sl@0: // Boost Lambda Library ret.hpp ----------------------------------------- sl@0: sl@0: // Copyright (C) 1999, 2000 Jaakko Järvi (jaakko.jarvi@cs.utu.fi) sl@0: // sl@0: // Distributed under the Boost Software License, Version 1.0. (See sl@0: // accompanying file LICENSE_1_0.txt or copy at sl@0: // http://www.boost.org/LICENSE_1_0.txt) sl@0: // sl@0: // For more information, see www.boost.org sl@0: sl@0: sl@0: #ifndef BOOST_LAMBDA_RET_HPP sl@0: #define BOOST_LAMBDA_RET_HPP sl@0: sl@0: namespace boost { sl@0: namespace lambda { sl@0: sl@0: // TODO: sl@0: sl@0: // Add specializations for function references for ret, protect and unlambda sl@0: // e.g void foo(); unlambda(foo); fails, as it would add a const qualifier sl@0: // for a function type. sl@0: // on the other hand unlambda(*foo) does work sl@0: sl@0: sl@0: // -- ret ------------------------- sl@0: // the explicit return type template sl@0: sl@0: // TODO: It'd be nice to make ret a nop for other than lambda functors sl@0: // but causes an ambiguiyty with gcc (not with KCC), check what is the sl@0: // right interpretation. sl@0: sl@0: // // ret for others than lambda functors has no effect sl@0: // template sl@0: // inline const T& ret(const T& t) { return t; } sl@0: sl@0: sl@0: template sl@0: inline const sl@0: lambda_functor< sl@0: lambda_functor_base< sl@0: explicit_return_type_action, sl@0: tuple > sl@0: > sl@0: > sl@0: ret(const lambda_functor& a1) sl@0: { sl@0: return sl@0: lambda_functor_base< sl@0: explicit_return_type_action, sl@0: tuple > sl@0: > sl@0: (tuple >(a1)); sl@0: } sl@0: sl@0: // protect ------------------ sl@0: sl@0: // protecting others than lambda functors has no effect sl@0: template sl@0: inline const T& protect(const T& t) { return t; } sl@0: sl@0: template sl@0: inline const sl@0: lambda_functor< sl@0: lambda_functor_base< sl@0: protect_action, sl@0: tuple > sl@0: > sl@0: > sl@0: protect(const lambda_functor& a1) sl@0: { sl@0: return sl@0: lambda_functor_base< sl@0: protect_action, sl@0: tuple > sl@0: > sl@0: (tuple >(a1)); sl@0: } sl@0: sl@0: // ------------------------------------------------------------------- sl@0: sl@0: // Hides the lambda functorness of a lambda functor. sl@0: // After this, the functor is immune to argument substitution, etc. sl@0: // This can be used, e.g. to make it safe to pass lambda functors as sl@0: // arguments to functions, which might use them as target functions sl@0: sl@0: // note, unlambda and protect are different things. Protect hides the lambda sl@0: // functor for one application, unlambda for good. sl@0: sl@0: template sl@0: class non_lambda_functor sl@0: { sl@0: LambdaFunctor lf; sl@0: public: sl@0: sl@0: // This functor defines the result_type typedef. sl@0: // The result type must be deducible without knowing the arguments sl@0: sl@0: template struct sig { sl@0: typedef typename sl@0: LambdaFunctor::inherited:: sl@0: template sig::type type; sl@0: }; sl@0: sl@0: explicit non_lambda_functor(const LambdaFunctor& a) : lf(a) {} sl@0: sl@0: typename LambdaFunctor::nullary_return_type sl@0: operator()() const { sl@0: return lf.template sl@0: call sl@0: (cnull_type(), cnull_type(), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template sl@0: typename sig >::type sl@0: operator()(A& a) const { sl@0: return lf.template call >::type >(a, cnull_type(), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template sl@0: typename sig >::type sl@0: operator()(A& a, B& b) const { sl@0: return lf.template call >::type >(a, b, cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template sl@0: typename sig >::type sl@0: operator()(A& a, B& b, C& c) const { sl@0: return lf.template call >::type>(a, b, c, cnull_type()); sl@0: } sl@0: }; sl@0: sl@0: template sl@0: inline const Arg& unlambda(const Arg& a) { return a; } sl@0: sl@0: template sl@0: inline const non_lambda_functor > sl@0: unlambda(const lambda_functor& a) sl@0: { sl@0: return non_lambda_functor >(a); sl@0: } sl@0: sl@0: // Due to a language restriction, lambda functors cannot be made to sl@0: // accept non-const rvalue arguments. Usually iterators do not return sl@0: // temporaries, but sometimes they do. That's why a workaround is provided. sl@0: // Note, that this potentially breaks const correctness, so be careful! sl@0: sl@0: // any lambda functor can be turned into a const_incorrect_lambda_functor sl@0: // The operator() takes arguments as consts and then casts constness sl@0: // away. So this breaks const correctness!!! but is a necessary workaround sl@0: // in some cases due to language limitations. sl@0: // Note, that this is not a lambda_functor anymore, so it can not be used sl@0: // as a sub lambda expression. sl@0: sl@0: template sl@0: struct const_incorrect_lambda_functor { sl@0: LambdaFunctor lf; sl@0: public: sl@0: sl@0: explicit const_incorrect_lambda_functor(const