sl@0: // Boost operators.hpp header file ----------------------------------------// sl@0: sl@0: // (C) Copyright David Abrahams, Jeremy Siek, Daryle Walker 1999-2001. sl@0: // Distributed under the Boost Software License, Version 1.0. (See sl@0: // accompanying file LICENSE_1_0.txt or copy at sl@0: // http://www.boost.org/LICENSE_1_0.txt) sl@0: sl@0: // See http://www.boost.org/libs/utility/operators.htm for documentation. sl@0: sl@0: // Revision History sl@0: // 21 Oct 02 Modified implementation of operators to allow compilers with a sl@0: // correct named return value optimization (NRVO) to produce optimal sl@0: // code. (Daniel Frey) sl@0: // 02 Dec 01 Bug fixed in random_access_iteratable. (Helmut Zeisel) sl@0: // 28 Sep 01 Factored out iterator operator groups. (Daryle Walker) sl@0: // 27 Aug 01 'left' form for non commutative operators added; sl@0: // additional classes for groups of related operators added; sl@0: // workaround for empty base class optimization sl@0: // bug of GCC 3.0 (Helmut Zeisel) sl@0: // 25 Jun 01 output_iterator_helper changes: removed default template sl@0: // parameters, added support for self-proxying, additional sl@0: // documentation and tests (Aleksey Gurtovoy) sl@0: // 29 May 01 Added operator classes for << and >>. Added input and output sl@0: // iterator helper classes. Added classes to connect equality and sl@0: // relational operators. Added classes for groups of related sl@0: // operators. Reimplemented example operator and iterator helper sl@0: // classes in terms of the new groups. (Daryle Walker, with help sl@0: // from Alexy Gurtovoy) sl@0: // 11 Feb 01 Fixed bugs in the iterator helpers which prevented explicitly sl@0: // supplied arguments from actually being used (Dave Abrahams) sl@0: // 04 Jul 00 Fixed NO_OPERATORS_IN_NAMESPACE bugs, major cleanup and sl@0: // refactoring of compiler workarounds, additional documentation sl@0: // (Alexy Gurtovoy and Mark Rodgers with some help and prompting from sl@0: // Dave Abrahams) sl@0: // 28 Jun 00 General cleanup and integration of bugfixes from Mark Rodgers and sl@0: // Jeremy Siek (Dave Abrahams) sl@0: // 20 Jun 00 Changes to accommodate Borland C++Builder 4 and Borland C++ 5.5 sl@0: // (Mark Rodgers) sl@0: // 20 Jun 00 Minor fixes to the prior revision (Aleksey Gurtovoy) sl@0: // 10 Jun 00 Support for the base class chaining technique was added sl@0: // (Aleksey Gurtovoy). See documentation and the comments below sl@0: // for the details. sl@0: // 12 Dec 99 Initial version with iterator operators (Jeremy Siek) sl@0: // 18 Nov 99 Change name "divideable" to "dividable", remove unnecessary sl@0: // specializations of dividable, subtractable, modable (Ed Brey) sl@0: // 17 Nov 99 Add comments (Beman Dawes) sl@0: // Remove unnecessary specialization of operators<> (Ed Brey) sl@0: // 15 Nov 99 Fix less_than_comparable second operand type for first two sl@0: // operators.(Beman Dawes) sl@0: // 12 Nov 99 Add operators templates (Ed Brey) sl@0: // 11 Nov 99 Add single template parameter version for compilers without sl@0: // partial specialization (Beman Dawes) sl@0: // 10 Nov 99 Initial version sl@0: sl@0: // 10 Jun 00: sl@0: // An additional optional template parameter was added to most of sl@0: // operator templates to support the base class chaining technique (see sl@0: // documentation for the details). Unfortunately, a straightforward sl@0: // implementation of this change would have broken compatibility with the sl@0: // previous version of the library by making it impossible to use the same sl@0: // template name (e.g. 'addable') for both the 1- and 2-argument versions of sl@0: // an operator template. This implementation solves the backward-compatibility sl@0: // issue at the cost of some simplicity. sl@0: // sl@0: // One of the complications is an existence of special auxiliary class template sl@0: // 'is_chained_base<>' (see 'detail' namespace below), which is used sl@0: // to determine whether its template parameter is a library's operator template sl@0: // or not. You have to specialize 'is_chained_base<>' for each new sl@0: // operator template you add to the library. sl@0: // sl@0: // However, most of the non-trivial implementation details are hidden behind sl@0: // several local macros defined below, and as soon as you understand them, sl@0: // you understand the whole library implementation. sl@0: sl@0: #ifndef BOOST_OPERATORS_HPP sl@0: #define BOOST_OPERATORS_HPP sl@0: sl@0: #include sl@0: #include sl@0: #include sl@0: sl@0: #if defined(__sgi) && !defined(__GNUC__) sl@0: # pragma set woff 1234 sl@0: #endif sl@0: sl@0: #if defined(BOOST_MSVC) sl@0: # pragma warning( disable : 4284 ) // complaint about return type of sl@0: #endif // operator-> not begin a UDT sl@0: sl@0: namespace boost { sl@0: namespace detail { sl@0: sl@0: // Helmut Zeisel, empty base class optimization bug with GCC 3.0.0 sl@0: #if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==0 && __GNU_PATCHLEVEL__==0 sl@0: class empty_base { sl@0: bool dummy; sl@0: }; sl@0: #else sl@0: class empty_base {}; sl@0: #endif sl@0: sl@0: } // namespace detail sl@0: } // namespace boost sl@0: sl@0: // In this section we supply the xxxx1 and xxxx2 forms of the operator sl@0: // templates, which are explicitly targeted at the 1-type-argument and sl@0: // 2-type-argument operator forms, respectively. Some compilers get confused sl@0: // when inline friend functions are overloaded in namespaces other than the sl@0: // global namespace. When BOOST_NO_OPERATORS_IN_NAMESPACE is defined, all of sl@0: // these templates must go in the global namespace. sl@0: sl@0: #ifndef BOOST_NO_OPERATORS_IN_NAMESPACE sl@0: namespace boost sl@0: { sl@0: #endif sl@0: sl@0: // Basic operator classes (contributed by Dave Abrahams) ------------------// sl@0: sl@0: // Note that friend functions defined in a class are implicitly inline. sl@0: // See the C++ std, 11.4 [class.friend] paragraph 5 sl@0: sl@0: template sl@0: struct less_than_comparable2 : B sl@0: { sl@0: friend bool operator<=(const T& x, const U& y) { return !(x > y); } sl@0: friend bool operator>=(const T& x, const U& y) { return !(x < y); } sl@0: friend bool operator>(const U& x, const T& y) { return y < x; } sl@0: friend bool operator<(const U& x, const T& y) { return y > x; } sl@0: friend bool operator<=(const U& x, const T& y) { return !(y < x); } sl@0: friend bool operator>=(const U& x, const T& y) { return !(y > x); } sl@0: }; sl@0: sl@0: template sl@0: struct less_than_comparable1 : B sl@0: { sl@0: friend bool operator>(const T& x, const T& y) { return y < x; } sl@0: friend bool operator<=(const T& x, const T& y) { return !(y < x); } sl@0: friend bool operator>=(const T& x, const T& y) { return !(x < y); } sl@0: }; sl@0: sl@0: template sl@0: struct equality_comparable2 : B sl@0: { sl@0: friend bool operator==(const U& y, const T& x) { return x == y; } sl@0: friend bool operator!=(const U& y, const T& x) { return !(x == y); } sl@0: friend bool operator!=(const T& y, const U& x) { return !(y == x); } sl@0: }; sl@0: sl@0: template sl@0: struct equality_comparable1 : B sl@0: { sl@0: friend bool operator!=(const T& x, const T& y) { return !(x == y); } sl@0: }; sl@0: sl@0: // A macro which produces "name_2left" from "name". sl@0: #define BOOST_OPERATOR2_LEFT(name) name##2##_##left sl@0: sl@0: // NRVO-friendly implementation (contributed by Daniel Frey) ---------------// sl@0: sl@0: #if defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS) sl@0: sl@0: // This is the optimal implementation for ISO/ANSI C++, sl@0: // but it requires the compiler to implement the NRVO. sl@0: // If the compiler has no NRVO, this is the best symmetric sl@0: // implementation available. sl@0: sl@0: #define BOOST_BINARY_OPERATOR_COMMUTATIVE( NAME, OP ) \ sl@0: template \ sl@0: struct NAME##2 : B \ sl@0: { \ sl@0: friend T operator OP( const T& lhs, const U& rhs ) \ sl@0: { T nrv( lhs ); nrv OP##= rhs; return nrv; } \ sl@0: friend T operator OP( const U& lhs, const T& rhs ) \ sl@0: { T nrv( rhs ); nrv OP##= lhs; return nrv; } \ sl@0: }; \ sl@0: \ sl@0: template \ sl@0: struct NAME##1 : B \ sl@0: { \ sl@0: friend T operator OP( const T& lhs, const T& rhs ) \ sl@0: { T nrv( lhs ); nrv OP##= rhs; return nrv; } \ sl@0: }; sl@0: sl@0: #define BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( NAME, OP ) \ sl@0: template \ sl@0: struct NAME##2 : B \ sl@0: { \ sl@0: friend T operator OP( const T& lhs, const U& rhs ) \ sl@0: { T nrv( lhs ); nrv OP##= rhs; return nrv; } \ sl@0: }; \ sl@0: \ sl@0: template \ sl@0: struct BOOST_OPERATOR2_LEFT(NAME) : B \ sl@0: { \ sl@0: friend T operator OP( const U& lhs, const T& rhs ) \ sl@0: { T nrv( lhs ); nrv OP##= rhs; return nrv; } \ sl@0: }; \ sl@0: \ sl@0: template \ sl@0: struct NAME##1 : B \ sl@0: { \ sl@0: friend T operator OP( const T& lhs, const T& rhs ) \ sl@0: { T nrv( lhs ); nrv OP##= rhs; return nrv; } \ sl@0: }; sl@0: sl@0: #else // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS) sl@0: sl@0: // For compilers without NRVO the following code is optimal, but not sl@0: // symmetric! Note that the implementation of sl@0: // BOOST_OPERATOR2_LEFT(NAME) only looks cool, but doesn't provide sl@0: // optimization opportunities to the compiler :) sl@0: sl@0: #define BOOST_BINARY_OPERATOR_COMMUTATIVE( NAME, OP ) \ sl@0: template \ sl@0: struct NAME##2 : B \ sl@0: { \ sl@0: friend T operator OP( T lhs, const U& rhs ) { return lhs OP##= rhs; } \ sl@0: friend T operator OP( const U& lhs, T rhs ) { return rhs OP##= lhs; } \ sl@0: }; \ sl@0: \ sl@0: template \ sl@0: struct NAME##1 : B \ sl@0: { \ sl@0: friend T operator OP( T lhs, const T& rhs ) { return lhs OP##= rhs; } \ sl@0: }; sl@0: sl@0: #define BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( NAME, OP ) \ sl@0: template \ sl@0: struct NAME##2 : B \ sl@0: { \ sl@0: friend T operator OP( T lhs, const U& rhs ) { return lhs OP##= rhs; } \ sl@0: }; \ sl@0: \ sl@0: template \ sl@0: struct BOOST_OPERATOR2_LEFT(NAME) : B \ sl@0: { \ sl@0: friend T operator OP( const U& lhs, const T& rhs ) \ sl@0: { return T( lhs ) OP##= rhs; } \ sl@0: }; \ sl@0: \ sl@0: template \ sl@0: struct NAME##1 : B \ sl@0: { \ sl@0: friend T operator OP( T lhs, const T& rhs ) { return lhs OP##= rhs; } \ sl@0: }; sl@0: sl@0: #endif // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS) sl@0: sl@0: BOOST_BINARY_OPERATOR_COMMUTATIVE( multipliable, * ) sl@0: BOOST_BINARY_OPERATOR_COMMUTATIVE( addable, + ) sl@0: BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( subtractable, - ) sl@0: BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( dividable, / ) sl@0: BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( modable, % ) sl@0: BOOST_BINARY_OPERATOR_COMMUTATIVE( xorable, ^ ) sl@0: BOOST_BINARY_OPERATOR_COMMUTATIVE( andable, & ) sl@0: BOOST_BINARY_OPERATOR_COMMUTATIVE( orable, | ) sl@0: sl@0: #undef BOOST_BINARY_OPERATOR_COMMUTATIVE sl@0: #undef BOOST_BINARY_OPERATOR_NON_COMMUTATIVE sl@0: #undef BOOST_OPERATOR2_LEFT sl@0: sl@0: // incrementable and decrementable contributed by Jeremy Siek sl@0: sl@0: template sl@0: struct incrementable : B sl@0: { sl@0: friend T operator++(T& x, int) sl@0: { sl@0: incrementable_type nrv(x); sl@0: ++x; sl@0: return nrv; sl@0: } sl@0: private: // The use of this typedef works around a Borland bug sl@0: typedef T incrementable_type; sl@0: }; sl@0: sl@0: template sl@0: struct decrementable : B sl@0: { sl@0: friend T operator--(T& x, int) sl@0: { sl@0: decrementable_type nrv(x); sl@0: --x; sl@0: return nrv; sl@0: } sl@0: private: // The use of this typedef works around a Borland bug sl@0: typedef T decrementable_type; sl@0: }; sl@0: sl@0: // Iterator operator classes (contributed by Jeremy Siek) ------------------// sl@0: sl@0: template sl@0: struct dereferenceable : B sl@0: { sl@0: P operator->() const sl@0: { sl@0: return &*static_cast(*this); sl@0: } sl@0: }; sl@0: sl@0: template sl@0: struct indexable : B sl@0: { sl@0: R operator[](I n) const sl@0: { sl@0: return *(static_cast(*this) + n); sl@0: } sl@0: }; sl@0: sl@0: // More operator classes (contributed by Daryle Walker) --------------------// sl@0: // (NRVO-friendly implementation contributed by Daniel Frey) ---------------// sl@0: sl@0: #if defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS) sl@0: sl@0: #define BOOST_BINARY_OPERATOR( NAME, OP ) \ sl@0: template \ sl@0: struct NAME##2 : B \ sl@0: { \ sl@0: friend T operator OP( const T& lhs, const U& rhs ) \ sl@0: { T nrv( lhs ); nrv OP##= rhs; return nrv; } \ sl@0: }; \ sl@0: \ sl@0: template \ sl@0: struct NAME##1 : B \ sl@0: { \ sl@0: friend T operator OP( const T& lhs, const T& rhs ) \ sl@0: { T nrv( lhs ); nrv OP##= rhs; return nrv; } \ sl@0: }; sl@0: sl@0: #else // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS) sl@0: sl@0: #define BOOST_BINARY_OPERATOR( NAME, OP ) \ sl@0: template \ sl@0: struct NAME##2 : B \ sl@0: { \ sl@0: friend T operator OP( T lhs, const U& rhs ) { return lhs OP##= rhs; } \ sl@0: }; \ sl@0: \ sl@0: template \ sl@0: struct NAME##1 : B \ sl@0: { \ sl@0: friend T operator OP( T lhs, const T& rhs ) { return lhs OP##= rhs; } \ sl@0: }; sl@0: sl@0: #endif // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS) sl@0: sl@0: BOOST_BINARY_OPERATOR( left_shiftable, << ) sl@0: BOOST_BINARY_OPERATOR( right_shiftable, >> ) sl@0: sl@0: #undef BOOST_BINARY_OPERATOR sl@0: sl@0: template sl@0: struct equivalent2 : B sl@0: { sl@0: friend bool operator==(const T& x, const U& y) sl@0: { sl@0: return !(x < y) && !(x > y); sl@0: } sl@0: }; sl@0: sl@0: template sl@0: struct equivalent1 : B sl@0: { sl@0: friend bool operator==(const T&x, const T&y) sl@0: { sl@0: return !(x < y) && !(y < x); sl@0: } sl@0: }; sl@0: sl@0: template sl@0: struct partially_ordered2 : B sl@0: { sl@0: friend bool operator<=(const T& x, const U& y) sl@0: { return (x < y) || (x == y); } sl@0: friend bool operator>=(const T& x, const U& y) sl@0: { return (x > y) || (x == y); } sl@0: friend bool operator>(const U& x, const T& y) sl@0: { return y < x; } sl@0: friend bool operator<(const U& x, const T& y) sl@0: { return y > x; } sl@0: friend bool operator<=(const U& x, const T& y) sl@0: { return (y > x) || (y == x); } sl@0: friend bool operator>=(const U& x, const T& y) sl@0: { return (y < x) || (y == x); } sl@0: }; sl@0: sl@0: template sl@0: struct partially_ordered1 : B sl@0: { sl@0: friend bool operator>(const T& x, const T& y) sl@0: { return y < x; } sl@0: friend bool operator<=(const T& x, const T& y) sl@0: { return (x < y) || (x == y); } sl@0: friend bool operator>=(const T& x, const T& y) sl@0: { return (y < x) || (x == y); } sl@0: }; sl@0: sl@0: // Combined operator classes (contributed by Daryle Walker) ----------------// sl@0: sl@0: template sl@0: struct totally_ordered2 sl@0: : less_than_comparable2 > {}; sl@0: sl@0: template sl@0: struct totally_ordered1 sl@0: : less_than_comparable1 > {}; sl@0: sl@0: template sl@0: struct additive2 sl@0: : addable2 > {}; sl@0: sl@0: template sl@0: struct additive1 sl@0: : addable1 > {}; sl@0: sl@0: template sl@0: struct multiplicative2 sl@0: : multipliable2 > {}; sl@0: sl@0: template sl@0: struct multiplicative1 sl@0: : multipliable1 > {}; sl@0: sl@0: template sl@0: struct integer_multiplicative2 sl@0: : multiplicative2 > {}; sl@0: sl@0: template sl@0: struct integer_multiplicative1 sl@0: : multiplicative1 > {}; sl@0: sl@0: template sl@0: struct arithmetic2 sl@0: : additive2 > {}; sl@0: sl@0: template sl@0: struct arithmetic1 sl@0: : additive1 > {}; sl@0: sl@0: template sl@0: struct integer_arithmetic2 sl@0: : additive2 > {}; sl@0: sl@0: template sl@0: struct integer_arithmetic1 sl@0: : additive1 > {}; sl@0: sl@0: template sl@0: struct bitwise2 sl@0: : xorable2 > > {}; sl@0: sl@0: template sl@0: struct bitwise1 sl@0: : xorable1 > > {}; sl@0: sl@0: template sl@0: struct unit_steppable sl@0: : incrementable > {}; sl@0: sl@0: template sl@0: struct shiftable2 sl@0: : left_shiftable2 > {}; sl@0: sl@0: template sl@0: struct shiftable1 sl@0: : left_shiftable1 > {}; sl@0: sl@0: template sl@0: struct ring_operators2 sl@0: : additive2 > > {}; sl@0: sl@0: template sl@0: struct ring_operators1 sl@0: : additive1 > {}; sl@0: sl@0: template sl@0: struct ordered_ring_operators2 sl@0: : ring_operators2 > {}; sl@0: sl@0: template sl@0: struct ordered_ring_operators1 sl@0: : ring_operators1 > {}; sl@0: sl@0: template sl@0: struct field_operators2 sl@0: : ring_operators2 > > {}; sl@0: sl@0: template sl@0: struct field_operators1 sl@0: : ring_operators1 > {}; sl@0: sl@0: template sl@0: struct ordered_field_operators2 sl@0: : field_operators2 > {}; sl@0: sl@0: template sl@0: struct ordered_field_operators1 sl@0: : field_operators1 > {}; sl@0: sl@0: template sl@0: struct euclidian_ring_operators2 sl@0: : ring_operators2 > > > > {}; sl@0: sl@0: template sl@0: struct euclidian_ring_operators1 sl@0: : ring_operators1 > > {}; sl@0: sl@0: template sl@0: struct ordered_euclidian_ring_operators2 sl@0: : totally_ordered2 > {}; sl@0: sl@0: template sl@0: struct ordered_euclidian_ring_operators1 sl@0: : totally_ordered1 > {}; sl@0: sl@0: template sl@0: struct input_iteratable sl@0: : equality_comparable1 > > {}; sl@0: sl@0: template sl@0: struct output_iteratable sl@0: : incrementable {}; sl@0: sl@0: template sl@0: struct forward_iteratable sl@0: : input_iteratable {}; sl@0: sl@0: template sl@0: struct bidirectional_iteratable sl@0: : forward_iteratable > {}; sl@0: sl@0: // To avoid repeated derivation from equality_comparable, sl@0: // which is an indirect base class of bidirectional_iterable, sl@0: // random_access_iteratable must not be derived from totally_ordered1 sl@0: // but from less_than_comparable1 only. (Helmut Zeisel, 02-Dec-2001) sl@0: template sl@0: struct random_access_iteratable sl@0: : bidirectional_iteratable > > > {}; sl@0: sl@0: #ifndef BOOST_NO_OPERATORS_IN_NAMESPACE sl@0: } // namespace boost sl@0: #endif // BOOST_NO_OPERATORS_IN_NAMESPACE sl@0: sl@0: sl@0: // BOOST_IMPORT_TEMPLATE1 .. BOOST_IMPORT_TEMPLATE4 - sl@0: // sl@0: // When BOOST_NO_OPERATORS_IN_NAMESPACE is defined we need a way to import an sl@0: // operator template into the boost namespace. BOOST_IMPORT_TEMPLATE1 is used sl@0: // for one-argument forms of operator templates; BOOST_IMPORT_TEMPLATE2 for sl@0: // two-argument forms. Note that these macros expect to be invoked from within sl@0: // boost. sl@0: sl@0: #ifndef BOOST_NO_OPERATORS_IN_NAMESPACE sl@0: sl@0: // The template is already in boost so we have nothing to do. sl@0: # define BOOST_IMPORT_TEMPLATE4(template_name) sl@0: # define BOOST_IMPORT_TEMPLATE3(template_name) sl@0: # define BOOST_IMPORT_TEMPLATE2(template_name) sl@0: # define BOOST_IMPORT_TEMPLATE1(template_name) sl@0: sl@0: #else // BOOST_NO_OPERATORS_IN_NAMESPACE sl@0: sl@0: # ifndef BOOST_NO_USING_TEMPLATE sl@0: sl@0: // Bring the names in with a using-declaration sl@0: // to avoid stressing the compiler. sl@0: # define BOOST_IMPORT_TEMPLATE4(template_name) using ::template_name; sl@0: # define BOOST_IMPORT_TEMPLATE3(template_name) using ::template_name; sl@0: # define BOOST_IMPORT_TEMPLATE2(template_name) using ::template_name; sl@0: # define BOOST_IMPORT_TEMPLATE1(template_name) using ::template_name; sl@0: sl@0: # else sl@0: sl@0: // Otherwise, because a Borland C++ 5.5 bug prevents a using declaration sl@0: // from working, we are forced to use inheritance for that compiler. sl@0: # define BOOST_IMPORT_TEMPLATE4(template_name) \ sl@0: template \ sl@0: struct template_name : ::template_name {}; sl@0: sl@0: # define BOOST_IMPORT_TEMPLATE3(template_name) \ sl@0: template \ sl@0: struct template_name : ::template_name {}; sl@0: sl@0: # define BOOST_IMPORT_TEMPLATE2(template_name) \ sl@0: template \ sl@0: struct template_name : ::template_name {}; sl@0: sl@0: # define BOOST_IMPORT_TEMPLATE1(template_name) \ sl@0: template \ sl@0: struct template_name : ::template_name {}; sl@0: sl@0: # endif // BOOST_NO_USING_TEMPLATE sl@0: sl@0: #endif // BOOST_NO_OPERATORS_IN_NAMESPACE sl@0: sl@0: // sl@0: // Here's where we put it all together, defining the xxxx forms of the templates sl@0: // in namespace boost. We also define specializations of is_chained_base<> for sl@0: // the xxxx, xxxx1, and xxxx2 templates, importing them into boost:: as sl@0: // necessary. sl@0: // sl@0: #ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION sl@0: sl@0: // is_chained_base<> - a traits class used to distinguish whether an operator sl@0: // template argument is being used for base class chaining, or is specifying a sl@0: // 2nd argument type. sl@0: sl@0: namespace boost { sl@0: // A type parameter is used instead of a plain bool because Borland's compiler sl@0: // didn't cope well with the more obvious non-type template parameter. sl@0: namespace detail { sl@0: struct true_t {}; sl@0: struct false_t {}; sl@0: } // namespace detail sl@0: sl@0: // Unspecialized version assumes that most types are not being used for base sl@0: // class chaining. We specialize for the operator templates defined in this sl@0: // library. sl@0: template struct is_chained_base { sl@0: typedef ::boost::detail::false_t value; sl@0: }; sl@0: sl@0: } // namespace boost sl@0: sl@0: // Import a 4-type-argument operator template into boost (if necessary) and sl@0: // provide a specialization of 'is_chained_base<>' for it. sl@0: # define BOOST_OPERATOR_TEMPLATE4(template_name4) \ sl@0: BOOST_IMPORT_TEMPLATE4(template_name4) \ sl@0: template \ sl@0: struct is_chained_base< ::boost::template_name4 > { \ sl@0: typedef ::boost::detail::true_t value; \ sl@0: }; sl@0: sl@0: // Import a 3-type-argument operator template into boost (if necessary) and sl@0: // provide a specialization of 'is_chained_base<>' for it. sl@0: # define BOOST_OPERATOR_TEMPLATE3(template_name3) \ sl@0: BOOST_IMPORT_TEMPLATE3(template_name3) \ sl@0: template \ sl@0: struct is_chained_base< ::boost::template_name3 > { \ sl@0: typedef ::boost::detail::true_t value; \ sl@0: }; sl@0: sl@0: // Import a 2-type-argument operator template into boost (if necessary) and sl@0: // provide a specialization of 'is_chained_base<>' for it. sl@0: # define BOOST_OPERATOR_TEMPLATE2(template_name2) \ sl@0: BOOST_IMPORT_TEMPLATE2(template_name2) \ sl@0: template \ sl@0: struct is_chained_base< ::boost::template_name2 > { \ sl@0: typedef ::boost::detail::true_t value; \ sl@0: }; sl@0: sl@0: // Import a 1-type-argument operator template into boost (if necessary) and sl@0: // provide a specialization of 'is_chained_base<>' for it. sl@0: # define BOOST_OPERATOR_TEMPLATE1(template_name1) \ sl@0: BOOST_IMPORT_TEMPLATE1(template_name1) \ sl@0: template \ sl@0: struct is_chained_base< ::boost::template_name1 > { \ sl@0: typedef ::boost::detail::true_t value; \ sl@0: }; sl@0: sl@0: // BOOST_OPERATOR_TEMPLATE(template_name) defines template_name<> such that it sl@0: // can be used for specifying both 1-argument and 2-argument forms. Requires the sl@0: // existence of two previously defined class templates named '1' sl@0: // and '2' which must implement the corresponding 1- and 2- sl@0: // argument forms. sl@0: // sl@0: // The template type parameter O == is_chained_base::value is used to sl@0: // distinguish whether the 2nd argument to is being used for sl@0: // base class chaining from another boost operator template or is describing a sl@0: // 2nd operand type. O == true_t only when U is actually an another operator sl@0: // template from the library. Partial specialization is used to select an sl@0: // implementation in terms of either '1' or '2'. sl@0: // sl@0: sl@0: # define BOOST_OPERATOR_TEMPLATE(template_name) \ sl@0: template ::value \ sl@0: > \ sl@0: struct template_name : template_name##2 {}; \ sl@0: \ sl@0: template \ sl@0: struct template_name \ sl@0: : template_name##1 {}; \ sl@0: \ sl@0: template \ sl@0: struct template_name \ sl@0: : template_name##1 {}; \ sl@0: \ sl@0: template \ sl@0: struct is_chained_base< ::boost::template_name > { \ sl@0: typedef ::boost::detail::true_t value; \ sl@0: }; \ sl@0: \ sl@0: BOOST_OPERATOR_TEMPLATE2(template_name##2) \ sl@0: BOOST_OPERATOR_TEMPLATE1(template_name##1) sl@0: sl@0: sl@0: #else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION sl@0: sl@0: # define BOOST_OPERATOR_TEMPLATE4(template_name4) \ sl@0: BOOST_IMPORT_TEMPLATE4(template_name4) sl@0: # define BOOST_OPERATOR_TEMPLATE3(template_name3) \ sl@0: BOOST_IMPORT_TEMPLATE3(template_name3) sl@0: # define BOOST_OPERATOR_TEMPLATE2(template_name2) \ sl@0: BOOST_IMPORT_TEMPLATE2(template_name2) sl@0: # define BOOST_OPERATOR_TEMPLATE1(template_name1) \ sl@0: BOOST_IMPORT_TEMPLATE1(template_name1) sl@0: sl@0: // In this case we can only assume that template_name<> is equivalent to the sl@0: // more commonly needed template_name1<> form. sl@0: # define BOOST_OPERATOR_TEMPLATE(template_name) \ sl@0: template \ sl@0: struct template_name : template_name##1 {}; sl@0: sl@0: #endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION sl@0: sl@0: namespace boost { sl@0: sl@0: BOOST_OPERATOR_TEMPLATE(less_than_comparable) sl@0: BOOST_OPERATOR_TEMPLATE(equality_comparable) sl@0: BOOST_OPERATOR_TEMPLATE(multipliable) sl@0: BOOST_OPERATOR_TEMPLATE(addable) sl@0: BOOST_OPERATOR_TEMPLATE(subtractable) sl@0: BOOST_OPERATOR_TEMPLATE2(subtractable2_left) sl@0: BOOST_OPERATOR_TEMPLATE(dividable) sl@0: BOOST_OPERATOR_TEMPLATE2(dividable2_left) sl@0: BOOST_OPERATOR_TEMPLATE(modable) sl@0: BOOST_OPERATOR_TEMPLATE2(modable2_left) sl@0: BOOST_OPERATOR_TEMPLATE(xorable) sl@0: BOOST_OPERATOR_TEMPLATE(andable) sl@0: BOOST_OPERATOR_TEMPLATE(orable) sl@0: sl@0: BOOST_OPERATOR_TEMPLATE1(incrementable) sl@0: BOOST_OPERATOR_TEMPLATE1(decrementable) sl@0: sl@0: BOOST_OPERATOR_TEMPLATE2(dereferenceable) sl@0: BOOST_OPERATOR_TEMPLATE3(indexable) sl@0: sl@0: BOOST_OPERATOR_TEMPLATE(left_shiftable) sl@0: BOOST_OPERATOR_TEMPLATE(right_shiftable) sl@0: BOOST_OPERATOR_TEMPLATE(equivalent) sl@0: BOOST_OPERATOR_TEMPLATE(partially_ordered) sl@0: sl@0: BOOST_OPERATOR_TEMPLATE(totally_ordered) sl@0: BOOST_OPERATOR_TEMPLATE(additive) sl@0: BOOST_OPERATOR_TEMPLATE(multiplicative) sl@0: BOOST_OPERATOR_TEMPLATE(integer_multiplicative) sl@0: BOOST_OPERATOR_TEMPLATE(arithmetic) sl@0: BOOST_OPERATOR_TEMPLATE(integer_arithmetic) sl@0: BOOST_OPERATOR_TEMPLATE(bitwise) sl@0: BOOST_OPERATOR_TEMPLATE1(unit_steppable) sl@0: BOOST_OPERATOR_TEMPLATE(shiftable) sl@0: BOOST_OPERATOR_TEMPLATE(ring_operators) sl@0: BOOST_OPERATOR_TEMPLATE(ordered_ring_operators) sl@0: BOOST_OPERATOR_TEMPLATE(field_operators) sl@0: BOOST_OPERATOR_TEMPLATE(ordered_field_operators) sl@0: BOOST_OPERATOR_TEMPLATE(euclidian_ring_operators) sl@0: BOOST_OPERATOR_TEMPLATE(ordered_euclidian_ring_operators) sl@0: BOOST_OPERATOR_TEMPLATE2(input_iteratable) sl@0: BOOST_OPERATOR_TEMPLATE1(output_iteratable) sl@0: BOOST_OPERATOR_TEMPLATE2(forward_iteratable) sl@0: BOOST_OPERATOR_TEMPLATE2(bidirectional_iteratable) sl@0: BOOST_OPERATOR_TEMPLATE4(random_access_iteratable) sl@0: sl@0: #undef BOOST_OPERATOR_TEMPLATE sl@0: #undef BOOST_OPERATOR_TEMPLATE4 sl@0: #undef BOOST_OPERATOR_TEMPLATE3 sl@0: #undef BOOST_OPERATOR_TEMPLATE2 sl@0: #undef BOOST_OPERATOR_TEMPLATE1 sl@0: #undef BOOST_IMPORT_TEMPLATE1 sl@0: #undef BOOST_IMPORT_TEMPLATE2 sl@0: #undef BOOST_IMPORT_TEMPLATE3 sl@0: #undef BOOST_IMPORT_TEMPLATE4 sl@0: sl@0: // The following 'operators' classes can only be used portably if the derived class sl@0: // declares ALL of the required member operators. sl@0: template sl@0: struct operators2 sl@0: : totally_ordered2 > > {}; sl@0: sl@0: #ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION sl@0: template sl@0: struct operators : operators2 {}; sl@0: sl@0: template struct operators sl@0: #else sl@0: template struct operators sl@0: #endif sl@0: : totally_ordered > > > {}; sl@0: sl@0: // Iterator helper classes (contributed by Jeremy Siek) -------------------// sl@0: // (Input and output iterator helpers contributed by Daryle Walker) -------// sl@0: // (Changed to use combined operator classes by Daryle Walker) ------------// sl@0: template sl@0: struct input_iterator_helper sl@0: : input_iteratable > {}; sl@0: sl@0: template sl@0: struct output_iterator_helper sl@0: : output_iteratable > sl@0: { sl@0: T& operator*() { return static_cast(*this); } sl@0: T& operator++() { return static_cast(*this); } sl@0: }; sl@0: sl@0: template sl@0: struct forward_iterator_helper sl@0: : forward_iteratable > {}; sl@0: sl@0: template sl@0: struct bidirectional_iterator_helper sl@0: : bidirectional_iteratable > {}; sl@0: sl@0: template sl@0: struct random_access_iterator_helper sl@0: : random_access_iteratable > sl@0: { sl@0: friend D requires_difference_operator(const T& x, const T& y) { sl@0: return x - y; sl@0: } sl@0: }; // random_access_iterator_helper sl@0: sl@0: } // namespace boost sl@0: sl@0: #if defined(__sgi) && !defined(__GNUC__) sl@0: #pragma reset woff 1234 sl@0: #endif sl@0: sl@0: #endif // BOOST_OPERATORS_HPP