump destination. sl@0: */ sl@0: void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ sl@0: assert( p==0 || p->magic==VDBE_MAGIC_INIT ); sl@0: if( p && addr>=0 && p->nOp>addr && p->aOp ){ sl@0: p->aOp[addr].p2 = val; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Change the value of the P3 operand for a specific instruction. sl@0: */ sl@0: void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ sl@0: assert( p==0 || p->magic==VDBE_MAGIC_INIT ); sl@0: if( p && addr>=0 && p->nOp>addr && p->aOp ){ sl@0: p->aOp[addr].p3 = val; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Change the value of the P5 operand for the most recently sl@0: ** added operation. sl@0: */ sl@0: void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ sl@0: assert( p==0 || p->magic==VDBE_MAGIC_INIT ); sl@0: if( p && p->aOp ){ sl@0: assert( p->nOp>0 ); sl@0: p->aOp[p->nOp-1].p5 = val; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Change the P2 operand of instruction addr so that it points to sl@0: ** the address of the next instruction to be coded. sl@0: */ sl@0: void sqlite3VdbeJumpHere(Vdbe *p, int addr){ sl@0: sqlite3VdbeChangeP2(p, addr, p->nOp); sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** If the input FuncDef structure is ephemeral, then free it. If sl@0: ** the FuncDef is not ephermal, then do nothing. sl@0: */ sl@0: static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ sl@0: if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ sl@0: sqlite3DbFree(db, pDef); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Delete a P4 value if necessary. sl@0: */ sl@0: static void freeP4(sqlite3 *db, int p4type, void *p4){ sl@0: if( p4 ){ sl@0: switch( p4type ){ sl@0: case P4_REAL: sl@0: case P4_INT64: sl@0: case P4_MPRINTF: sl@0: case P4_DYNAMIC: sl@0: case P4_KEYINFO: sl@0: case P4_INTARRAY: sl@0: case P4_KEYINFO_HANDOFF: { sl@0: sqlite3DbFree(db, p4); sl@0: break; sl@0: } sl@0: case P4_VDBEFUNC: { sl@0: VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; sl@0: freeEphemeralFunction(db, pVdbeFunc->pFunc); sl@0: sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); sl@0: sqlite3DbFree(db, pVdbeFunc); sl@0: break; sl@0: } sl@0: case P4_FUNCDEF: { sl@0: freeEphemeralFunction(db, (FuncDef*)p4); sl@0: break; sl@0: } sl@0: case P4_MEM: { sl@0: sqlite3ValueFree((sqlite3_value*)p4); sl@0: break; sl@0: } sl@0: } sl@0: } sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Change N opcodes starting at addr to No-ops. sl@0: */ sl@0: void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ sl@0: if( p && p->aOp ){ sl@0: VdbeOp *pOp = &p->aOp[addr]; sl@0: sqlite3 *db = p->db; sl@0: while( N-- ){ sl@0: freeP4(db, pOp->p4type, pOp->p4.p); sl@0: memset(pOp, 0, sizeof(pOp[0])); sl@0: pOp->opcode = OP_Noop; sl@0: pOp++; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Change the value of the P4 operand for a specific instruction. sl@0: ** This routine is useful when a large program is loaded from a sl@0: ** static array using sqlite3VdbeAddOpList but we want to make a sl@0: ** few minor changes to the program. sl@0: ** sl@0: ** If n>=0 then the P4 operand is dynamic, meaning that a copy of sl@0: ** the string is made into memory obtained from sqlite3_malloc(). sl@0: ** A value of n==0 means copy bytes of zP4 up to and including the sl@0: ** first null byte. If n>0 then copy n+1 bytes of zP4. sl@0: ** sl@0: ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. sl@0: ** A copy is made of the KeyInfo structure into memory obtained from sl@0: ** sqlite3_malloc, to be freed when the Vdbe is finalized. sl@0: ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure sl@0: ** stored in memory that the caller has obtained from sqlite3_malloc. The sl@0: ** caller should not free the allocation, it will be freed when the Vdbe is sl@0: ** finalized. sl@0: ** sl@0: ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points sl@0: ** to a string or structure that is guaranteed to exist for the lifetime of sl@0: ** the Vdbe. In these cases we can just copy the pointer. sl@0: ** sl@0: ** If addr<0 then change P4 on the most recently inserted instruction. sl@0: */ sl@0: void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ sl@0: Op *pOp; sl@0: sqlite3 *db; sl@0: assert( p!=0 ); sl@0: db = p->db; sl@0: assert( p->magic==VDBE_MAGIC_INIT ); sl@0: if( p->aOp==0 || db->mallocFailed ){ sl@0: if (n != P4_KEYINFO) { sl@0: freeP4(db, n, (void*)*(char**)&zP4); sl@0: } sl@0: return; sl@0: } sl@0: assert( addrnOp ); sl@0: if( addr<0 ){ sl@0: addr = p->nOp - 1; sl@0: if( addr<0 ) return; sl@0: } sl@0: pOp = &p->aOp[addr]; sl@0: freeP4(db, pOp->p4type, pOp->p4.p); sl@0: pOp->p4.p = 0; sl@0: if( n==P4_INT32 ){ sl@0: /* Note: this cast is safe, because the origin data point was an int sl@0: ** that was cast to a (const char *). */ sl@0: pOp->p4.i = SQLITE_PTR_TO_INT(zP4); sl@0: pOp->p4type = n; sl@0: }else if( zP4==0 ){ sl@0: pOp->p4.p = 0; sl@0: pOp->p4type = P4_NOTUSED; sl@0: }else if( n==P4_KEYINFO ){ sl@0: KeyInfo *pKeyInfo; sl@0: int nField, nByte; sl@0: sl@0: nField = ((KeyInfo*)zP4)->nField; sl@0: nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; sl@0: pKeyInfo = sqlite3Malloc( nByte ); sl@0: pOp->p4.pKeyInfo = pKeyInfo; sl@0: if( pKeyInfo ){ sl@0: u8 *aSortOrder; sl@0: memcpy(pKeyInfo, zP4, nByte); sl@0: aSortOrder = pKeyInfo->aSortOrder; sl@0: if( aSortOrder ){ sl@0: pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; sl@0: memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); sl@0: } sl@0: pOp->p4type = P4_KEYINFO; sl@0: }else{ sl@0: p->db->mallocFailed = 1; sl@0: pOp->p4type = P4_NOTUSED; sl@0: } sl@0: }else if( n==P4_KEYINFO_HANDOFF ){ sl@0: pOp->p4.p = (void*)zP4; sl@0: pOp->p4type = P4_KEYINFO; sl@0: }else if( n<0 ){ sl@0: pOp->p4.p = (void*)zP4; sl@0: pOp->p4type = n; sl@0: }else{ sl@0: if( n==0 ) n = strlen(zP4); sl@0: pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); sl@0: pOp->p4type = P4_DYNAMIC; sl@0: } sl@0: } sl@0: sl@0: #ifndef NDEBUG sl@0: /* sl@0: ** Change the comment on the the most recently coded instruction. Or sl@0: ** insert a No-op and add the comment to that new instruction. This sl@0: ** makes the code easier to read during debugging. None of this happens sl@0: ** in a production build. sl@0: */ sl@0: void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ sl@0: va_list ap; sl@0: assert( p->nOp>0 || p->aOp==0 ); sl@0: assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); sl@0: if( p->nOp ){ sl@0: char **pz = &p->aOp[p->nOp-1].zComment; sl@0: va_start(ap, zFormat); sl@0: sqlite3DbFree(p->db, *pz); sl@0: *pz = sqlite3VMPrintf(p->db, zFormat, ap); sl@0: va_end(ap); sl@0: } sl@0: } sl@0: void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ sl@0: va_list ap; sl@0: sqlite3VdbeAddOp0(p, OP_Noop); sl@0: assert( p->nOp>0 || p->aOp==0 ); sl@0: assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); sl@0: if( p->nOp ){ sl@0: char **pz = &p->aOp[p->nOp-1].zComment; sl@0: va_start(ap, zFormat); sl@0: sqlite3DbFree(p->db, *pz); sl@0: *pz = sqlite3VMPrintf(p->db, zFormat, ap); sl@0: va_end(ap); sl@0: } sl@0: } sl@0: #endif /* NDEBUG */ sl@0: sl@0: /* sl@0: ** Return the opcode for a given address. sl@0: */ sl@0: VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ sl@0: assert( p->magic==VDBE_MAGIC_INIT ); sl@0: assert( (addr>=0 && addrnOp) || p->db->mallocFailed ); sl@0: return ((addr>=0 && addrnOp)?(&p->aOp[addr]):0); sl@0: } sl@0: sl@0: #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ sl@0: || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) sl@0: /* sl@0: ** Compute a string that describes the P4 parameter for an opcode. sl@0: ** Use zTemp for any required temporary buffer space. sl@0: */ sl@0: static char *displayP4(Op *pOp, char *zTemp, int nTemp){ sl@0: char *zP4 = zTemp; sl@0: assert( nTemp>=20 ); sl@0: switch( pOp->p4type ){ sl@0: case P4_KEYINFO_STATIC: sl@0: case P4_KEYINFO: { sl@0: int i, j; sl@0: KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; sl@0: sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); sl@0: i = strlen(zTemp); sl@0: for(j=0; jnField; j++){ sl@0: CollSeq *pColl = pKeyInfo->aColl[j]; sl@0: if( pColl ){ sl@0: int n = strlen(pColl->zName); sl@0: if( i+n>nTemp-6 ){ sl@0: memcpy(&zTemp[i],",...",4); sl@0: break; sl@0: } sl@0: zTemp[i++] = ','; sl@0: if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ sl@0: zTemp[i++] = '-'; sl@0: } sl@0: memcpy(&zTemp[i], pColl->zName,n+1); sl@0: i += n; sl@0: }else if( i+4p4.pColl; sl@0: sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); sl@0: break; sl@0: } sl@0: case P4_FUNCDEF: { sl@0: FuncDef *pDef = pOp->p4.pFunc; sl@0: sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); sl@0: break; sl@0: } sl@0: case P4_INT64: { sl@0: sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); sl@0: break; sl@0: } sl@0: case P4_INT32: { sl@0: sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); sl@0: break; sl@0: } sl@0: case P4_REAL: { sl@0: sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); sl@0: break; sl@0: } sl@0: case P4_MEM: { sl@0: Mem *pMem = pOp->p4.pMem; sl@0: assert( (pMem->flags & MEM_Null)==0 ); sl@0: if( pMem->flags & MEM_Str ){ sl@0: zP4 = pMem->z; sl@0: }else if( pMem->flags & MEM_Int ){ sl@0: sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); sl@0: }else if( pMem->flags & MEM_Real ){ sl@0: sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); sl@0: } sl@0: break; sl@0: } sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: case P4_VTAB: { sl@0: sqlite3_vtab *pVtab = pOp->p4.pVtab; sl@0: sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); sl@0: break; sl@0: } sl@0: #endif sl@0: case P4_INTARRAY: { sl@0: sqlite3_snprintf(nTemp, zTemp, "intarray"); sl@0: break; sl@0: } sl@0: default: { sl@0: zP4 = pOp->p4.z; sl@0: if( zP4==0 ){ sl@0: zP4 = zTemp; sl@0: zTemp[0] = 0; sl@0: } sl@0: } sl@0: } sl@0: assert( zP4!=0 ); sl@0: return zP4; sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. sl@0: ** sl@0: */ sl@0: void sqlite3VdbeUsesBtree(Vdbe *p, int i){ sl@0: int mask; sl@0: assert( i>=0 && idb->nDb ); sl@0: assert( ibtreeMask)*8 ); sl@0: mask = 1<btreeMask & mask)==0 ){ sl@0: p->btreeMask |= mask; sl@0: sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt); sl@0: } sl@0: } sl@0: sl@0: sl@0: #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) sl@0: /* sl@0: ** Print a single opcode. This routine is used for debugging only. sl@0: */ sl@0: void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ sl@0: char *zP4; sl@0: char zPtr[50]; sl@0: static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; sl@0: if( pOut==0 ) pOut = stdout; sl@0: zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); sl@0: fprintf(pOut, zFormat1, pc, sl@0: sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, sl@0: #ifdef SQLITE_DEBUG sl@0: pOp->zComment ? pOp->zComment : "" sl@0: #else sl@0: "" sl@0: #endif sl@0: ); sl@0: fflush(pOut); sl@0: } sl@0: #endif sl@0: sl@0: /* sl@0: ** Release an array of N Mem elements sl@0: */ sl@0: static void releaseMemArray(Mem *p, int N){ sl@0: if( p && N ){ sl@0: sqlite3 *db = p->db; sl@0: int malloc_failed = db->mallocFailed; sl@0: while( N-->0 ){ sl@0: assert( N<2 || p[0].db==p[1].db ); sl@0: sqlite3VdbeMemRelease(p); sl@0: p->flags = MEM_Null; sl@0: p++; sl@0: } sl@0: db->mallocFailed = malloc_failed; sl@0: } sl@0: } sl@0: sl@0: #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT sl@0: int sqlite3VdbeReleaseBuffers(Vdbe *p){ sl@0: int ii; sl@0: int nFree = 0; sl@0: assert( sqlite3_mutex_held(p->db->mutex) ); sl@0: for(ii=1; ii<=p->nMem; ii++){ sl@0: Mem *pMem = &p->aMem[ii]; sl@0: if( pMem->z && pMem->flags&MEM_Dyn ){ sl@0: assert( !pMem->xDel ); sl@0: nFree += sqlite3DbMallocSize(pMem->db, pMem->z); sl@0: sqlite3VdbeMemRelease(pMem); sl@0: } sl@0: } sl@0: return nFree; sl@0: } sl@0: #endif sl@0: sl@0: #ifndef SQLITE_OMIT_EXPLAIN sl@0: /* sl@0: ** Give a listing of the program in the virtual machine. sl@0: ** sl@0: ** The interface is the same as sqlite3VdbeExec(). But instead of sl@0: ** running the code, it invokes the callback once for each instruction. sl@0: ** This feature is used to implement "EXPLAIN". sl@0: ** sl@0: ** When p->explain==1, each instruction is listed. When sl@0: ** p->explain==2, only OP_Explain instructions are listed and these sl@0: ** are shown in a different format. p->explain==2 is used to implement sl@0: ** EXPLAIN QUERY PLAN. sl@0: */ sl@0: int sqlite3VdbeList( sl@0: Vdbe *p /* The VDBE */ sl@0: ){ sl@0: sqlite3 *db = p->db; sl@0: int i; sl@0: int rc = SQLITE_OK; sl@0: Mem *pMem = p->pResultSet = &p->aMem[1]; sl@0: sl@0: assert( p->explain ); sl@0: if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE; sl@0: assert( db->magic==SQLITE_MAGIC_BUSY ); sl@0: assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); sl@0: sl@0: /* Even though this opcode does not use dynamic strings for sl@0: ** the result, result columns may become dynamic if the user calls sl@0: ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. sl@0: */ sl@0: releaseMemArray(pMem, p->nMem); sl@0: sl@0: do{ sl@0: i = p->pc++; sl@0: }while( inOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); sl@0: if( i>=p->nOp ){ sl@0: p->rc = SQLITE_OK; sl@0: rc = SQLITE_DONE; sl@0: }else if( db->u1.isInterrupted ){ sl@0: p->rc = SQLITE_INTERRUPT; sl@0: rc = SQLITE_ERROR; sl@0: sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); sl@0: }else{ sl@0: char *z; sl@0: Op *pOp = &p->aOp[i]; sl@0: if( p->explain==1 ){ sl@0: pMem->flags = MEM_Int; sl@0: pMem->type = SQLITE_INTEGER; sl@0: pMem->u.i = i; /* Program counter */ sl@0: pMem++; sl@0: sl@0: pMem->flags = MEM_Static|MEM_Str|MEM_Term; sl@0: pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ sl@0: assert( pMem->z!=0 ); sl@0: pMem->n = strlen(pMem->z); sl@0: pMem->type = SQLITE_TEXT; sl@0: pMem->enc = SQLITE_UTF8; sl@0: pMem++; sl@0: } sl@0: sl@0: pMem->flags = MEM_Int; sl@0: pMem->u.i = pOp->p1; /* P1 */ sl@0: pMem->type = SQLITE_INTEGER; sl@0: pMem++; sl@0: sl@0: pMem->flags = MEM_Int; sl@0: pMem->u.i = pOp->p2; /* P2 */ sl@0: pMem->type = SQLITE_INTEGER; sl@0: pMem++; sl@0: sl@0: if( p->explain==1 ){ sl@0: pMem->flags = MEM_Int; sl@0: pMem->u.i = pOp->p3; /* P3 */ sl@0: pMem->type = SQLITE_INTEGER; sl@0: pMem++; sl@0: } sl@0: sl@0: if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ sl@0: p->db->mallocFailed = 1; sl@0: return SQLITE_NOMEM; sl@0: } sl@0: pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; sl@0: z = displayP4(pOp, pMem->z, 32); sl@0: if( z!=pMem->z ){ sl@0: sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); sl@0: }else{ sl@0: assert( pMem->z!=0 ); sl@0: pMem->n = strlen(pMem->z); sl@0: pMem->enc = SQLITE_UTF8; sl@0: } sl@0: pMem->type = SQLITE_TEXT; sl@0: pMem++; sl@0: sl@0: if( p->explain==1 ){ sl@0: if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ sl@0: p->db->mallocFailed = 1; sl@0: return SQLITE_NOMEM; sl@0: } sl@0: pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; sl@0: pMem->n = 2; sl@0: sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ sl@0: pMem->type = SQLITE_TEXT; sl@0: pMem->enc = SQLITE_UTF8; sl@0: pMem++; sl@0: sl@0: #ifdef SQLITE_DEBUG sl@0: if( pOp->zComment ){ sl@0: pMem->flags = MEM_Str|MEM_Term; sl@0: pMem->z = pOp->zComment; sl@0: pMem->n = strlen(pMem->z); sl@0: pMem->enc = SQLITE_UTF8; sl@0: }else sl@0: #endif sl@0: { sl@0: pMem->flags = MEM_Null; /* Comment */ sl@0: pMem->type = SQLITE_NULL; sl@0: } sl@0: } sl@0: sl@0: p->nResColumn = 8 - 5*(p->explain-1); sl@0: p->rc = SQLITE_OK; sl@0: rc = SQLITE_ROW; sl@0: } sl@0: return rc; sl@0: } sl@0: #endif /* SQLITE_OMIT_EXPLAIN */ sl@0: sl@0: #ifdef SQLITE_DEBUG sl@0: /* sl@0: ** Print the SQL that was used to generate a VDBE program. sl@0: */ sl@0: void sqlite3VdbePrintSql(Vdbe *p){ sl@0: int nOp = p->nOp; sl@0: VdbeOp *pOp; sl@0: if( nOp<1 ) return; sl@0: pOp = &p->aOp[0]; sl@0: if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ sl@0: const char *z = pOp->p4.z; sl@0: while( isspace(*(u8*)z) ) z++; sl@0: printf("SQL: [%s]\n", z); sl@0: } sl@0: } sl@0: #endif sl@0: sl@0: #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) sl@0: /* sl@0: ** Print an IOTRACE message showing SQL content. sl@0: */ sl@0: void sqlite3VdbeIOTraceSql(Vdbe *p){ sl@0: int nOp = p->nOp; sl@0: VdbeOp *pOp; sl@0: if( sqlite3IoTrace==0 ) return; sl@0: if( nOp<1 ) return; sl@0: pOp = &p->aOp[0]; sl@0: if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ sl@0: int i, j; sl@0: char z[1000]; sl@0: sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); sl@0: for(i=0; isspace((unsigned char)z[i]); i++){} sl@0: for(j=0; z[i]; i++){ sl@0: if( isspace((unsigned char)z[i]) ){ sl@0: if( z[i-1]!=' ' ){ sl@0: z[j++] = ' '; sl@0: } sl@0: }else{ sl@0: z[j++] = z[i]; sl@0: } sl@0: } sl@0: z[j] = 0; sl@0: sqlite3IoTrace("SQL %s\n", z); sl@0: } sl@0: } sl@0: #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ sl@0: sl@0: sl@0: /* sl@0: ** Prepare a virtual machine for execution. This involves things such sl@0: ** as allocating stack space and initializing the program counter. sl@0: ** After the VDBE has be prepped, it can be executed by one or more sl@0: ** calls to sqlite3VdbeExec(). sl@0: ** sl@0: ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to sl@0: ** VDBE_MAGIC_RUN. sl@0: */ sl@0: void sqlite3VdbeMakeReady( sl@0: Vdbe *p, /* The VDBE */ sl@0: int nVar, /* Number of '?' see in the SQL statement */ sl@0: int nMem, /* Number of memory cells to allocate */ sl@0: int nCursor, /* Number of cursors to allocate */ sl@0: int isExplain /* True if the EXPLAIN keywords is present */ sl@0: ){ sl@0: int n; sl@0: sqlite3 *db = p->db; sl@0: sl@0: assert( p!=0 ); sl@0: assert( p->magic==VDBE_MAGIC_INIT ); sl@0: sl@0: /* There should be at least one opcode. sl@0: */ sl@0: assert( p->nOp>0 ); sl@0: sl@0: /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This sl@0: * is because the call to resizeOpArray() below may shrink the sl@0: * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN sl@0: * state. sl@0: */ sl@0: p->magic = VDBE_MAGIC_RUN; sl@0: sl@0: /* For each cursor required, also allocate a memory cell. Memory sl@0: ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by sl@0: ** the vdbe program. Instead they are used to allocate space for sl@0: ** Cursor/BtCursor structures. The blob of memory associated with sl@0: ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) sl@0: ** stores the blob of memory associated with cursor 1, etc. sl@0: ** sl@0: ** See also: allocateCursor(). sl@0: */ sl@0: nMem += nCursor; sl@0: sl@0: /* sl@0: ** Allocation space for registers. sl@0: */ sl@0: if( p->aMem==0 ){ sl@0: int nArg; /* Maximum number of args passed to a user function. */ sl@0: resolveP2Values(p, &nArg); sl@0: /*resizeOpArray(p, p->nOp);*/ sl@0: assert( nVar>=0 ); sl@0: if( isExplain && nMem<10 ){ sl@0: p->nMem = nMem = 10; sl@0: } sl@0: p->aMem = sqlite3DbMallocZero(db, sl@0: nMem*sizeof(Mem) /* aMem */ sl@0: + nVar*sizeof(Mem) /* aVar */ sl@0: + nArg*sizeof(Mem*) /* apArg */ sl@0: + nVar*sizeof(char*) /* azVar */ sl@0: + nCursor*sizeof(Cursor*) + 1 /* apCsr */ sl@0: ); sl@0: if( !db->mallocFailed ){ sl@0: p->aMem--; /* aMem[] goes from 1..nMem */ sl@0: p->nMem = nMem; /* not from 0..nMem-1 */ sl@0: p->aVar = &p->aMem[nMem+1]; sl@0: p->nVar = nVar; sl@0: p->okVar = 0; sl@0: p->apArg = (Mem**)&p->aVar[nVar]; sl@0: p->azVar = (char**)&p->apArg[nArg]; sl@0: p->apCsr = (Cursor**)&p->azVar[nVar]; sl@0: p->nCursor = nCursor; sl@0: for(n=0; naVar[n].flags = MEM_Null; sl@0: p->aVar[n].db = db; sl@0: } sl@0: for(n=1; n<=nMem; n++){ sl@0: p->aMem[n].flags = MEM_Null; sl@0: p->aMem[n].db = db; sl@0: } sl@0: } sl@0: } sl@0: #ifdef SQLITE_DEBUG sl@0: for(n=1; nnMem; n++){ sl@0: assert( p->aMem[n].db==db ); sl@0: } sl@0: #endif sl@0: sl@0: p->pc = -1; sl@0: p->rc = SQLITE_OK; sl@0: p->uniqueCnt = 0; sl@0: p->errorAction = OE_Abort; sl@0: p->explain |= isExplain; sl@0: p->magic = VDBE_MAGIC_RUN; sl@0: p->nChange = 0; sl@0: p->cacheCtr = 1; sl@0: p->minWriteFileFormat = 255; sl@0: p->openedStatement = 0; sl@0: #ifdef VDBE_PROFILE sl@0: { sl@0: int i; sl@0: for(i=0; inOp; i++){ sl@0: p->aOp[i].cnt = 0; sl@0: p->aOp[i].cycles = 0; sl@0: } sl@0: } sl@0: #endif sl@0: } sl@0: sl@0: /* sl@0: ** Close a VDBE cursor and release all the resources that cursor sl@0: ** happens to hold. sl@0: */ sl@0: void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){ sl@0: if( pCx==0 ){ sl@0: return; sl@0: } sl@0: if( pCx->pBt ){ sl@0: sqlite3BtreeClose(pCx->pBt); sl@0: /* The pCx->pCursor will be close automatically, if it exists, by sl@0: ** the call above. */ sl@0: }else if( pCx->pCursor ){ sl@0: sqlite3BtreeCloseCursor(pCx->pCursor); sl@0: } sl@0: #ifndef SQLITE_OMIT_VIRTUALTABLE sl@0: if( pCx->pVtabCursor ){ sl@0: sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; sl@0: const sqlite3_module *pModule = pCx->pModule; sl@0: p->inVtabMethod = 1; sl@0: (void)sqlite3SafetyOff(p->db); sl@0: pModule->xClose(pVtabCursor); sl@0: (void)sqlite3SafetyOn(p->db); sl@0: p->inVtabMethod = 0; sl@0: } sl@0: #endif sl@0: if( !pCx->ephemPseudoTable ){ sl@0: sqlite3DbFree(p->db, pCx->pData); sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Close all cursors except for VTab cursors that are currently sl@0: ** in use. sl@0: */ sl@0: static void closeAllCursorsExceptActiveVtabs(Vdbe *p){ sl@0: int i; sl@0: if( p->apCsr==0 ) return; sl@0: for(i=0; inCursor; i++){ sl@0: Cursor *pC = p->apCsr[i]; sl@0: if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){ sl@0: sqlite3VdbeFreeCursor(p, pC); sl@0: p->apCsr[i] = 0; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Clean up the VM after execution. sl@0: ** sl@0: ** This routine will automatically close any cursors, lists, and/or sl@0: ** sorters that were left open. It also deletes the values of sl@0: ** variables in the aVar[] array. sl@0: */ sl@0: static void Cleanup(Vdbe *p){ sl@0: int i; sl@0: sqlite3 *db = p->db; sl@0: closeAllCursorsExceptActiveVtabs(p); sl@0: for(i=1; i<=p->nMem; i++){ sl@0: MemSetTypeFlag(&p->aMem[i], MEM_Null); sl@0: } sl@0: releaseMemArray(&p->aMem[1], p->nMem); sl@0: sqlite3VdbeFifoClear(&p->sFifo); sl@0: if( p->contextStack ){ sl@0: for(i=0; icontextStackTop; i++){ sl@0: sqlite3VdbeFifoClear(&p->contextStack[i].sFifo); sl@0: } sl@0: sqlite3DbFree(db, p->contextStack); sl@0: } sl@0: p->contextStack = 0; sl@0: p->contextStackDepth = 0; sl@0: p->contextStackTop = 0; sl@0: sqlite3DbFree(db, p->zErrMsg); sl@0: p->zErrMsg = 0; sl@0: p->pResultSet = 0; sl@0: } sl@0: sl@0: /* sl@0: ** Set the number of result columns that will be returned by this SQL sl@0: ** statement. This is now set at compile time, rather than during sl@0: ** execution of the vdbe program so that sqlite3_column_count() can sl@0: ** be called on an SQL statement before sqlite3_step(). sl@0: */ sl@0: void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ sl@0: Mem *pColName; sl@0: int n; sl@0: sqlite3 *db = p->db; sl@0: sl@0: releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); sl@0: sqlite3DbFree(db, p->aColName); sl@0: n = nResColumn*COLNAME_N; sl@0: p->nResColumn = nResColumn; sl@0: p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); sl@0: if( p->aColName==0 ) return; sl@0: while( n-- > 0 ){ sl@0: pColName->flags = MEM_Null; sl@0: pColName->db = p->db; sl@0: pColName++; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Set the name of the idx'th column to be returned by the SQL statement. sl@0: ** zName must be a pointer to a nul terminated string. sl@0: ** sl@0: ** This call must be made after a call to sqlite3VdbeSetNumCols(). sl@0: ** sl@0: ** If N==P4_STATIC it means that zName is a pointer to a constant static sl@0: ** string and we can just copy the pointer. If it is P4_DYNAMIC, then sl@0: ** the string is freed using sqlite3DbFree(db, ) when the vdbe is finished with sl@0: ** it. Otherwise, N bytes of zName are copied. sl@0: */ sl@0: int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){ sl@0: int rc; sl@0: Mem *pColName; sl@0: assert( idxnResColumn ); sl@0: assert( vardb->mallocFailed ) return SQLITE_NOMEM; sl@0: assert( p->aColName!=0 ); sl@0: pColName = &(p->aColName[idx+var*p->nResColumn]); sl@0: if( N==P4_DYNAMIC || N==P4_STATIC ){ sl@0: rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC); sl@0: }else{ sl@0: rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT); sl@0: } sl@0: if( rc==SQLITE_OK && N==P4_DYNAMIC ){ sl@0: pColName->flags &= (~MEM_Static); sl@0: pColName->zMalloc = pColName->z; sl@0: } sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** A read or write transaction may or may not be active on database handle sl@0: ** db. If a transaction is active, commit it. If there is a sl@0: ** write-transaction spanning more than one database file, this routine sl@0: ** takes care of the master journal trickery. sl@0: */ sl@0: static int vdbeCommit(sqlite3 *db, Vdbe *p){ sl@0: int i; sl@0: int nTrans = 0; /* Number of databases with an active write-transaction */ sl@0: int rc = SQLITE_OK; sl@0: int needXcommit = 0; sl@0: sl@0: /* Before doing anything else, call the xSync() callback for any sl@0: ** virtual module tables written in this transaction. This has to sl@0: ** be done before determining whether a master journal file is sl@0: ** required, as an xSync() callback may add an attached database sl@0: ** to the transaction. sl@0: */ sl@0: rc = sqlite3VtabSync(db, &p->zErrMsg); sl@0: if( rc!=SQLITE_OK ){ sl@0: return rc; sl@0: } sl@0: sl@0: /* This loop determines (a) if the commit hook should be invoked and sl@0: ** (b) how many database files have open write transactions, not sl@0: ** including the temp database. (b) is important because if more than sl@0: ** one database file has an open write transaction, a master journal sl@0: ** file is required for an atomic commit. sl@0: */ sl@0: for(i=0; inDb; i++){ sl@0: Btree *pBt = db->aDb[i].pBt; sl@0: if( sqlite3BtreeIsInTrans(pBt) ){ sl@0: needXcommit = 1; sl@0: if( i!=1 ) nTrans++; sl@0: } sl@0: } sl@0: sl@0: /* If there are any write-transactions at all, invoke the commit hook */ sl@0: if( needXcommit && db->xCommitCallback ){ sl@0: (void)sqlite3SafetyOff(db); sl@0: rc = db->xCommitCallback(db->pCommitArg); sl@0: (void)sqlite3SafetyOn(db); sl@0: if( rc ){ sl@0: return SQLITE_CONSTRAINT; sl@0: } sl@0: } sl@0: sl@0: /* The simple case - no more than one database file (not counting the sl@0: ** TEMP database) has a transaction active. There is no need for the sl@0: ** master-journal. sl@0: ** sl@0: ** If the return value of sqlite3BtreeGetFilename() is a zero length sl@0: ** string, it means the main database is :memory: or a temp file. In sl@0: ** that case we do not support atomic multi-file commits, so use the sl@0: ** simple case then too. sl@0: */ sl@0: if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){ sl@0: for(i=0; rc==SQLITE_OK && inDb; i++){ sl@0: Btree *pBt = db->aDb[i].pBt; sl@0: if( pBt ){ sl@0: rc = sqlite3BtreeCommitPhaseOne(pBt, 0); sl@0: } sl@0: } sl@0: sl@0: /* Do the commit only if all databases successfully complete phase 1. sl@0: ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an sl@0: ** IO error while deleting or truncating a journal file. It is unlikely, sl@0: ** but could happen. In this case abandon processing and return the error. sl@0: */ sl@0: for(i=0; rc==SQLITE_OK && inDb; i++){ sl@0: Btree *pBt = db->aDb[i].pBt; sl@0: if( pBt ){ sl@0: rc = sqlite3BtreeCommitPhaseTwo(pBt); sl@0: } sl@0: } sl@0: if( rc==SQLITE_OK ){ sl@0: sqlite3VtabCommit(db); sl@0: } sl@0: } sl@0: sl@0: /* The complex case - There is a multi-file write-transaction active. sl@0: ** This requires a master journal file to ensure the transaction is sl@0: ** committed atomicly. sl@0: */ sl@0: #ifndef SQLITE_OMIT_DISKIO sl@0: else{ sl@0: sqlite3_vfs *pVfs = db->pVfs; sl@0: int needSync = 0; sl@0: char *zMaster = 0; /* File-name for the master journal */ sl@0: char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); sl@0: sqlite3_file *pMaster = 0; sl@0: i64 offset = 0; sl@0: int res; sl@0: sl@0: /* Select a master journal file name */ sl@0: do { sl@0: u32 random; sl@0: sqlite3DbFree(db, zMaster); sl@0: sqlite3_randomness(sizeof(random), &random); sl@0: zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff); sl@0: if( !zMaster ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); sl@0: }while( rc==SQLITE_OK && res ); sl@0: if( rc==SQLITE_OK ){ sl@0: /* Open the master journal. */ sl@0: rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, sl@0: SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| sl@0: SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 sl@0: ); sl@0: } sl@0: if( rc!=SQLITE_OK ){ sl@0: sqlite3DbFree(db, zMaster); sl@0: return rc; sl@0: } sl@0: sl@0: /* Write the name of each database file in the transaction into the new sl@0: ** master journal file. If an error occurs at this point close sl@0: ** and delete the master journal file. All the individual journal files sl@0: ** still have 'null' as the master journal pointer, so they will roll sl@0: ** back independently if a failure occurs. sl@0: */ sl@0: for(i=0; inDb; i++){ sl@0: Btree *pBt = db->aDb[i].pBt; sl@0: if( i==1 ) continue; /* Ignore the TEMP database */ sl@0: if( sqlite3BtreeIsInTrans(pBt) ){ sl@0: char const *zFile = sqlite3BtreeGetJournalname(pBt); sl@0: if( zFile[0]==0 ) continue; /* Ignore :memory: databases */ sl@0: if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ sl@0: needSync = 1; sl@0: } sl@0: rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset); sl@0: offset += strlen(zFile)+1; sl@0: if( rc!=SQLITE_OK ){ sl@0: sqlite3OsCloseFree(pMaster); sl@0: sqlite3OsDelete(pVfs, zMaster, 0); sl@0: sqlite3DbFree(db, zMaster); sl@0: return rc; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* Sync the master journal file. If the IOCAP_SEQUENTIAL device sl@0: ** flag is set this is not required. sl@0: */ sl@0: zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt); sl@0: if( (needSync sl@0: && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)) sl@0: && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){ sl@0: sqlite3OsCloseFree(pMaster); sl@0: sqlite3OsDelete(pVfs, zMaster, 0); sl@0: sqlite3DbFree(db, zMaster); sl@0: return rc; sl@0: } sl@0: sl@0: /* Sync all the db files involved in the transaction. The same call sl@0: ** sets the master journal pointer in each individual journal. If sl@0: ** an error occurs here, do not delete the master journal file. sl@0: ** sl@0: ** If the error occurs during the first call to sl@0: ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the sl@0: ** master journal file will be orphaned. But we cannot delete it, sl@0: ** in case the master journal file name was written into the journal sl@0: ** file before the failure occured. sl@0: */ sl@0: for(i=0; rc==SQLITE_OK && inDb; i++){ sl@0: Btree *pBt = db->aDb[i].pBt; sl@0: if( pBt ){ sl@0: rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); sl@0: } sl@0: } sl@0: sqlite3OsCloseFree(pMaster); sl@0: if( rc!=SQLITE_OK ){ sl@0: sqlite3DbFree(db, zMaster); sl@0: return rc; sl@0: } sl@0: sl@0: /* Delete the master journal file. This commits the transaction. After sl@0: ** doing this the directory is synced again before any individual sl@0: ** transaction files are deleted. sl@0: */ sl@0: rc = sqlite3OsDelete(pVfs, zMaster, 1); sl@0: sqlite3DbFree(db, zMaster); sl@0: zMaster = 0; sl@0: if( rc ){ sl@0: return rc; sl@0: } sl@0: sl@0: /* All files and directories have already been synced, so the following sl@0: ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and sl@0: ** deleting or truncating journals. If something goes wrong while sl@0: ** this is happening we don't really care. The integrity of the sl@0: ** transaction is already guaranteed, but some stray 'cold' journals sl@0: ** may be lying around. Returning an error code won't help matters. sl@0: */ sl@0: disable_simulated_io_errors(); sl@0: sqlite3BeginBenignMalloc(); sl@0: for(i=0; inDb; i++){ sl@0: Btree *pBt = db->aDb[i].pBt; sl@0: if( pBt ){ sl@0: sqlite3BtreeCommitPhaseTwo(pBt); sl@0: } sl@0: } sl@0: sqlite3EndBenignMalloc(); sl@0: enable_simulated_io_errors(); sl@0: sl@0: sqlite3VtabCommit(db); sl@0: } sl@0: #endif sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** This routine checks that the sqlite3.activeVdbeCnt count variable sl@0: ** matches the number of vdbe's in the list sqlite3.pVdbe that are sl@0: ** currently active. An assertion fails if the two counts do not match. sl@0: ** This is an internal self-check only - it is not an essential processing sl@0: ** step. sl@0: ** sl@0: ** This is a no-op if NDEBUG is defined. sl@0: */ sl@0: #ifndef NDEBUG sl@0: static void checkActiveVdbeCnt(sqlite3 *db){ sl@0: Vdbe *p; sl@0: int cnt = 0; sl@0: p = db->pVdbe; sl@0: while( p ){ sl@0: if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ sl@0: cnt++; sl@0: } sl@0: p = p->pNext; sl@0: } sl@0: assert( cnt==db->activeVdbeCnt ); sl@0: } sl@0: #else sl@0: #define checkActiveVdbeCnt(x) sl@0: #endif sl@0: sl@0: /* sl@0: ** For every Btree that in database connection db which sl@0: ** has been modified, "trip" or invalidate each cursor in sl@0: ** that Btree might have been modified so that the cursor sl@0: ** can never be used again. This happens when a rollback sl@0: *** occurs. We have to trip all the other cursors, even sl@0: ** cursor from other VMs in different database connections, sl@0: ** so that none of them try to use the data at which they sl@0: ** were pointing and which now may have been changed due sl@0: ** to the rollback. sl@0: ** sl@0: ** Remember that a rollback can delete tables complete and sl@0: ** reorder rootpages. So it is not sufficient just to save sl@0: ** the state of the cursor. We have to invalidate the cursor sl@0: ** so that it is never used again. sl@0: */ sl@0: static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ sl@0: int i; sl@0: for(i=0; inDb; i++){ sl@0: Btree *p = db->aDb[i].pBt; sl@0: if( p && sqlite3BtreeIsInTrans(p) ){ sl@0: sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This routine is called the when a VDBE tries to halt. If the VDBE sl@0: ** has made changes and is in autocommit mode, then commit those sl@0: ** changes. If a rollback is needed, then do the rollback. sl@0: ** sl@0: ** This routine is the only way to move the state of a VM from sl@0: ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to sl@0: ** call this on a VM that is in the SQLITE_MAGIC_HALT state. sl@0: ** sl@0: ** Return an error code. If the commit could not complete because of sl@0: ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it sl@0: ** means the close did not happen and needs to be repeated. sl@0: */ sl@0: int sqlite3VdbeHalt(Vdbe *p){ sl@0: sqlite3 *db = p->db; sl@0: int i; sl@0: int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */ sl@0: int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */ sl@0: sl@0: /* This function contains the logic that determines if a statement or sl@0: ** transaction will be committed or rolled back as a result of the sl@0: ** execution of this virtual machine. sl@0: ** sl@0: ** If any of the following errors occur: sl@0: ** sl@0: ** SQLITE_NOMEM sl@0: ** SQLITE_IOERR sl@0: ** SQLITE_FULL sl@0: ** SQLITE_INTERRUPT sl@0: ** sl@0: ** Then the internal cache might have been left in an inconsistent sl@0: ** state. We need to rollback the statement transaction, if there is sl@0: ** one, or the complete transaction if there is no statement transaction. sl@0: */ sl@0: sl@0: if( p->db->mallocFailed ){ sl@0: p->rc = SQLITE_NOMEM; sl@0: } sl@0: closeAllCursorsExceptActiveVtabs(p); sl@0: if( p->magic!=VDBE_MAGIC_RUN ){ sl@0: return SQLITE_OK; sl@0: } sl@0: checkActiveVdbeCnt(db); sl@0: sl@0: /* No commit or rollback needed if the program never started */ sl@0: if( p->pc>=0 ){ sl@0: int mrc; /* Primary error code from p->rc */ sl@0: sl@0: /* Lock all btrees used by the statement */ sl@0: sqlite3BtreeMutexArrayEnter(&p->aMutex); sl@0: sl@0: /* Check for one of the special errors */ sl@0: mrc = p->rc & 0xff; sl@0: isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR sl@0: || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; sl@0: if( isSpecialError ){ sl@0: /* This loop does static analysis of the query to see which of the sl@0: ** following three categories it falls into: sl@0: ** sl@0: ** Read-only sl@0: ** Query with statement journal sl@0: ** Query without statement journal sl@0: ** sl@0: ** We could do something more elegant than this static analysis (i.e. sl@0: ** store the type of query as part of the compliation phase), but sl@0: ** handling malloc() or IO failure is a fairly obscure edge case so sl@0: ** this is probably easier. Todo: Might be an opportunity to reduce sl@0: ** code size a very small amount though... sl@0: */ sl@0: int notReadOnly = 0; sl@0: int isStatement = 0; sl@0: assert(p->aOp || p->nOp==0); sl@0: for(i=0; inOp; i++){ sl@0: switch( p->aOp[i].opcode ){ sl@0: case OP_Transaction: sl@0: notReadOnly |= p->aOp[i].p2; sl@0: break; sl@0: case OP_Statement: sl@0: isStatement = 1; sl@0: break; sl@0: } sl@0: } sl@0: sl@0: sl@0: /* If the query was read-only, we need do no rollback at all. Otherwise, sl@0: ** proceed with the special handling. sl@0: */ sl@0: if( notReadOnly || mrc!=SQLITE_INTERRUPT ){ sl@0: if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){ sl@0: xFunc = sqlite3BtreeRollbackStmt; sl@0: p->rc = SQLITE_BUSY; sl@0: } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){ sl@0: xFunc = sqlite3BtreeRollbackStmt; sl@0: }else{ sl@0: /* We are forced to roll back the active transaction. Before doing sl@0: ** so, abort any other statements this handle currently has active. sl@0: */ sl@0: invalidateCursorsOnModifiedBtrees(db); sl@0: sqlite3RollbackAll(db); sl@0: db->autoCommit = 1; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* If the auto-commit flag is set and this is the only active vdbe, then sl@0: ** we do either a commit or rollback of the current transaction. sl@0: ** sl@0: ** Note: This block also runs if one of the special errors handled sl@0: ** above has occured. sl@0: */ sl@0: if( db->autoCommit && db->activeVdbeCnt==1 ){ sl@0: if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ sl@0: /* The auto-commit flag is true, and the vdbe program was sl@0: ** successful or hit an 'OR FAIL' constraint. This means a commit sl@0: ** is required. sl@0: */ sl@0: int rc = vdbeCommit(db, p); sl@0: if( rc==SQLITE_BUSY ){ sl@0: sqlite3BtreeMutexArrayLeave(&p->aMutex); sl@0: return SQLITE_BUSY; sl@0: }else if( rc!=SQLITE_OK ){ sl@0: p->rc = rc; sl@0: sqlite3RollbackAll(db); sl@0: }else{ sl@0: sqlite3CommitInternalChanges(db); sl@0: } sl@0: }else{ sl@0: sqlite3RollbackAll(db); sl@0: } sl@0: }else if( !xFunc ){ sl@0: if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ sl@0: if( p->openedStatement ){ sl@0: xFunc = sqlite3BtreeCommitStmt; sl@0: } sl@0: }else if( p->errorAction==OE_Abort ){ sl@0: xFunc = sqlite3BtreeRollbackStmt; sl@0: }else{ sl@0: invalidateCursorsOnModifiedBtrees(db); sl@0: sqlite3RollbackAll(db); sl@0: db->autoCommit = 1; sl@0: } sl@0: } sl@0: sl@0: /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or sl@0: ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs sl@0: ** and the return code is still SQLITE_OK, set the return code to the new sl@0: ** error value. sl@0: */ sl@0: assert(!xFunc || sl@0: xFunc==sqlite3BtreeCommitStmt || sl@0: xFunc==sqlite3BtreeRollbackStmt sl@0: ); sl@0: for(i=0; xFunc && inDb; i++){ sl@0: int rc; sl@0: Btree *pBt = db->aDb[i].pBt; sl@0: if( pBt ){ sl@0: rc = xFunc(pBt); sl@0: if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){ sl@0: p->rc = rc; sl@0: sqlite3DbFree(db, p->zErrMsg); sl@0: p->zErrMsg = 0; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* If this was an INSERT, UPDATE or DELETE and the statement was committed, sl@0: ** set the change counter. sl@0: */ sl@0: if( p->changeCntOn && p->pc>=0 ){ sl@0: if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){ sl@0: sqlite3VdbeSetChanges(db, p->nChange); sl@0: }else{ sl@0: sqlite3VdbeSetChanges(db, 0); sl@0: } sl@0: p->nChange = 0; sl@0: } sl@0: sl@0: /* Rollback or commit any schema changes that occurred. */ sl@0: if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ sl@0: sqlite3ResetInternalSchema(db, 0); sl@0: db->flags = (db->flags | SQLITE_InternChanges); sl@0: } sl@0: sl@0: /* Release the locks */ sl@0: sqlite3BtreeMutexArrayLeave(&p->aMutex); sl@0: } sl@0: sl@0: /* We have successfully halted and closed the VM. Record this fact. */ sl@0: if( p->pc>=0 ){ sl@0: db->activeVdbeCnt--; sl@0: } sl@0: p->magic = VDBE_MAGIC_HALT; sl@0: checkActiveVdbeCnt(db); sl@0: if( p->db->mallocFailed ){ sl@0: p->rc = SQLITE_NOMEM; sl@0: } sl@0: sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Each VDBE holds the result of the most recent sqlite3_step() call sl@0: ** in p->rc. This routine sets that result back to SQLITE_OK. sl@0: */ sl@0: void sqlite3VdbeResetStepResult(Vdbe *p){ sl@0: p->rc = SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Clean up a VDBE after execution but do not delete the VDBE just yet. sl@0: ** Write any error messages into *pzErrMsg. Return the result code. sl@0: ** sl@0: ** After this routine is run, the VDBE should be ready to be executed sl@0: ** again. sl@0: ** sl@0: ** To look at it another way, this routine resets the state of the sl@0: ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to sl@0: ** VDBE_MAGIC_INIT. sl@0: */ sl@0: int sqlite3VdbeReset(Vdbe *p){ sl@0: sqlite3 *db; sl@0: db = p->db; sl@0: sl@0: /* If the VM did not run to completion or if it encountered an sl@0: ** error, then it might not have been halted properly. So halt sl@0: ** it now. sl@0: */ sl@0: (void)sqlite3SafetyOn(db); sl@0: sqlite3VdbeHalt(p); sl@0: (void)sqlite3SafetyOff(db); sl@0: sl@0: /* If the VDBE has be run even partially, then transfer the error code sl@0: ** and error message from the VDBE into the main database structure. But sl@0: ** if the VDBE has just been set to run but has not actually executed any sl@0: ** instructions yet, leave the main database error information unchanged. sl@0: */ sl@0: if( p->pc>=0 ){ sl@0: if( p->zErrMsg ){ sl@0: sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT); sl@0: db->errCode = p->rc; sl@0: sqlite3DbFree(db, p->zErrMsg); sl@0: p->zErrMsg = 0; sl@0: }else if( p->rc ){ sl@0: sqlite3Error(db, p->rc, 0); sl@0: }else{ sl@0: sqlite3Error(db, SQLITE_OK, 0); sl@0: } sl@0: }else if( p->rc && p->expired ){ sl@0: /* The expired flag was set on the VDBE before the first call sl@0: ** to sqlite3_step(). For consistency (since sqlite3_step() was sl@0: ** called), set the database error in this case as well. sl@0: */ sl@0: sqlite3Error(db, p->rc, 0); sl@0: sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); sl@0: sqlite3DbFree(db, p->zErrMsg); sl@0: p->zErrMsg = 0; sl@0: } sl@0: sl@0: /* Reclaim all memory used by the VDBE sl@0: */ sl@0: Cleanup(p); sl@0: sl@0: /* Save profiling information from this VDBE run. sl@0: */ sl@0: #ifdef VDBE_PROFILE sl@0: { sl@0: FILE *out = fopen("vdbe_profile.out", "a"); sl@0: if( out ){ sl@0: int i; sl@0: fprintf(out, "---- "); sl@0: for(i=0; inOp; i++){ sl@0: fprintf(out, "%02x", p->aOp[i].opcode); sl@0: } sl@0: fprintf(out, "\n"); sl@0: for(i=0; inOp; i++){ sl@0: fprintf(out, "%6d %10lld %8lld ", sl@0: p->aOp[i].cnt, sl@0: p->aOp[i].cycles, sl@0: p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 sl@0: ); sl@0: sqlite3VdbePrintOp(out, i, &p->aOp[i]); sl@0: } sl@0: fclose(out); sl@0: } sl@0: } sl@0: #endif sl@0: p->magic = VDBE_MAGIC_INIT; sl@0: return p->rc & db->errMask; sl@0: } sl@0: sl@0: /* sl@0: ** Clean up and delete a VDBE after execution. Return an integer which is sl@0: ** the result code. Write any error message text into *pzErrMsg. sl@0: */ sl@0: int sqlite3VdbeFinalize(Vdbe *p){ sl@0: int rc = SQLITE_OK; sl@0: if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ sl@0: rc = sqlite3VdbeReset(p); sl@0: assert( (rc & p->db->errMask)==rc ); sl@0: }else if( p->magic!=VDBE_MAGIC_INIT ){ sl@0: return SQLITE_MISUSE; sl@0: } sl@0: sqlite3VdbeDelete(p); sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** Call the destructor for each auxdata entry in pVdbeFunc for which sl@0: ** the corresponding bit in mask is clear. Auxdata entries beyond 31 sl@0: ** are always destroyed. To destroy all auxdata entries, call this sl@0: ** routine with mask==0. sl@0: */ sl@0: void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ sl@0: int i; sl@0: for(i=0; inAux; i++){ sl@0: struct AuxData *pAux = &pVdbeFunc->apAux[i]; sl@0: if( (i>31 || !(mask&(1<pAux ){ sl@0: if( pAux->xDelete ){ sl@0: pAux->xDelete(pAux->pAux); sl@0: } sl@0: pAux->pAux = 0; sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Delete an entire VDBE. sl@0: */ sl@0: void sqlite3VdbeDelete(Vdbe *p){ sl@0: int i; sl@0: sqlite3 *db; sl@0: sl@0: if( p==0 ) return; sl@0: db = p->db; sl@0: if( p->pPrev ){ sl@0: p->pPrev->pNext = p->pNext; sl@0: }else{ sl@0: assert( db->pVdbe==p ); sl@0: db->pVdbe = p->pNext; sl@0: } sl@0: if( p->pNext ){ sl@0: p->pNext->pPrev = p->pPrev; sl@0: } sl@0: if( p->aOp ){ sl@0: Op *pOp = p->aOp; sl@0: for(i=0; inOp; i++, pOp++){ sl@0: freeP4(db, pOp->p4type, pOp->p4.p); sl@0: #ifdef SQLITE_DEBUG sl@0: sqlite3DbFree(db, pOp->zComment); sl@0: #endif sl@0: } sl@0: sqlite3DbFree(db, p->aOp); sl@0: } sl@0: releaseMemArray(p->aVar, p->nVar); sl@0: sqlite3DbFree(db, p->aLabel); sl@0: if( p->aMem ){ sl@0: sqlite3DbFree(db, &p->aMem[1]); sl@0: } sl@0: releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); sl@0: sqlite3DbFree(db, p->aColName); sl@0: sqlite3DbFree(db, p->zSql); sl@0: p->magic = VDBE_MAGIC_DEAD; sl@0: sqlite3DbFree(db, p); sl@0: } sl@0: sl@0: /* sl@0: ** If a MoveTo operation is pending on the given cursor, then do that sl@0: ** MoveTo now. Return an error code. If no MoveTo is pending, this sl@0: ** routine does nothing and returns SQLITE_OK. sl@0: */ sl@0: int sqlite3VdbeCursorMoveto(Cursor *p){ sl@0: if( p->deferredMoveto ){ sl@0: int res, rc; sl@0: #ifdef SQLITE_TEST sl@0: extern int sqlite3_search_count; sl@0: #endif sl@0: assert( p->isTable ); sl@0: rc = sqlite3BtreeMoveto(p->pCursor, 0, 0, p->movetoTarget, 0, &res); sl@0: if( rc ) return rc; sl@0: *p->pIncrKey = 0; sl@0: p->lastRowid = keyToInt(p->movetoTarget); sl@0: p->rowidIsValid = res==0; sl@0: if( res<0 ){ sl@0: rc = sqlite3BtreeNext(p->pCursor, &res); sl@0: if( rc ) return rc; sl@0: } sl@0: #ifdef SQLITE_TEST sl@0: sqlite3_search_count++; sl@0: #endif sl@0: p->deferredMoveto = 0; sl@0: p->cacheStatus = CACHE_STALE; sl@0: }else if( p->pCursor ){ sl@0: int hasMoved; sl@0: int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); sl@0: if( rc ) return rc; sl@0: if( hasMoved ){ sl@0: p->cacheStatus = CACHE_STALE; sl@0: p->nullRow = 1; sl@0: } sl@0: } sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** The following functions: sl@0: ** sl@0: ** sqlite3VdbeSerialType() sl@0: ** sqlite3VdbeSerialTypeLen() sl@0: ** sqlite3VdbeSerialLen() sl@0: ** sqlite3VdbeSerialPut() sl@0: ** sqlite3VdbeSerialGet() sl@0: ** sl@0: ** encapsulate the code that serializes values for storage in SQLite sl@0: ** data and index records. Each serialized value consists of a sl@0: ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned sl@0: ** integer, stored as a varint. sl@0: ** sl@0: ** In an SQLite index record, the serial type is stored directly before sl@0: ** the blob of data that it corresponds to. In a table record, all serial sl@0: ** types are stored at the start of the record, and the blobs of data at sl@0: ** the end. Hence these functions allow the caller to handle the sl@0: ** serial-type and data blob seperately. sl@0: ** sl@0: ** The following table describes the various storage classes for data: sl@0: ** sl@0: ** serial type bytes of data type sl@0: ** -------------- --------------- --------------- sl@0: ** 0 0 NULL sl@0: ** 1 1 signed integer sl@0: ** 2 2 signed integer sl@0: ** 3 3 signed integer sl@0: ** 4 4 signed integer sl@0: ** 5 6 signed integer sl@0: ** 6 8 signed integer sl@0: ** 7 8 IEEE float sl@0: ** 8 0 Integer constant 0 sl@0: ** 9 0 Integer constant 1 sl@0: ** 10,11 reserved for expansion sl@0: ** N>=12 and even (N-12)/2 BLOB sl@0: ** N>=13 and odd (N-13)/2 text sl@0: ** sl@0: ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions sl@0: ** of SQLite will not understand those serial types. sl@0: */ sl@0: sl@0: /* sl@0: ** Return the serial-type for the value stored in pMem. sl@0: */ sl@0: u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ sl@0: int flags = pMem->flags; sl@0: int n; sl@0: sl@0: if( flags&MEM_Null ){ sl@0: return 0; sl@0: } sl@0: if( flags&MEM_Int ){ sl@0: /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ sl@0: # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) sl@0: i64 i = pMem->u.i; sl@0: u64 u; sl@0: if( file_format>=4 && (i&1)==i ){ sl@0: return 8+i; sl@0: } sl@0: u = i<0 ? -i : i; sl@0: if( u<=127 ) return 1; sl@0: if( u<=32767 ) return 2; sl@0: if( u<=8388607 ) return 3; sl@0: if( u<=2147483647 ) return 4; sl@0: if( u<=MAX_6BYTE ) return 5; sl@0: return 6; sl@0: } sl@0: if( flags&MEM_Real ){ sl@0: return 7; sl@0: } sl@0: assert( flags&(MEM_Str|MEM_Blob) ); sl@0: n = pMem->n; sl@0: if( flags & MEM_Zero ){ sl@0: n += pMem->u.i; sl@0: } sl@0: assert( n>=0 ); sl@0: return ((n*2) + 12 + ((flags&MEM_Str)!=0)); sl@0: } sl@0: sl@0: /* sl@0: ** Return the length of the data corresponding to the supplied serial-type. sl@0: */ sl@0: int sqlite3VdbeSerialTypeLen(u32 serial_type){ sl@0: if( serial_type>=12 ){ sl@0: return (serial_type-12)/2; sl@0: }else{ sl@0: static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; sl@0: return aSize[serial_type]; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** If we are on an architecture with mixed-endian floating sl@0: ** points (ex: ARM7) then swap the lower 4 bytes with the sl@0: ** upper 4 bytes. Return the result. sl@0: ** sl@0: ** For most architectures, this is a no-op. sl@0: ** sl@0: ** (later): It is reported to me that the mixed-endian problem sl@0: ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems sl@0: ** that early versions of GCC stored the two words of a 64-bit sl@0: ** float in the wrong order. And that error has been propagated sl@0: ** ever since. The blame is not necessarily with GCC, though. sl@0: ** GCC might have just copying the problem from a prior compiler. sl@0: ** I am also told that newer versions of GCC that follow a different sl@0: ** ABI get the byte order right. sl@0: ** sl@0: ** Developers using SQLite on an ARM7 should compile and run their sl@0: ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG sl@0: ** enabled, some asserts below will ensure that the byte order of sl@0: ** floating point values is correct. sl@0: ** sl@0: ** (2007-08-30) Frank van Vugt has studied this problem closely sl@0: ** and has send his findings to the SQLite developers. Frank sl@0: ** writes that some Linux kernels offer floating point hardware sl@0: ** emulation that uses only 32-bit mantissas instead of a full sl@0: ** 48-bits as required by the IEEE standard. (This is the sl@0: ** CONFIG_FPE_FASTFPE option.) On such systems, floating point sl@0: ** byte swapping becomes very complicated. To avoid problems, sl@0: ** the necessary byte swapping is carried out using a 64-bit integer sl@0: ** rather than a 64-bit float. Frank assures us that the code here sl@0: ** works for him. We, the developers, have no way to independently sl@0: ** verify this, but Frank seems to know what he is talking about sl@0: ** so we trust him. sl@0: */ sl@0: #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT sl@0: static u64 floatSwap(u64 in){ sl@0: union { sl@0: u64 r; sl@0: u32 i[2]; sl@0: } u; sl@0: u32 t; sl@0: sl@0: u.r = in; sl@0: t = u.i[0]; sl@0: u.i[0] = u.i[1]; sl@0: u.i[1] = t; sl@0: return u.r; sl@0: } sl@0: # define swapMixedEndianFloat(X) X = floatSwap(X) sl@0: #else sl@0: # define swapMixedEndianFloat(X) sl@0: #endif sl@0: sl@0: /* sl@0: ** Write the serialized data blob for the value stored in pMem into sl@0: ** buf. It is assumed that the caller has allocated sufficient space. sl@0: ** Return the number of bytes written. sl@0: ** sl@0: ** nBuf is the amount of space left in buf[]. nBuf must always be sl@0: ** large enough to hold the entire field. Except, if the field is sl@0: ** a blob with a zero-filled tail, then buf[] might be just the right sl@0: ** size to hold everything except for the zero-filled tail. If buf[] sl@0: ** is only big enough to hold the non-zero prefix, then only write that sl@0: ** prefix into buf[]. But if buf[] is large enough to hold both the sl@0: ** prefix and the tail then write the prefix and set the tail to all sl@0: ** zeros. sl@0: ** sl@0: ** Return the number of bytes actually written into buf[]. The number sl@0: ** of bytes in the zero-filled tail is included in the return value only sl@0: ** if those bytes were zeroed in buf[]. sl@0: */ sl@0: int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ sl@0: u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); sl@0: int len; sl@0: sl@0: /* Integer and Real */ sl@0: if( serial_type<=7 && serial_type>0 ){ sl@0: u64 v; sl@0: int i; sl@0: if( serial_type==7 ){ sl@0: assert( sizeof(v)==sizeof(pMem->r) ); sl@0: memcpy(&v, &pMem->r, sizeof(v)); sl@0: swapMixedEndianFloat(v); sl@0: }else{ sl@0: v = pMem->u.i; sl@0: } sl@0: len = i = sqlite3VdbeSerialTypeLen(serial_type); sl@0: assert( len<=nBuf ); sl@0: while( i-- ){ sl@0: buf[i] = (v&0xFF); sl@0: v >>= 8; sl@0: } sl@0: return len; sl@0: } sl@0: sl@0: /* String or blob */ sl@0: if( serial_type>=12 ){ sl@0: assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0) sl@0: == sqlite3VdbeSerialTypeLen(serial_type) ); sl@0: assert( pMem->n<=nBuf ); sl@0: len = pMem->n; sl@0: memcpy(buf, pMem->z, len); sl@0: if( pMem->flags & MEM_Zero ){ sl@0: len += pMem->u.i; sl@0: if( len>nBuf ){ sl@0: len = nBuf; sl@0: } sl@0: memset(&buf[pMem->n], 0, len-pMem->n); sl@0: } sl@0: return len; sl@0: } sl@0: sl@0: /* NULL or constants 0 or 1 */ sl@0: return 0; sl@0: } sl@0: sl@0: /* sl@0: ** Deserialize the data blob pointed to by buf as serial type serial_type sl@0: ** and store the result in pMem. Return the number of bytes read. sl@0: */ sl@0: int sqlite3VdbeSerialGet( sl@0: const unsigned char *buf, /* Buffer to deserialize from */ sl@0: u32 serial_type, /* Serial type to deserialize */ sl@0: Mem *pMem /* Memory cell to write value into */ sl@0: ){ sl@0: switch( serial_type ){ sl@0: case 10: /* Reserved for future use */ sl@0: case 11: /* Reserved for future use */ sl@0: case 0: { /* NULL */ sl@0: pMem->flags = MEM_Null; sl@0: break; sl@0: } sl@0: case 1: { /* 1-byte signed integer */ sl@0: pMem->u.i = (signed char)buf[0]; sl@0: pMem->flags = MEM_Int; sl@0: return 1; sl@0: } sl@0: case 2: { /* 2-byte signed integer */ sl@0: pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; sl@0: pMem->flags = MEM_Int; sl@0: return 2; sl@0: } sl@0: case 3: { /* 3-byte signed integer */ sl@0: pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; sl@0: pMem->flags = MEM_Int; sl@0: return 3; sl@0: } sl@0: case 4: { /* 4-byte signed integer */ sl@0: pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; sl@0: pMem->flags = MEM_Int; sl@0: return 4; sl@0: } sl@0: case 5: { /* 6-byte signed integer */ sl@0: u64 x = (((signed char)buf[0])<<8) | buf[1]; sl@0: u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; sl@0: x = (x<<32) | y; sl@0: pMem->u.i = *(i64*)&x; sl@0: pMem->flags = MEM_Int; sl@0: return 6; sl@0: } sl@0: case 6: /* 8-byte signed integer */ sl@0: case 7: { /* IEEE floating point */ sl@0: u64 x; sl@0: u32 y; sl@0: #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) sl@0: /* Verify that integers and floating point values use the same sl@0: ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is sl@0: ** defined that 64-bit floating point values really are mixed sl@0: ** endian. sl@0: */ sl@0: static const u64 t1 = ((u64)0x3ff00000)<<32; sl@0: static const double r1 = 1.0; sl@0: u64 t2 = t1; sl@0: swapMixedEndianFloat(t2); sl@0: assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); sl@0: #endif sl@0: sl@0: x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; sl@0: y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; sl@0: x = (x<<32) | y; sl@0: if( serial_type==6 ){ sl@0: pMem->u.i = *(i64*)&x; sl@0: pMem->flags = MEM_Int; sl@0: }else{ sl@0: assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); sl@0: swapMixedEndianFloat(x); sl@0: memcpy(&pMem->r, &x, sizeof(x)); sl@0: pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; sl@0: } sl@0: return 8; sl@0: } sl@0: case 8: /* Integer 0 */ sl@0: case 9: { /* Integer 1 */ sl@0: pMem->u.i = serial_type-8; sl@0: pMem->flags = MEM_Int; sl@0: return 0; sl@0: } sl@0: default: { sl@0: int len = (serial_type-12)/2; sl@0: pMem->z = (char *)buf; sl@0: pMem->n = len; sl@0: pMem->xDel = 0; sl@0: if( serial_type&0x01 ){ sl@0: pMem->flags = MEM_Str | MEM_Ephem; sl@0: }else{ sl@0: pMem->flags = MEM_Blob | MEM_Ephem; sl@0: } sl@0: return len; sl@0: } sl@0: } sl@0: return 0; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** Given the nKey-byte encoding of a record in pKey[], parse the sl@0: ** record into a UnpackedRecord structure. Return a pointer to sl@0: ** that structure. sl@0: ** sl@0: ** The calling function might provide szSpace bytes of memory sl@0: ** space at pSpace. This space can be used to hold the returned sl@0: ** VDbeParsedRecord structure if it is large enough. If it is sl@0: ** not big enough, space is obtained from sqlite3_malloc(). sl@0: ** sl@0: ** The returned structure should be closed by a call to sl@0: ** sqlite3VdbeDeleteUnpackedRecord(). sl@0: */ sl@0: UnpackedRecord *sqlite3VdbeRecordUnpack( sl@0: KeyInfo *pKeyInfo, /* Information about the record format */ sl@0: int nKey, /* Size of the binary record */ sl@0: const void *pKey, /* The binary record */ sl@0: void *pSpace, /* Space available to hold resulting object */ sl@0: int szSpace /* Size of pSpace[] in bytes */ sl@0: ){ sl@0: const unsigned char *aKey = (const unsigned char *)pKey; sl@0: UnpackedRecord *p; sl@0: int nByte; sl@0: int idx, d; sl@0: u16 u; /* Unsigned loop counter */ sl@0: u32 szHdr; sl@0: Mem *pMem; sl@0: sl@0: assert( sizeof(Mem)>sizeof(*p) ); sl@0: nByte = sizeof(Mem)*(pKeyInfo->nField+2); sl@0: if( nByte>szSpace ){ sl@0: p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); sl@0: if( p==0 ) return 0; sl@0: p->needFree = 1; sl@0: }else{ sl@0: p = pSpace; sl@0: p->needFree = 0; sl@0: } sl@0: p->pKeyInfo = pKeyInfo; sl@0: p->nField = pKeyInfo->nField + 1; sl@0: p->needDestroy = 1; sl@0: p->aMem = pMem = &((Mem*)p)[1]; sl@0: idx = getVarint32(aKey, szHdr); sl@0: d = szHdr; sl@0: u = 0; sl@0: while( idxnField ){ sl@0: u32 serial_type; sl@0: sl@0: idx += getVarint32( aKey+idx, serial_type); sl@0: if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break; sl@0: pMem->enc = pKeyInfo->enc; sl@0: pMem->db = pKeyInfo->db; sl@0: pMem->flags = 0; sl@0: pMem->zMalloc = 0; sl@0: d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); sl@0: pMem++; sl@0: u++; sl@0: } sl@0: p->nField = u; sl@0: return (void*)p; sl@0: } sl@0: sl@0: /* sl@0: ** This routine destroys a UnpackedRecord object sl@0: */ sl@0: void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ sl@0: if( p ){ sl@0: if( p->needDestroy ){ sl@0: int i; sl@0: Mem *pMem; sl@0: for(i=0, pMem=p->aMem; inField; i++, pMem++){ sl@0: if( pMem->zMalloc ){ sl@0: sqlite3VdbeMemRelease(pMem); sl@0: } sl@0: } sl@0: } sl@0: if( p->needFree ){ sl@0: sqlite3DbFree(p->pKeyInfo->db, p); sl@0: } sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** This function compares the two table rows or index records sl@0: ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero sl@0: ** or positive integer if {nKey1, pKey1} is less than, equal to or sl@0: ** greater than pPKey2. The {nKey1, pKey1} key must be a blob sl@0: ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 sl@0: ** key must be a parsed key such as obtained from sl@0: ** sqlite3VdbeParseRecord. sl@0: ** sl@0: ** Key1 and Key2 do not have to contain the same number of fields. sl@0: ** But if the lengths differ, Key2 must be the shorter of the two. sl@0: ** sl@0: ** Historical note: In earlier versions of this routine both Key1 sl@0: ** and Key2 were blobs obtained from OP_MakeRecord. But we found sl@0: ** that in typical use the same Key2 would be submitted multiple times sl@0: ** in a row. So an optimization was added to parse the Key2 key sl@0: ** separately and submit the parsed version. In this way, we avoid sl@0: ** parsing the same Key2 multiple times in a row. sl@0: */ sl@0: int sqlite3VdbeRecordCompare( sl@0: int nKey1, const void *pKey1, sl@0: UnpackedRecord *pPKey2 sl@0: ){ sl@0: u32 d1; /* Offset into aKey[] of next data element */ sl@0: u32 idx1; /* Offset into aKey[] of next header element */ sl@0: u32 szHdr1; /* Number of bytes in header */ sl@0: int i = 0; sl@0: int nField; sl@0: int rc = 0; sl@0: const unsigned char *aKey1 = (const unsigned char *)pKey1; sl@0: KeyInfo *pKeyInfo; sl@0: Mem mem1; sl@0: sl@0: pKeyInfo = pPKey2->pKeyInfo; sl@0: mem1.enc = pKeyInfo->enc; sl@0: mem1.db = pKeyInfo->db; sl@0: mem1.flags = 0; sl@0: mem1.zMalloc = 0; sl@0: sl@0: idx1 = getVarint32(aKey1, szHdr1); sl@0: d1 = szHdr1; sl@0: nField = pKeyInfo->nField; sl@0: while( idx1nField ){ sl@0: u32 serial_type1; sl@0: sl@0: /* Read the serial types for the next element in each key. */ sl@0: idx1 += getVarint32( aKey1+idx1, serial_type1 ); sl@0: if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; sl@0: sl@0: /* Extract the values to be compared. sl@0: */ sl@0: d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); sl@0: sl@0: /* Do the comparison sl@0: */ sl@0: rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], sl@0: iaColl[i] : 0); sl@0: if( rc!=0 ){ sl@0: break; sl@0: } sl@0: i++; sl@0: } sl@0: if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1); sl@0: sl@0: /* One of the keys ran out of fields, but all the fields up to that point sl@0: ** were equal. If the incrKey flag is true, then the second key is sl@0: ** treated as larger. sl@0: */ sl@0: if( rc==0 ){ sl@0: if( pKeyInfo->incrKey ){ sl@0: rc = -1; sl@0: }else if( !pKeyInfo->prefixIsEqual ){ sl@0: if( d1aSortOrder && inField sl@0: && pKeyInfo->aSortOrder[i] ){ sl@0: rc = -rc; sl@0: } sl@0: sl@0: return rc; sl@0: } sl@0: sl@0: /* sl@0: ** The argument is an index entry composed using the OP_MakeRecord opcode. sl@0: ** The last entry in this record should be an integer (specifically sl@0: ** an integer rowid). This routine returns the number of bytes in sl@0: ** that integer. sl@0: */ sl@0: int sqlite3VdbeIdxRowidLen(const u8 *aKey, int nKey, int *pRowidLen){ sl@0: u32 szHdr; /* Size of the header */ sl@0: u32 typeRowid; /* Serial type of the rowid */ sl@0: sl@0: (void)getVarint32(aKey, szHdr); sl@0: if( szHdr>nKey ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: (void)getVarint32(&aKey[szHdr-1], typeRowid); sl@0: *pRowidLen = sqlite3VdbeSerialTypeLen(typeRowid); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: sl@0: /* sl@0: ** pCur points at an index entry created using the OP_MakeRecord opcode. sl@0: ** Read the rowid (the last field in the record) and store it in *rowid. sl@0: ** Return SQLITE_OK if everything works, or an error code otherwise. sl@0: */ sl@0: int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){ sl@0: i64 nCellKey = 0; sl@0: int rc; sl@0: u32 szHdr; /* Size of the header */ sl@0: u32 typeRowid; /* Serial type of the rowid */ sl@0: u32 lenRowid; /* Size of the rowid */ sl@0: Mem m, v; sl@0: sl@0: sqlite3BtreeKeySize(pCur, &nCellKey); sl@0: if( nCellKey<=0 ){ sl@0: return SQLITE_CORRUPT_BKPT; sl@0: } sl@0: m.flags = 0; sl@0: m.db = 0; sl@0: m.zMalloc = 0; sl@0: rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m); sl@0: if( rc ){ sl@0: return rc; sl@0: } sl@0: (void)getVarint32((u8*)m.z, szHdr); sl@0: (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); sl@0: lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); sl@0: sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); sl@0: *rowid = v.u.i; sl@0: sqlite3VdbeMemRelease(&m); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** Compare the key of the index entry that cursor pC is point to against sl@0: ** the key string in pKey (of length nKey). Write into *pRes a number sl@0: ** that is negative, zero, or positive if pC is less than, equal to, sl@0: ** or greater than pKey. Return SQLITE_OK on success. sl@0: ** sl@0: ** pKey is either created without a rowid or is truncated so that it sl@0: ** omits the rowid at the end. The rowid at the end of the index entry sl@0: ** is ignored as well. sl@0: */ sl@0: int sqlite3VdbeIdxKeyCompare( sl@0: Cursor *pC, /* The cursor to compare against */ sl@0: UnpackedRecord *pUnpacked, sl@0: int nKey, const u8 *pKey, /* The key to compare */ sl@0: int *res /* Write the comparison result here */ sl@0: ){ sl@0: i64 nCellKey = 0; sl@0: int rc; sl@0: BtCursor *pCur = pC->pCursor; sl@0: int lenRowid; sl@0: Mem m; sl@0: UnpackedRecord *pRec; sl@0: char zSpace[200]; sl@0: sl@0: sqlite3BtreeKeySize(pCur, &nCellKey); sl@0: if( nCellKey<=0 ){ sl@0: *res = 0; sl@0: return SQLITE_OK; sl@0: } sl@0: m.db = 0; sl@0: m.flags = 0; sl@0: m.zMalloc = 0; sl@0: if( (rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m)) sl@0: || (rc = sqlite3VdbeIdxRowidLen((u8*)m.z, m.n, &lenRowid)) sl@0: ){ sl@0: return rc; sl@0: } sl@0: if( !pUnpacked ){ sl@0: pRec = sqlite3VdbeRecordUnpack(pC->pKeyInfo, nKey, pKey, sl@0: zSpace, sizeof(zSpace)); sl@0: }else{ sl@0: pRec = pUnpacked; sl@0: } sl@0: if( pRec==0 ){ sl@0: return SQLITE_NOMEM; sl@0: } sl@0: *res = sqlite3VdbeRecordCompare(m.n-lenRowid, m.z, pRec); sl@0: if( !pUnpacked ){ sl@0: sqlite3VdbeDeleteUnpackedRecord(pRec); sl@0: } sl@0: sqlite3VdbeMemRelease(&m); sl@0: return SQLITE_OK; sl@0: } sl@0: sl@0: /* sl@0: ** This routine sets the value to be returned by subsequent calls to sl@0: ** sqlite3_changes() on the database handle 'db'. sl@0: */ sl@0: void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ sl@0: assert( sqlite3_mutex_held(db->mutex) ); sl@0: db->nChange = nChange; sl@0: db->nTotalChange += nChange; sl@0: } sl@0: sl@0: /* sl@0: ** Set a flag in the vdbe to update the change counter when it is finalised sl@0: ** or reset. sl@0: */ sl@0: void sqlite3VdbeCountChanges(Vdbe *v){ sl@0: v->changeCntOn = 1; sl@0: } sl@0: sl@0: /* sl@0: ** Mark every prepared statement associated with a database connection sl@0: ** as expired. sl@0: ** sl@0: ** An expired statement means that recompilation of the statement is sl@0: ** recommend. Statements expire when things happen that make their sl@0: ** programs obsolete. Removing user-defined functions or collating sl@0: ** sequences, or changing an authorization function are the types of sl@0: ** things that make prepared statements obsolete. sl@0: */ sl@0: void sqlite3ExpirePreparedStatements(sqlite3 *db){ sl@0: Vdbe *p; sl@0: for(p = db->pVdbe; p; p=p->pNext){ sl@0: p->expired = 1; sl@0: } sl@0: } sl@0: sl@0: /* sl@0: ** Return the database associated with the Vdbe. sl@0: */ sl@0: sqlite3 *sqlite3VdbeDb(Vdbe *v){ sl@0: return v->db; sl@0: }