LambdaFunctor& a) : lf(a) {} sl@0: sl@0: template struct sig { sl@0: typedef typename sl@0: LambdaFunctor::inherited::template sl@0: sig::type type; sl@0: }; sl@0: sl@0: // The nullary case is not needed (no arguments, no parameter type problems) sl@0: sl@0: template sl@0: typename sig >::type sl@0: operator()(const A& a) const { sl@0: return lf.template call >::type >(const_cast(a), cnull_type(), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template sl@0: typename sig >::type sl@0: operator()(const A& a, const B& b) const { sl@0: return lf.template call >::type >(const_cast(a), const_cast(b), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template sl@0: typename sig >::type sl@0: operator()(const A& a, const B& b, const C& c) const { sl@0: return lf.template call >::type>(const_cast(a), const_cast(b), const_cast(c), cnull_type()); sl@0: } sl@0: }; sl@0: sl@0: // ------------------------------------------------------------------------ sl@0: // any lambda functor can be turned into a const_parameter_lambda_functor sl@0: // The operator() takes arguments as const. sl@0: // This is useful if lambda functors are called with non-const rvalues. sl@0: // Note, that this is not a lambda_functor anymore, so it can not be used sl@0: // as a sub lambda expression. sl@0: sl@0: template sl@0: struct const_parameter_lambda_functor { sl@0: LambdaFunctor lf; sl@0: public: sl@0: sl@0: explicit const_parameter_lambda_functor(const LambdaFunctor& a) : lf(a) {} sl@0: sl@0: template struct sig { sl@0: typedef typename sl@0: LambdaFunctor::inherited::template sl@0: sig::type type; sl@0: }; sl@0: sl@0: // The nullary case is not needed: no arguments, no constness problems. sl@0: sl@0: template sl@0: typename sig >::type sl@0: operator()(const A& a) const { sl@0: return lf.template call >::type >(a, cnull_type(), cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template sl@0: typename sig >::type sl@0: operator()(const A& a, const B& b) const { sl@0: return lf.template call >::type >(a, b, cnull_type(), cnull_type()); sl@0: } sl@0: sl@0: template sl@0: typename sig sl@0: >::type sl@0: operator()(const A& a, const B& b, const C& c) const { sl@0: return lf.template call >::type>(a, b, c, cnull_type()); sl@0: } sl@0: }; sl@0: sl@0: template sl@0: inline const const_incorrect_lambda_functor > sl@0: break_const(const lambda_functor& lf) sl@0: { sl@0: return const_incorrect_lambda_functor >(lf); sl@0: } sl@0: sl@0: sl@0: template sl@0: inline const const_parameter_lambda_functor > sl@0: const_parameters(const lambda_functor& lf) sl@0: { sl@0: return const_parameter_lambda_functor >(lf); sl@0: } sl@0: sl@0: // make void ------------------------------------------------ sl@0: // make_void( x ) turns a lambda functor x with some return type y into sl@0: // another lambda functor, which has a void return type sl@0: // when called, the original return type is discarded sl@0: sl@0: // we use this action. The action class will be called, which means that sl@0: // the wrapped lambda functor is evaluated, but we just don't do anything sl@0: // with the result. sl@0: struct voidifier_action { sl@0: template static void apply(A&) {} sl@0: }; sl@0: sl@0: template struct return_type_N { sl@0: typedef void type; sl@0: }; sl@0: sl@0: template sl@0: inline const sl@0: lambda_functor< sl@0: lambda_functor_base< sl@0: action<1, voidifier_action>, sl@0: tuple > sl@0: > sl@0: > sl@0: make_void(const lambda_functor& a1) { sl@0: return sl@0: lambda_functor_base< sl@0: action<1, voidifier_action>, sl@0: tuple > sl@0: > sl@0: (tuple > (a1)); sl@0: } sl@0: sl@0: // for non-lambda functors, make_void does nothing sl@0: // (the argument gets evaluated immediately) sl@0: sl@0: template sl@0: inline const sl@0: lambda_functor< sl@0: lambda_functor_base sl@0: > sl@0: make_void(const Arg1& a1) { sl@0: return sl@0: lambda_functor_base(); sl@0: } sl@0: sl@0: // std_functor ----------------------------------------------------- sl@0: sl@0: // The STL uses the result_type typedef as the convention to let binders know sl@0: // the return type of a function object. sl@0: // LL uses the sig template. sl@0: // To let LL know that the function object has the result_type typedef sl@0: // defined, it can be wrapped with the std_functor function. sl@0: sl@0: sl@0: // Just inherit form the template parameter (the standard functor), sl@0: // and provide a sig template. So we have a class which is still the sl@0: // same functor + the sig template. sl@0: sl@0: template sl@0: struct result_type_to_sig : public T { sl@0: template struct sig { typedef typename T::result_type type; }; sl@0: result_type_to_sig(const T& t) : T(t) {} sl@0: }; sl@0: sl@0: template sl@0: inline result_type_to_sig std_functor(const F& f) { return f; } sl@0: sl@0: sl@0: } // namespace lambda sl@0: } // namespace boost sl@0: sl@0: #endif sl@0: sl@0: sl@0: sl@0: sl@0: sl@0: sl@0: